自动控制原理第五章频域分析法

合集下载

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

自动控制原理第五章频域分析

自动控制原理第五章频域分析
T
() 90
23
Bode图
dB
10 0
10 0.1
20
( )
0
45 0.1
90
1 10 TT
1 10
20dB / dec
1 10
极坐标图
G( j )
1
e jtg1T
2T 2 1
24
5. 一阶微分环节 G j 1 jT
l 幅频: 20lg A 20lg 1 2T 2
1 jT
a) <<1/T
20lg A 20lg1 0(dB)
b) >>1/T
20lg A 20lgT(dB)
c) =1/T —— 转折频率
21
误差(实际曲线与折线)
1) 最大误差在转折频率处( =1/T)
20lg A 1 20lg 2 3.01(dB) T
2)在 处0.1
T
入量之比(正弦传递函数)。
4
<引例>分析一阶RC网络的频率特性
输入 ui t Um sint
U o
U i
1/ jC R 1/ jC
1
U i
jRC
U i
1 (RC)2
tg1RC
U o U i
1
1
jRC
G( j )
A( )e j ( )
5
幅值比 相位差
U o U i
A( )
1
1 (RC )2
幅频特性误差修正曲线
20lg A 0.1 20lg 1 0.01 0.043(dB) 0(dB)
T
3)在 处10
T
20lg A 10 20lg 1 100 20.043(dB) 20(dB) T

自动控制原理第5章频域分析法

自动控制原理第5章频域分析法
确定方法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。

自动控制原理第5章-频域分析

自动控制原理第5章-频域分析
(4)频率特性主要适用于线性定常系统,也可以有条件 地推广应用到非线性系统中。
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1

G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC



U0
1

I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT

U 1
i
于是有:

U0

Ui
1
jT 1

(T RC)
G( j)
U0

Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1

自动控制原理第五章

自动控制原理第五章

•表5-1 RC网络的幅频特性和相频特性数据

A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196

0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图

自动控制原理-胡寿松-第五章-线性系统的频域分析法

自动控制原理-胡寿松-第五章-线性系统的频域分析法

第四象限
第三象限
Mr
注意: (特殊点与趋势) 1. A(0) 1, (0) 0; A() 0, () 180 2. 与虚轴的交点 (转折点,是阻尼比的减函数) 2 (0 ) 3.有谐振时, 2 r , M r 为 的减函数 。当 2 0.707 时,谐振峰值 M r 1 。 2
7.延迟环节和延迟系统
1.典型环节
2.最小相位环节的频率特性
(考试、考研重点,nyquist图与bode图必须会画,概率图)
考试的标准画法
L(dB)
20
10
20 lg k
0
10
1
10
100
1000

o
( )
10
0
1
10
100
1000

10
比例环节的nyquist图与bode图
本节目录 1.典型环节 2.最小相位环节的频率特性(Nyquist图与bode图) 3.非最小相位环节的频率特性(Nyquist图与bode图) 4.系统的开环幅相曲线(Nyquist图) 5.系统的开环对数频率特性曲线(bode图)
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。 6.传递函数的频域实验确定
考试的标准画法
o
注意考察几个特殊点: A(0), (0);
积分环节的nyquist图与bode 图
A(), ()
与横轴的交点。 注意横竖坐标交点处的的横坐标值(如果交点处没标横坐标值,则斜线不到头)
比较交点不标记的情况
0
0
纯微分环节的Bode图
半对数坐标系中的直线方程(重要,bode图解计算时经常用到)

自动控制原理第五章频域分析

自动控制原理第五章频域分析
1 1 L( ) 20 lg 20 lg1 20 lg 20 lg A ( ) ( ) ( ) 2 2
G(s) s, G( j) j
L( ) 20 lg A ( ) ( ) ( ) 2 2
对 数 坐 标 系
40 20
0 .1
1
10
100
横轴没有零点
45
45 90
优势: •由于对 取了对数,所以大范围的频率变化可 以以在横轴上体现出来,且可以以根据需要对 横轴进行移动。 •对幅频特性 的计算可以简化。(对数后乘法 化加法,便于工程绘图)
典型环节的频率特性(奈氏曲线)
i 1 n N N j 1
m
( jT
j
1)
KK A( ) ( j ) N
KK ( ) ( j ) N
0
N 0, A( ) K K N 0, A( )
N 0, ( ) 0 N 0, ( ) N 2
s
1 1 G( s) , G ( j ) Ts 1 1 jT
A( )
1 1 2T 2
L( ) 20lg A( ) 20lg 1 T 2 2
( ) arctanT
3dB
-20dB/dec
L( ) 1 20lg 2 3dB
L( ) 20 lg (1 T 2 2 ) 2 (2 T ) 2
2 T ( ) arctan 1 T 2 2
系统开环频率特性的绘制(Bode图)
开环频率特性的通式:
GK ( j ) K k ( jTi 1) ( j )

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
L ( ) L a( ) L ( ,)
振荡环节的幅相特性 振荡环节的对数幅频渐进特性
七、二阶微分环节
G(s)sn
2
2sn
1
G (j) j n 22 j n 1 1 n 2 2 j2 n
n0,01
2
G(j) (12)2422
n2
n2
G( j) arctg n 2
1
2 n
G(ju)
1
(1u2)242u2
G(j u)arc2tgu
1u2
若 u1 G (ju) arctg2u 90
1u2
振荡环节的幅相特性曲线(极坐标图)
u0
0.9
0.8
0.6
u 1
0.4
振荡环节的幅频、相频特性曲线
0.05
0.2 0.5 0.7
幅频特性的谐振峰值和谐振角频率:
G(ju)
G(
j)
1
j
e2
相频特性是一常值 2
积分环节的幅频/相频、幅相特性曲线
对数频率特性
三、微分环节
传递函数 G(s) s
j
幅相特性 G( j) e 2
相频特性是一常值 2
微分环节的幅频/相频、幅相、对数特性曲线
四、惯性环节(一阶系统)
传递函数 幅相特性
G(s) 1 Ts1
G(j) 1 1 ejta1nT Tj1 (T)21
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
rn12 2 ( 1/ 20 .7)0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
一 由传递函数求系统的频率响应
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。

(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。

非最小相位环节的频率特性。

(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。

单环系统开环对数频率持性的求取与绘制。

最小相位系统开环对数幅频特性与相频特性间的对应关系。

(4)奈奎斯特稳定判据幅角定理。

S平面与F平面的映射关系。

根据开环频率特性判别闭环系统稳定性的奈氏判据。

奈氏判据在多环系统中的应用和推广。

系统的相对稳定性。

相角与增益稳定裕量。

(5)二阶和高阶系统的频率域性能指标与时域性指标。

系统频率域性能指标。

二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。

(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。

用等M圆线从开环频率特性求取闭环频率特性。

用尼氏图线从开环对数频率特性求取闭环频率特性。

2、重点(l)系统稳态频率响应和暂态时域响应的关系。

(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。

(3)奈奎斯特稳定判据和稳定裕量。

5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。

频域分析是控制理论的一个重要分析方法。

5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。

自动控制原理第5章

自动控制原理第5章

jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。

2019《自动控制理论教学课件》第五章 控制系统的频域分析.ppt

2019《自动控制理论教学课件》第五章 控制系统的频域分析.ppt

暂态分量
稳态分量
响应的稳态分量为: 1 uos U m sin t ( ) U m A( ) sin t ( ) 2 2 1 1 1 式中: A( ) 2 2 1 j 1
( ) arctan

1 s j 1 G (s ) G (j ) G (s ) s j e arctan 1 s 1 2 2 可见, A( )、 ( ) 分别为 G (j ) 的幅值 G (j )
和相角 G (j ) 。 设线性定常系统的传递函数为:
G (s ) C (s ) N (s ) N (s) R(s ) D(s ) (s p1 )(s p2 ) (s pn )
§5-8 根据闭环频率特性分析系统的时域响应
§5-1 频率特性及其与时域响应的关系
一、频率特性的基本概念
频率响应:在正弦输入信号的作用下,系统输出的稳态 分量。 频率特性:系统频率响应与正弦输入信号之间的关系。 频域分析法:应用频率特性研究线性系统的经典方法。其 特点是根据系统的开环频率特性去判断闭环系统的性能。
第五章
线性系统的频域分析法
§5-1 频率特性及其与时域响应的关系 §5-2 典型环节的频率特性 §5-3 系统开环频率特性的极坐标图
§5-4 系统开环对数频率特性的绘制 §5-5 乃奎斯特稳定判据和系统的相对稳定性 §5-6 控制系统对数坐标图与稳态误差及瞬态 响应的关系
*§5-7 系统的闭环频率特性
L( ) dB
( )
L( )
0 20
40
( )
0.01 0.1
1
0 30 60 90 10 100
1 ,1 用描点法绘制出 ( ) 曲线如图,图中令:

自动控制原理第五章

自动控制原理第五章

第五章 频域分析法目的:①直观,对高频干扰的抑制能力。

对快(高频)、慢(低频)信号的跟踪能力。

②便于系统的分析与设计。

③易于用实验法定传函。

§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。

其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。

东北大学自动控制原理课件第五章(频域分析法)

东北大学自动控制原理课件第五章(频域分析法)
不同类型的系统,低频段的对数幅频特 性显著不同 。

0型系统 1型系统 2型系统



0型系统 0型系统的开环频率特性有如下形式
m
W K ( j )
K k ( jTi 1)
i 1
( jT
j 1
n
j
1)
对数幅频特性的低频部分如下图所示
这一特性的特点:
在低频段,斜率为0dB/十倍频; 低频段的幅值为20lgKk,由之可以 确定稳态位置误差系数。
斜率增加-40dB/十倍频。

绘出用渐进线表示的对数幅频特性以后,如果需要, 可以进行修正。通常只需在交接频率出以及交接频率 的二倍频和1/2倍频处的幅值就可以了。 对于一阶项,在交接频率处的修正值为±3dB; 在交接频率的二倍频和1/2倍频处的修正值为±1dB。 对于二阶项,在交接频率处的修正值可由公式求出。 系统开环对数幅频特性L(ω )通过0分贝线,即

1型系统 1型系统的开环频率特性有如下形式
W K ( j )
K k ( jTi 1) j ( jT j 1)
奈 氏 图
Bode图

4. 微分环节

4.1 理想微分
传递函数:
X c ( s) W (s) s X r ( s)
频率特性: (1) W ( j ) j (2)
1

e
j 2
L( ) 20lg A( ) 20lg 20lg ( ) 90
0 时的相位角为 N (90 )
对于0型系统,当 0 时,特性达到一点 ( K k , j 0) 。 对于1型系统,特性趋于一条与虚轴平行的渐进线, 这一渐进线可以由下式确定:

自动控制原理 第5章

自动控制原理 第5章
2 2

X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2

ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω

自动控制原理:第五章 线性系统的频域分析法

自动控制原理:第五章 线性系统的频域分析法
对不同频率正弦信号的跟踪能力或复现能力; G(jw)只与系统或环节本身的结构参数有关,是 系统或环节本身的属性; 与输入信号和初始条件无关。
『例1』某系统结构图如图,求 rt作 用下的稳态输出 c;t
(1) rt 3cos 2t 30
(2) rt 3sin 8t 20
r(t)
6
c(t)
L 20lg 1 20lg
L
0.1
20
1
0
10
-20
每增加十倍时, L减少20dB
积分环节的对数幅频曲线是一条斜率为-20dB/dec的直 线,该直线与零分贝线相交于w=1的地方。
b) 微分环节
传递函数 频率特性 幅频特性 相频特性 对数幅频特性
Gs s G j j
A
90
L 20 lg
二. 频率特性的几何表示方法
常用的频率特性图有极坐标图与伯德图。 1. 幅相频率特性曲线(极坐标图)
G(jw)为复数, 在坐标图中,它是一个矢量, 既可用模值和 幅角表示,也可在直角坐标中用实部和虚部表示。即:
G j A e j Re G j jI mG j
当输入正弦信号频率从0变到+∞,矢量 A 的e j终
G j 1
jRC 1
A G j 1
T 2 2 1
arctan RC
『注』幅频特性是w的偶函数,相频特性是w的奇函数,
故w从0到-∞的极坐标图与w从0到+∞的极坐标图对称 于实轴,因此通常只需绘制w从0到∞时的极坐标图。
Im
0 0 Re
2. 对数频率特性曲线 (伯德图)
rt A1 sin(t 时1)
系统稳态输出为同频率的正弦信号 ct A2 sin(t 2 ) 。

自动控制原理第五章 线性系统的频域分析法-5-6

自动控制原理第五章 线性系统的频域分析法-5-6
自 动
5.6 控制系统的频域校正方法

结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求

控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由

1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数

自动控制原理 第五章 控制系统的频域分析法

自动控制原理 第五章 控制系统的频域分析法

图 5.1 RC 电路
iR + uo = ui i = c duo
dt

RC
duo dt
+ uo
=
ui

T
duo dt
+ uo
= ui
,T
=
RC
得到 RC 电路的传递函数为
Uo (s) = 1 Ui (s) Ts + 1
设输入信号为Ui (t)
=
A sin ω
t
,其拉氏变换为Ui (s)
=
Aω s2 + ω2
A(ω) = B = 1 = 1 A 1 + ω2T 2 1 + jωT
(4) ϕ(ω) 为输出稳态解与输入信号的相位差,也是ω 的函数,且为
ϕ(ω) = −arctanωT = ∠ 1 1 + jωT
上述结论同样适用于一般系统。设线性定常系统具有如下传递函数
G(s)
=
b0 sm + b1sm−1 + sn + a1sn−1 +
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数频率特性
三、微分环节
传递函数
G( s) s
G( j ) e
j

2
幅相特性
相频特性是一常值
2
微分环节的幅频/相频、幅相、对数特性曲线
四、惯性环节(一阶系统)
传递函数
1 G ( s) Ts 1
幅相特性
1 1 1 j tan T G( j ) e Tj 1 (T )2 1
Bode图的优点
幅值的乘除简化为加减;
可以用叠加方法绘制Bode图;
可以用简便方法近似绘制Bode图; 扩大研究问题的范围;
便于用实验方法确定频率特性对应的传递函数。
对数坐标系
5-2 典型环节的频率特性
一、比例环节(放大环节)
G( j) K K e
幅频特性
j0
A() e
对数幅频特性:
L( ) 20lg A( ) ~ (lg )
对数相频特性:
( ) ~ (lg )
对数幅频特性曲线:横坐标 采用对数分度,取
10为底的对数 log
(dB)表示。
10
,纵坐标采用线性分度用分贝数
对数相频特性曲线:横坐标为角频率仍采用对数分 度,纵坐标采用线性分度用角度表示。
j ( )
A( ) ~
为系统的 为系统的
幅频特性 。
( ) ~
相频特性 。
RC 网络的幅频特性和相频特性

0 1 0
0
1/ T 1/ 2 45
o
0 90
o
RC 网 络 的 幅 相 特 性 曲 线
G ( j ) G ( j )
2、对数频率特性

对数频率特性曲线又称伯德(Bode)图,包括 对数幅频和对数相频两条曲线。
0 La ( ) 20 logT
1/ T 1/ T
惯性环节的对数幅频特性曲线近似为两段直线。两直线 相交,交点处频率 1/ T ,称为转折频率。 两直线实际上是对数幅频特性曲线的渐近线,故又称为 对数幅频特性渐近线。 用渐近线代替对数幅频特性曲线,最大误差发生在转折 频率处,即 1/ T 处。
惯性环节的幅频、相频、幅相特性曲线
对数频率特性 L 20lg A
1 T 1
2 2
20lg T 1
2 2
G tan T
1
当 当
T 1,
L 0
T 1,
L 20lg T
惯性环节的对数频率特性曲线
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L() 20log 1 T 20logT
2 2
当频率很高时,对数幅频曲线可用一条直线近似,直 线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
在图中 T=0.5, 1/T=2 (rad/sec)
谐振峰值
Am ( m ) 1
2
2 1 2
振荡环节的对数频率特性
2 2 2 2 L( ) 20logG( j ) 20log (1 2 ) 4 2 n n
n L( ) 0 低频渐近线是零分贝线。
n L( ) 40log( / n ) 40log( T ) n 1/ T
U c ( s) 1 G( s) U r ( s) Ts 1
1 A U c ( s ) G ( s )U r ( s ) 2 2 Ts 1 s
A T t / T A uc e sin( t arctg T ) (t 0) 2 2 1 T 1 2T 2
Ar D (s) 2 ( s j ) s j 2 s j [ ( j ) ] ( j ) Ar 2 ( j ) Ar e 2j 2
同理: B
( j )
2
Ar e
j [ ( j ) ] 2

7. 理解闭环频率特性的特征量与控制系统阶跃响应的
定性关系。 8. 理解开环对数频率特性与系统性能的关系及三频段 的概念,会用三频段的分析方法对两个系统进行分 析与比较。
频率特性法是经典控制理论中对系 统进行分析与综合的又一重要方法。
与时域分析法和根轨迹法不同;
频域性能指标与时域性能指标之间有内在联系;
频率特性
1 1 j tan 1 (T ) G(s) s j e G( j) Tj 1 (T)2 1
该结论适用任何线性系统!
三、频率特性的几种表示方法
1、幅频特性、相频特性、幅相特性
G ( j ) G ( j ) G ( j )
:0
A( )e
正弦稳态输出
u css
A 1 T
2 2
sin( t arctg T )
2 2 稳态输出幅值: 1 T

A
arctg T 稳态输出相位:
1 1 取: G( j ) (arctg T ) jT 1 1 2T 2
显然,G(jw)能够完整描述网络在正弦信号作用下
特性(即为幅相频率特性,简称幅相特性)。 频率特性表达式为:
(s) |s j ( j) | ( j) | e
j ( j )
以RC网络为例
• 其传递函数
duc T u c u r T RC dt
Aω u r A sin t U r ( s) 2 2 s
A R( s) 2 2 s
其拉氏变换式:
Ci B D 输出: C ( s) R( s)( s) s j s j i 1 s si
拉氏反变换得:
n
c(t ) Ci e ( De
si t i 1
n
jt
Be
jt
)
其中:
ct (t ) cs (t )
频率特性法可以根据系统的开环传递函数采用解
析的方法得到系统的频率特性,也可以用实验的方
法测出稳定系统或元件的频率特性;
频率特性分析系统对正弦信号的稳态响应;
频率法的五个特点
5-1 频率特性
一、基本概念
频率特性分析系统对正弦信号的稳态响应。
控制系统在正弦信号作用下的稳态输出
输入信号:
r (t ) Ar sin t
倍频程(dec),如1-10,5-50,而轴上所有十倍频程
的长度都是相等的。 为了说明对数幅频特性的特点,引进斜率的概念, 即横坐标每变化十倍频程(即变化)所对应的纵坐 标分贝数的变化量。
☆对数幅相频率曲线(尼柯尔斯图)
以角频率为参变量,横坐标是相位,单位采用角度;纵坐 标为幅值,单位采用分贝。
基本要求
1. 正确理解频率特性的概念。
2. 熟练掌握典型环节的频率特性,熟记其幅相特性曲
线及对数频率特性曲线。 3. 熟练掌握由系统开环传递函数绘制系统的开环对数 幅频渐近特性曲线及开环对数相频曲线的方法。 4. 熟练掌握由具有最小相位性质的系统开环对数幅频
特性曲线求开环传递函数的方法。
5. 熟练掌握Nyquist稳定判据和对数频率稳定判据。 6. 熟练掌握稳定裕度的概念及计算稳定裕度的方法。
惯性环节的误差曲线
用渐近线近似产生的误差曲线
L( ) L( ) La ( )
1 2 2 20log 1 T T L( ) 1 2 2 20log 1 T 20log T T
误差的最大值发生在角频率为1/T处,这时
将B、D代入c(t),则:
j [t ( j ) ] j [t ( j ) ] ( j ) 2 2 cs (t ) Ar (e e 2 ( j ) Ar cos(t ( j ) ) 2 ( j ) Ar sin(t ( j ))
L( )(dB)
0 20
0.1
1
10
( ) 0o 0.1
45o
1
10
90o
对数坐标刻度图
注意:
纵坐标是以幅值对数分贝数刻度的,是均匀的;横 坐标按频率对数标尺刻度,但标出的是实际的值, 是不均匀的。 ——这种坐标系称为半对数坐标系。 在横轴上,对应于频率每增大10倍的范围,称为十
令无因次频率 u / n 为参变量
G( ju) 1 (1 u 2 ) 2 4 2 u 2
2 u 90 若 u 1 G ( ju ) arctg 2 1 u
G( ju) arctg 2 1 u
2 u
振荡环节的幅相特性曲线(极坐标图)
u 0
高频段是一条斜率为- 40/dB的直线,和零分 贝线相交于 n ,振荡环节的交接频率为 n。
误差最大值为-3dB 。
五、一阶微分环节 G( s) s 1
G ( j ) j 1 ( ) 1 e
2 j tan1
六、振荡环节(二阶系统) 2 n G( s ) 2 传递函数 2 s 2 n s n
频率 特性
G( j ) 2 2 ( j ) 2n j n
2 n


2 n 2
( ) j 2n
2 n
n G( j ) 2 2 s 2n s n
2
s j

1 s 2 s ( ) 2 1 n n
s j
G ( j )
1
2 2 2 (1 2 ) 4 2 2 n n
2 n G ( j ) arctg 2 1 2 n
稳态输出的幅值和相角与输入信号频率之间的规律。
G(jw)即为系统的频率特性。
相关文档
最新文档