立方根-同步练习题

合集下载

最新浙教版七年级数学上学期《立方根》同步训练及答案解析.docx

最新浙教版七年级数学上学期《立方根》同步训练及答案解析.docx

3.3 立方根同步训练一.选择题(共8小题)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣2.已知x没有平方根,且|x|=64,则x的立方根为()A.8 B.﹣8 C.±4 D.﹣43.下列计算正确的是()A.B.C.D.4.下列关于“0”的说法中,错误的是()A.0的绝对值是0 B.0的立方根是0 C.0的相反数是0 D.0是正整数5.下列说法中,正确的是()A.等于±4 B.﹣42的平方根是±4C.8的立方根是±2 D.﹣是5的平方根6.下列说法正确的是()A.任何数都有两个平方根B.若a2=b2,则a=bC.=±2 D.﹣8的立方根是﹣27.若≈5.036,≈15.925,≈6.330,则≈()A.503.6 B.159.25 C.633.0 D.5608.要使,则a的取值范围是()A.a≥4 B.a≤4 C.a=4 D.任意数二.填空题(共6小题)9.16的平方根是,9的立方根是.10.若x2=16,则x= ;若x3=﹣8,则x= ;的平方根是.11.若a2=64,则= .12.已知一个数的两个平方根分别是2a+4和a+14,则这个数的立方根.13.如果+(y+6)2=0,那么2x﹣y的立方根为.14.有一组按规律排列的数:,,,2,…则第n个数是.三.解答题(共3小题)15.计算:(1);(2);(3).16.“魔方”是一种力的益智玩具,它由三层完全相同的小立方块组成,如果“魔方”的体积为216cm3,那么组成它的每个小立方块的棱长是多少?17.已知实数x、y满足,求2x﹣的立方根.3.3 立方根同步训练参考答案与试题解析一.选择题(共8小题)【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.已知x没有平方根,且|x|=64,则x的立方根为()A.8 B.﹣8 C.±4 D.﹣4【分析】根据x没有平方根得出x为负数,再由|x|=64,可得出x的值,再求出其立方根.【解答】解:由题意得,x为负数,又∵|x|=64,∴x=﹣64,故可得:x的立方根为:﹣4.故选D.【点评】此题考查了立方根及平方根的知识,掌握只有非负数才有平方根是解答本题的关键,难度一般.3.下列计算正确的是()A.B.C.D.【分析】A、B、C、D都可以直接根据立方根的定义求解即可判定.【解答】解:A、0.53=0.125,故选项错误;B、应取负号,故选项错误;C、∵等于,∴的立方根等于,故选项正确;D、应取正号,故选项错误.故选C【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.4.下列关于“0”的说法中,错误的是()A.0的绝对值是0 B.0的立方根是0 C.0的相反数是0 D.0是正整数【分析】根据绝对值、立方根、相反数、正整数,即可解答.【解答】解:A、0的绝对值是0,正确;B、0的立方根是0,正确;C、0的相反数是0,正确;D、0不是正整数,故错误;故选:D.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.5.下列说法中,正确的是()A.等于±4 B.﹣42的平方根是±4C.8的立方根是±2 D.﹣是5的平方根【分析】根据算术平方根的意义判断A;根据乘方的意义判断B;根据立方根的意义判断C;根据平方根的意义判断D.【解答】解:A、=4,故本选项错误;B、﹣42=﹣16,负数没有平方根,故本选项错误;C、8的立方根是2,故本选项错误;D、﹣是5的平方根,故本选项正确;故选D.【点评】本题考查了立方根、平方根、算术平方根以及乘方的意义.6.下列说法正确的是()A.任何数都有两个平方根 B.若a2=b2,则a=bC.=±2 D.﹣8的立方根是﹣2【分析】根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出﹣8的立方根即可判断D.【解答】解:A、负数没有平方根,0的平方根是0,正数有两个平方根,故本选项错误;B、当a=2,b=﹣2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、﹣8的立方根是﹣2,故本选项正确;故选D.【点评】本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.7.若≈5.036,≈15.925,≈6.330,则≈()A.503.6 B.159.25 C.633.0 D.560【分析】根据已知等式,利用立方根和算术平方根定义判断即可得到结果.【解答】解:∵≈5.036,∴≈503.6,故选A.【点评】此题考查了立方根,算术平方根,熟练掌握立方根和算术平方根的定义是解本题的关键.【解答】解:∵=4﹣a,即a﹣4=4﹣a,解得a=4.故选C.【点评】此题主要考查开立方.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.二.填空题(共6小题)9.16的平方根是±4 ,9的立方根是.【分析】依据平方根、立方根的定义和性质求解即可.【解答】解∵(±4)2=16,∴16的平方根是±4.9的立方根是.故答案为:±4;.【点评】本题主要考查的是平方根、立方根的性质和定义,掌握平方根和立方根的定义是解题的关键.10.若x2=16,则x= ±4 ;若x3=﹣8,则x= ﹣2 ;的平方根是.【分析】用直接开平方法进行解答;用直接开立方法进行解答;先求出的结果为3,再根据平方根的定义求解.【解答】解:若x2=16,则x=±4;若x3=﹣8,则x=﹣2;=3,3的平方根是±.故答案为:±4;﹣2;±.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.11.若a2=64,则= ±2 .【分析】先根据平方根的定义求出a的值,再利用立方根的定义求出的值.【解答】解:∵a2=64,∴a=±8,∴=±2故填±2.【点评】此题主要考查了立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.12.已知一个数的两个平方根分别是2a+4和a+14,则这个数的立方根 4 .【分析】先依据一个正数的两个平方根互为相反数求得a的值,然后可得到这个正数的平方根,于是可求得这个正数,最后求它的立方根即可.【点评】本题主要考查的是平方根、立方根的定义和性质,依据平方根的性质求得a的值是解题的关键.13.(2015秋•丹阳市校级月考)如果+(y+6)2=0,那么2x﹣y的立方根为.【分析】根据非负数的性质列式求出x、y的值,再代入代数式求出2x﹣y,然后根据立方根的定义解答.【解答】解:由题意得,x﹣4=0,y+6=0,解得x=4,y=﹣6,所以,2x﹣y=2×4﹣(﹣6)=8+6=14,所以,2x﹣y的立方根为.故答案为:.【点评】本题考查了立方根定义,非负数的性质,几个非负数的和为0时,这几个非负数都为0.14.有一组按规律排列的数:,,,2,…则第n个数是.【分析】根据数据所显示的规律可知,这组数据的规律是:,,,,…,依此可得第n个数.【解答】解:观察数据可知,这组数据的规律是:,,,,…,则第n个数是.故答案为:.【点评】主要考查了立方根,学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示变化规律是此类题目中的难点.三.解答题(共3小题)15.计算:(1);(2);(3).【分析】利用求立方根的方法求解即可.【点评】本题主要考查了立方根,解题的关键是熟记求立方根的方法.16.“魔方”是一种力的益智玩具,它由三层完全相同的小立方块组成,如果“魔方”的体积为216cm3,那么组成它的每个小立方块的棱长是多少?【分析】根据魔方由三层完全相同的27个小立方体组成,体积为216立方厘米,求出每个小立方体的体积,从而得出每个小立方体的边长.【解答】解:∵魔方由三层完全相同27个小立方体组成,体积为216立方厘米,∴每个小立方体的体积为216÷27=8(立方厘米),∴每个小立方体的边长为:=2(厘米),即组成它的每个小立方块的棱长是2厘米.【点评】此题考查了立方根,用到的知识点是立方体的体积,关键是根据立方体的体积求出边长.17.已知实数x、y满足,求2x﹣的立方根.【分析】先依据非负数的性质求得x、y的值,然后再求得代数式的值,最后再求得它的立方根即可.。

新人教版七年级下册数学《立方根》同步练习及答案

新人教版七年级下册数学《立方根》同步练习及答案

6.2《立方根》同步练习(2)知识点:1.立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根2.立方根性质:正数的立方根是正数 0的立方根是0负数的立方根是负数 3. 3a - = — 3a 同步练习:一、填空题:1.1的立方根是________.2.833-________. 3.2是________的立方根. 4.________的立方根是1.0-. 5.立方根是65的数是________ 6.6427-是________的立方根. 7.=-3)3(________. 8.3)3(-的立方根是________ 9.53-是________的立方根. 10.若a 与b 互为相反数,则它们的立方根的和是________. 11.0的立方根是________. 12.36的平方根的绝对值是________. 13. 的立方根是72914.327=_______.15.立方根等于它本身的数是_______. 16.109)1(-的立方根是______.17.008.0-的立方根是________. 18.103-是________的立方根. 19.当x 为________时,333-+x x 有意义; 当x 为________时,385+-x x有意义.20.6)2(-的平方根是________,立方根是________. 二、判断题:1.81-的立方根是21±;( ) 2.5-没有立方根;( ) 3.2161的立方根是61;( ) 4.92-是7298-的立方根;( )5.负数没有平方根和立方根;( ) 6.a 的三次方根是负数,a 必是负数;( ) 7.立方根等于它本身的数只能是0或1;( ) 8.如果x 的立方根是2-,那么8-=x ;( ) 9.5-的立方根是35-;( ) 10.8的立方根是2±;( ) 11.2161-的立方根是没有意义;( ) 12.271-的立方根是31-;( ) 13.0的立方根是0;( ) 14.53是12527±的立方根;( ) 15.33-是3-立方根;( )16.a 为任意数,式子a ,2a ,3a 都是非负数.( )三、选择题:1.36的平方根是( ).A .6±B .6C .6-D .不存在 2.一个数的平方根与立方根相等,则这个数是( ).A .1B .1±C .0D .1- 3.如果b -是a 的立方根,那么下列结论正确的是( ).A .b -也是a -的立方根B .b 也是a 的立方根C .b 也是a -的立方根D .b ±都是a 的立方根 4.下列语句中,正确的是( ).A .一个实数的平方根有两个,它们互为相反数B .一个实数的立方根不是正数就是负数C .负数没有立方根D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或15.8的立方根是( ).A .2B .2-C .4D .4-6.设n 是大于1的整数,则等式211=--nn 中的n 必是( ).A .大于1的偶数B .大于1的奇数C .2D .3 7.下列各式中正确的是( ).A .416±=B .3)3(2-=-C .38-2-= D .5)4()3(22-=-+-8.与数轴上的点一一对应的数是( ).A .整数B .有理数C .无理数D .实数 9.下列运算正确的是( ).A .3333--=- B .3333=-C .3333-=- D .3333-=-四、解答题:1.求下列各数的立方根.(1)1- (2)10001(3)343- (4)8515 (5)512 (6)827-(7)0 (8)216.0- 2.求下列各式的值.(1)38- (2)327-(3)3125.0-- (4)33)001.0(--(5)3512 (6)36427--(7)0196.0- (8)22)74()73(+的算术平方根(9)33a - (10)33a(11)327173- (12)34112213⨯ 3.x 取何值时,下面各式有意义?(1)x x -+ (2)31-x(3)31--x x (4)32x4.求下列各式中的x .(1)27000)101.0(3-=+x (2)2523=+x(3)12142=x (4)05121253=+x(5)625164=x (6)19-=x(7)871)2(3=++x5.化简3)1)(1(a a a a +-+.五、计算4332381)21()4()4()2(--⨯-+-⨯-.六、已知01134=+++y x ,其中x ,y 为实数,求3x -1998y-的值.七、一个比例式的两个外项分别是0.294和0.024,两个内项是相等的数,求这两个内项各是多少?八、一个长方体木箱子,它的底是正方形,木箱高1.25米,体积2.718立方米.求这个木箱底边的长.(精确到0.01米)九、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?(π 取3.14,r 精确到0.01厘米)十、如果球的半径是r ,则球的体积用公式3π34r V =来计算.当体积500=V 立方厘米,半径r 是多少厘米?(π 取3.14,r 精确到0.01厘米)参考答案 一、 1.1 2.23- 3.8 4.-0.001 5.2161256.43-7.-27 8.-3 9.12527-10.0 11.0 12.6 14.315.-1,0,+1 16.-1 17.-0.2 18.100027-19.3>x ,5≤x 且8-≠x 20.±8,4 二、1.×2.×3.√4.√5.×6.√7.×8.√9.√10.×11.×12.√13.√14.×15.√16.× 三、1.A2.C3.C4.D5.A6.B 7.C 8.D 9.C 四、1.(1)-1 (2)101 (3)-7 (4) 25 (5)8 (6) 23- (7)0 (8)-0.6 2.(1)-2 (3)-3 (3)0.5 (4) 0.001 (5)8 (6)64(7)-0.14 (8)75 (9)-a(10)a (11)34 (12)27 3.(1)0=x (2)x 取全体实数(3) 1≥x 且3≠x (4)x 取任何实数4.(1)-400 (2)23 (3)211± (4)58- (5)25± (6)-1 (7)25- 5.a 五、-33 六、2726-七、084.0± 八、1.47米 九、7.98厘米 十、4.92厘米。

初中数学七年级下数学立方根同步专项练习题含答案

初中数学七年级下数学立方根同步专项练习题含答案

初中数学七年级下数学立方根同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若√a3<−2,则a的值可以是()A.−9B.−4C.4D.92. 若√a3<−2,则a的值可以是()A.4B.−4C.9D.−93. −8的立方根是()A.−2B.2C.±2D.−44. −8的立方根是()A.−2B.2C.12D.−125. 如图,某同学利用计算器中的三个按键设置计算程序,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,程序将按照以下步骤进行,依次按照从第一步到第三步循环计算.若一开始输人的数据为10,那么第2021步之后,显示的结果是( )A.√1010B.100C.0.1D.0.016. 用计算器求√44.86的值为(结果精确到0.01位)( )A.6.69B.6.7C.6.70D.±6.707. 现将体积是125cm 3的正方体木块锯成8块同样大小的小正方体木块,准备从中选取n 个小正方体木块,排放在一块长方形的木板上,已知此长方形木板的长是宽的4倍,面积是36cm 2,若只排放一层,n 的最大值是 ( )A.2B.3C.4D.58. 若√0.3673=0.176,√3.673=1.542,则√3673=( )A.15.42B.7.16C.154.2D.71.69. 如果x 2=2,有x =±√2;当x 3=3时,有x =√33,想一想,从下列各式中,能得出x =±√220的是( )A.x 2=±20B.x 20=2C.x ±20=20D.x 3=±2010. 已知√5.283=1.738,√a 3=0.1738,则a 的值为( )A.0.528B.0.0528C.0.00528D.0.000528 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 一个数的立方根是−32,这个数是________.12. 一个数的立方根是,那么这个数的平方根是________.13. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.0036703=________.14. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).15. 利用计算器,在求√273时,正确的按键顺序应为________.16. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.00036703=________.17. −8的立方根是________.18. 已知x 满足(x +3)3+27=0,则x 等于________.19. 已知√8.9663=2.078,√y 3=0.2708,则y =________.20. 已知√103=a ,则√−100003=________.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 , )21. 计算:(1)|−5|+√16−32;(2)√4+√225−√−273.22. 计算:√303403(结果精确到1)23. 计算:(1)−22+√25+√643÷2;(2)√−273+|√3−6|−(−√3).24. 已知第一个正方体玩具的棱长是6cm ,第二个正方体玩具的体积要比第一个玩具的体积大127cm ,试求第二个正方体玩具的棱长.25. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.26. 求x 的值:64(x +1)3−27=0.27. 观察下列各式,然后探索下列问题:∵ √13=1,√−13=−1∴ √−13=√13∵ √83=2,√−83=−2∴ √−83=−√83∵ √273=3,√−273=−3∴ √−273=−√273…∵ √n 33=(________),√−n 33=(________)∴ (________)=(________)(1)在上面的“( )上填空,并猜测互为相反数的两个数的立方根有何关系;(2)计算√−13+√−83+√−273+...+√(−n)33(其中n =100)28. 解方程:(3x −1)3+64=0.29. 用计算器求下列各式的值(结果保留四个有效数字)(1)−√39.2473(2)√41.834(3)√12.4(4)√71800330. 已知球的半径为rcm ,球的体积为850cm 3,根据球的体积公式V 球=43πr 3,求r 的值(精确到0.01).31. 求x 的值:14x 3+3=5.32. 已知√x 3−73=x 2,求x 3−√7.33. 已知2x −1的平方根是±5,3x +y −1的平方根是±3,求x +y 的值.34. 解方程:(1)(2)35. 求下式中x的值:8(x−1)3=27 .36. (1)计算:; 36.(2)已知=4,求x的值.37. 有一正方体盒子的容积是27cm3,问做这样一个正方体盒子(无盖)需要多少平方厘米的纸板?38. 利用计算器计算:√32−355113+2π−√2(精确到0.01)39. 一个正数的平方根分别是2a+5和2a−1,b−30的立方根是−3,求:(1)求a,b的值,(2)求a+b的算术平方根.40. 已知x的立方根是3,求2x−5的平方根.参考答案与试题解析初中数学七年级下数学立方根同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选A.2.【答案】D【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选D.3.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据立方根的定义:若x3=a,那么x叫做a的立方根,即可得出答案【解答】解:.(−23=−8−8的立方根是−2.故答案为:A.4.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据题意先求出−8的立方根,即可得出结果【解答】解:.√83=−2∴ 8的立方根是−2.故答案为:A .5.【答案】B【考点】计算器—数的开方【解析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.【解答】解:根据题意,得102=100,1100=0.01,√0.01=0.1; 0.12=0.01,10.01=100,√100=10;⋯,∵ 2021=6×336+5,∴ 按了第2021下后荧幕显示的数是100.故选B .6.【答案】C【考点】计算器—数的开方【解析】根据计算器的使用方法进行计算即可得解.【解答】解:√44.86≈6.69776≈6.70.故选C .7.【答案】C【考点】立方根的应用【解析】1【解答】解:√12583=52,∴ 立方体棱长为52cm ,设长方形宽为x ,可得 4x 2=36,∴ x 2=9.∵ x >0,∴ x =3,12÷52=245,横排可放4个,竖排只能放1个,4×1=4个,∴ 所以最多可放4个.故选C .8.【答案】B【考点】立方根的实际应用立方根的应用【解析】根据立方根,即可解答.【解答】解:∵ √0.3673=0.176,√3.673=1.542,∴ √3673=7.16,故选B .9.【答案】B【考点】立方根的实际应用【解析】结合题意,可知x =±√220,即x 的指数是20,x 20的结果是2,即可解决问题.【解答】解:根据题意,可知x 20=2,能得出x =±√220.故选B .10.【答案】C【考点】立方根的实际应用【解析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案.【解答】解:∵ √5.283=1.738,√a 3=0.1738,∴ a =0.00528;故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】−278【考点】立方根解析:因为−278立方根是−32,所以这个数是−278. 【解答】解:因为−278立方根是−32, 所以这个数是−278.故答案为:−278.12.【答案】±1【考点】立方根的性质【解析】根据立方跟乘方运算,可得被开方数,根据开方运算,可得平方根.【解答】13=1,±√1=±1故答案为:±13.【答案】7.160,−0.1542【考点】立方根的实际应用立方根的应用立方根的性质【解析】利用立方根性质判断即可得到结果.【解答】解:∴ √0.36703=0.7160 √3.6703=1.542√3673=7.160 √−0.0036703=−0.154 故答案为:7.160;−0.154214.【答案】0.464【考点】计算器—数的开方【解析】用计算器计算出√13的值后,再来计算所求代数式的值即可.【解答】解:原式=3.6056−3.142≈0.464.故答案是:0.464.15.【答案】2,÷,7,2nd 键,√x 3,=计算器—数的开方【解析】是2÷7,切换三次根号时需要用到切换键2nd.一般使用科学型的计算器,注意27【解答】3,=.解:按键顺序依次为2,÷,7,2nd键,√x(由于计算器的类型很多,可根据计算器的说明书使用)16.【答案】7.160,−0.07160【考点】立方根的实际应用立方根的应用【解析】被开方数367由0.367小数点向右移动3位得到,故开立方的结果向右移动1位即可得到结果;被开方数−0.0003670由0.3670小数点向左移动3位得到,故立方的结果向左移动1为即可得到结果.【解答】3=0.7160,解:∵√0.3670被开方数367由0.367小数点向右移动3位得到3=7.160,∴√367被开方数−0.0003670由−0.3670小数点向左移动3位得到3=−0.07160.∴√−0.0003670故答案为:7.160;−0.07160.17.【答案】−2【考点】立方根的应用立方根的性质【解析】3=−2.√−8【解答】3=−2.解:√−8故答案为:−2.18.【答案】−6【考点】立方根的实际应用【解析】先移项,再用立方根得定义即可得出结论.【解答】解:(x +3)3+27=0,移项得,(x +3)3=−27,开立方得,x +3=−3,移项得,x =−6,故答案为:−6.19.【答案】0.008966【考点】立方根的实际应用【解析】根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.【解答】解:∵ √8.9663=2.078,√y 3=0.2708,∴ y =0.008966,故答案为:0.008966.20.【答案】−10a【考点】立方根的实际应用立方根的应用立方根的性质【解析】根据立方根的性质进行开立方计算得到答案即可.【解答】解:√100003=−103√103=−10a三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:(1)原式=5+4−9=0.(2)原式=2+15+3=20.【考点】绝对值有理数的乘方算术平方根立方根【解析】无无【解答】解:(1)原式=5+4−9(2)原式=2+15+3=20.22.【答案】3≈31.解:√30340【考点】计算器—数的开方【解析】3的值是多少;然后应用四舍首先根据用计算器求一个数的立方根的方法,求出√30340五入法,将结果精确到1即可.【解答】3≈31.解:√3034023.【答案】解:(1)原式=−4+5+4÷2=−4+5+2=3;(2)原式=−3+6−√3+√3=3.【考点】立方根的应用实数的运算算术平方根绝对值【解析】【解答】解:(1)原式=−4+5+4÷2=−4+5+2=3.(2)原式=−3+6−√3+√3=3.24.【答案】第二个正方形玩具的棱长为7cm【考点】立方根的实际应用【解析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm33=7cm.第二个正方体的棱长为:√343【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】已知第一个等式变形得到立方根等于本身确定出x 的值,再利用相反数之和为0列出等式,将x 的值代入即可求出y 的值.【解答】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.26.【答案】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764,∴ x +1=34, 解得x =−14.【考点】立方根的应用【解析】(2)根据立方根的含义和求法,求出x 的值是多少即可.【解答】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764, ∴ x +1=34,解得x =−14.27.【答案】n ;−n ;√n 33;−√n 33(1)互为相反数的两个数的立方根互为相反数;(2)原式=−1−2−3−...−n =−n(n+1)2.【考点】立方根的实际应用【解析】观察各式,填写即可;(1)猜测得到互为相反数的两个数的立方根互为相反数;(2)利用得出的结论化简,计算即可得到结果.【解答】解:∵ √n 33=n ,√−n 33=−n ,∴ √n 33=−√n 33;(2)原式=−1−2−3−...−n =−n(n+1)2.28.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.29.【答案】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.【考点】计算器—数的开方【解析】有效数字就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,根据定义即可确定.【解答】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.30.【答案】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .【考点】立方根的实际应用【解析】根据球的体积表示出r 3,然后利用立方根的定义解答.【解答】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .31.【答案】∵ 14x 3+3=5,∴ 14x 3=2,则x 3=8,∴ x =2.【考点】立方根的性质【解析】先移项、合并,再两边都乘以4,最后依据立方根的定义求解可得.【解答】∵ 14x 3+3=5, ∴ 14x 3=2,则x 3=8,∴ x =2.32.【答案】解:∵ √x 3−73=x 2,∴ x 3−7=(x 2)3, ∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.【考点】立方根的实际应用【解析】根据立方根的定义得出方程,求出x 的值,代入求出即可.【解答】解:∵ √x 3−73=x 2, ∴ x 3−7=(x 2)3,∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.33.【答案】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.【考点】立方根的应用列代数式求值平方根【解析】根据平方根的定义列方程求出x ,y 的值,然后代入代数式进行计算即可得解.【解答】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.34.【答案】(1)x 1=5x 2=−3;(2)x =0【考点】立方根的性质【解析】(1)把16移到方程右边,再两边开平方,最后解一元一次方程即可得答;(2)把含x 的项放在方程的左边,常数项放右边,两边开立方,再解一元一次方程即可.【解答】(1)∴ (x −1)2−16=0(x −1)2=16x −1=±4解得,x 1=5x 2=−3(2)∵ 1−(2x −3)3=28(2x −3)3=−272x −3=−3解得,x =035.【答案】解:(x −1)3=278,x −1=32, x =52.【考点】立方根的实际应用【解析】(1)把(x −1)3看作一个整体并求出其值,再根据立方根的定义解答;【解答】解:(x −1)3=278,x −1=32,x =52.36.【答案】(1)−13; (2)x 1=3,x 2=−1【考点】立方根的性质【解析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.【解答】(1)√(−2)2−√83+√−1273=2−13=31 (2)(x −1)2=4x −1=±2x −1=2,x −1=−2解得:x 1=3,x 2=−137.【答案】解:设正方体的棱长为a ,根据题意得:a 3=27,则a =3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm 2.【考点】立方根的实际应用【解析】设正方体的棱长为a ,可求得正方体的棱长,然后再求得5个面的面积即可.【解答】解:设正方体的棱长为a,根据题意得:a3=27,则a=3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm2.38.【答案】2.59.【考点】计算器—数的开方【解析】首先熟练应用计算器计算结果,然后对计算器给出的结果,根据有效数字的概念即可求出结果.【解答】解:原式≈0.866−2.669+6.283−1.414≈2.59,故39.【答案】由题意可知:(2a+5)+(3a−1)=0,b−30=(−6)3=−27,解得a=−1,b=8;∵a+b=−1+3=7,∴a+b的算术平方根是.【考点】算术平方根立方根的性质平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.【考点】立方根的性质平方根【解析】首先根据x的立方根是3,求出x的值是多少;然后根据平方根的含义和求法,求出2x−5的平方根是多少即可.【解答】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.。

人教版七年级数学立方根同步练习题

人教版七年级数学立方根同步练习题

人教版七年级数学立方根同步练习题练题一
计算以下数的立方根:
1. 8
2. 27
3. -125
4. 64
练题二
将以下数的立方根化简为最简形式:
1. \(8\sqrt{2}\)
2. \(27\sqrt{3}\)
3. \(-125\sqrt{5}\)
4. \(64\sqrt{6}\)
练题三
判断以下陈述的真假:
1. 立方根是一个正数。

2. 每个正数都有一个唯一的立方根。

3. 负数的立方根是虚数。

4. \(4\sqrt{3}\)的立方根是\(2\sqrt{3}\)。

练题四
解决以下问题:
1. 找出一个正整数,使其立方根等于5。

2. 找出一个负整数,使其立方根为虚数。

3. 证明立方根的平方等于原数。

练题五
计算以下表达式的值:
1. \(3\sqrt{2} + 4\sqrt{2}\)
2. \(\sqrt{5} \times \sqrt{5}\)
3. \((-2)^{\frac{2}{3}}\)
以上是人教版七年级数学立方根的同步练题。

通过练和巩固这些题目,希望能够增强学生在解决立方根问题上的能力。

学生们可以根据自己的进度和理解程度进行练,掌握相关概念和技巧。

请注意,本文档提供的练习题仅供参考,学生们可以根据自身情况适当调整难度和数量。

2021年人教版七年级数学下册《立方根》同步练习(含答案)

2021年人教版七年级数学下册《立方根》同步练习(含答案)

2021年⼈教版七年级数学下册《⽴⽅根》同步练习(含答案)2021年⼈教版七年级数学下册《⽴⽅根》同步练习1.64的⽴⽅根是( )A .4B .±4C .8D .±8 2.化简:38=( )A .±2B .-2C .2D .2 2 3.若⼀个数的⽴⽅根是-3,则该数为( )A .-33B .-27C .±33 D .±27 4.3-8等于( )A .2B .2 3C .-12 D .-25.下列结论正确的是( )A .64的⽴⽅根是±4B .-18没有⽴⽅根C .⽴⽅根等于本⾝的数是0 D.3-216=-3216 6.下列计算正确的是( ) A.30.012 5=0.5 B.3-2764=34C.3338=112 D .-3-8125=-25A .如果⼀个数的⽴⽅根是这个数本⾝,那么这个数⼀定是0B .⼀个数的⽴⽅根不是正数就是负数C .负数没有⽴⽅根D .⼀个不为零的数的⽴⽅根和这个数同号,0的⽴⽅根是0 8.-64的⽴⽅根是,-13是的⽴⽅根.9.若3a =-7,则a =. 10.-338的⽴⽅根是.11.求下列各数的⽴⽅根:(1)0.216; (2)0; (3)-21027; (4)-5.12.求下列各式的值:(1)30.001 (2)3-343125; (3)-31-1927.13.⽤计算器计算328.36的值约为( )A .3.049B .3.050C .3.051D .3.052 14.⼀个正⽅体的⽔晶砖,体积为100 cm 3,它的棱长⼤约在( ) A .4~5 cm 之间 B .5~6 cm 之间 C .6~7 cm 之间 D .7~8 cm 之间 15.计算:3 25≈ (精确到百分位). 16.)3(-1)2的⽴⽅根是( )A .-1B .0C .1D .±1 17.下列说法正确的是( )A .⼀个数的⽴⽅根有两个,它们互为相反数B .⼀个数的⽴⽅根⽐这个数平⽅根⼩C .如果⼀个数有⽴⽅根,那么它⼀定有平⽅根 D.3a 与3-a 互为相反数 18.3B .±2 C. 2 D .± 2 19.若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( ) A .0 B .±10 C .0或10 D .0或-1020.正⽅体A的体积是正⽅体B的体积的27倍,那么正⽅体A的棱长是正⽅体B的棱长的( ) A.2倍 B.3倍 C.4倍 D.5倍21.若x-1是125的⽴⽅根,则x-7的⽴⽅根是 .22.(1)填表:(2)由上表你发现了什么规律?请⽤语⾔叙述这个规律:;(3)根据你发现的规律填空:①已知33=1.442,则33 000=,30.003=;②已知30.000 456=0.076 97,则3456=.23.求下列各式的值:(1)3-1 000; (2)-3-64;(3)-3729+3512; (4)30.027-124125+3-0.001.24.⽐较下列各数的⼤⼩:(1)39与3; (2)-342与-3.4.25.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.26.将⼀个体积为0.216 m 3的⼤⽴⽅体铝块改铸成8个⼀样⼤的⼩⽴⽅体铝块,求每个⼩⽴⽅体铝块的表⾯积.27.某居民⽣活⼩区需要建⼀个⼤型的球形储⽔罐,需储⽔13.5⽴⽅⽶,那么这个球罐的半径r 为多少⽶(球的体积V =43πr 3,π取3.14,结果精确到0.1⽶)?28.请先观察下列等式: 3227=2327,33326=33326,34463=43463,… (1)请再举两个类似的例⼦;(2)经过观察,写出满⾜上述各式规则的⼀般公式.参考答案1.(A) 2.(C) 3.(B) 4.(D) 5.(D) 6.(C) 7.(D) 8.-4,-127.9.-343. 10.-32.11.(1)解:∵0.63=0.216,∴0.216的⽴⽅根是0.6,即30.216=0.6. (2)解:∵03=0,∴0的⽴⽅根是0,即30=0. (3)解:∵-21027=-6427,且(-43)3=-6427,∴-21027的⽴⽅根是-43,即3-21027=-43.(4)解:-5的⽴⽅根是3-5. 12.解:0.1. 解:-75.解:-213.(B)14.(A) 15.2.92 16.(C) 17.(D) 18.(C) 19.(D) 20.(B) 21.-1. 22.填表:(2)被开⽅数扩⼤1_000倍,则⽴⽅根扩⼤10倍;(3)①14.42,0.144_2;②已7.697.23.(1)解:-10.(2)解:-4.(3)解:-1.(4)解:0. 24.解:39> 3. 解:-342<-3.4.25.(1)解:8x 3=-125,x 3=-1258,x =-52.(2)解:(x +3)3=-27,x +3=-3,x =-6.26.解:设每个⼩⽴⽅体铝块的棱长为x m ,则8x 3=0.216. ∴x 3=0.027.∴x =0.3.∴6×0.32=0.54(m 2),即每个⼩⽴⽅体铝块的表⾯积为0.54 m 2.27.解:根据球的体积公式,得43πr 3=13.5.解得r ≈1.5.故这个球罐的半径r 约为1.5⽶.28.解:(1)355124=535124,366215=636215. (2)3n +n n 3-1=n 3nn 3-1(n ≠1,且n 为整数).。

《6.2 立方根》同步测试及答案(共两套)

《6.2 立方根》同步测试及答案(共两套)

《6.2 立方根》同步测试一(第1课时)一、选择题1.-8的立方根为( ).A.2 B.-2 C.±2 D.±4考查目的:考查立方根的概念.答案:B.解析:由于,根据立方根的概念可得-8的立方根为-2.2.下列说法正确的是( ).A.负数没有立方根 B.8的立方根是±2C.立方根等于本身的数只有±1 D.考查目的:考查立方根的概念和性质.答案:D.解析:根据立方根的概念和性质可判断:所有的数都有立方根,且立方根只有一个,所以选项A、B错误;立方根等于本身的数有三个,分别为0,±1,所以选项C错误;由可知,选项D正确.3.的平方根是( ).A.±4 B.4 C.±2 D.不存在考查目的:考查立方根和平方根的概念以及立方根的符号表示.答案:C.解析:表示64的立方根,根据立方根的概念,得=4,再根据平方根的概念,得4的平方根为±2.二、填空题4.如果,则的值是.考查目的:考查立方根的性质.答案:.解析:由已知可知,,根据立方根的性质,.5.的立方根是 (结果用符号表示).考查目的:考查算术平方根与立方根的概念以及算术平方根、立方根符号表示.答案:.解析:=9,9的立方根为.6.-27的立方根与64的平方根的和是.考查目的:考查平方根与立方根的概念和计算.答案:-11或5.解析:根据平方根与立方根的概念,可得:-27的立方根是-3,64的平方根是±8,所以-27的立方根与4的平方根的和是5或-11.三、解答题7.求下列各式的值:(1);(2);(3);(4).答案:(1);(2);(3);(4).解析:本题考查求立方根的方法,需要注意的是:在求带分数的立方根时,必须先把它化成假分数.(1);(2);(3);(4).8.有一棱长为6的正方体容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127才能盛满,求另一正方体容器的棱长.考查目的:考查立方根的实际应用.答案:7.解析:原正方体容器的容积=(),另一正方体容器的容=216+127=343(),其棱长为.(第2课时)一、选择题1.估算10 000的立方根的范围大概是( ).A.10~15 B.15~20 C.20~25 D.25~30考查目的:考查无理数的估算能力.答案:C.解析:因为,,,,,又8000<10000<15625,所以10000的立方根应在20和25之间,故答案选C.2.已知:,,则等于( ).A.-17.38 B.-0.01738 C.-806.7 D.-0.08067考查目的:考查被开方数与立方根之间的小数点变化规律.答案:D.解析:根据可知,须先求出的值.0.000525是把525的小数点向左移动6位得到的,根据规律:被开方数的小数点每向右或向左移动3位,立方根的小数点向右或向左移动1位,可知,0.000525的立方根应把的立方根8.067向左移动2位,即0.08067.所以=-0.08067.4.在,1,-4,0这四个数中,最大的数是( ).A. B.1 C.-4 D.0考查目的:考查立方根的定义和大小比较.答案:.解析:因为正数大于负数和零,所以最大数应在和1中选,因为>,即>1,故答案选A.二、填空题4.估计在哪两个相邻整数之间:<<.考查目的:考查估算能力.答案:8 9.解析:因为<700<,所以8<<9.5.比较大小:______.考查目的:考查对平方根和立方根估算能力以及大小比较.答案:<.解析:因为,,所以5<<6,;因为,,所以10<<11.故<.6.一个正方形的面积变为原来的倍,则边长变为原来的倍;一个正方体的体积变为原来的倍,则棱长变为原来的倍.考查目的:考查算术平方根和立方根的概念和变化规律.答案:,.解析:由于正方形的面积为边长的平方,故边长变化的倍数是面积变化倍数的算术平方根;同理,棱长变化的倍数为体积变化倍数的立方根.三、解答题7.求下列各式中x的值:(1);(2).考查目的:考查立方根的应用.答案:(1);(2).解析:(1)由立方根的概念,可得,;(2),由立方根的概念,可得,.8.不用计算器,研究解决下列问题:(1)已知,且为整数,则的个位数字一定是;∵8000=<10648<=27000,∴的十位数字一定是;∴;(2)若,且为整数,按照(1)的思考方法,直接写出的值为.考查目的:考查对于一个能开方开得尽的较大的整数,其立方根的大小估计.答案:(1)2 2 22 (2)95.解析:(1)个位为1的两位数的立方,其个位数为1;个位为2的两位数的立方,其个位数为8;依此类推,可以判断的个位数字一定是2,十位数字一定是2,故10648的立方根为22.(2)按照(1)中的方法可以推测(2)中857375的立方根为95.《6.2 立方根》同步测试二课前预习:要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的_______,即如果x3=a,那么__________叫做__________的立方根.预习练习1-1 -8的立方根是( )A.-2B.±2C.2D.-1 21-2 -64的立方根是__________,-13是__________的立方根.要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.预习练习2-1下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3一个数a表示,读作“__________”,其中__________是被开方数,__________是根指数.预习练习3-1=__________.当堂练习:知识点1 立方根1.( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )B.-27C.D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.的平方根是__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216; (2)0; (3)-21027; (4)-5.8.求下列各式的值:;. 知识点2 用计算器求立方根9.( )A.3.049B.3.050C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.≈__________(精确到百分位).12.13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:_______________.(3)根据你发现的规律填空:=1.442,;课后作业:14.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根15.( )A.7B.-7C.±7D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B 的棱长的( )A.2倍B.3倍C.4倍D.5倍17.-27__________.18.计算:=__________=__________.19.已知2x+1的平方根是±5,则5x+4的立方根是__________.20.求下列各式的值:21.比较下列各数的大小:;与-3.4.22.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.23.(b-27)2的立方根.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?挑战自我25.请先观察下列等式:,,,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1立方根(或三次方根) x a预习练习1-1 A1-2 -4 -1 27要点感知2 正数负数 0预习练习2-1 D要点感知3 三次根号a a 3预习练习3-1 3当堂训练1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是0;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-4343;(4)-58.(1)0.1;(2)-75;(3)-23.9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100(2)被开方数扩大1 000倍,则立方根扩大10倍(3)14.42 0.144 2 7.696课后作业14.D 15.B 16.B 17.0或-6 18.-4 -3419.420.(1)-10;(2)4;(3)-1;(4)0.21.;<-3.4.22.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.23.由题意知a=-8,b=27,24.(1)8倍;.25.(n≠1,且n为整数).。

立方根练习题

立方根练习题

立方根练习题一、判断题1、如果b 是a 的三次幂,那么b 的立方根是a .( )2、任何正数都有两个立方根,它们互为相反数.( )3、负数没有立方根( )4、如果a 是b 的立方根,那么ab ≥0.( )5、(-2)-3的立方根是-21.( ) 6、3a 一定是a 的三次算术根. ( )7若一个数的立方根是这个数本身,那么这个数一定是零. ( )二、.选择题1、如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-332、若x <0,则332x x -等于( )A.xB.2xC.0D.-2x3若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-104、如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( ) A.5-13 B.-5-13 C.2 D.-25、如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对 6.下列说法中正确的是( )A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-7.在下列各式中:327102 =34 3001.0=0.1,301.0 =0.1,-33)27(-=-27,其中正确的个数是( )A.1B.2C.3D.48.若m <0,则m 的立方根是( ) A.3m B.- 3m C.±3m D. 3m -9如果36x -是6-x 的三次立方根,那么( )A.x <6B.x =6C.x ≤6D.x 是任意数10、下列说法中,正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1二、填空题1、如果一个数的立方根等于它本身,那么这个数是________.2、3271-=________, (38)3=________ 3、364的平方根是________.4、64的立方根是________. 6.364的平方根是______.7.(3x -2)3=0.343,则x =______.8.若81-x +x -81有意义,则3x =______. 9.若x <0,则2x =______,33x =______.10.若x =(35-)3,则1--x =______.三、解答题1.求下列各数的立方根(1)729 (2)-42717(3)-216125 (4)(-5)3 2.求下列各式中的x .(1)125x 3=8 (2)(-2+x )3=-216 (3)32-x =-2 (4)27(x +1)3+64=03.已知643+a +|b 3-27|=0,求(a -b )b 的立方根.4.已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长.5.判断下列各式是否正确成立. 1)3722=2372 (2)32633=3·3263 (3)36344=43634 (4)312455=531245 判断完以后,你有什么体会?你能否得到更一般的结论?若能,请写出你的一般结论.。

立方根练习题(含答案)

立方根练习题(含答案)

立方根练习题(含答案)1.正确的说法是:-2是8的立方根,-4是6根,-3是-27的立方根,11没有实数的立方根。

2.正确的说法是:A。

3.正确的答案是:C。

4.立方体的体积为64,所以边长为4,算术平方根为±4,所以选项A和C都正确。

5.正确的说法是:B。

6.3125=5^5.7.这个数是0或1.8.a=-7/3.9.b=3-2a。

10.(1) 2a/3b;(2) -2.11.(1) a=2,b=-7;(2) 3.12.(1) x=-3/2;(2) x=1/4.13.两个正方体纸箱的棱长为25厘米。

14.m=5,所以m-9的立方根为-2.15.2.16.x=0.01,y=51.93.17.A。

18.B。

19.A。

20.B。

3.根据立方根的定义,可以得到23的立方根为2,43的立方根为4,-1的立方根为-1,(-4)3的立方根为-4,因此选B。

4.根据立方体的体积公式,可以得到它的棱长为立方根64,即4,因此它的棱长的算术平方根为2,选D。

7.根据平方根与立方根的定义,可以得到(-)的平方根等于-的立方根,因此答案为-。

8.由于(-7)3=-343,因此a=-343,答案为-343.9.根据方程2a-1+(b+3)2=23,可以解得a=-1,b=-3,因此答案为-1.10.(1)根据立方根的定义,可以得到(27/8)的立方根为3/2,因此答案为3/2;(2)根据立方根的定义,可以得到(-10-2)3=-10-6,因此(-10-6)的立方根为-10-2.11.(1)由4是3a-2的算术平方根得到3a-2=16,解得a=6,再由2-15a-b的立方根为-5得到2-15a-b=-125,解得b=37;(2)代入b=37和a=6,得到2b-a-4=64,因此2b-a-4的平方根为±8.12.(1)由8x3+27=0得到8x3=-27,解得x=-3/2;(2)由64(x+1)3=27得到(x+1)3=27/64,解得x=-3/4.13.设正方体纸箱的棱长为x厘米,则2x3=50×40×30,解得x≈31,因此这两个正方体纸箱的棱长为31厘米。

立方根的练习题

立方根的练习题

立方根的练习题一、选择题1. 立方根的定义是什么?A. 一个数的立方B. 一个数的平方C. 一个数的平方根D. 一个数的立方根2. 立方根的符号是什么?A. √B. ³√C. ²√D. √³3. 以下哪个数的立方根是2?A. 8B. 4C. 6D. 24. 立方根的性质不包括以下哪项?A. 正数的立方根是正数B. 负数的立方根是负数C. 0的立方根是0D. 立方根是唯一的5. 计算立方根:³√-27的值是多少?A. 3B. -3C. 27D. -27二、填空题6. 立方根的定义是______的数。

7. 立方根的符号是______。

8. 一个数的立方根等于它自身,这个数是______。

9. 立方根的计算公式可以表示为______。

10. 如果一个数的立方根是-2,那么这个数是______。

三、计算题11. 计算下列各数的立方根:a. 64b. -64c. 1d. 012. 根据立方根的定义,找出以下数的立方根:a. 8b. -125c. 2713. 判断下列说法是否正确,并给出理由:a. 立方根是正数。

b. 立方根是负数。

c. 立方根是0。

四、解答题14. 解释为什么立方根的计算对于解决实际问题很重要,并给出一个实际应用的例子。

15. 已知一个数的立方根是3,求这个数。

如果这个数的立方根是-3,这个数又是多少?16. 如果一个数的立方根是2,那么这个数的平方是多少?五、应用题17. 某工厂需要制作一个立方体形状的容器,已知容器的体积是27立方米。

求这个容器的边长。

18. 一个正方体的体积是64立方厘米,求这个正方体的棱长。

19. 一个立方体的棱长是3米,求这个立方体的体积。

20. 一个数的立方根是它自身的1/3,求这个数。

六、拓展题21. 立方根在数学中的其他应用有哪些?请列举至少两个例子。

22. 立方根与平方根有何不同?请解释它们的主要区别。

23. 如果一个数的立方根是另一个数的平方根,这个数可能是什么?24. 立方根的概念可以扩展到其他维度吗?如果可以,请简要说明。

6.2《立方根》同步练习及答案

6.2《立方根》同步练习及答案

知识点:立方根:一样地,如果一个数的立方等于a,那么那个数是a的立方根立方根性质:正数的立方根是正数0的立方根是0 负数的立方根是负数3-a = —3 a同步练习:一、填空题:1. ________________ 1的立方根是.2.33.83. __________ 2是'勺立方根.4. ______ 的立方根是0.1 .5 .立方根是-的数是27 66. 27是的立方根.64 ---------------7. _____________ ( 3)3.8. ( 3)3的立方根是_________9. -是的立方根.510. ______________________________________________ 若a与b 互为相反数,则它们的立方根的和是______________________ .11. 0的立方根是 ________ .12. ___________________________ 36的平方根的绝对值是.13. 的立方根是729、判定题: 1. -的立方根是丄;() 8 22. 5没有立方根;()3. 的立方根是-;()2-6 64.-是—的立方根;() 9 7295. 负数没有平方根和立方根;()2.一个数的平方根与立方根相等,则那个数是( ). A . 1B . 1C . 0D . 13. 如果b 是a 的立方根,那么下列结论正确的是( ).A . b 也是 a 的立方根B . b 也是a 的立方根C . b 也是a 的立方根D . b 差不多上a 的立方根 4. 下列语句中,正确的是().A. 一个实数的平方根有两个,它们互为相反数B. 一个实数的立方根不是正数确实是负数6. 7. a 的三次方根是负数,a 必是负数;( 立方根等于它本身的数只能是 如果X 的立方根是2,那么 5的立方根是35 ;() 0或1; x 8 ;(9. 10. 8的立方根是 2 ;() 11. 丄的立方根是没有意义;216、、 112. —的立方根是 -;()27313. 0的立方根是0;( 14. -是-27的立方根;5_ 12515. 门是3立方根; 16. a 为任意数,式子 三、选择题: 1. 36的平方根是(A .B . 6 ) )2a ,3a 差不多上非负数.()).C .D .不存在C .负数没有立方根D .如果一个数的立方根是那个数本身,那么那个数一定是 1或0或15. 8的立方根是().A . 2B . 2C . 4D . 6. 设n 是大于1的整数,则等式n 1 n 1A .大于1的偶数B .大于1的奇数 7. 下列各式中正确的是().A . 16 43 --- 42中的n 必是().B . ;( 3)23C . 382 D . <'( 3)2 ( 4)2&与数轴上的点 ----- 对应的数是( A .整数B .有理数9.下列运算正确的是( A . 33C . 3 3四、解答题:3 3 331 .求下列各数的立方根. (1) C .). 无理数D .实数).B . 3 33 —J 3(3) (5) (7)343 512 (2)丄1&00 82780.216(4) 15- ⑹(8)2.求下列各式的值.38 3 /■- ----- •• 0.125 3时512 (1) (3) (5) (7)..0.0196 ^273 ------------- 3订迺)27£4(2) (4)(6)(8)(3)2 (-)2的算术平方根773.- --- .a 333 1727(9)(11)3 . x 取何值时,下面各式有意义?(1) x ■. x(10): (12)专3 -----------31 1212 4⑵3x 1(3)亠(4) 3x2x 34. 求下列各式中的x.(1) (0.1x 10)327000 ( 2) 3 2x 5 2(4) 125x3 512 0(5) 16x4625(7) (x 2)3 1 85 .化简3 a(a 1)(a 1) a .五、运算(2)3,( 4)23 4 --(4)3 (R 81.(3) 4x2 121(6) x9 1六、已知4;3T1 0,其中x , y 为实数,求x 3 y 1998的值.七、一个比例式的两个外项分别是 0.294和0.024, 数,求这两个内项各是多少?八、一个长方体木箱子,它的底是正方形,木箱高8立方米.求那个木箱底边的长.(精确到0.01米)九、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?( 取3.14, r 精确到0.01厘米)两个内项是相等的 1.25米,体积2.71十、如果球的半径是r,则球的体积用公式V 4 n3来运算•当体积V 500立方厘米,半径r是多少厘米?(取3.14, r精确到0.01厘米)参考答案、1. 12. 323. 84. —0.00112521634-278. —39. 空12510. 011. 012. 614. 315. —1, 0, +116. —117. —0.218. 互100019. x 3, x 5且x 820.士8, 4二、1.x 2.x 3.V4.V5.x 6.V7.x 8.V9.V 10.x 11.x 12.V 13.V 14.x 15.V 16.x三、四、321. A2. C3. C4. D5. A6.丄10 1. (1) —1(7)02.(1) —2(7) —0.143. (1)x 04. (1) —4005. a五、- -33六、2627七、0.084(7) 2八、1.47米B 7. C(3) —78. D 9. C52(5)8 (6) (8) —0.6 (3)0.5(3) —35(8) 7(2)x取全体实数(3) x3 11⑵7 (3)号2 2(9)—a(10)a(5)8(12)j0.001(11)41且x 3 (4)x取任何实数8 5⑷8 (5) |5 2(6)—15.6.7.九、7.98 厘米十、 4.92 厘米14. 3 27 =. 15.立方根等于它本身的数是.16. ( 1)109的立方根是.17. 0.008的立方根是.18. —是'勺立方根.19 .当x为____________■寸,* * * * * x 3有意义;x3当x为时,35—X有意义.3x820. ( 2)6的平方根是____________立方根是____________ .。

立方根同步测试题

立方根同步测试题

第六章实数6.2立方根一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.138A.2B2C.2 D.–2【答案】C【解析】∵2的立方等于8,∴8的立方根等于2382.故选C.2.64的立方根是A.4 B.±8C.8 D.±4【答案】A【解析】64的立方根是4.故选A.3()334-A.–4 B.4C.±4 D.16【答案】A【解析】∵(–4)⨯(–4)⨯(–4)=(–4)3()334-–4,故选A.4.如果一个数的立方根是它本身,那么这个数是A.1、0 B.–1C.0 D.1、–1、0【答案】D【解析】设这个数为x,依据题意可得x3=x,当x=0时显然等式成立;当x≠0时,x2=1,解得x1=−1,x2=1,故选D.5.若a3=–27,则a的倒数是A.3 B.–3C.13D.–13【答案】D【解析】∵a3=–27,∴a=–3,∴a的倒数是13-,故选D.6A.–4 B.4C.14-D.14【答案】B–44,故选B.7.–125A.–2 B.4C.–8 D.–2或–8【答案】D【解析】–125的立方根为–53或–3,则–125的和为–2或–8.故选D.8.如果a的立方根,–2是b的一个平方根,则a10×b9等于A.2 B.–2C.1 D.–1【答案】A【解析】由题意得,a=–2,b=12,所以a10×b9=(–2)10×(12)9=2,故选A.二、填空题:请将答案填在题中横线上.9.已知|a|=4=2,ab<0__________.【答案】2【解析】因为|a |=4=2,ab <0, 所以a =–4,b =8,2, 故答案为:2.10.如果一个有理数a 的平方等于9,那么a 的立方等于__________.【答案】±27 【解析】∵(±3)2=9, ∴平方等于9的数为±3, 又∵33=27,(–3)3=–27. 故答案为:±27. 11.若x +17的立方根是3,则3x –5的平方根是__________.【答案】±5 【解析】∵x +17的立方根是3,∴x +17=27,解得:x =10, 则3x –5=25,25的平方根是:±5. 故答案为:±5. 12.若2a 和a +3是一个数的两个不同的平方根,则这个数的立方根是__________.【解析】∵一个数的两个平方根分别是2a 和a +3, ∴2a +a +3=0. 解得a =–1. ∴2a =–2. ∴这个正数为4.4.13.下列说法中正确的是__________.①2-是16的四次方根;②正数的n 次方根有两个;③a 的n ()0a a =≥. 【答案】①④【解析】∵–2是16的四次方根,∴①正确;∵当n为偶数时,正数的n次方根有两个,∴②错误;∵只有当n为奇数时,a的n次方根是n a,∴③错误;∵不论n为奇数还是偶数,当a≥0时,n n a=a,∴④正确;故答案为:①④.14.如图为洪涛同学的小测卷,他的得分应是__________分.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.求x的值:(1)4x2=81;(2)2(x–1)3=54.【答案】(1)92x=±;(2)x=4【解析】(1)4x2=81,x2=814,解得92x=±;(2)(x–1)3=27,x–1=3,解得:x=4.16()2332564--【答案】4【解析】原式=3+5–4=4.17.已知31x +的算术平方根是4,17x y +-的立方根是2-,求x y +的平方根.【解析】根据题意得:3116x +=,178x y +-=-, 解得:5x =,4y =,则459x y +=+=,9的平方根为3±. 所以x y +的平方根为3±.18.已知2x +15的立方根是3,16的算术平方根是2x –y ,求:(1)x 、y 的值; (2)x 2+y 2的平方根.【解析】(1)根据题意得,21527x +=,24x y -=, 解得6x =,8y =. (2)由(1)得x =6,y =8, 所以x 2+y 2=62+82=100, 则x 2+y 2的平方根是±10.学-科网 19.已知正数x 的两个平方根分别为3–a 和2a +7.(1)求a 的值;(2)求44–x 这个数的立方根.【解析】(1)由题意得:3–a +2a +7=0,∴a=–10, (2)由(1)可知x =169,则44–x =–125, ∴44–x 的立方根是–5.20.正数a 的正的平方根叫做a 的算术平方根,≥0和a ≥0的两个非负性.据此解决以下问题:(1)若实数a 、b =0,求a +b 的立方根.(2)已知实数x 、y 满足y ,求x y 的平方根. 【解析】(1)由题意得:a –1=0,9+b =0, 解得:a =1,b =–9,∴a +b =–8, ∴a +b 的立方根是–2;(2)由题意得:x–2≥0,2–x≤0,解得:x=2,则y=2,x y的平方根是±2.21.如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π取3)(1)这个圆柱形容器的底面直径为多少分米?(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)22.小梅用两张同样大小的长方形硬纸片拼接成一个面积为900cm2的正方形,如图所示,按要求完成下列各小题.(1)求长方形硬纸片的宽;(2)小梅想用该长方形硬纸片制作一个体积为512cm3的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积.【解析】(1)设长方形的长为x cm,宽为y cm,∴x=2y,且x2=900,∴x=30,∴y=15,(23512(cm),共需要5个边长为8cm的面,总面积为:5×82=320,∴剩余的纸片面积为:900–320=580(cm2).人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

七年级下册数学同步练习题库:立方根(选择题:容易)

七年级下册数学同步练习题库:立方根(选择题:容易)

立方根(选择题:容易)1、在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1 B.2 C.3 D.无数个2、如果一个数的立方根是这个数本身,那么这个数是( ).A.1 B.-1 C.±1 D.±1,03、下列叙述正确的是().A.0.4的平方根是±0.2 B.的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣34、下列四种说法:①负数的立方根仍为负数;②1的平方根与立方根都是1;③4的平方根的立方根是;④互为相反数的两个数的立方根仍为相反数,正确的有().A.1个 B.2个 C.3个 D.4个5、下列计算正确的是()A.=±2 B.=﹣3 C. D.=36、一个数的平方根与立方根都是它本身,这个数是()A.1 B.﹣1 C.0 D.±1,07、下列说法中正确的有( )①都是8的立方根;②=±4;③的平方根是;④⑤是81的算术平方根A.1个; B.2个; C.3个; D.4个8、下列说法中,错误的是()A.9的算术平方根是3 B.C. 27的平方根是 D.立方根等于的实数是9、27的立方根是()A.3 B.﹣3 C.9 D.﹣910、8的立方根是()A.2 B.±2 C.±2 D.211、-64的立方根是()A. B.4 C.- 4 D.1612、化简的结果是()A.8 B.4 C.﹣2 D.213、的立方根是()A.2 B.±2 C.4 D.±414、下列实数中是有理数的是()A. B. C. D.15、-64的立方根是()A. B.4 C.- 4 D.1616、64的立方根是()A.±8 B.±4 C.8 D.417、的立方根是()A.-1 B.O C.1 D. ±118、下列实数中是有理数的是()A. B. C. D.19、下列计算正确的是()A.=﹣4 B.=±4 C.=﹣4 D.=﹣420、﹣8的立方根是()A.2 B.﹣2 C.±2 D.21、(2013•泰州校级三模)8的立方根是()A.2 B.±2 C. D.±22、(2015秋•乳山市期末)下列结论正确的是()A.=﹣2 B.=﹣2C.=±2 D.=±223、27的立方根是()A.9 B.-9 C.3 D.±324、的立方根是()A.8 B.±2 C.4 D.225、下列说法正确的是()A.0.64的立方根是0.4B.9的平方根是3C.0.01的立方是0.000001D.26、下列各式中,正确的是()A.=±4 B.±=4 C.=-3 D.=-427、下列说法中,正确的是()A.(-6)2的平方根是-6 B.带根号的数都是无理数C.27的立方根是±3 D.立方根等于-1的实数是-128、64的立方根是( )A. B. C. D.29、(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣430、(3分)下列各式中计算正确的是()A. B.C. D.31、下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是232、下列命题中:①4的平方根是±2;②16的算术平方根是2;③若=9,则x=3;④若=﹣8,则x=﹣2.其中是真命题的有()A.①② B.①④ C.①②③ D.①②④33、下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C. D.34、的立方根是()A.4 B.±4 C.2 D.±235、64的立方根是()A.4 B.±4 C.8 D.±836、计算的结果是()A.8 B.﹣4 C.4 D.±437、下列各式中,正确的是:A. B. C. D.38、-8的立方根是()A.-2 B.±2 C.2 D.39、的立方根是().A. B. C. D.40、的结果是()A.-3 B.3 C.7 D.-741、64的立方根是()A.4 B.±4 C.8 D.±842、64的立方根是()43、64的立方根是A.±8 B.±4 C.8 D.444、的立方根是()A.4 B. C.8 D.245、下列等式正确的是()A.=± B. C. D.46、下列说法正确的是()A.–4的立方是64 B.0.1的立方根是0.001C.4的算术平方根是16 D.9的平方根是47、下列说法正确的是A.4的平方根是B.8的立方根是C.D.48、8的立方根是()A.2 B.-2 C.8 D. 249、-1的立方根为()A.1 B.-1 C.1或-1 D.没有50、在下列各数,5,,,,6.1010010001…,中,无理数的个数是()51、下列各数中,3.14159,,0.131131113……,-π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个52、在3.14,,,,,,3.141141114……中,无理数的个数是()A.1个 B.2个 C.3个 D.4个53、面计算正确的是()A. B. C. D.54、的值等于()A.3 B.2 C.-2 D.4参考答案1、C.2、D3、D.4、B.5、B6、C7、B8、C9、A10、D11、C12、D13、A.14、D15、C16、D17、C.18、D19、D20、B21、A22、B23、C24、D.25、C.26、C.27、D.28、C29、C.30、C.31、A32、B33、D.34、C.35、A.36、C37、C.38、A39、C.40、C.41、A42、A43、D44、D.45、D46、D47、A48、A49、B.50、D.51、C52、D.53、B54、B.【解析】1、试题分析:在有理数中,一个数的立方等于这个数本身,这个数为±1或0,共3个,故答案选C.考点:有理数的立方.2、试题解析:立方根等于本身的数有:故选D.3、试题分析:根据平方根的定义,立方根的定义,算术平方根的定义,对各选项分析判断后利用排除法.A、应为0.04的平方根是±0.2,故本选项错误;B、=8,立方根是2,存在,故本选项错误;C、应为6是36的算术平方根,故本选项错误;D、﹣27的立方根是﹣3,正确.故选:D.考点:立方根;平方根;算术平方根.4、试题分析:根据平方根和立方根的定义解答即可.①负数的立方根仍为负数,正确;②1的平方根与立方根都是1,正确;③4的平方根的立方根是,错误;④互为相反数的两个数的立方根不一定为相反数,错误.故选:B.考点:实数.5、试题分析:原式一平方根及立方根定义计算即可得到结果. A、原式=2,错误;B、原式=﹣3,正确;C、原式=|﹣4|=4,错误;D、原式为最简结果,错误考点:(1)、立方根;(2)、算术平方根.6、试题分析:平方根等于本身的数是0;立方根等于本身的数是0和±1;则平方根和立方根都等于本身的数是0.考点:(1)、平方根;(2)、立方根7、试题分析:①、2是8的立方根,则错误;②、=4,则错误;③、正确;④、正确;⑤、9是81的算术平方根.考点:(1)、平方根;(2)、立方根8、试题分析:一个正数的平方根有2个,且他们互为相反数;负数的立方根只有1个.C、27的平方根为:±3.考点:(1)、平方根;(2)、立方根9、试题分析:∵3的立方等于27,∴27的立方根等于3.故选A.考点:立方根.10、试题分析:根据立方根的定义,由23=8,可得8的立方根是2.故选:D.考点:立方根11、试题分析:因为,则-64的立方根为-4.考点:立方根的计算.12、试题分析:根据立方根的定义,即可解答.解:=2,故选:D.点评:本题考查了立方根,解决本题的关键是熟记立方根的定义.13、试题解析:=8,8的立方根是2.故选A.考点:1.算术平方根;2.立方根.14、试题分析:无理数是指无限不循环小数,除了无理数之外的数都是有理数.根据定义可得:D为有理数. 考点:有理数的定义15、试题分析:因为,则-64的立方根为-4.考点:立方根的计算.16、试题分析:根据=64,则64的立方根为4.考点:立方根的计算.17、试题解析:故选C.考点:立方根.18、试题分析:无理数是指无限不循环小数,除了无理数之外的数都是有理数.根据定义可得:D为有理数. 考点:有理数的定义19、试题分析:利用算术平方根及立方根定义计算各项,即可做出判断.解:A、原式没有意义,错误;B、原式=4,错误;C、原式=|﹣4|=4,错误;D、原式=﹣4,正确,故选D考点:立方根;算术平方根.20、试题分析:利用立方根的定义即可求解.解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B考点:立方根.21、试题分析:根据开方运算,可得答案.解:23=8,8的立方根是2,故选:A.考点:立方根.22、试题分析:依据立方根、平方根和算术平方根的定义回答即可.解:A、=2,故A错误;B、=﹣2,故B正确;C、=2,故C错误;D、=2,故D错误.故选:B.考点:立方根;算术平方根.23、试题分析:根据立方根的意义,由可求27的立方根为3.故选C考点:立方根24、试题解析:∵=8而8的立方根等于2,∴的立方根是2.故选D.考点:立方根.25、试题分析:A.0.064的立方根是0.4,故A选项错误;B.9的平方根是±3,故B选项错误;C.0.01的立方是0.000001,故C选项正确;D.,故D选项错误;故选C.考点:1.立方根;2.平方根;3.算术平方根.26、试题解析:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3,所以C选项正确;D、原式=|-4|=4,所以D选项错误.故选C.考点:二次根式的混合运算.27、试题解析:A、(-6)2=36,36的平方根是±6,原说法错误,故本选项错误;B、带根号的数不一定都是无理数,例如是有理数,故本选项错误;C、27的立方根是3,故本选项错误;D、立方根等于-1的实数是-1,说法正确,故本选项正确;故选D.考点:1.立方根;2.平方根;3.无理数.28、∵(4)3=64,∴64的立方根是4.故选C.29、试题分析:计算题.本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.考点:二次根式的混合运算.30、试题分析:A、,故选项错误;B、=5,故选项错误;C、,故选项正确;D、,故选项错误.故选:C.考点:立方根;算术平方根.31、试题分析:根据立方根及算术平方根的定义可知:﹣2是﹣8的立方根,所以A正确;9的立方根为,所以B错误;3是(﹣3)2的算术平方根,所以C错误;8的算术平方根为,所以D错误,故选:A.考点:1.立方根;2.算术平方根.32、试题分析:根据平方根的概念、算术平方根的概念和立方根的概念进行判断即可得到答案.4的平方根是±2,①正确;16的算术平方根是4,②错误;若=9,则x=±3,③错误;若=﹣8,则x=﹣2,④正确,考点:命题与定理33、试题分析: A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、=5,表示25的算术平方根式5,≠±5,故本选项错误;D、,故本选项正确.故选D.考点:1.立方根;2.算术平方根;3.幂的乘方与积的乘方;4.同底数幂的除法.34、试题分析:∵64的算术平方根是8,8的立方根是2,∴的立方根是2.故选C.考点:1.立方根;2.算术平方根.35、试题分析:∵4的立方等于64,∴64的立方根等于4.故选A.考点:立方根.36、试题分析:根据立方根的定义,进行解答即可.∵=64,∴=4.考点:立方根37、试题分析:A选项表示16的算术平方根是4,B选项表示16的算术平方根的相反数,是-4,C正确,D选项先算(-4)的平方是16,16的算术平方根是4,故选C.考点:平方根立方根的意义.38、试题分析:根据一个数的立方等于某个数,那么这个数就是某数的立方根,因此由-2的立方等于-8,可知-8的立方根为-2.故选A考点:立方根39、试题分析:根据立方根的定义27的立方根是3.故答案选C.考点:立方根的定义.40、试题分析:故选C.考点:实数的运算.41、试题解析:∵4的立方等于64,∴64的立方根等于4.故选A.考点:立方根.42、试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.43、试题分析:根据=64,则64的立方根为4.考点:立方根的计算.44、试题分析:先求出的值,再根据立方根的定义求解.试题解析:∵=8而8的立方根等于2,∴的立方根是2.故选D.考点:立方根.45、试题分析:A求的是算术平方根,只有1个正的;B负数没有平方根;C、是无理数,无法计算.考点:根式的计算.46、试题分析:A、-4的立方是-64;B、0.001的立方根是0.1;C、4的算术平方根是2.考点:平方根、立方根.47、试题分析:B、8的立方根是2;C、=2;D、=2.考点:平方根与立方根的计算.48、分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵2的立方等于8,∴8的立方根等于2.故选A.49、试题分析:因为,所以﹣1的立方根为﹣1,即.故选B.考点:立方根.50、试题分析:,则无理数有:,3π、6.1010010001…、,共4个.故选D.考点:无理数.51、试题分析:无理数有:,0.131131113……,﹣π共3个.故选C.考点:无理数.52、试题分析:在3.14,,,,,,3.141141114……中,无理数有,π,,3.141141114……一共4个.故选D.考点:无理数.53、本题考查的是数的乘方与开方运算,是个易错题,特别要注意带负号的情况。

苏科版八年级数学上册《4.2 立方根》同步练习题-附答案

苏科版八年级数学上册《4.2 立方根》同步练习题-附答案

苏科版八年级数学上册《4.2 立方根》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法不正确的是( )A .0.3±是0.09的平方根,即0.090.3=±B 644C .正数的两个平方根的积为负数D .存在立方根和平方根相等的数2.下列各数:3.14159 38- 0.131131113(⋯每相邻两个3之间依次多一个1) 2π-17 8() A .1个B .2个C .3个D .4个3.下列说法正确的是( )A .8的立方根是±2B .12-是16-的立方根C .立方根等于它本身的数是0和1D .64和-64的立方根互为相反数4.下列说法正确的是( )A 327B 3272C 27D .面积为27的正方形边长是275.下列命题是真命题的是( )A .过一点有且只有一条直线和已知直线平行B 22a b =a b =C .a 与b 3b 3aD 36426.下列判断正确的是( )A .若x y =,则x y =B .若x y <x yC .若)2x y =,则x y =D .若x y =33x y 7.下列各式中,正确的是( )A 164=±B .93=C 3273-=-D ()244--8.下列说法正确的是( )A .平方根是本身的数只有0;B .立方根是本身的数只有0和1;C .绝对值是本身的数只有0和1;D .相反数是本身的数只有0和1.9.在实数13- 8 38 0.518- 3π 37- 2,无理数的个数为( ) A .1 B .2 C .3D .4 10.2的立方根是( )A 2B .2C 32D .32±二、填空题11.12527-的立方根是 . 1216的算术平方根是 ;-64的立方根是 .13.若x +1是125的立方根,则x 的平方根是 .14.已知:一个正数的两个平方根分别是2a -2和a -4,则这个正数的立方根是 .15.9的算术平方根是 ,2-的绝对值是 ,8-的立方根是 .16.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚给出了如下方法:(1)由3101000=,31001000000=359319(2)由59319个位上的数是93593199;(3)划去59319后面的三位319得到59,而3327=,3464=由此确定3593193.请你类比上述过程,确定21952的立方根是 .17.若28a -的平方根是0,1b +的立方根是-1,则a b 的算术平方根是 .18.25的绝对值是 ,116的算术平方根是 ,364的倒数是 . 19.已知x 满足(x +3)3=64,则x 等于 .20.81的平方根是 ,64 .三、解答题21.把一个长、宽、高分别为25cm 8cm 20cm ,,的长方体铁块锻造成4个同样的立方体铁块,问锻造成的每个立方体铁块的棱长是多少厘米?22.为了制作某城市雕塑,需要把一根截面面积为256cm,高为32cm的长方体钢体熔铸成两个正方体,其中大正方体的棱长是小正方体的棱长的3倍,求这两个正方体的棱长.23.已知第一个正方体木箱的棱长是60cm,第二个正方体木箱的体积比第一个木箱的体积的3倍还多381000cm,求第二个正方体木箱的表面积是多少平方厘米?24.如图,由8个同样大小的正方体组成一个“2阶魔方”,整个魔方的体积为8.(1)求这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,它的面积是魔方侧面EFGH面积的一半,求正方形ABCD的边长a.(3)把正方形ABCD放到数轴上,如图①,使得点A与1 重合,那么点D在数轴上表示的数为.25.已知第一个正方体纸盒的棱长为6cm,第二个正方体纸盒的体积比第一个正方体纸盒的体积大3184cm,求第二个正方体纸盒的棱长.(结果精确到0.001cm)参考答案1.B2.C3.D4.B5.C6.D7.C8.A9.D10.C11.5 3 -12. 2 -413.±2143415. 3 2-2 16.2817.418.52121 419.1.20.±9 221.10cm22.这两个正方体的棱长分别为4cm和12cm 23.48600平方厘米24.(1)22(3)12-25.7.368cm。

冀教版八年级数学上册《14.2 立方根》同步练习题(带答案)

冀教版八年级数学上册《14.2 立方根》同步练习题(带答案)

冀教版八年级数学上册《14.2 立方根》同步练习题(带答案)一、选择题1.化简3-8等于( ) A.2 B.2 3 C.-12D.-2 2.若一个数的立方根是-3,则该数为( )A.-33B.-27C.±33D.±273.下列说法正确的是( )A.﹣1的相反数是﹣1B.﹣1的倒数是1C.1的算术平方根是1D.1的立方根是±14.下列说法正确的是( )A.等于﹣B.﹣18没有立方根C.立方根等于本身的数是0D.﹣8的立方根是±25.64的立方根是( )A.2B.±2C.4D.±46.下列说法不正确的是( )A.-1的立方根是-1B.-1的平方是1C.-1的平方根是-1D.1的平方根是±17.下列正确的有( )①若x 与3互为相反数,则x+3=0;②﹣12的倒数是2;③|﹣15|=﹣15;④负数没有立方根.A.①②③④B.①②④C.①④D.①8.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根D.3a 与3a 互为相反数9.已知一个正方体的表面积为12dm 2,则这个正方体的棱长为( ) A.1dm B.2dm C.6dm D.3dm10.已知x 是(-9)2的平方根,y 是64的立方根,则x +y 的值为( )A.3B.7C.3或7D.1或7二、填空题11.-64的立方根是 ,-13是 的立方根. 12.若3a =-7,则a = .13.-338的立方根是 . 14.小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的正方体盒子的体积比你的大218 cm 3.”则小明的盒子的棱长为 cm.15.一个正数a 的两个平方根是m +7和2m ﹣1,则a ﹣m 的立方根为 .16.有一组按规律排列的数:32与34与36,2与310…,则第n 个数是 .三、解答题17.求x 的值:2x 3﹣16=0.18.求x 的值:(x ﹣3)3+8=0.19.求x 的值:127(x -1)3=1.20.求x 的值:27(x + 1)3=-6421.求下列各数的立方根:(1)0.216; (2)0; (3)-21027; (4)-5.22.一个数的平方根为2n+1和n ﹣4,而4n 是3m+16的立方根,求m 值.23.将一个体积为0.216 m 3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.24.已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.25.请先观察下列等式:3227=232733326=3332634463=43463…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.答案1.D2.B3.C.4.A.5.A6.C7.D8.D9.B10.D11.答案为:-4,-1 27 .12.答案为:-343.13.答案为:-3 2 .14.答案为:7.15.答案为:3.16.答案为:32n.17.解:x=2.18.解:x=1.19.解:x=4.20.解:x=-7 3.21.解:(1)∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)∵03=0,∴0的立方根是0,即30=0.(3)∵-21027=-6427,且(-43)3=-6427∴-21027的立方根是-43,即3-21027=-43.(4)解:-5的立方根是3-5.22.解:∵一个数的平方根为2n+1和n﹣4∴2n+1+n﹣4=0∴n=1∵4n是3m+16的立方根∴(4n)3=3m+16即64=3m+16解得:m=16.23.解:设每个小立方体铝块的棱长为x m,则8x3=0.216. ∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2)即每个小立方体铝块的表面积为0.54 m2.24.解:二个正方形纸盒的棱长是7厘米.25.解:(1)355124=535124,366215=636215.(2)3n+nn3-1=n3nn3-1(n≠1,且n为整数).。

立方根练习题及答案

立方根练习题及答案

立方根练习题及答案### 立方根练习题及答案1. 求立方根:找出下列数的立方根。

- (a) 8- (b) -27- (c) 64- (d) -12. 立方根的运算:计算下列表达式的值。

- (a) ³√(2³)- (b) ³√(-8)³- (c) ³√(-27) × ³√(64)- (d) ³√(0.064) ÷ ³√(0.064)3. 立方根与幂的互化:将下列表达式转换为幂的形式。

- (a) ³√x³- (b) ³√(-y)³- (c) ³√(z⁶)4. 立方根的比较:比较下列各组数的立方根大小。

- (a) ³√8 和³√27- (b) ³√(-125) 和³√(-64)5. 立方根的应用:如果一个立方体的体积是64立方厘米,求其边长。

6. 立方根的混合运算:计算下列表达式的值。

- (a) ³√(64) - ³√(8)- (b) ³√(-27) + ³√(125)7. 立方根的性质:判断下列说法是否正确,并给出理由。

- (a) 任何数的立方根都是正数。

- (b) 负数的立方根是负数。

8. 立方根的逆运算:如果一个立方体的边长是4厘米,求其体积。

9. 立方根的估算:估算下列数的立方根。

- (a) 729- (b) 0.03710. 立方根的复合运算:计算下列表达式的值。

- (a) ³√(81 × 125)- (b) ³√(-343) ÷ ³√(-1)### 答案1. (a) 2, (b) -3, (c) 4, (d) -12. (a) 2, (b) -8, (c) -4, (d) 13. (a) x, (b) -y, (c) z²4. (a) ³√8 < ³√27, (b) ³√(-125) < ³√(-64)5. 边长为4厘米6. (a) 2, (b) -27. (a) 错误,因为负数的立方根是负数;(b) 正确8. 体积为64立方厘米9. (a) 9, (b) 0.210. (a) 9, (b) 7请注意,这些练习题和答案仅为示例,实际的立方根问题可能需要根据具体情况进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《立方根》同步练习
知识点:
立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根 立方根性质:正数的立方根是正数
0的立方根是0
负数的立方根是负数
3a - = — 3a
同步练习:
一、填空题:
1.1的立方根是________.
2.8
3
3-的立方根________. 3.3)3(-的立方根是________
4.109)1(-的立方根是______.
5.008.0-的立方根是________.
6.当x 为________时,
333-+x x 有意义; 7.6)2(-的平方根是________,立方根是________.
二、判断题:
1.81-的立方根是2
1±;( ) 2.5-没有立方根;( )
3.216
1的立方根是61;( ) 4.92-是7298-的立方根;( ) 5.负数没有平方根和立方根;( )
6.a 的三次方根是负数,a 必是负数;( )
7.立方根等于它本身的数只能是0或1;( )
8.如果x 的立方根是2-,那么8-=x ;( )
9.5-的立方根是3
5-;( )
10.8的立方根是2±;( )
三、选择题:
1.36的平方根是( ).
A .6±
B .6
C .6-
D .不存在
2.一个数的平方根与立方根相等,则这个数是( ).
A .1
B .1±
C .0
D .1-
3.如果b -是a 的立方根,那么下列结论正确的是( ).
A .b -也是a -的立方根
B .b 也是a 的立方根
C .b 也是a -的立方根
D .b ±都是a 的立方根
4.下列语句中,正确的是( ).
A .一个实数的平方根有两个,它们互为相反数
B .一个实数的立方根不是正数就是负数
C .负数没有立方根
D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或1
5.8的立方根是( ).
A .2
B .2-
C .4
D .4-
6.设n 是大于1的整数,则等式211=--n n 中的n 必是( ).
A .大于1的偶数
B .大于1的奇数
C .2
D .3
7.下列各式中正确的是( ).
A .416±=
B .3)3(2-=-
C .38-2-=
D .5)4()3(22-=-+-
8.与数轴上的点一一对应的数是( ).
A .整数
B .有理数
C .无理数
D .实数
9.下列运算正确的是( ).
A .3333--=-
B .3333=
- C .3333-=- D .3333-=-
四、解答题:
1.求下列各式的值.
(1)38-
(2)327-
(3)3125.0--
(4)33)001.0(--
(5)3512
(6)36427--
(7)0196.0-
(8)22)74()73(+的算术平方根
(9)33a -
(10)33a (
(11)3
2717
3-
(12)34112213⨯
2.x 取何值时,下面各式有意义
(1)x x -+ (2)31-x。

相关文档
最新文档