2020版江苏高考数学名师大讲坛一轮复习教程精编学案:第9课__二次函数 Word版含解析
2020版江苏高考数学名师大讲坛一轮复习教程学案:第9课__二次函数
____第9课__二__次__函__数____1. 熟练掌握二次函数的图象和性质.2. 掌握二次函数、一元二次方程、一元二次不等式之间的联系,会用二次函数的图象和性质讨论一元二次方程根的分布.3. 能解决与二次函数有关的一些综合性问题.1. 二次函数的三种形式:一般式、顶点式和两根式,会根据条件选择合适的形式.2. 二次函数的图象是抛物线,具有许多优美的性质,如对称性、单调性等,结合这些图象特征解决二次函数的问题,可以化难为易,形象直观.3. 二次函数性质的研究:首先根据二次函数的图象开口向上或向下,分a>0或a<0两种情况分类考虑;同时要特别关注二次函数的对称轴位置,即对称轴与所给区间的位置关系,这样可以得到二次函数的变化情况.此外要注意c 的值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.4. 三个二次(二次函数、一元二次方程、一元二次不等式)以二次函数为核心,即二次函数图象与横轴的交点和在横轴的上方、下方.基础诊断1. 若函数y =x 2+(a +2)x +3(x ∈[a ,b])的图象关于直线x =1对称,则b =__6__.解析:由题意得-a +22=1,解得a =-4,且a +b 2=1,即-4+b 2=1,解得b =6. 2. 已知二次函数f(x)=ax 2+bx +c 且f(x 1)=f(x 2),则f ⎝⎛⎭⎫x 1+x 22=__4ac -b 24a __. 解析:由题意可知,x 1+x 22=-b 2a, 所以f ⎝⎛⎭⎫x 1+x 22=a·⎝⎛⎭⎫-b 2a 2+b·⎝⎛⎭⎫-b 2a +c =4ac -b 24a . 3. 已知二次函数y =x 2-2x +3在区间[0,m]上有最大值3,最小值2,则实数m 的取值范围为__[1,2]__.解析:由题意得函数y =x 2-2x +3图象的对称轴为直线x =1.当x =0时,y =3,当x =1时,y =2,所以⎩⎪⎨⎪⎧m ≥1,m 2-2m +3≤3,解得1≤m ≤2, 所以m 的取值范围是[1,2].4. 如果方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是__(-∞,-3)__.解析:设f(x)=x 2+(2m -1)x +4-2m ,由题意得,⎩⎪⎨⎪⎧Δ=(2m -1)2-4(4-2m )>0,f (2)=4+2(2m -1)+4-2m<0,解得⎩⎪⎨⎪⎧m<-52或m>32,m<-3,所以m<-3,故实数m 的取值范围是(-∞,-3).范例导航考向❶ 通过分类讨论对称轴与区间的位置关系,利用数形结合求最值例1 求函数f(x)=x 2-2ax +2(x ∈[2,4])的最小值.解析:f(x)图象的对称轴是直线x =a ,可分以下三种情况:①当a <2时,f(x)在[2,4]上为增函数,所以f(x)min =f(2)=6-4a ;②当2≤a ≤4时,f(x)min =f(a)=2-a 2;③当a >4时,f(x)在[2,4]上为减函数,所以f(x)min =f(4)=18-8a.综上所述,f(x)min =⎩⎪⎨⎪⎧6-4a , a<2,2-a 2, 2≤a ≤4,18-8a , a>4.已知函数f(x)=x 2-2x +2(x ∈[t ,t +1])的最小值为g(t),求g(t)的表达式.解析:由题意得,f(x)=(x -1)2+1.①当t +1<1,即t<0时,g(t)=f(t +1)=t 2+1;②当t ≤1≤t +1,即0≤t ≤1时,g(t)=f(1)=1;③当t>1时,g(t)=f(t)=t 2-2t +2. 综上所述,g(t)=⎩⎪⎨⎪⎧t 2+1, t<0,1, 0≤t ≤1,t 2-2t +2, t>1.考向❷ 利用三个二次之间的关系,以二次函数为核心解决问题例2 已知二次函数y =f(x)(x ∈R)的图象过点(0,-3),且f (x )>0的解集为(1,3).(1) 若函数f (x )=f (x )-mx 在区间(0,1)上单调递增,求实数m 的取值范围;(2) 求函数G (x )=f (sin x )在x ∈⎣⎡⎦⎤0,π2上的最值. 解析:(1) 因为f (x )>0的解集为(1,3),所以二次函数与x 轴的交点为(1,0)和(3,0),所以可设f (x )=a (x -1)(x -3).又因为函数图象过点(0,-3),代入f (x )得3a =-3,解得a =-1,所以f (x )=-(x -1)(x -3)=-x 2+4x -3,所以f (x )=-x 2+4x -3-mx =-x 2+(4-m )x -3.因为函数f (x )在区间(0,1)上单调递增,所以-4-m 2×(-1)≥1,解得m ≤2, 故实数m 的取值范围是(-∞,2].(2) 由题意得,G (x )=-sin 2x +4sin x -3=-(sin x -2)2+1.。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第5课__函数的概念含解析
1. 体会函数是描述两个变量之间依赖关系的重要数学模型,理解函数的概念. 2. 了解构成函数的要素有定义域、对应法则、值域,会求一些简单函数的定义域和值域. 3. 了解映射的概念,进一步了解函数是非空数集到非空数集的映射.
1. 阅读:必修 1 第 23~27 页及第 46 页.
所以 f(x)∈[ 2,2].
a (2) f(x)= {[f(x)]2-2}+f(x)=a 1-x2+ 1+x+ 1-x,
2
1 令 t=f(x)= 1+x+ 1-x,则 1-x2= t2-1,
2
( ) 1
1
所以 f(x)=m(t)=a t2-1 +t= at2+t-a,t∈[ 2,2].
2
2
1
1
1
由题意知 g(a)即为函数 m(t)= at2+t-a,t∈[ 2,2]的最大值,t=- 是抛物线 m(t)= at2
(1) 求函数 f(x)的定义域和值域;
a (2) 设 f(x)= {[f(x)]2-2}+f(x)(a 为实数),当 a<0 时,求 f(x)的最大值 g(a).
2
{ ) 解析:(1)
由题意得
1+x 1-x
≥ ≥
0, 0,
解得-1≤x≤1,
所以函数的定义域为[-1,1].
又[f(x)]2=2+2 1-x2∈[2,4],f(x)≥0,
1 单调递减,当 x∈(-∞,1)时,y<0;当 x∈[2,5)时, <y≤2,即函数的值域为(-∞,0)∪
2
( ]1 ,2 . 2
ax+3 4. 若函数 y= 的值域为(-∞,-2)∪(-2,+∞),则实数 a 的值为__4__.
2020版江苏高考数学名师大讲坛一轮复习教程学案:第20课__导数在研究函数中的应用(1) 含解析
____第20课__导数在研究函数中的应用(1)____1. 利用导数研究函数的单调性、极值、最值等问题.2. 理解数形结合思想,转化思想在导数中的应用.3. 理解函数在某点取得极值的条件.1. 阅读:选修11第86~92页.2. 解悟:①教材第86页中间的关于函数的导数和单调性关系的结论怎么理解?它的逆命题是否成立,试举例说明.你会利用导数说明(或证明)函数在给定区间上的单调性吗?②函数的极值是怎么定义的?一个函数是否一定有极大值和极小值?有极大值或极小值的函数的极值是否唯一?函数的极值和导数具有怎样的关系?教材第88页的两张表格中的内容你理解吗?给你一个具体函数你会求它的极值点吗?③我们知道函数的最大值和最小值是函数定义域内的性质,函数的极值是对函数定义域内某一局部而言的,它们之间的关系为:最大值可能在极值点或函数的端点取到极值不一定是最值,最值也不一定是极值.④会做教材第87页的例2,例3,第89页的例2,第90页的例2,并能总结下列问题类型解题的一般步骤:一是利用导数判断或证明函数在给定区间上的单调性;二是利用导数求函数的单调区间;三是利用导数求函数的极值;四是利用导数求函数的最值.3. 践习:在教材的空白处完成第87页练习第1(2)、3(2)题,第89页练习第1(2)、4题,第91~92页练习第4、5题,习题第2(2)(4)、3(2)(3)、4(3)、8(4)题.基础诊断1. 函数f()=32-6ln 的单调减区间是__(0,1)__.解析:由题意得,f ′()=6-6x ,令f ′()<0,则6-6x <0.因为>0,解得0<<1,故函数f()的单调减区间是(0,1).2. 函数f()=2x x 2+3(>0)有极__大__值.解析:由题意得,f ′()=6-2x 2(x 2+3)2.令f ′()=0,即6-2x 2(x 2+3)2=0,解得=3或=-3(舍去).当0<<3时,f ′()>0;当>3时,f ′()<0,所以函数f()在区间(0,3)上单调递增;在区间(3,+∞)上单调递减,所以函数f()在=3处取得极大值为33.3. 函数f()=+2cos ,∈⎣⎢⎡⎦⎥⎤0,π2的最大值是6.解析:由题意得,f ′()=1-2sin .令f ′()=0,即1-2sin =0,解得sin =12,即=π6∈⎣⎢⎡⎦⎥⎤0,π2,所以当∈⎣⎢⎡⎭⎪⎫0,π6时,f ′()>0,函数f()在区间⎣⎢⎡⎭⎪⎫0,π6上单调递增;当∈⎝ ⎛⎦⎥⎤π6,π2时,f ′()<0,函数f()在区间⎝ ⎛⎦⎥⎤π6,π2上单调递减,所以函数f()在=π6处,取得极大值,且是最大值为π6+ 3.4. 若函数f()=23-62+m(m 为常数),在[]-2,2上有最大值3,则此函数在[]-2,2上的最小值为__-37__.解析:因为f ′()=62-12=6(-2),由f ′()=0得=0或=2.因为f(0)=m ,f(2)=-8+m ,f(-2)=-40+m ,显然f(0)>f(2)>f(-2),故m =3,最小值为f(-2)=-37.范例导航考向❶ 利用导数研究函数的最值问题 例1 已知函数f()=a 2+1(a>0),g()=3+b.(1) 若曲线y =f()与曲线y =g()在它们的交点(1,c)处具有公共切线,求实数a ,b 的值. (2) 当a =3,b =-9时,若函数f()+g()在区间[,2]上的最大值为28,求实数的取值范围. 解析:(1) 由题意得,f ′()=2a ,g ′()=32+b.因为曲线y =f()与曲线y =g()在它们的交点(1,c)处具有公共切线,所以f(1)=g(1) 且f ′(1)=g ′(1),即a +1=1+b 且2a =3+b ,解得a =3,b =3. (2) 记h()=f()+g(),当a =3,b =-9时,h()=3+32-9+1, 所以h ′()=32+6-9. 令h ′()=0得1=-3,2=1.h ′(),h()在∈(-∞,2]上的变化情况如下表所示:在区间[,2]上的最大值小于28.因此实数的取值范围是(-∞,-3].已知y =f()是奇函数,当∈(0,2)时,f()=ln -a ⎝ ⎛⎭⎪⎫a>12,当∈(-2,0)时,f()的最小值为1,则实数a 的值为__1__.解析:因为y =f()是奇函数,且当∈(-2,0)时,f()的最小值为1,所以当∈(0,2)时,最大值为-1.令f ′()=1x -a =0,得=1a .当0<<1a 时,f ′()>0;当>1a 时,f ′()<0,所以f()ma =f ⎝ ⎛⎭⎪⎫1a =ln1a -1=-ln a -1=-1,解得a =1.考向❷ 利用导数研究单调性、极值问题 例2 已知函数f()=3-a 2+3.(1) 若f()在[1,+∞)上是增函数,求实数a 的取值范围;(2) 若=3是f()的极值点,求函数f()在区间[1,a]上的最小值和最大值. 解析:(1) f ′()=32-2a +3.由题设知∈[1,+∞)时f ′()≥0. 因为≥1,所以a ≤32⎝ ⎛⎭⎪⎫x +1x ,所以a ≤32⎝ ⎛⎭⎪⎫x +1x max =3(当且仅当=1时取等号),而当a =3,=1时,f ′()=0,所以a ≤3.故实数a 的取值范围为(-∞,3].(2) 由题设知f ′(3)=0,即27-6a +3=0,解得a =5,所以f()=3-52+3. 令f ′()=32-10+3=0, 解得=3或=13(舍去).当1<<3时,f ′()<0,函数f()单调递减; 当3<<5时,f ′()>0,函数f()单调递增. 所以当=3时,f()有极小值,f(3)=-9. 又f(1)=-1,f(5)=15,所以函数f()在[1,5] 上的最小值是f(3)=-9,最大值是f(5)=15.设=1与=2是函数f()=a ln +b 2+的两个极值点. (1) 试确定常数a 和b 的值;(2) 试判断=1,=2是函数f()的极大值点还是极小值点,并说明理由. 解析:(1) 由题意得,f ′()=ax+2b +1.因为=1与=2是函数f()=a ln +b 2+的两个极值点, 所以⎩⎨⎧f ′(1)=0,f ′(2)=0,即⎩⎨⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23,b =-16,所以a 的值为-23,b 的值为-16.(2) 由(1)得f ′()=-23x -13+1=-(x -1)(x -2)3x ,所以由f ′()>0得1<<2;由f ′()<0,得0<<1或>2,所以函数f()在区间(1,2)上单调递增,在区间(0,1)和(2,+∞)上单调递减, 所以=1是函数f()的极小值点,=2是函数f()的极大值点. 考向❸ 利用导数求解不等式的恒成立问题例3 已知函数f()=e +e -,其中e 是自然对数的底数. (1) 求证:函数f()是R 上的偶函数;(2) 若关于的不等式mf ()≤e -+m -1在区间(0,+∞)上恒成立,求实数m 的取值范围. 解析:(1) 函数f ()的定义域为R ,关于原点对称;又因为f (-)=e -+e =f (), 所以函数f ()是R 上的偶函数.(2) 由mf ()≤e -+m -1得m (e +e -)≤e -+m -1,即m (e +e --1)≤e --1, 令t =e(t >0),因为e +e --1=t +1t -1≥2-1=1,当且仅当t =1时,等号成立,故m ≤1t -1t +1t-1=1-t t 2-t +1,令h (t )=1-tt 2-t +1.h ′(t )=t (t -2)(t 2-t +1)2.则当t >2时,h ′(t )>0;当0<t <2时,h ′(t )<0,所以当t =2时,h (t )min =h (2)=-13,则m ≤-13.综上可知,实数m 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m ≤-13.注:分离参数后,也可利用基本不等式去处理m 的范围. 【变式题】 设函数f ()=12a 2-ln ,其中a 为大于零的常数.(1) 当a =1时,求函数f ()的单调区间和极值;(2) 当∈[1,2]时,不等式f ()>2恒成立,求实数a 的取值范围. 解析:(1) 当a =1时, f ′()=-1x =x 2-1x(>0),令f ′()>0得>1,令f ′()<0得0<<1.故函数f ()的单调增区间为(1,+∞),单调减区间为(0,1).从而函数f ()在区间(0,+∞)上的极小值为f (1)=12,函数f ()无极大值.(2) 由题意得,f ′()=1a -1x =x 2-aax(>0).不等式f ()>2在[1,2]上恒成立等价于函数f ()在区间[1,2]上的最小值f ()min >2. 因为a >0,所以令f ′()=0得=a .当0<a ≤1,即0<a ≤1时,函数f ()在区间[1,2]上递增, 所以f ()min =f (1)=12a >2,解得0<a <14;当a ≥2,即a ≥4时,函数f ()在区间[1,2]上单调递减, 所以f ()min =f (2)=2a-ln2>2,无解;当1<a <2,即1<a <4时,函数f ()在区间[1,a ]上单调递减,在区间[a ,2]上单调递增,所以f ()min =f (a )=12-12ln a >2,无解.综上所述,所求实数a 的取值范围为⎝ ⎛⎭⎪⎫0,14.自测反馈1. 若函数f()=x 2+ax +1在=1处取极值,则实数a =__3__.解析:f ′()=x 2+2x -a (x +1)2,因为函数f()=x 2+a x +1在=1处取极值,所以f ′(1)=0,即1+2-a(1+1)2=0,解得a =3.2. 已知a>0,b>0,若函数f()=43-a 2-2b +2在=1处有极值,则ab 的最大值等于__9__. 解析:f ′()=122-2a -2b ,因为函数f()在=1处有极值,f ′(1)=12-2a -2b =0,所以a +b =6.又a>0,b>0,所以a +b ≥2ab ,所以2ab ≤6,所以ab ≤9,当且仅当a =b =3时取等号,所以ab 的最大值为9.3. 已知f()=3-3-1,若对于在区间[-3,2]上的任意1,2,都有|f(1)-f(2)|≤t ,则实数t 的最小值是__20__.解析:对于在区间[-3,2]上的任意1,2,都有|f(1)-f(2)|≤t ,等价于对于在区间[-3,2]上的任意,都有f()ma -f()min ≤t.因为f()=3-3-1,所以f ′()=32-3=3(+1)(-1),因为∈[-3,2],所以函数f()在区间[-3,-1)和(1,2]上单调递增,在(-1,1)上单调递减,所以f()ma =f(2)=f(-1)=1,f()min =f(-3)=-19,所以f()ma -f()min =20,所以t ≥20,故实数t 的最小值为20.4. 分别在曲线y =e 与直线y =e -1上各取一点M ,N ,则MN 的最小值为1+e .解析:要想求MN 的最小值,则需过曲线上一点的切线与直线y =e -1平行,设切点为(0,y 0).曲线y =e 的导数y ′=e ,所以在点(0,y 0)的切线的斜率=e 0,所以e 0=e ,即0=1,所以切点为(1,e ),所以切线的方程为y -e =e (-1),即e -y =0,所以切线e -y =0与直线y =e -1的距离=1e 2+1=1+e 21+e2,故MN 的最小值为1+e 21+e 2.1. 导数的正负可以判断函数的单调性,但反过;未必.2. 极值与导数的关系,极值点附近左右两侧的导数是否异号可以判断函数是否有极值的.3. 求函数在给定区间上的最值时,需要注意区间端点的开闭对答案的影响.4. 你还有哪些体悟,写下;:。
2019-2020学年高三数学一轮复习 二次函数学案2.doc
2019-2020学年高三数学一轮复习 二次函数学案2
一、学习目标:重点掌握一元二次函数、一元二次方程、一元二次不等式的综合应用
二、基础自测
1、设1)(2++=bx x x f ,且)3()1(f f =-,则0)(>x f 的解集是 ( )
A 、}31|{>-<x x x 或
B 、R
C 、}1|{≠x x
D 、}1|{=x x
2、已知54)(2+-=mx x x f 在),2[+∞-上单调,则实数m 的取值范围是
3、设函数1)(2--=mx mx x f ,若0)(<x f 的解集为R ,则实数m 的取值范围是
4、已知]1,1[-∈x 时,02)(2>+
-=a ax x x f 恒成立,则实数a 的取值范围是 三、典例分析
例1、已知函数R x R b a bx ax x f ∈∈++=),,(1)(2
(1)若函数)(x f 的最小值为0)1(=-f ,求)(x f 的解析式,并写出单调区间;
(2)在(1)的条件下,k x x f +>)(在区间]1,3[--上恒成立,试求k 的取值范围;
(3)(选做)在(1)的条件下,存在],1,3[--∈x 使得k x x f +>)(成立,试求k 的取值范围。
例 2、已知)(12||)(2为常数a a x ax x f -+-=
(1)若1=a ,作函数)(x f 的图像;
(2)设)(x f 在区间]2,1[上的最小值为)(a g ,求)(a g 的表达式;
(3)(选做)求)(a g 的最值及单调区间
四、作业巩固。
2019-2020学年高三数学一轮复习 第09课 二次函数学案2.doc
2019-2020学年高三数学一轮复习 第09课 二次函数学案2一、基础自测1.函数()f x =的定义域为R ,则m 的取值范围是2.函数22()(31)f x ax a x a =--+在区间[1,)+∞上是增函数,则a 的取值范围是3.设,x y 是关于m 的方程2260m am a -++=的两个实根,则22(1)(1)x y -+-的最小值为4.若方程2210ax x --=在(0,1)内恰有一解,则a 的取值范围是5.二次函数222()2y x a b x c ab =-+++的图像的顶点在x 轴上,且,,a b c ABC ABC 为的三边长,则的形状为6.若集合2A {|054}x x ax =≤++≤为单元集,则实数a =7.方程2210mx mx ++=,有一根大于1,另一根小于1,则实数m 的取值范围是8.设二次函数2()(0),f x x x a a =-+>若()0f m <,则比较(1)f m -与0的大小关系为二、例题讲解 例1.已知关于x 的二次方程22210x mx m +++=(1) 若方程有两根,其中一根在(1,0)-内,另一根在(1,2)内,求m 的范围;(2) 若方程两根均在区间(0,1)内,求m 的范围;例2.知函数bax x x f +=2)((a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4. (1)求函数f(x)的解析式;(2)设k>1,解关于x 的不等式;xk x k x f --+<2)1()(例3.设函数f(x)=|x 2-4x-5|(1)在区间 [-2,6]上画出f(x)的图像;(2)设集合{|()5},(,2)[0,4][6,)A x f x B =≥=-∞-+∞,试判断集合A 和B 之间的关系,并给出证明;(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k 的图像位于函数f(x)图像的上方.例4.已知函数22()|1|f x x x kx =-++(1)若k=2,求方程f(x)=0的解;(2)若关于x 的方程f(x)=0在(0,2)上有两个解12,x x ,求k 的范围,并证明12114x x +<三、课后作业班级 姓名 学号 等第1. 已知函数2()()()(0)f x ah x bh x c a =++≠与以下四个函数解析式: (1)()x h x e = 2(2)()(3)()ln (4)()sin .h x x h x x h x x ===则与函数2()(0)()g t at bt c a t R =++≠∈值域相同的()h x 的解析式是2.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是 3.已知函数2(),f x x ax b =++若(1)(2)f f <,则实数a 的取值范围是4.若关于x 的不等式24x x m -≥对任意(0,1]x ∈恒成立,则m 的取值范围是5.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是6.函数()(0)f x ax bx c a =++≠的图象关于直线2b x a =-对称。
高考一轮复习第2章函数导数及其应用第9讲函数与方程
第九讲函数与方程知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE知识梳理知识点一函数的零点1.函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.2.几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.知识点二二分法1.对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)(3)(4).重要结论1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶个零点)时,函数值才变号,即相邻两个零点之间的函数值同号.(5)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)·f(b)<0⇒函数f(x)在[a,b]上只有一个零点.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数两个零点一个零点无零点双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)二次函数y=ax2+bx+c(a≠0)在当b2-4ac<0时没有零点.( √)(3)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)(4)若f(x)在区间[a,b]上连续不断,且f(a)·f(b)>0,则f(x)在(a,b)内没有零点.( ×)(5)函数y=2x与y=x2只有两个交点.( ×)[解析](1)函数的零点是函数图象与x轴交点的横坐标.(2)当b2-4ac<0时,抛物线与x轴无交点,故没有零点.(3)函数图象若没有穿过x轴,则f(a)·f(b)>0.(4)若在区间[a,b]内有多个零点,f(a)·f(b)>0也可以.(5)y=x2与y=2x在y轴左侧一个交点,y轴右侧两个交点,如在x=2和x=4处都有交点.题组二走进教材2.(必修1P92AT2改编)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1 2 3 4 5f(x) -4 -2 1 4 7在下列区间中,函数f(x)A.(1,2) B.(2,3)C.(3,4) D.(4,5)[解析]由所给的函数值的表格可以看出,x=2与x=3这两个数字对应的函数值的符号不同,即f(2)·f(3)<0,所以函数在(2,3)内有零点,故选B.3.(必修1P92AT1改编)下列函数图象与x轴均有公共点,其中能用二分法求零点的是( C )[解析]A,B图中零点两侧不异号,D图不连续.故选C.4.(必修1P92AT4改编)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值(精确度0.1)如下表所示:x 1.25 1.312 5 1.375 1.437 5 1.5 1.562 5f(x) -0.871 6 -0.578 8 -0.281 3 0.210 1 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为( C )A.1.32 B.1.39C.1.4 D.1.3[解析]通过上述表格得知函数唯一的零点x0在区间(1.375,1.437 5)内,故选C.题组三走向高考5.(2015·安徽,5分)下列函数中,既是偶函数又存在零点的是( A )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1[解析]y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点,故选A.6.(2019·全国卷Ⅲ,5分)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( B )A.2 B.3C.4 D.5[解析]f(x)=2sin x-2sin xcos x=2sin x(1-cos x),令f(x)=0,则sin x=0或cos x=1,所以x=kπ(k∈Z),又x∈[0,2π],所以x=0或x=π或x=2π.故选B.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一,函数的零点考向1 确定函数零点所在区间——自主练透例1 (1)若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是( D )A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点(2)(2021·开封模拟)函数f(x)=x+ln x-3的零点所在的区间为( C )A.(0,1) B.(1,2)C.(2,3) D.(3,4)(3)(多选题)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)·(x-c)+(x-c)(x-a)的零点位于区间可能为( BC )A.(-∞,a) B.(a,b)C.(b,c) D.(c,+∞)[解析](1)因为f(1)·f(2)·f(4)<0,所以f(1)、f(2)、f(4)中至少有一个小于0.若f(1)<0,则在(0,1)内有零点,在(0,4)内必有零点;若f(2)<0,则在(0,2)内有零点,在(0,4)内必有零点;若f(4)<0,则在(0,4)内有零点.故选D.(2)解法一:利用零点存在性定理因为函数f(x)是增函数,且f(2)=ln 2-1<0,f(3)=ln 3>0,所以由零点存在性定理得函数f(x)的零点位于区间(2,3)内,故选C.解法二:数形结合函数f(x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的图象的交点横坐标所在范围.如图所示,可知f(x)的零点在(2,3)内.(3)易知f(a)=(a-b)(a-c),f(b)=(b-c)·(b-a),f(c)=(c-a)(c-b).又a<b<c,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别位于区间(a,b)和(b,c)内,故选B、C.名师点拨MING SHI DIAN BO确定函数零点所在区间的方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 考向2 函数零点个数的确定——师生共研例2 (1)函数f(x)=⎩⎪⎨⎪⎧x 2+x -2,x≤0,-1+ln x ,x>0的零点个数为( B )A .3B .2C .7D .0(2)已知f(x)=⎩⎪⎨⎪⎧|lg x|,x>0,2|x|,x≤0,则函数y =2f 2(x)-3f(x)+1的零点个数为5.[解析] (1)解法一:(直接法)由f(x)=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x>0,-1+ln x =0,解得x =-2或x =e. 因此函数f(x)共有2个零点.解法二:(图象法)函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点. (2)令2f 2(x)-3f(x)+1=0,解得f(x)=1或f(x)=12,作出f(x)的简图:由图象可得当f(x)=1或f(x)=12时,分别有3个和2个交点,则关于x 的函数y =2f 2(x)-3f(x)+1的零点的个数为5.名师点拨 MING SHI DIAN BO函数零点个数的判定有下列几种方法(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:利用函数y =f(x)的图象与x 轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.〔变式训练1〕(1)已知函数f(x)=⎩⎪⎨⎪⎧x 2-2x ,x≤0,1+1x ,x>0,则函数y =f(x)+3x 的零点个数是( C )A .0B .1C .2D .3(2)设函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=e x+x -3,则f(x)的零点个数为( C ) A .1 B .2 C .3D .4(3)(2020·河南名校联考)函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0,则函数g(x)=3[f(x)]2-8f(x)+4的零点个数是( A )A .5B .4C .3D .6[解析] (1)由已知得y =f(x)+3x =⎩⎪⎨⎪⎧x 2+x ,x≤0,1+1x+3x ,x>0.令x 2+x =0,解得x =0或x =-1.令1+1x +3x =0(x>0)可得3x 2+x +1=0.因为Δ=1-12<0,所以方程3x 2+x +1=0无实根.所以y =f(x)+3x 的零点个数是2.(2)f(x)=e x+x -3在(0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫12=e 12-52<0,f(1)=e -2>0,∴f(x)在(0,+∞)上只有一个零点,由奇函数性质得f(x)在(-∞,0)上也有一个零点,又f(0)=0,所以f(x)有三个零点,故选C .(3)本题考查函数的零点与方程根的个数的关系.函数g(x)=3[f(x)]2-8f(x)+4=[3f(x)-2][f(x)-2]的零点,即方程f(x)=23和f(x)=2的根.函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0的图象如图所示,由图可得方程f(x)=23和f(x)=2共有5个根,即函数g(x)=3[f(x)]2-8f(x)+4有5个零点. 考向3 函数零点的应用——多维探究 角度1 与零点有关的比较大小例3 已知函数f(x)=2x+x ,g(x)=x -log 12x ,h(x)=log 2x -x 的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系为( D )A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 1[解析] 由f(x)=2x+x =0,g(x)=x -log 12x =0,h(x)=log 2x -x =0,得2x=-x ,x =log 12x ,log 2x=x ,在平面直角坐标系中分别作出y =2x与y =-x 的图象;y =x 与y =log 12x 的图象;y =log 2x 与y =x 的图象,由图可知:-1<x 1<0,0<x 2<1,x 3>1.所以x 3>x 2>x 1.角度2 已知函数的零点或方程的根求参数例4 (2018·全国Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧e x,x≤0,ln x ,x>0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是( C ) A .[-1,0) B .[0,+∞) C .[-1,+∞) D .[1,+∞)[解析]令h(x)=-x -a ,则g(x)=f(x)-h(x).在同一坐标系中画出y =f(x),y =h(x)图象的示意图,如图所示.若g(x)存在2个零点,则y =f(x)的图象与y =h(x)的图象有2个交点.由图知-a≤1,∴a≥-1.名师点拨 MING SHI DIAN BO 1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小; (2)数形结合法.2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解. 〔变式训练2〕(1)(角度1)(2021·安徽蚌埠月考)已知函数f(x)=3x+x ,g(x)=log 3x +x ,h(x)=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( B )A .a<b<cB .a<c<bC .a>b>cD .c>a>b(2)(角度2)(2021·杭州学军中学月考)已知函数f(x)=⎩⎪⎨⎪⎧2x-a ,x≤0,2x -1,x>0(a∈R),若函数f(x)在R 上有两个零点,则a 的取值范围是( D )A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1][分析] (1)解法一:依据零点存在定理,确定a ,b ,c 所在区间,进而比较大小;解法二:分别作出y =3x、y =log 3x 、y =x 3与y =-x 的图象,比较其交点横坐标的大小即可.[解析](1)解法一:∵f(-1)=3-1-1=-23,f(0)=1,∴a∈⎝ ⎛⎭⎪⎫-23,0,又g ⎝ ⎛⎭⎪⎫13=log 313+13=-23,g(1)=1,∴b∈⎝ ⎛⎭⎪⎫13,1,显然c =0,∴a<c<b,故选B .解法二:数形结合法,在同一坐标系中分别作出y =3x、y =log 3x 、y =-x 的图象,结合图象及c =0可知a<c<b ,故选B .解法三:由概念知b>0,a<0,c<0,∴b 最大,选B .(2)∵当x>0时,f(x)=2x -1, 由f(x)=0得x =12,∴要使f(x)在R 上有两个零点, 则必须2x-a =0在(-∞,0]上有解. 又当x ∈(-∞,0]时,2x∈(0,1]. 故所求a 的取值范围是(0,1].考点二 二分法及其应用——自主练透例5 (1)用二分法研究函数f(x)=x 3+3x -1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈(0,0.5),第二次应计算f(0.25).(2)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为⎝ ⎛⎭⎪⎫32,2. (3)在用二分法求方程x 2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是7.[解析] (1)因为f(0)<0,f(0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f ⎝ ⎛⎭⎪⎫0+0.52=f(0.25).(2)区间(1,2)的中点x 0=32,令f(x)=x 3-2x -1,f ⎝ ⎛⎭⎪⎫32=278-4<0,f(2)=8-4-1>0,则根所在区间为⎝ ⎛⎭⎪⎫32,2. (3)设至少需要计算n 次,由题意知1.5-1.42n<0.001,即2n >100.由26=64,27=128,知n =7. 名师点拨 MING SHI DIAN BO1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f(a),f(b)的值比较容易计算且f(a)·f(b)<0; (2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的.(3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数零点的综合问题例6 (2021·山西五校联考)已知函数f(x)=⎩⎪⎨⎪⎧-2x ,x≤0-x 2+x ,x>0,若函数g(x)=f(x)-a 恰有三个互不相同的零点x 1,x 2,x 3,则x 1x 2x 3的取值范围是( A )A .⎝ ⎛⎭⎪⎫-132,0B .⎝ ⎛⎭⎪⎫-116,0 C .⎝ ⎛⎭⎪⎫0,132 D .⎝ ⎛⎭⎪⎫0,116 [解析] 解法一:显然x≤0时,-2x =a ,有一根不妨记为x 1,则x 1=-a 2(a≥0),当x>0时-x 2+x=a 即x 2-x +a =0有两个不等正根,不妨记为x 2,x 3,则Δ=1-4a>0,即a<14,从而-a 2∈⎝ ⎛⎭⎪⎫-116,0且x 2x 3=a.∴x 1x 2x 3=-a 22∈⎝ ⎛⎭⎪⎫-132,0,故选A .解法二:作出y =f(x)及y =a 的图象,显然0<a<14,不妨设x 1<x 2<x 3显然x 1<0,x 2>0,x 3>0,∴x 1x 2x 3<0排除C 、D ,又当x 2趋近x 3时,x 2x 3趋近14,x 1趋近-18,故x 1x 2x 3趋近-132.故选A .名师点拨 MING SHI DIAN BO以函数图象、图象的变换方法及函数的零点等相关知识为基础,通过作图、想象,发现该问题的相关数学知识及其联系,快速解决该问题.〔变式训练3〕(2021·东北三省四市模拟)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +1,x≤0,|lg x|,x>0.若f(x)=a(a∈R)有四个不等实根,则所有实根之积的取值范围是( B )A .(-∞,1)B .[0,1)C .(0,1)D .(1,+∞)[解析] 本题考查已知方程根的个数求根的乘积的取值范围. 设四个根依次为x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4), 则-2≤x 1<-1,-1<x 2≤0,x 1+x 2=-2, 由|lg x 3|=|lg x 4|,得-lg x3=lg x4,则lg x3+lg x4=lg(x3x4)=0,∴x3x4=1,∴x1x2x3x4=x1x2=(-2-x2)x2=-(x2+1)2+1∈[0,1).故选B.。
高考数学一轮复习 函数系列之二次函数学案
二次函数一、教学目标:掌握二次函数的概念、图象及性质;能利用二次函数研究一元二次方程的实根分布条件;能求二次函数的区间最值.二、教学重点:1.二次函数的图象与性质、二次函数、二次方程与二次不等式的关系是重点, 2.二次函数最值问题、一元二次方程根的分布及二次函数的图象性质灵活应用是难点。
三、教学过程: (一)主要知识:一)正比例函数,一次函数,反比例函数 1.正比例函数 )0(≠=k kx y2.一次函数 )0(≠+=k b kx y 其图象为一直线,0>k 时增函数,0<k 时减函数。
而0=k 时为常数函数。
3.反比例函数 )0(≠=k xky 定义域),0()0,(+∞⋃-∞,值域),0()0,(+∞⋃-∞,图象是双曲线,0>k 时在),0()0,(+∞-∞和上递减,0<k 时在),0()0,(+∞-∞和递增。
二)二次函数1.二次函数的解析式的三种形式(1)一般式:f(x)=ax 2+bx+c(a ≠0),其中a 是开口方向与大小,c 是Y 轴上的截距,而ab2-是对称轴。
(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。
(3)两根式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。
求一个二次函数的解析式需三个独立条件,如:已知抛物线过三点,已知对称轴和两点,已知顶点和对称轴。
又如,已知f(x)=ax 2+bx+c(a ≠0),方程f(x)-x=0的两根为21,x x ,则可设f(x)-x=()()(),21x x x x a x x f --=-或()()()x x x x x a x f +--=21。
2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴abx 2-=,顶点坐标)44,2(2ab ac a b -- (1)a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-ab上单调递增,abx 2-=时,a b ac x f 44)(2min -= (2)a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-ab上单调递减,abx 2-=时,a b ac x f 44)(2max -= 3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)( 4.二次函数与一元二次方程关系方程)0(02≠=++a c bx ax 的根为二次函数f(x)=ax 2+bx+c(a ≠0)0=y 的x 的取值。
【江苏高考】2020版数学名师大讲坛一轮复习教程学案全集(打包103份,含答案)
_第1课__集合及其基本运算1. 理解元素和集合之间的关系;理解集合相等的含义.2. 会求集合的交集、并集、补集.1. 阅读:阅读必修1第5~10页.2. 解悟:①集合中元素的三个性质;②常见数集的符号;③集合相等的定义;④子集、真子集的定义;⑤空集的定义.3. 践习:在教材空白处,完成第7页练习第2、5题;第10页习题第6、7题.基础诊断1. 设集合A ={-1,0,1},B ={0,1,2,3},则A ∩B =__{0,1}__.2. 已知全集U ={1,2,3,4,5},A ={1,2},B ={2,3,4},那么A ∪∁U B =__{1,2,5}__.解析:由题意得∁U B ={1,5}, 所以A ∪∁U B ={1,2,5}.3. 已知全集U ={1,3,5,7,9},A ={1,5,9},B ={3,5,9},则∁U (A ∪B)的子集个数为__2__.解析:由题意得A ∪B ={1,3,5,9}, 所以∁U (A ∪B)={7}, 所以∁U (A ∪B)的子集个数为2.4. 已知集合A ={0,a},B ={0,1,3},若A ∪B ={0,1,2,3},则实数a 的值为__2__.解析:因为A ∪B ={0,1,2,3}, A ={0,a},B ={0,1,3},所以a =2.范例导航考向❶ 利用数轴求集合的交集、并集、补集例1 设集合A =⎩⎨⎧⎭⎬⎫x|132≤2-x≤4,B ={x|x 2+2mx -3m 2<0},m>0.(1) 若m =2,求A ∩B ;(2) 若A ⊇B ,求实数m 的取值范围. 解析:由题意得,集合A ={x|-2≤x ≤5}, 因为m>0,所以B ={x|-3m<x<m}. (1) 当m =2时,B ={x|-6<x<2}, 所以A ∩B ={x|-2≤x<2}.(2) A ={x|-2≤x ≤5},B ={x|-3m<x<m},因为A ⊇B ,所以⎩⎪⎨⎪⎧-3m ≥-2,m ≤5,所以m ≤23,所以0<m ≤23.综上所述,m 的取值范围是⎝⎛⎦⎤0,23.全集I =R ,集合A ={x |y =2x -1},B ={y |y =lg(x 2-2x +2)},则A ∪∁I B =(-∞,0)∪⎣⎡⎭⎫12,+∞. 解析:由题意得,集合A ={x |y =2x -1}=⎩⎨⎧⎭⎬⎫x |x ≥12,集合B ={y |y =lg(x 2-2x +2)}={y |y ≥0},所以∁I B ={y |y <0},所以A ∪∁I B =(-∞,0)∪⎣⎡⎭⎫12,+∞. 考向❷ 对空集的分类讨论例2 已知集合A ={x|-2≤x ≤7},B ={x|m +1<x<2m -1},若B ⊆A ,求实数m 的取值范围.解析:当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围是{}m|m ≤4.已知集合A ={x|x 2-2x -3=0},B ={x|mx -1=0},若B ⊆A ,则m 的值为__0,-1,13__.解析:由题意得,集合A={-1,3}.因为B⊆A,所以当B为∅时,m=0;当B不为∅时,m=-1或m=13.综上,m的值为0,-1,13.例3若集合A={x|ax2+ax+1=0}中只有一个元素,求实数a的值.解析:当a=0时,不合题意,舍去;当a≠0时,由题意得,Δ=a2-4a=0,解得a=4.综上所述,a=4.若集合A={x|ax2+ax+1=0}只有一个子集,求实数a的取值范围.解析:由题意得,集合A为空集.①若a=0,符合题意;②若a≠0,则Δ=a2-4a<0,解得0<a<4.综上,a的取值范围是[0,4).自测反馈1. 设集合A={-1,1,3},B={a+2,a2+4},若A∩B={3},则实数a的值为__1__.解析:因为A∩B={3},所以a+2=3或a2+4=3,解得a=1,此时B={3,5},符合题意,故实数a的值为1.2. 已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系如图所示,则阴影部分表示的集合中的元素有__2__个.解析:由图可知,阴影部分表示的是M∩N.由M={x|-2≤x-1≤2}得M={x|-1≤x≤3}.集合N表示的是正奇数集,所以M∩N={1,3},所以阴影部分所示的集合中的元素共有2个.3. 下面四个命题中,正确命题的序号为__②__.①某班个子较高的同学构成集合A;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程x 2-2x +1=0的解集是{1,1}; ④∅与{∅}表示同一个集合.解析:①集合是指一定范围内某些确定的、不同的对象的全体,个子较高的同学不确定,所以①错误;②正确,集合中的元素具有无序性;③错误,集合中的元素具有互异性;④错误,∅表示不含任何元素的集合,{∅}表示集合中有一个元素∅,而不是空集.4. 已知集合A =⎩⎨⎧⎭⎬⎫1,2,12,集合B ={y|y =x 2,x ∈A},则A ∩B =__{1}__.解析:由题意得,B =⎩⎨⎧⎭⎬⎫1,4,14,所以A ∩B ={1}.1. 集合中元素的性质指确定性、无序性、互异性.2. 要特别注意空集,尤其是在分类讨论中不能遗漏.3. 你还有哪些体悟,写下来:____第2课__集合及其基本运算(2)______1. 熟练掌握集合间的交、并、补集的运算以及求集合的子集.2. 能应用分类讨论的思想解决简单的分类讨论问题.1. 阅读:阅读必修1第11~14页.2. 解悟:①从A∩B=A能得到什么结论?②从A∪B=A能得到什么结论?3. 践习:在教材空白处,完成第13页练习第6题,第14页习题第10、13题.基础诊断1. 集合U={1,2}的子集个数为__4__.解析:根据子集个数的公式可得,子集的个数为22=4.2. 已知全集U={1,2,3,4},集合A={1,2},B={2,4},则集合∁U(A∪B)=__{3}__.解析:由题意得,A∪B={1,2,4},所以∁U(A∪B)={3}.3. (1) 已知集合A={y|y=log2(x-1)},集合B={y|y=2x},则A∩B=__(0,+∞)__;(2) 已知集合A={x|y=log2(x-1)},集合B={y|y=2x},则A∩B=__(1,+∞)__;(3) 已知集合A={(x,y)|y=log2x},集合B={(x,y)|y=x-1},则A∩B=__{(1,0),(2,1)}__.解析:(1) 由题意得,集合A=R,集合B={y|y>0},所以A∩B=(0,+∞).(2) 由题意得,集合A={x|x>1},集合B={y|y>0},所以A∩B=(1,+∞).(3) 令log2x=x-1,解得x=1或x=2,所以y=0或y=1,所以A∩B={(1,0),(2,1)}.4. 已知集合A={0,1,2,3},B={-1,0,2},则集合A∪B中所有元素之和为__5__.解析:因为A∪B={-1,0,1,2,3},所以集合A∪B中所有元素之和为-1+0+1+2+3=5.范例导航考向❶对子集的分类讨论例1已知集合A={2,5},B={x|x2+px+q=0,x∈R}.(1) 若B={5},求p,q的值;(2) 若A∩B=B,求实数p,q满足的条件.解析:(1) 因为B={5},所以方程x2+px+q=0有两个相等的实根5,所以5+5=-p ,5×5=q ,所以p =-10,q =25. (2) 因为A ∩B =B ,所以B ⊆A . 当B =∅时,Δ=p 2-4q <0,即p 2<4q ; 当B ={2}时,可求得p =-4,q =4; 当B ={5}时,可求得p =-10,q =25; 当B ={2,5}时,可求得p =-7,q =10. 综上所述,实数p ,q 满足的条件为p 2<4q 或⎩⎪⎨⎪⎧p =-4,q =4或⎩⎪⎨⎪⎧p =-10,q =25或⎩⎪⎨⎪⎧p =-7,q =10.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1) 当m =3时,求A ∩∁R B ;(2) 若A ∩B ={x |-1<x <4},求实数m 的值. 解析:(1) 当m =3时,B ={x |-1<x <3}, 则∁R B =(-∞,-1]∪[3,+∞). 又因为A =(-1,5], 所以A ∩∁R B =[3,5].(2) 因为A =(-1,5],A ∩B ={x |-1<x <4},所以4是方程-x 2+2x +m =0的一个根, 所以-42+2×4+m =0,解得m =8. 此时集合B ={x |-2<x <4},符合题意. 因此实数m 的值为8.考向❷ 对集合中元素的分类讨论例2 已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.(1) 当a =4时,求A ∩B ;(2) 若A ⊆B ,求实数a 的取值范围. 解析:(1) 由题意得,A =[-8,-4],当a =4时,B =(-∞,-7)∪(4,+∞), 所以A ∩B =[-8,-7).(2) 方程x 2+3x -a 2-3a =0的两根分别为a ,-a -3. ①当a =-a -3,即a =-32时,B =⎝⎛⎭⎫-∞,-32∪(-32,+∞),满足A ⊆B ; ②当a<-a -3,即a<-32时,B =(-∞,a)∪(-a -3,+∞),则a>-4或-a -3<-8,解得-4<a<-32;③当a>-a -3,即a>-32时,B =(-∞,-a -3)∪(a ,+∞), 则a<-8或-a -3>-4,解得-32<a<1.综上所述,实数a 的取值范围是(-4,1).已知集合A ={x|x 2+2x -8>0},B ={y|y =x 2-2x +2,x ∈R},C ={x |(x -a )(x +4)≤0,a ∈R}.(1) 求A ∩B ;(2) 若∁R A ⊆C ,求实数a 的取值范围.解析:(1) 因为x 2+2x -8>0,解得x >2或x <-4, 所以A =(-∞,-4)∪(2,+∞). 因为y =x 2-2x +2=(x -1)2+1≥1, 所以B =[1,+∞), 所以A ∩B =(2,+∞). 综上所述,A ∩B =(2,+∞). (2) 因为A =(-∞,-4)∪(2,+∞), 所以∁R A =[-4,2].因为∁R A ⊆C ,且C ={x |(x -a )(x +4)≤0,a ∈R},所以a ≥2,所以a 的取值范围为[2,+∞).考向❸ 对自变量系数的分类讨论例3 已知集合A ={x|0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x|-12<x ≤2.(1) 若A ⊆B ,求实数a 的取值范围; (2) 若B ⊆A ,求实数a 的取值范围;(3) A 、B 能否相等?若能,求出a 的值;若不能,试说明理由. 解析:对于不等式0<ax +1≤5,当a =0时,0<1<5恒成立,即x ∈R ,集合A =R ; 当a >0时,-1a <x ≤4a ,即集合A ={x |-1a <x ≤4a };当a <0时,4a ≤x <-1a ,即集合A ={x |4a ≤x <-1a }.(1) 若A 是B 的子集,则当a =0时,不满足题意; 当a >0时,需要满足⎩⎨⎧-1a ≥-12,4a≤2,解得a ≥2;当a <0时,需要满足⎩⎨⎧4a >-12,-1a ≤2,解得a <-8. 综上所述,a 的取值范围是(-∞,-8)∪[2,+∞).(2) 若B 是A 的子集,则当a =0时,满足题意; 当a >0时,需要满足⎩⎨⎧-1a ≤-12,4a≥2,解得0<a ≤2;当a <0时,需要满足⎩⎨⎧-1a >2,4a ≤-12,解得-12<a <0.综上所述,a 的取值范围是⎝⎛⎦⎤-12,2. (3) 当A =B 时,需满足A ⊆B 且B ⊆A ,即同时满足(1)和(2),所以a =2.自测反馈1. 设U 为全集,集合A 为U 的子集,则A ∩A =__A__;A ∪A =__A__;A ∩∅=__∅__;A ∪∅=__A__;A ∪∁U A =__U__;A ∩∁U A =__∅__.2. 满足{1,3}∪A={1,3,5}的集合A的个数是__4__.解析:因为{1,3}∪A={1,3,5},所以A={5}或{1,5}或{3,5}或{1,3,5},共有4个.3. 对于集合A,B,我们将集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A-B.(1) 若A={1,2,3,4,5},B={4,5,6,7,8},则A-B=__{1,2,3}__;B-A =__{6,7,8}__;(2) 如果A-B=∅,那么集合A与B之间的关系是__A⊆B__.4. 已知集合P={y=x2+1},Q={y|y=x2+1},E={x|y=x2+1},F={(x,y)|y=x2+1},则与G={x|x≥1}为同一集合的是__Q__.解析:集合P中y=x2+1就是这个集合中的一个元素;集合Q={y|y=x2+1}={y|y≥1},与集合G为同一集合;集合E={x|y=x2+1}=R;集合F是一个点集,所以与集合G为同一集合的是Q.1. 区分点集和数集在书写上的不同.2. 解题时,注意分类讨论、数形结合等思想方法的运用.3. 你还有哪些体悟,写下来:____第3课__逻辑联结词与量词____1. 能正确对含有一个量词的命题进行否定.2. 能正确判断用“或”“且”“非”联结的命题的真假.1. 阅读:阅读选修21第10~18页.2. 解悟:①含有一个量词的命题的否定分别是什么?②由简单逻辑联结词构成的命题的真假怎么判断?3. 践习:在教材空白处,完成第15页练习第2题;第18页习题第4题.基础诊断2. 命题“∃x ∈R ,2x >0”的否定是__∀x ∈R ,2x ≤0__.3. 下列四个命题:①3≤π;②1≥1;③π≤e ;④2<3或3<2.其中假命题有__1__个. 解析:①②④正确,③错误.4. 已知命题“∃x ∈[1,2],x 2+2x +a ≥0”为真命题,则实数a 的取值范围是__[-8,+∞)__.解析:原命题的否定为∀x ∈[1,2],x 2+2x +a<0.因为y =x 2+2x 在区间[1,2]上单调递增,所以x 2+2x ≤8<-a ,所以a<-8.根据含有逻辑联结词的命题的真假判断,可知原命题中a 的取值范围是a<-8的补集,即a ≥-8,故a 的取值范围是[-8,+∞).范例导航考向❶ 以函数的单调性和值域为背景,求命题的真假所对应参数的取值范围 例1 设命题p :函数f(x)=⎝⎛⎭⎫a -32x是R 上的减函数;命题q :函数g (x )=x 2-4x +3在区间[0,a ]上的值域为[-1,3].若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.解析:因为“p 且q ”为假命题,“p 或q ”为真命题,所以命题p ,q 中有且仅有一个命题为真命题.若命题p 为真,则0<a -32<1,所以32<a <52;若命题q 为真,则g (x )=x 2-4x +3=(x -2)2-1在[0,a ]上的值域为[-1,3],故⎩⎪⎨⎪⎧a ≥2,a 2-4a +3≤3,解得2≤a ≤4. ①若p 真q 假,则⎩⎪⎨⎪⎧32<a <52,a <2或a >4,所以32<a <2;②若p 假q 真,则⎩⎪⎨⎪⎧2≤a ≤4,a ≤32或a ≥52,所以52≤a ≤4.综上所述,实数a 的取值范围为⎝⎛⎭⎫32,2∪⎣⎡⎦⎤52,4.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.解析:因为函数y =a x 在R 上单调递增, 所以命题p :a >1.因为不等式ax 2-ax +1>0对∀x ∈R 恒成立, 所以a >0且a 2-4a <0,解得0<a <4, 所以命题q :0<a <4.因为“p 且q ”为假,“p 或q ”为真, 所以p ,q 中必是一真一假.若p 真q 假,则⎩⎪⎨⎪⎧a >1,a ≥4,解得a ≥4;若p 假q 真,则⎩⎪⎨⎪⎧0<a ≤1,0<a <4,解得0<a ≤1.综上所述,a 的取值范围为(0,1]∪[4,+∞).考向❷ 以函数的能成立和恒成立为背景,求命题的真假所对应参数的取值范围 例2 已知命题p :∃x ∈R ,|sin x |>a 有解;命题q :∀x ∈R ,ax 2+2ax +4>0恒成立.若命题“p 或q ”是真命题,命题“p 且q ”是假命题,求实数a 的取值范围.解析:命题p :∃x ∈R ,|sin x |>a 有解,则a <1;由命题q 得,a =0或⎩⎪⎨⎪⎧a >0,Δ<0,解得0<a <4,所以命题q :0≤a <4.因为命题“p 或q ”是真命题,命题“p 且q ”是假命题,所以命题p ,q 中有且仅有一个真命题.若p 真q 假,则⎩⎪⎨⎪⎧a <1,a ≥4或a <0,解得a <0;若p 假q 真,则⎩⎪⎨⎪⎧a ≥1,0≤a <4,解得1≤a <4.综上所述,实数a 的取值范围是(-∞,0)∪[1,4).已知m ∈R ,设命题p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0恒成立;命题q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立,如果“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m的取值范围.解析:若p 为真,则∀x ∈[-1, 1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, 所以f (x )在区间[-1,1]上的最小值为-3, 所以4m 2-8m ≤-3,解得12≤m ≤32,所以当p 为真时,12≤m ≤32;若q 为真,则∃x ∈[1,2], x 2-mx +1>2成立, 所以∃x ∈[1,2],m <x 2-1x 成立.设g (x )=x 2-1x =x -1x,易知g (x )在区间[1,2]上是增函数, 所以g (x )的最大值为g (2)=32,所以m <32,所以当q 为真时,m <32.因为“p ∨q ”为真命题,“p ∧q ”为假命题, 所以p 与q 必是一真一假,当p 真q 假时,⎩⎨⎧12≤m ≤32,m ≥32,所以m =32;当p 假q 真时,⎩⎨⎧m <12或m >32,m <32,所以m <12.综上所述,m 的取值范围是{m |m <12或m =32}.考向❸ 以圆锥曲线为背景,求命题的真假所对应参数的取值范围例3 已知k 为实常数,命题p :方程x 22k -1+y 2k -1=1表示椭圆;命题q :方程x 24+y 2k -3=1表示双曲线.(1) 若命题p 为真命题,求k 的取值范围;(2) 若命题“p 或q ”为真命题,“p 且q ”为假命题,求k 的取值范围. 解析:(1) 若命题p 为真命题,则⎩⎪⎨⎪⎧2k -1>0,k -1>0,2k -1≠k -1,解得k>1,即k 的取值范围是(1,+∞). (2) 若命题q 为真命题,则k -3<0,即k<3. 因为“p 或q ”为真命题,“p 且q ”为假命题, 所以p ,q 必是一真一假.当p 真q 假时,⎩⎪⎨⎪⎧k>1,k ≥3, 解得k ≥3;当p 假q 真时,⎩⎪⎨⎪⎧k ≤1,k<3,解得k ≤1.综上所述,k 的取值范围是(-∞,1]∪[3,+∞).自测反馈1. 命题“∀x>0,x +1>x ”的否定是.2. 若命题“p 且q ”是假命题,“非q ”是假命题,则p 是__假__命题.(填“真”或“假”)解析:因为“p 且q ”为假命题,则命题p ,q 中必是一真一假.又因为“非q ”是假命题,所以q 为真命题,所以p 为假命题.3. 若命题“∃x ∈R ,x 2+2mx +m ≤0”是真命题,则实数m 的取值范围是__(-∞,0)∪[1,+∞)__.解析:由题意得Δ=4m 2-4m ≥0,解得m ≤0或m ≥1,故实数m 的取值范围是(-∞,0]∪[1,+∞).____第4课__充分条件和必要条件____1. 会分析四种命题之间的相互关系及判断命题的真假.2. 会判断充分条件、必要条件、充要条件.1. 阅读:阅读选修21第5~9页.2. 解悟:①命题的真假性一定是确定的;②四种命题之间有什么关系?③如何判断充分条件、必要条件?3. 践习:在教材空白处,完成第8~9页习题第2、4题.基础诊断1. 若a∈R,则“a=0”是“a(a-1)=0”的__充分不必要__条件.解析:因为a(a-1)=0,解得a=0或a=1,所以“a=0”是“a(a-1)=0”的充分不必要条件.2. 若f(x)是定义在R上的函数,则“f(0)=0”是“函数f(x)为奇函数”的__必要不充分__条件.解析:函数f(x)是奇函数,则f(0)=0一定成立;若f(0)=0,则函数f(x)不一定是奇函数,可能为偶函数,也可能既不是奇函数也不是偶函数.故“f(0)=0”是“函数f(x)为奇函数”的必要不充分条件.3. 已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是__若a+b +c≠3,则a2+b2+c2<3__.4. 在命题“若ac2>bc2,则a>b”及其逆命题、否命题、逆否命题中,真命题共有__2__个.解析:原命题:因为ac2>bc2,c2>0,所以a>b,所以原命题为真命题,所以原命题的逆否命题也为真命题;原命题的逆命题为“若a>b,则ac2>bc2”,当c2=0时,a=b,所以逆命题为假命题,所以原命题的否命题也为假命题.故真命题共有2个.范例导航考向❶对充分条件、必要条件中集合包含关系的理解例1设集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.(1) 若a=3,求A∪B;(2) 设命题p:x∈A;命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.解析:(1) 解不等式x2+2x-3<0,得-3<x<1,即A=(-3,1).当a=3时,由|x+3|<1,解得-4<x<-2,即集合B=(-4,-2),所以A∪B=(-4,1).(2) 因为p是q成立的必要不充分条件,所以集合B是集合A的真子集.又集合A=(-3,1),B=(-a-1,-a+1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是[0,2].设函数y =lg (-x 2+4x -3)的定义域为A ,函数y =2x +1,x ∈(0,m)的值域为B.(1) 当m =2时,求A ∩B ;(2) 若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围. 解析:(1) 由-x 2+4x -3>0,解得1<x<3, 所以A =(1,3). 因为函数y =2x +1在区间(0,m)上单调递减, 所以y ∈⎝⎛⎭⎫2m +1,2,即B =⎝⎛⎭⎫2m +1,2,所以当m =2时,B =⎝⎛⎭⎫23,2, 所以A ∩B =(1,2). (2) 由题意得m>0.因为“x ∈A ”是“x ∈B ”的必要不充分条件, 所以B A ,即⎝⎛⎭⎫2m +1,2(1,3),所以2m +1≥1,解得0<m ≤1,故实数m 的取值范围为(0,1]. 考向❷ 对集合中元素的分类讨论例2 已知非空集合A ={x|x -2x -(3a +1)<0},B ={x|x -a 2-2x -a<0}.(1) 当a =12时,求∁R B ∩A ;(2) 命题p :x ∈A ;命题q :x ∈B .若q 是p 的必要条件,求实数a 的取值范围. 解析:(1) 当a =12时,A =⎩⎨⎧⎭⎬⎫x |2<x <52,B =⎩⎨⎧⎭⎬⎫x |12<x <94,∁R B ={x |x ≤12或x ≥94},所以∁R B ∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52.(2) 由q 是p 的必要条件可得A ⊆B . 由a 2+2>a ,得B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1},由⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;②当3a +1=2,即a =13时,A =∅,符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13.综上所述,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.已知命题“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题. (1) 求实数m 的取值集合M ;(2) 设不等式(x -a )(x +a -2)<0的解集为N ,若“x ∈N ”是“x ∈M ”的必要条件,求实数a 的取值范围.解析:(1) 由题意知,方程x 2-x -m =0在区间(-1,1)上有解,即m 的取值范围即为函数y =x 2-x 在区间(-1,1)上的值域,易得-14≤m <2,所以M =⎣⎡⎭⎫-14,2. (2) 因为“x ∈N ”是“x ∈M ”的必要条件,所以M ⊆N . 当a =1时,集合N 为空集,不满足题意;当a >2-a ,即a >1时,此时集合N ={x |2-a <x <a },则⎩⎪⎨⎪⎧2-a <-14,a ≥2,解得a >94;当a <2-a ,即a <1时,此时集合N ={x |a <x <2-a },则⎩⎪⎨⎪⎧a <-14,2-a ≥2,解得a <-14.综上所述,实数a 的取值范围为(-∞,-14)∪(94,+∞).考向❸ 对逆否命题的综合运用自测反馈1. “三个数a,b,c成等比数列”是“b2=ac”的__充分不必要__条件.解析:若a,b,c成等比数列,根据等比数列的性质可得b2=ac;若a=0,b=0,c=2,则b2=ac,但a,b,c不成等比数列,所以“三个数a,b,c成等比数列”是“b2=ac”的充分不必要条件.2. “a<b”是“ln a<ln b”的__必要不充分__条件.解析:若a=-2,b=-1,则a<b,但ln a<ln b不成立;因为函数y=ln x在定义域上单调递增,所以当ln a<ln b时,a<b,所以“a<b”是“ln a<ln b”的必要不充分条件.3. 给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cosα<cosβ”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2,x∈R为奇函数”的充要条件.其中正确命题的序号为__③__.解析:①因为函数y=3x是R上的增函数,所以“a>b”是“3a>3b”的充要条件,故①是假命题;②若α=3π2,β=π2,则α>β,但cos α=cos β,充分性不得证,若α=3π2,β=2π,cos α<cos β,但α<β,必要性不得证,所以“α>β”是“cos α<cos β”的既不充分又不必要条件,故②是假命题;③若a =0,则f (x )=x 3,x ∈R ,f (-x )=-f (x ),且定义域关于原点对称,所以函数f (x )是奇函数,若f (x )=x 3+ax (x ∈R)是奇函数,则f (-x )=-f (x )对任意的x ∈R 恒成立,即(-x )3+a (-x )2=-(x 3+ax 2),即ax 2=-ax 2,即a =0,所以“a =0”是“函数f (x )=x 3+ax ,x ∈R 为奇函数”的充要条件,故③是真命题,故填③.4. 记不等式x 2+x -6<0的解集为集合A ,函数y =lg (x -a)的定义域为集合B.若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为__(-∞,-3]__.解析:由x 2+x -6<0得-3<x<2,即A =(-3,2),由x -a>0,得x>a ,即B =(a ,+∞).若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆B ,所以a ≤-3,故实数a 的取值范围为(-∞,-3].1. 否命题既要否定条件,又要否定结论;命题的否定只否定结论.2. 原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆否命题的两个命题的真假性相同.3. 你还有哪些体悟,写下来:第二章 函 数____第5课__函数的概念____1. 体会函数是描述两个变量之间依赖关系的重要数学模型,理解函数的概念.2. 了解构成函数的要素有定义域、对应法则、值域,会求一些简单函数的定义域和值域.3. 了解映射的概念,进一步了解函数是非空数集到非空数集的映射.1. 阅读:必修1第23~27页及第46页.2. 解悟:①读懂函数定义,并思考初中的函数定义与高中课本函数的定义是否相同?《函数》这一章节为何置于《集合》章节之后?②圈画函数定义中的关键词,准确理解函数的概念,并思考式子y 2=x 中变量y 是变量x 的函数吗?为什么?③阅读第46页,思考映射和函数有什么区别和联系? 怎样的映射不是函数,你能举例吗?④函数的三要素有哪些?怎样才能算相同的函数?至少需要满足几个条件?3. 践习:在教材空白处,完成第26~27页练习第4、6、7题.基础诊断1. 下列对应法则f 中,不是从A 到B 的函数的序号是__③__.①A =⎩⎨⎧⎭⎬⎫12,1,32,B ={-6,-3,1},f ⎝⎛⎭⎫12=-6,f(1)=-3,f ⎝⎛⎭⎫32=1; ②A ={1,2,3},B ={7,8,9},f(1)=f(2)=7,f(3)=8; ③A =B ={1,2,3},f(x)=2x -1; ④A =B ={x|x ≥1},f(x)=2x +1;⑤A =Z ,B ={-1,1},当n 为奇数时,f (n )=-1;当n 为偶数时,f (n )=1.解析:根据函数的定义,①②④⑤中,对于集合A 中的每一个元素,在集合B 中都有唯一的元素与它对应;在③中f (3)=5,集合B 中没有元素与集合A 中的3对应,故不是从A 到B 的函数.2. 判断下面说法是否正确.(在括号中画“√”或“”) (1) f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1, x ≥0,-1, x<0表示同一函数.()解析:因为函数f(x)的定义域为{x|x ≠0},函数g(x)的定义域为R ,定义域不同,所以表示的不是同一函数,故是错误的.(2) 若两个函数的定义域与值域相同,则这两个函数相同. ()解析:若两个函数的定义域、值域和对应法则都相同,则这两个函数相同,故是错误的.(3) 若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.()解析:若函数f (x )的定义域为{x |1≤x <3},所以1≤2x -1<3,解得1≤x <2,所以函数f (2x -1)的定义域为{x |1≤x <2},故是错误的.(4) 函数y =f (x )的图象与直线x =1的交点最多有1个.( √ )解析:根据函数的定义,对于定义域内的任意一个自变量x ,存在唯一的函数值y 与之对应,所以函数y =f (x )的图象与直线x =1的交点最多有一个.(5) 函数f (x )=x 2+4+1的值域是[1,+∞).()解析:因为x 2≥0,所以x 2+4≥4,所以x 2+4≥2,所以f (x )=x 2+4+1≥3,所以函数f (x )=x 2+4+1的值域是[1,+∞)是错误的.(6) f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.( √ )解析:因为函数f (x )与函数g (x )的定义域、对应法则和值域都相同,故函数f (x )与函数g (x )是同一函数.3. 设一函数的解析式为f(x)=2x +3,它的值域为{-1,2,5,8},则函数f(x)的定义域为__⎩⎨⎧⎭⎬⎫-2,-12,1,52__.解析:当f(x)=-1时,2x +3=-1,解得x =-2; 当f(x)=2时,2x +3=2,解得x =-12;当f(x)=5时,2x +3=5,解得x =1; 当f(x)=8时,2x +3=8,解得x =52,所以函数f(x)的定义域为⎩⎨⎧⎭⎬⎫-2,-12,1,52.4. 函数y =f(x +1)的值域为[3,5],则函数y =2f(x)的值域为__[6,10]__.解析:因为函数y =f(x +1)的值域为[3,5],函数f(x)是将函数f(x +1)的图象向右平移1个单位长度得到的,所以f(x)的值域也为[3,5],所以2f(x)的值域为[6,10].5. 若函数y =ax 2+ax +2的定义域为R ,则a 的取值范围是__[0,8]__.解析:由题意得a =0或⎩⎪⎨⎪⎧a >0,a 2-4a ×2≤0,解得0≤a ≤8,所以a ∈[0,8].范例导航考向❶ 求函数的定义域 例1 求下列函数的定义域:(1) y =12-|x|+x 2-1; (2) y =xlog 12(2-x ).解析:(1) 由题意得⎩⎪⎨⎪⎧2-|x|≠0,x 2-1≥0,解得x ≠±2或x ≥1或x ≤-1,故函数的定义域为(-∞,-2)∪(-2,-1]∪[1,2)∪(2,+∞).(2) 由题意0<2-x<1,解得1<x<2,故函数的定义域为(1,2).已知函数f(x)=2x -11-x,若函数y =g(x)与y =f(x)的图象关于原点对称.记y =g(x)的定义域为A ,不等式x 2-(2a -1)x +a(a -1)≤0的解集为B.若A 是B 的真子集,求实数a 的取值范围.解析:由题意得g(x)=--2x -11+x, 所以⎩⎪⎨⎪⎧1+x ≠0,-2x -11+x ≥0,解得-1<x ≤-12,所以A =⎝⎛⎦⎤-1,-12. 解不等式x 2-(2a -1)x +a(a -1)≤0, 解得a -1≤x ≤a , 即B =[a -1,a]. 因为A 是B 的真子集,所以⎩⎪⎨⎪⎧a -1≤-1,a ≥-12,解得-12≤a ≤0, 故a 的取值范围是⎣⎡⎦⎤-12,0.考向❷ 求函数的值域 例2 求下列函数的值域:(1) y =x 2+2x(x ∈[0,3]); (2) y =2x -3x +1(x ≤-2); (3) y =x -1-2x ; (4) y =log 3x +log x 3-1.解析:(1) 因为y =x 2+2x =(x +1)2-1, 所以该函数在[0,3]上单调递增,所以该函数在[0,3]上的最大值为15,最小值为0, 所以函数的值域为[0,15]. (2) 由题意得y =2x -3x +1=2-5x +1. 因为x ≤-2,所以-1≤1x +1<0, 所以0<-5x +1≤5,所以2<2-5x +1≤7,故该函数的值域为(2,7].(3) 令1-2x =t ,t ≥0,所以x =1-t 22,所以原函数可转化为y =1-t 22-t =-12(t +1)2+1,因为t ≥0,所以函数在[0,+∞)上单调递减, 所以y ≤12,所以原函数的值域为⎝⎛⎦⎤-∞,12. (4) y =log 3x +log x 3-1=log 3x +1log 3x-1,所以若log 3x>0,则log 3x +1log 3x -1≥1,当且仅当log 3x =1log 3x ,即log 3x =1时取等号,此时y ≥1;若log 3x<0,则-⎝⎛⎭⎫-log 3x +1-log 3x -1≤-2-1=-3,当且仅当log 3x =-1时等号成立,此时y ≤-3,所以原函数的值域为(-∞,-3]∪[1,+∞).求下列函数的值域: (1) y =x 2-xx 2-x +1;(2) y =4x 2+8x +136(x +1)(x>-1).解析:(1) 由题意得y =x 2-x x 2-x +1=1-1x 2-x +1=1-1⎝⎛⎭⎫x -122+34. 因为⎝⎛⎭⎫x -122+34≥34, 所以0<1⎝⎛⎭⎫x -122+34≤43,所以-13≤y<1, 故函数的值域为⎣⎡⎭⎫-13,1. (2) 由题意得y =4x 2+8x +136(x +1)=4(x +1)2+96(x +1)=23(x +1)+32(x +1).因为x>-1,所以x +1>0,所以23(x +1)+32(x +1)≥2,当且仅当23(x +1)=32(x +1),即x =12时取等号,故函数的值域为[2,+∞). 考向❸ 函数定义域和值域的综合 例3 已知函数f(x)=1+x +1-x.(1) 求函数f(x)的定义域和值域;(2) 设f(x)=a2{[f(x)]2-2}+f(x)(a 为实数),当a<0时,求f(x)的最大值g(a).解析:(1) 由题意得⎩⎪⎨⎪⎧1+x ≥0,1-x ≥0,解得-1≤x ≤1,所以函数的定义域为[-1,1].又[f(x)]2=2+21-x 2∈[2,4],f(x)≥0, 所以f(x)∈[2,2].(2) f(x)=a2{[f(x)]2-2}+f(x)=a 1-x 2+1+x +1-x ,令t =f(x)=1+x +1-x ,则1-x 2=12t 2-1,所以f(x)=m(t)=a ⎝⎛⎭⎫12t 2-1+t =12at 2+t -a ,t ∈[2,2].由题意知g(a)即为函数m(t)=12at 2+t -a ,t ∈[2,2]的最大值,t =-1a 是抛物线m(t)=12at 2+t -a 的对称轴.因为a<0时,函数y =m(t),t ∈[2,2]的图象是开口向下的抛物线的一段, ①若t =-1a ∈(0,2],即a ≤-22,则g(a)=m(2)=2;②若t =-1a ∈(2,2],即-22<a ≤-12,则g(a)=m ⎝⎛⎭⎫-1a =-a -12a ; ③若t =-1a ∈(2,+∞),即-12<a<0,则g(a)=m(2)=a +2.综上所述,g(a)=⎩⎪⎨⎪⎧a +2, -12<a<0,-a -12a , -22<a ≤-12,2, a ≤-22.自测反馈1. 函数y =ln (x +1)-x 2-3x +4的定义域为(-1,1).解析:由题意得⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得⎩⎪⎨⎪⎧x>-1,-4<x<1,所以-1<x<1,故定义域为(-1,1). 2. 若函数f(x)=3x -5kx 2+4kx +3的定义域为R ,则实数k 的取值范围是__⎣⎡⎭⎫0,34__. 解析:由题意得kx 2+4kx +3=0无解,所以k =0或⎩⎪⎨⎪⎧k ≠0,Δ=16k 2-12k <0, 解得0≤k <34,故实数k 的取值范围是⎣⎡⎭⎫0,34. 3. 若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域为__(-∞,0)∪⎝⎛⎦⎤12,2__. 解析:因为函数y =2x -1的定义域是(-∞,1)∪[2,5),且在区间(-∞,1)和[2,5)上单调递减,当x ∈(-∞,1)时,y<0;当x ∈[2,5)时,12<y ≤2,即函数的值域为(-∞,0)∪⎝⎛⎦⎤12,2. 4. 若函数y =ax +31-2x的值域为(-∞,-2)∪(-2,+∞),则实数a 的值为__4__. 解析:由题意得ax +31-2x ≠-2,化简得(a -4)x ≠-5,要使x 取任意值时,(a -4)x ≠-5恒成立,所以a =4.故实数a 的值为4.1. 初中函数是看成刻画和描述两个变量之间依赖关系的数学模型,高中将函数定义为建立在两个非空数集上的单值对应,同时高中函数的种类有所增加,如指数函数、对数函数、幂函数、三角函数等.2. 准确理解函数定义中的关键词(非空数集,对应法则,每一个,唯一,定义域)3. 你还有哪些体悟,写下来:____第6课__函数的表示方法____1. 了解构成函数的三要素,进一步理解函数的概念.2. 掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数.3. 掌握求解函数解析式的几种类型及常用方法.4. 了解简单的分段函数,并能简单地应用.1. 阅读:阅读必修1第33~34页.2. 解悟:①函数的表示方法有哪些?回顾例1并比较三种表示方法的优劣;②你能在书本中找到分段函数的定义吗?分段函数是一个函数还是多个函数?③如何求分段函数的值域或最值?④函数的解析式是函数的一种表示方法,那么求函数解析式,你知道哪些方法?3. 践习:在教材空白处,完成第35页练习第3题和习题第2、4题.基础诊断1. 已知函数f(x)=11+x ,g(x)=x 2+2,则f(2)=__13__;g(2)=__6__;f(g(2))=__17__;f(g(x))=__1x +3__.解析:f(2)=11+2=13;g(2)=22+2=6; f(g(2))=f(6)=11+6=17;f(g(x))=11+x 2+2=1x 2+3. 2. 已知函数 f(x)=⎩⎪⎨⎪⎧log 3x , x>0,2x , x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=__14__. 解析:因为f ⎝⎛⎭⎫19=log 319=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=f(-2)=2-2=14. 3. 若f(x +1)=x 2+4x +1,则f(x)=x 2+2x -2.解析:因为f(x +1)=x 2+4x +1,令t =x +1,则x =t -1,所以f(t)=(t -1)2+4(t -1)+1=t 2+2t -2,故f(x)=x 2+2x -2.4. 若等腰三角形的周长是20,底边长y 是一腰长x 的函数,则y =__20-2x ,x ∈(5,10)__.解析:因为△ABC 是等腰三角形且周长为20,△ABC 的周长=2×腰长+底边长,所以20=2x +y ,即y =20-2x.又y<2x<20,解得5<x<10,故y =20-20x ,x ∈(5,10).5. 设二次函数f(x)的最大值是13,f(3)=f(-1)=5,则f(x)的解析式为__f(x)=-2x 2+4x +11__.解析:由题意可设f(x)=a(x -1)2+13,因为f(3)=f(-1)=5,所以a ×(-1-1)2+13=5,解得a =-2,所以f(x)=-2(x -1)2+13=-2x 2+4x +11.范例导航考向❶ 求函数的解析式例1 (1) 已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,求函数f(x)的解析式;(2) 已知函数f(x)满足2f(x)+f ⎝⎛⎭⎫1x =3x ,求函数f(x)的解析式. 解析:(1) 设f(x)=kx +b ,则由题意得3[k(x +1)+b]-2[k(x -1)+b]=2x +17,即kx +5k +b =2x +17,所以⎩⎪⎨⎪⎧k =2,5k +b =17,解得⎩⎪⎨⎪⎧k =2,b =7,所以f(x)=2x +7.(2) 因为2f(x)+f ⎝⎛⎭⎫1x =3x ,① 用1x 代替x ,则2f ⎝⎛⎭⎫1x +f(x)=3x ,② 由①×2-②得,4f(x)-f(x)=6x -3x ,即3f(x)=6x -3x ,所以f(x)=2x -1x.(1) 已知f(x) 为二次函数,且满足f(0)=0,f(x +1)-f(x)=x +1,求函数f(x)的解析式; (2) 设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x 2+x +2,求函数f(x)和g(x)的解析式.解析:(1) 由题意可设f(x)=ax 2+bx. 因为f(x +1)-f(x)=x +1,所以a(x +1)2+b(x +1)-(ax 2+bx)=x +1, 整理得2ax +a +b =x +1,所以⎩⎪⎨⎪⎧2a =1,a +b =1,解得⎩⎨⎧a =12,b =12,所以f(x)=12x 2+12x.(2) 由题意可知f(x)=f(-x),g(-x)=-g(x). 因为f(x)+g(x)=x 2+x +2,① 所以f(-x)+g(-x)=x 2-x +2, 即f(x)-g(x)=x 2-x +2.②由①+②得,2f(x)=2x 2+4,即f(x)=x 2+2, 由①-②得,2g(x)=2x ,即g(x)=x , 所以f(x)=x 2+2,g(x)=x. 考向❷ 分段函数的解析式例2 如图是函数f(x)的图象,OC 段是射线,曲线OBA 是抛物线的一部分,试写出f(x)的函数表达式.解析:当x ≤0时,由图象过点(-2,-2),(0,0)可知,直线OC 的斜率为1,所以射线OC 的函数表达式为y =x(x ≤0);当x>0时,f(x)是二次函数, 所以设f(x)=a(x -1)2+b.由图可知,则⎩⎪⎨⎪⎧a ×(1-1)2+b =-1,a ×(2-1)2+b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以f(x)=(x -1)2-1=x 2-2x.故f(x)=⎩⎪⎨⎪⎧x , x<0,x 2-2x , x ≥0.设函数f(x)=|x +1|+|x -2|.(1) 将f(x)写成分段函数,并作出y =f(x)的图象; (2) 解不等式f(x)>5,并求出f(x)的最小值. 解析:(1) 当x +1<0,即x<-1时,x -2<0, 所以f(x)=-x -1-x +2=-2x +1; 当x +1≥0且x -2≤0,即-1≤x ≤2时, f(x)=x +1-x +2=3; 当x -2>0,即x>2时, f(x)=x +1+x -2=2x -1, 所以y =f(x)=⎩⎪⎨⎪⎧1-2x ,x<-1,3, -1≤x ≤2,2x -1, x>2.函数图象为(2) 由题意可知,当x<-1时,1-2x>5,解得x<-2;当x>2时,2x -1>5,解得x>3, 所以f(x)>5的解集为(-∞,-2)∪(3,+∞). 由图可知,f(x)的最小值为3. 考向❸ 由不等式恒成立求函数解析式例3 已知二次函数f(x)=ax 2+bx +c 的图象经过点(-2,0)且不等式2x ≤f(x)≤12x 2+2对∀x ∈R 恒成立.(1) 求函数f (x )的解析式;(2) 若对∀x ∈[-1,1],不等式f (x +t )<f ⎝⎛⎭⎫x 3恒成立,求实数t 的取值范围. 解析:(1) 因为二次函数f (x )=ax 2+bx +c 的图象过点(-2,0), 所以4a -2b +c =0.①因为不等式2x ≤f (x )≤12x 2+2对∀x ∈R 恒成立,所以当x =2时也成立,即4≤4a +2b +c ≤4, 即4a +2b +c =4.②由①②求得b =1,4a +c =2, 所以f (x )=ax 2+x +2-4a , 所以2x ≤ax 2+x +2-4a ≤12x 2+2,即⎩⎪⎨⎪⎧ax 2-x +2-4a ≥0,⎝⎛⎭⎫a -12x 2+x -4a ≤0恒成立,故⎩⎪⎨⎪⎧a >0,Δ=1-4a (2-4a )≤0,a -12<0,Δ=1-4⎝⎛⎭⎫a -12·(-4a )≤0,解得a =14,故c =1,即函数f (x )的解析式为f (x )=14x 2+x +1.(2) 因为对∀x ∈[-1,1],不等式f (x +t )<f ⎝⎛⎭⎫x 3恒成立,即14(x +t +2)2<136(x +6)2恒成立,亦可化得⎝⎛⎭⎫x +t +22-x +66⎝⎛⎭⎫x +t +22+x +66<0, 解得-4x +123<t <-2x 3.又因为x ∈[-1,1],所以-83<t <-23,故实数t 的取值范围为⎝⎛⎭⎫-83,-23. 自测反馈1. 已知函数f(x)的定义域为(0,+∞),且f(x)=2f ⎝⎛⎭⎫1x ·x -1,则f(x)=33. 解析:因为f(x)=2f ⎝⎛⎭⎫1x ·x -1①,用1x 代替x 得f ⎝⎛⎭⎫1x =2f(x)·1x-1②,将②代入①得f(x)=2⎝⎛⎭⎫2f (x )·1x -1·x -1,化简得f(x)=4f(x)-2x -1,即f(x)=23x +13. 2. 若正比例函数f(x)满足f(f(x))=4x ,则f(x)=__±2x__.解析:根据题意可设f(x)=kx ,因为f(f(x))=4x ,所以k(kx)=4x ,即k 2x =4x ,所以k 2=4,解得k =±2,所以f(x)=±2x.3. 已知f(x 2-1)=x 4+x 2-2,则f(x)=__x 2+3x(x ≥-1)__.解析:令x 2-1=t(t ≥-1),则x 2=t +1,所以f(t)=(t +1)2+t +1-2=t 2+3t ,所以f(x)=x 2+3x(x ≥-1).4. 已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a , x<1,-x -2a , x ≥1,若f(1-a)=f(1+a),则实数a 的值为__-34__.解析:因为a ≠0,f(1-a)=f(1+a). 当a>0时,1-a<1<1+a , 则f(1-a)=2(1-a)+a =2-a , f(1+a)=-(1+a)-2a =-1-3a , 所以2-a =-1-3a ,解得a =-32(舍去);当a<0时,1+a<1<1-a ,则f(1-a)=-(1-a)-2a =-a -1,f(1+a)=2(1+a)+a =3a +2,所以-a -1=3a +2,解得a =-34.综上所述,a 的值为-34.5. 已知函数f(x)=⎩⎪⎨⎪⎧-x -1,-1≤x<0,-x +1,0<x ≤1,则f(x)-f(-x)>-1的解集为__⎣⎡⎭⎫-1,-12∪(0,1]__.解析:当-1≤x<0时,0<-x ≤1,所以f(x)-f(-x)=-x -1-(x +1)>-1,即-2x -2>-1,解得x<-12.又因为-1≤x<0,所以-1≤x<-12;当0<x ≤1时,-1≤-x<0,所以f(x)-f(-x)=-x +1-(x -1)>-1, 即-2x +2>-1,解得x<32.又因为0<x ≤1,所以0<x ≤1.综上所述,原不等式的解集为⎣⎡⎭⎫-1,-12∪(0,1].1. 要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域,定义域是使式子有意义的x 的取值范围,同时也要注意变量的实际意义.2. 准确理解分段函数的定义、特点及应用.分段函数是指函数的表达式是分段表示的,它是一个函数.3. 你还有哪些体悟,写下来:___第7课__函数的性质(1)____1. 理解函数的单调性、最大(小)值及其几何意义,能判断或证明一些简单函数的单调性.2. 掌握判断一些简单函数单调性的常用方法.3. 会运用函数图象理解和研究函数的单调性.1. 阅读:必修1第37~39页.2. 解悟:①圈出第37页蓝色框中关于单调函数及单调区间概念中的关键词;②如何求函数的单调区间?有哪些方法?③用定义法判断函数单调性的一般步骤和注意点;④对于基本初等函数,我们一般用什么方法求函数的最值?3. 践习:在教材空白处,完成第40页练习第1、2、5、7、8题.基础诊断1. 函数y =xx -1的单调减区间是__(-∞,1),(1,+∞)__.解析:因为y =x x -1=1+1x -1,所以该函数的单调减区间是(-∞,1),(1,+∞). 2. 已知函数y =f(x)在R 上是增函数,且f (m 2)>f (-m ),则实数m 的取值范围为__(-∞,-1)∪(0,+∞)__.解析:因为y =f (x )在R 上是增函数,且f (m 2)>f (-m ),所以m 2>-m ,即m 2+m >0,解得m >0或m <-1,所以实数m 的取值范围是(-∞,-1)∪(0,+∞).3. 函数y =12x 2-ln x 的单调减区间为__(0,1]__.解析:由题意可知x>0,y′=x -1x ,令y′≤0,则x -1x ≤0,即x 2-1x ≤0,解得-1≤x ≤1且x ≠0.又因为x>0,所以0<x ≤1,故该函数的单调减区间为(0,1].4. 已知函数y =f(x)在R 上是减函数,点A (0,-2),B (-3,2)在其图象上,则不等式-2<f (x )<2的解集为__(-3,0)__.解析:由题意得-2=f (0),2=f (-3),所以-2<f (x )<2,即f (0)<f (x )<f (-3).又因为函数f (x )在R 上是减函数,所以-3<x <0,故该不等式的解集为(-3,0).。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第8课__函数的性质(2)含解析
____第8课__函数的性质(2)____1. 理解函数奇偶性的概念,掌握判断一些简单函数奇偶性的方法.2. 掌握奇、偶函数的对称性,体会数学的对称美.3. 能解决与单调性、奇偶性等有关的一些综合题.1. 阅读:必修1第41~45页.2. 解悟:①判断函数奇偶性的一般步骤是什么?②具备奇偶性的函数,其定义域必须具有怎样的特点?这一特点是函数奇偶性定义的要求吗?③请尝试写出具备奇偶性的函数的其他性质;④什么是周期函数?你能用数学符号表示吗?你知道的周期函数有哪些?3. 践习:在教材空白处,完成第43页练习第1、2、4、6、7题. 基础诊断 1. 若函数f(x)=在定义域上为奇函数,则实数k =__±1__.k -2x1+k·2x解析:由题意得f(-x)=-f(x),则=-,k -2-x 1+k·2-x k -2x1+k·2x即=,k·2x -12x +k 2x -k 1+k·2x所以k =±1.2. 若定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)=__0__;若g (x )是偶函数,则函数g (x +1)图象的对称轴为直线__x =-1__.解析:因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2),所以f (x )=f (x +4),所以函数f (x )是以4为周期的函数,所以f (6)=f (2).因为f (x +2)=-f (x ),所以f (2)=-f (0)=f (6).因为函数f (x )为定义在R 上的奇函数,所以f (0)=0,所以f (6)=0.因为g (x )是偶函数,所以函数g (x )的图象关于y 轴,即直线x =0对称,g (x +1)是将函数g (x )的图象向左平移1个单位长度得到的,所以函数g (x +1)图象的对称轴为直线x =-1.3. 已知定义在R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (-1)<f (lg x ),则x 的取值范围是__∪(10,+∞)__.(0,110)解析:由题意可得,f (1)=f (-1),所以f (1)<f (lg x ).因为函数f (x )在区间[0,+∞)上单调递增,所以|lg x |>1,即lg x >1或lg x <-1,解得x >10或0<x <,110故实数x 的取值范围是∪(10,+∞).(0,110)4. 已知f(x)是R 上的奇函数,且当x ≥0时,f (x )=x 2-2x ,则当x <0时,f (x )=__-x 2-2x __.解析:设x <0,则-x >0,所以f (-x )=x 2+2x .因为函数f (x )是R 上的奇函数,所以f (-x )=-f (x ),所以-f (x )=x 2+2x ,即f (x )=-x 2-2x ,故当x <0时,f (x )=-x 2-2x .5. 设函数f(x)(x ∈R)为奇函数,f (1)=,f (x +2)=f (x )+f (2),则f (5)=____.1252解析:由题意得f (-1)=-f (1)=-,12f (1)=f (-1+2)=f (-1)+f (2),所以=-+f (2),即f (2)=1,1212所以f (3)=f (1)+f (2)=+1=,1232f (5)=f (3)+f (2)=+1=.3252 范例导航 考向❶ 判断函数的奇偶性例1 判断下列函数的奇偶性.(1) f(x)=;(1+2x )22x (2) f(x)=lg (x +);x 2+1(3) f(x)=.4-x 2|x +3|-3解析:(1) 由题意得函数f(x)的定义域为R ,f (x )==+2+2x ,则f (-x )=+2+2-x =2x +2+,即f (x )=f (-x ),所以(1+2x )22x 12x 12-x 12x函数f (x )为偶函数.(2) 由题意得函数f (x )的定义域为R.因为f (x )=lg(x +),所以f (-x )+f (x )=lg(-x +x 2+1)+lg(x +)=lg[(-x +)·(x +)]=lg1=0,所以f (-x )=-f (x ),所以x 2+1x 2+1x 2+1x 2+1函数f (x )为奇函数.(3) 由题意得,函数f (x )的定义域为(-2,0)∪(0,2),所以x +3>0,所以f (x )=,f (-x )=,f (-x )=-f (x ),所以函数f (x )是奇函数.4-x 2x4-x 2-x 判断函数f (x )=x 2+|x -a |+1,a ∈R ,x ∈R 的奇偶性.解析:当a =0时,f (-x )=(-x )2+|-x |+1=f (x ),此时f (x )为偶函数;当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (a )≠-f (-a ),f (a )≠f (-a ),此时f (x )既不是奇函数,也不是偶函数.考向❷ 单调性、奇偶性的综合例2 已知函数f(x)=是奇函数.{-x 2+2x ,x >0,0, x =0,x 2+mx , x <0)(1) 求实数m 的值;(2) 若函数f(x)在区间[-1,a -2]上单调递增,求实数a 的取值范围.解析:(1) 设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x 2-2x.又f(x)为奇函数,所以-f(-x)=f(x),于是当x<0时,f(x)=x 2+2x =x 2+mx ,所以m =2.(2) 由(1)知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a -2]上单调递增,则所以1<a ≤3,{a -2>-1,a -2≤1,)故实数a 的取值范围是(1,3].已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上单调递减.若f(1-m)+f(1-m 2)<0,求实数m 的取值范围.解析:由f(x)的定义域为[-2,2],知解得-1≤m ≤.{-2≤1-m ≤2,-2≤1-m 2≤2,)3因为f(x)是奇函数,所以f(1-m)<-f(1-m 2),即f(1-m)<f(m 2-1).因为f(x)在[-2,0]上单调递减,所以f(x)在[-2,2]上是减函数,所以1-m>m 2-1,解得-2<m<1.综上所述,实数m 的取值范围是[-1,1).考向❸ 函数的周期性、对称性例3 设函数f(x)在R 上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在区间[0,7]上,只有f (1)=f (3)=0.(1) 试判断函数y =f (x )的奇偶性;(2) 试求方程f (x )=0在区间[-2 018,2 018]上的根的个数,并证明你的结论.解析:(1) 因为函数f (x )在R 上满足f (2-x )=f (2+x ),当x =2时,f (0)=f (4)≠0,所以函数f (x )不是奇函数.因为f (2-x )=f (2+x ),f (7-x )=f (7+x ),所以f (-x )=f (4+x ),f (-x )=f (14+x ),即f (4+x )=f (14+x ),即f (x )=f (x +10),所以函数f (x )是以10为周期的周期函数,所以f (-3)=f (-3+10)=f (7)≠0,即f (-3)≠f (3),所以函数f (x )不是偶函数.综上,函数f (x )既不是奇函数也不是偶函数.(2) 因为在闭区间[0,7]上只有f (1)=f (3)=0,所以f (x )=0在[4,7]上无解,则f (7-x )=0在[0,3]上无解.因为f (7-x )=f (7+x ),所以f (7+x )在[0,3]上无解,即f (x )在[7,10]上无解,所以函数f (x )=0在一个周期[0,10]上只有2个根.又因为在闭区间[-2 010,2 010]上含有402个周期,此时有2×402=804(个)根.在区间(2 010,2 018]上,f (2 011)=f (1)=0,f (2 013)=f (3)=0,此时有2个根.因为函数f (x )的周期为10,所以函数f (x )在[-2 018,-2 010)上的值域和在[2,10)上的值域相同,所以有1个根.综上,共有804+2+1=807(个)根. 自测反馈 1. 已知偶函数f(x)的图象与x 轴有五个交点,则方程f(x)=0的所有实数根之和等于__0__.解析:因为函数y =f(x)是偶函数,所以其图象关于y 轴对称,所以其图象与x 轴有五个交点也与y 轴对称,其中一个为0,另外四个关于y 轴对称互为相反数,所以方程f(x)=0的所有实数根之和等于0.2. 设函数f(x)是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是__(-1,0)∪(1,+∞)__.解析:由已知条件可得,函数f (x )的解析式为f (x )=其图象如图所示,{lg x , x >0,0, x =0,-lg (-x ), x <0.)故f (x )>0的解集为(-1,0)∪(1,+∞).3. 已知函数f(x)是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 018)=__2__.解析:由题意得,f (x )=f (-x ),g (-x )=-g (x ).因为g (x )=f (x -1),所以g (-x )=f (-x -1),即-g (x )=f (-x -1)=f (x +1),所以f (x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=f (x ),所以f (x )为周期函数,周期为4,所以f (2 018)=f (4×504+2)=f (2)=2,即f (2 018)=2.4. 设f(x)是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=(其中a ,b ∈R),若f =f ,则a +3b 的值为__-10__.{ax +1, -1≤x <0,bx +2x +1, 0≤x ≤1)(12)(32)解析:由题意得f =f =1-,f ==.(32)(-12)a 2(12)b 2+212+1b +43因为f =f ,所以1-a =①.(12)(32)12b +43又因为f (-1)=f (1),所以-a +1=②.b +22联立①②得,解得{1-12a =b +43,-a +1=b +22,){a =2,b =-4,)所以a +3b =2+3×(-4)=-10.1. 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.2. 若对于函数f(x)的定义域内任一个自变量x 的值都有f(x +a)=-f(x)或f(x +a)=1f (x )或f(x +a)=-(a 是常数且a ≠0),则f(x)是一个周期为2a 的周期函数. 1f (x )3. 你还有哪些体悟,写下来: 。
(江苏专用)届高考数学大一轮复习第二章第9课二次函数要点导学【含答案】
【南方凤凰台】(江苏专用)2016届高考数学大一轮复习第二章第9课二次函数要点导学要点导学各个击破求二次函数的解析式已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3),且方程f(x)+6a=0有两个相等的实数根,求二次函数f(x)的解析式.[思维引导]由不等式f(x)>-2x的解集为(1,3),可先把f(x)表示出来,再利用方程f(x)+6a=0有两个相等的实数根求出a,从而求出f(x)的解析式.[解答]因为f(x)+2x>0的解集为(1,3),所以f(x)+2x=a(x-1)(x-3),且a<0.于是f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.①由方程f(x)+6a=0,得ax2-(2+4a)x+9a=0.②因为方程②有两个相等的实数根,所以Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0,解得a=1或a=-1 5.又a<0,所以a=-15.将a=-15代入①,得f(x)的解析式为f(x)=-15x2-65x-35.[精要点评]二次函数、一元二次不等式和一元二次方程之间具有非常密切的关系.一元二次不等式的解集的端点就是其对应的一元二次方程的根,也就是二次函数与x轴的交点.因而在解题时要充分利用它们之间的关系.【题组强化·重点突破】1. 已知某二次函数图象的顶点是(1,-3),且过点P(2,0),那么此函数的解析式是. [答案]y=3x2-6x[解析]待定系数法求解析式.2. (2014·大同模拟)已知二次函数f(x)=x2-2bx+a,满足f(x)=f(2-x),且方程f(x)-3a4=0有两个相等的实数根,求函数f(x)的解析式.[解答]由f(x)=f(2-x),得对称轴x=1,所以b=1,由方程f(x)-3a4=0,即x2-2x+a4=0有两个相等的实数根,得Δ=4-4×a4=0,解得a=4.所以f(x)=x2-2x+4.3. 已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=-1,对任意的x∈R都有f(x)≥x-1,且f1-x2⎛⎫+⎪⎝⎭=f1--x2⎛⎫⎪⎝⎭,求函数f(x)的解析式.[解答]由f(x)=ax2+bx+c(a≠0)及f(0)=-1,得c=-1.又对任意的x∈R,有f1-x2⎛⎫+⎪⎝⎭=f1--x2⎛⎫⎪⎝⎭,所以f(x)图象的对称轴为直线x=-1 2,则-b2a=-12,a=b.又对任意的x∈R都有f(x)≥x-1,即ax2+(b-1)x≥0对任意的x∈R成立,所以2a0,Δ(b-1)-4a?00,>⎧⎨=≤⎩故a=b=1.所以f(x)=x2+x-1.二次函数的图象和性质(2014·镇江模拟)已知a∈R,函数f(x)=x2-2ax+5.(1) 若不等式f(x)>0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2) 若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值.[思维引导](1) 通过恒等变换将x2-2ax+5>0对任意的x∈(0,+∞)恒成立,等价转换为2a<x+5x对x>0恒成立,然后求出实数a的取值范围; (2) 利用函数的单调性和函数f(x)的定义域和值域的关系求出实数a的值.[解答](1) 因为x2-2ax+5>0对任意的x∈(0,+∞)恒成立,所以2a<x+5x 对x>0恒成立.因为x>0,所以x+5x ≥当且仅当x=5x ,即, 所以min 5x x ⎛⎫+ ⎪⎝⎭所以即故实数a 的取值范围是(-∞(2) 因为f(x)=x 2-2ax+5的图象的对称轴为x=a(a>1),所以f(x)在[1,a]上为减函数, 所以f(x)的值域为[f(a),f(1)],而已知值域为[1,a], 所以22f(a)a -2a 51,f(1)1-2a 5a,⎧=+=⎨=+=⎩解得a=2.(2014·屯溪一中)已知函数g(x)=ax 2-2ax+1+b(a>0)在[0,3]上有最大值4和最小值1,求a,b 的值.[解答]g(x)=a(x-1)2+1+b-a,因为a>0,对称轴为x=1,所以g(x)在区间[0,3]上是先减后增,且g(x)min =g(1),g(x)max =g(3), 故g(1)1,g(3)4,=⎧⎨=⎩即1b-a 1,3a 1b 4,+=⎧⎨++=⎩解得3a ,43b .4⎧=⎪⎪⎨⎪=⎪⎩一元二次方程实根的分布问题已知函数f(x)=x 2-(2a-1)x+a 2-2与x 轴非负半轴至少有一个交点,求实数a 的取值范围.[思维引导]本题可从韦达定理的角度进行考虑,也可从函数的角度进行探究.[解答]方法一:由题意知关于x 的方程x 2-(2a-1)x+a 2-2=0至少有一个非负实数根,设其根为x 1,x 2,则12Δ0,x x 0≥⎧⎨≤⎩或1212Δ0,x x 0,x x 0,≥⎧⎪>⎨⎪+>⎩解得a ≤94,故实数a的取值范围是94⎡⎤⎢⎥⎣⎦.方法二:由题意知f(0)≤0或f(0)0,2a-12Δ0,>⎧⎪⎪>⎨⎪≥⎪⎩,解得-≤a≤94,故实数a的取值范围是94⎡⎤⎢⎥⎣⎦.[精要点评]利用一元二次方程根的分布规律来解题时,首先应考虑实际问题中包含几种根的分布情况,利用数形结合的思想,再针对各种情况列出符合的条件,进一步求解出结果.(2014·江苏模拟)若关于x的方程x2+2kx-1=0的两根x1,x2满足-1≤x1<0<x2<2,求k的取值范围.[解答]构造函数f(x)=x2+2kx-1,因为关于x的方程x2+2kx-1=0的两根x1,x2满足-1≤x1<0<x2<2,所以f(-1)0,f(0)0,f(2)0,≥⎧⎪<⎨⎪>⎩即-2k0,-10,4k30,≥⎧⎪<⎨⎪+>⎩解得-34<k≤0.故k的取值范围是3-,04⎛⎤⎥⎝⎦.二次函数的实际应用(2014·泸州模拟)机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(1) 写出y与x之间的函数关系式;(2) 从第几年开始,该机床开始盈利(盈利额为正值)?[思维引导](1) 根据“利润=总收入-维修保养费用-购进数控机床的费用”求出y与x之间的函数关系式;(2) 解关于x的函数不等式.[解答](1) 依题意得y=50x-x(x-1)12x42⎡⎤+⨯⎢⎥⎣⎦-98=-2x2+40x-98(x∈N*).(2) 由-2x2+40x-98>0,得,<8,所以<18.又因为x∈N*,所以3≤x≤17,故从第3年开始盈利.经市场调查,某商品在过去100天内的销售量和价格均为时间t(天)的函数,且日销售量近似地满足g(t)=-13t+1123(1≤t≤100,t∈N).前40天价格为f(t)=14t+22(1≤t≤40,t∈N),后60天价格为f(t)=-12t+52(41≤t≤100,t∈N),试求该商品的日销售额S(t)的最大值和最小值.[规范答题]当1≤t≤40,t∈N时,S(t)=g(t)f(t)=11121-t t22334⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭=-112t2+2t+112223⨯=-112(t-12)2+25003, 所以768=S(40)≤S(t)≤S(12)=25003. (6分)当41≤t≤100,t∈N时,S(t)=g(t)f(t)=11121-t-t52332⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭=16t2-36t+112523⨯=16(t-108)2-83,所以8=S(100)≤S(t)≤S(41)=14912. (12分)所以S(t)的最大值为25003,最小值为8. (14分)1. 已知函数f(x)=2x2-mx+3,当x∈(-∞,-1)时,它是单调减函数;当x∈(-1,+∞)时,它是单调增函数,那么实数m=.[答案]-4[解析]函数图象的对称轴方程为x=-1,即--m4=-1,所以m=-4.2. 函数f(x)=2x2-6x+1在区间[-1,1]上的最小值为,最大值为.[答案]-3 9[解析]配方,结合图象的对称轴与区间的关系直接求最值.3. (2014·江苏模拟)已知不等式ax2-bx-1≥0的解集是[2,3],那么不等式x2-bx-a<0的解集是.[答案]11 -,-23⎛⎫ ⎪⎝⎭[解析]由题意知方程ax2-bx-1=0的根分别为x1=2,x2=3,所以由根与系数的关系得2+3=5=ba,2×3=6=-1a,解得a=-16,b=-56,则不等式x2-bx-a<0即为x2+56x+16<0,解得-12<x<-13.4. (2014·蚌埠模拟)对于任意实数x,函数f(x)=(5-a)x2-6x+a+5恒为正值,则a的取值范围是.[答案](-4,4)[解析]显然5-a≠0,即a≠5,由题意得5-a0,Δ36-4(5-a)(a5)0,>⎧⎨=+<⎩解得-4<a<4.[温馨提醒]趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习(第17-18页).。
2020版江苏高考数学一轮复习学案:第9课《二次函数》(含解析)
____第9课__二__次__函__数____1. 熟练掌握二次函数的图象和性质.2. 掌握二次函数、一元二次方程、一元二次不等式之间的联系,会用二次函数的图象和性质讨论一元二次方程根的分布.3. 能解决与二次函数有关的一些综合性问题.1. 二次函数的三种形式:一般式、顶点式和两根式,会根据条件选择合适的形式.2. 二次函数的图象是抛物线,具有许多优美的性质,如对称性、单调性等,结合这些图象特征解决二次函数的问题,可以化难为易,形象直观.3. 二次函数性质的研究:首先根据二次函数的图象开口向上或向下,分a>0或a<0两种情况分类考虑;同时要特别关注二次函数的对称轴位置,即对称轴与所给区间的位置关系,这样可以得到二次函数的变化情况.此外要注意c 的值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.4. 三个二次(二次函数、一元二次方程、一元二次不等式)以二次函数为核心,即二次函数图象与横轴的交点和在横轴的上方、下方.基础诊断1. 若函数y =x 2+(a +2)x +3(x ∈[a ,b])的图象关于直线x =1对称,则b =__6__.解析:由题意得-a +22=1,解得a =-4,且a +b 2=1,即-4+b2=1,解得b =6.2. 已知二次函数f(x)=ax 2+bx +c且f(x 1)=f(x 2),则f ⎝⎛⎭⎫x 1+x 22=__4ac -b 24a __.解析:由题意可知,x 1+x 22=-b2a,所以f ⎝⎛⎭⎫x 1+x 22=a·⎝⎛⎭⎫-b 2a 2+b·⎝⎛⎭⎫-b 2a +c =4ac -b 24a . 3. 已知二次函数y =x 2-2x +3在区间[0,m]上有最大值3,最小值2,则实数m 的取值范围为__[1,2]__.解析:由题意得函数y =x 2-2x +3图象的对称轴为直线x =1.当x =0时,y =3,当x =1时,y =2,所以⎩⎪⎨⎪⎧m ≥1,m 2-2m +3≤3,解得1≤m ≤2,所以m 的取值范围是[1,2].4. 如果方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是__(-∞,-3)__.解析:设f(x)=x 2+(2m -1)x +4-2m ,由题意得,⎩⎪⎨⎪⎧Δ=(2m -1)2-4(4-2m )>0,f (2)=4+2(2m -1)+4-2m<0,解得⎩⎪⎨⎪⎧m<-52或m>32,m<-3,所以m<-3,故实数m 的取值范围是(-∞,-3).范例导航考向❶ 通过分类讨论对称轴与区间的位置关系,利用数形结合求最值 例1 求函数f(x)=x 2-2ax +2(x ∈[2,4])的最小值.解析:f(x)图象的对称轴是直线x =a ,可分以下三种情况:①当a <2时,f(x)在[2,4]上为增函数,所以f(x)min =f(2)=6-4a ; ②当2≤a ≤4时,f(x)min =f(a)=2-a 2;③当a >4时,f(x)在[2,4]上为减函数,所以f(x)min =f(4)=18-8a.综上所述,f(x)min =⎩⎪⎨⎪⎧6-4a , a<2,2-a 2, 2≤a ≤4,18-8a , a>4.已知函数f(x)=x 2-2x +2(x ∈[t ,t +1])的最小值为g(t),求g(t)的表达式.解析:由题意得,f(x)=(x -1)2+1.①当t +1<1,即t<0时,g(t)=f(t +1)=t 2+1; ②当t ≤1≤t +1,即0≤t ≤1时,g(t)=f(1)=1; ③当t>1时,g(t)=f(t)=t 2-2t +2. 综上所述,g(t)=⎩⎪⎨⎪⎧t 2+1, t<0,1, 0≤t ≤1,t 2-2t +2, t>1.考向❷ 利用三个二次之间的关系,以二次函数为核心解决问题例2 已知二次函数y =f(x)(x ∈R)的图象过点(0,-3),且f (x )>0的解集为(1,3).(1) 若函数f (x )=f (x )-mx 在区间(0,1)上单调递增,求实数m 的取值范围; (2) 求函数G (x )=f (sin x )在x ∈⎣⎡⎦⎤0,π2上的最值. 解析:(1) 因为f (x )>0的解集为(1,3),所以二次函数与x 轴的交点为(1,0)和(3,0), 所以可设f (x )=a (x -1)(x -3).又因为函数图象过点(0,-3),代入f (x )得3a =-3,解得a =-1,所以f (x )=-(x -1)(x -3)=-x 2+4x -3,所以f (x )=-x 2+4x -3-mx =-x 2+(4-m )x -3.因为函数f (x )在区间(0,1)上单调递增, 所以-4-m2×(-1)≥1,解得m ≤2,故实数m 的取值范围是(-∞,2].(2) 由题意得,G (x )=-sin 2x +4sin x -3=-(sin x -2)2+1.因为x ∈⎣⎡⎦⎤0,π2,所以sin x ∈[0,1], 所以当sin x =0时,G (x )min =-3;当sin x =1时,G (x )max =0,故函数G (x )的最大值为0,最小值为-3.若关于x 的方程sin 2x +cos x +a =0有实数根,试确定实数a 的取值范围.解析:由已知得a =-sin 2x -cos x =cos 2x -cos x -1=⎝⎛⎭⎫cos x -122-54.因为-1≤cos x ≤1,所以a 的取值范围是⎣⎡⎦⎤-54,1.考向❸ 与绝对值综合的二次函数问题例3 已知a ∈R ,函数f (x )=x |x -a |.(1) 当a =2时,写出函数y =f (x )的单调增区间;(2) 当a >2时,求函数y =f (x )在区间[1,2]上的最小值;(3) 设a ≠0,函数y =f (x )在区间(m ,n )上既有最大值又有最小值,请分别求出m ,n 的取值范围(用a 表示).解析:(1) 当a =2时,f (x )=x |x -2|=⎩⎪⎨⎪⎧x (x -2),x ≥2,x (2-x ), x <2.由图象可知,y =f (x )的单调增区间为(-∞,1],[2,+∞). (2) 因为a >2,x ∈[1,2],所以f (x )=x (a -x )=-x 2+ax =-⎝⎛⎭⎫x -a 22+a 24.当1<a 2≤32,即2<a ≤3时,f (x )min =f (2)=2a -4;当a 2>32,即a >3时,f (x )min =f (1)=a -1,所以f (x )min =⎩⎪⎨⎪⎧2a -4,2<a ≤3,a -1, a >3.(3) f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,x (a -x ),x <a .①当a >0时,图象如图1所示. 由⎩⎪⎨⎪⎧y =a 24,y =x (x -a ),得x =1+22a ,所以0≤m <a2,a <n ≤ 2+12a .②当a <0时,图象如图2所示.由⎩⎪⎨⎪⎧y =-a 24,y =x (a -x ),得x =1+22a ,所以2+12a ≤m <a ,a2<n ≤0. 图1 图2自测反馈1. 已知f(x)=ax 2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a ,b 的值为__13,0__.解析:由题意得,f(-x)=f(x),即ax 2-bx +3a +b =ax 2+bx +3a +b ,即2bx =0对任意x 恒成立,所以b =0.又因为a -1=-2a ,解得a =13,所以a ,b 的值分别为13,0.2. 函数y =-x 2+2||x +3的单调减区间是__[-1,0]和[1,+∞)__.解析:令f(x)=-x 2+2|x|+3,所以f(x)=⎩⎪⎨⎪⎧-x 2+2x +3,x ≥0,-x 2-2x +3, x<0, 即f(x)=⎩⎪⎨⎪⎧-(x -1)2+4,x ≥0,-(x +1)2+4, x<0,所以当x ≥0时,函数f(x)的减区间为(1,+∞);当x<0时,函数f(x)的减区间为(-1,0),故单调减区间为(-1,0)和(1,+∞).3. 若函数f(x)=x 2-2x +1在区间[]a ,a +2上的最大值为4,则a 的值为__-1或1__. 解析:由题意得,f(x)=x 2-2x +1=(x -1)2,对称轴为直线x =1.当a ≥0时,f(a +2)=4,即(a +2)2-2(a +2)+1=4,解得a =1或a =-3(舍去);当a<0时,f(a)=4,即a 2-2a +1=4,解得a =-1或a =3(舍去). 综上,a 的值为1或-1.4. 若不等式x 4+2x 2+a 2-a -2≥0对任意实数x 恒成立,则实数a 的取值范围是__(-∞,-1]∪[2,+∞)__.解析:由题意得x 4+2x 2+a 2-a -2≥0,即(x 2+1)2≥-a 2+a +3,所以-a 2+a +3≤1,解得a ≥2或a ≤-1,所以实数a 的取值范围是(-∞,-1]∪[2,+∞).1. 求二次函数在给定区间上的值域时,要注意对称轴和给定区间的位置关系,必要时进行讨论.2. 抓住三个二次的核心,运用二次函数的图象和性质解决有关二次型问题.3. 你还有哪些体悟,写下来:。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第11课__指数与指数运算 Word版含解析数学
____第11课__指数与指数运算____1. 会进行根式与分数指数幂的互化.2. 能利用分数指数幂的运算性质进行幂的运算.1. 阅读必修1第59~61页,理解分数指数幂的定义, 思考n a n =a 一定成立吗?2. 将教材第61页例2、例3做一遍,熟悉根式与分数指数幂的互化.3. 选做教材第62页练习第2,3,4,5题并总结根式与分数指数幂互化的注意点.基础诊断1. 判断正误.(1) (1-2cos 60°)0=1( );解析:(1-2cos 60°)0=⎝⎛⎭⎫1-2×120=00,故错误. (2) 6(-5)2=3-5( ); 解析:6(-5)2=35,故错误.(3) 6(-8)6=-8( ); 解析:6(-8)6=8,故错误.(4) (π-4)2+3(π-5)3=π-4+π-5=2π-9( ). 解析:(π-4)2+3(π-5)3=4-π+π-5=-1,故错误.2. 化简[(-2)6]12-(-1)0的值为__7__.解析:原式=(26)12-(-1)0=23-1=7.3. ⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748=__100__. 解析:原式=⎝⎛⎭⎫25912+102+⎝⎛⎭⎫6427-23-3+3748=53+100+⎣⎡⎦⎤⎝⎛⎭⎫433-23-3+3748=100. 4. 化简:8b 8+8(a +b )8+7(a -b )7(a<0,b<0).解析:原式=|b|+|a +b|+(a -b).因为a<0,b<0,所以原式=-b +(-a -b)+(a -b)=-3b.范例导航考向❶ 有理数指数幂的化简与求值例1 计算或化简下列各式:(1) ⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0; (2) 15+2-(3-1)0-9-4 5. 解析:(1) 原式=⎝⎛⎭⎫-323×()-23+⎝⎛⎭⎫1500-12-10×15-2+1 =⎝⎛⎭⎫-32-2+50012-10×(5+2)+1 =49+105-105-20+1 =-1679. (2) 原式=5-2-1-(5-2)2=5-2-1-(5-2)=5-2-1-5+2=-1.化简a 3b 23ab 2()a 14b 124a -13b 13(a>0,b>0)的结果为__a b __. 解析:原式=a 32b·a 16b 13ab 2·a -13b 13=a 32+16-1+13·b1+13-2-13=ab -1=a b . 考向❷ 有理数指数幂与方程的简单综合例2 已知a ,b 是方程9x 2-82x +9=0的两个根,且a<b ,求下列式子的值:(1) a -1+b -1(ab )-1; (2) 3a 72a -3÷3a -8·3a 15.解析:因为a ,b 是方程的两根,而由9x 2-82x +9=0,解得x 1=19,x 2=9,且a<b ,故a =19,b =9. (1) a -1+b -1(ab )-1=1a +1b 1ab =a +b ab 1ab =a +b. 因为a =19,b =9,所以a +b =829,即原式=829.(2) 原式=a 72×13·a -32×13÷[a ⎝⎛⎭⎫-83×12·a 153×12] =a 76+⎝⎛⎭⎫-36÷(a -86+156) =a 23÷a 76=a 23-76=a -12. 因为a =19,所以原式=3.已知α,β为方程2x 2+3x +1=0的两个根,求⎝⎛⎭⎫14α+β的值. 解析:因为α,β为方程2x 2+3x +1=0的两个根, 所以α+β=-32, 所以⎝⎛⎭⎫14α+β=⎝⎛⎭⎫14-32=⎝⎛⎭⎫122×()-32=⎝⎛⎭⎫12-3=8,故⎝⎛⎭⎫14α+β的值为8.考向❸ 有理数指数幂与基本对称式的简单综合例3 若x 12+x -12=3,求x 32+x -32+2x +x -1+3的值. 解析:因为x 12+x -12=3,所以(x 12+x -12)2=9,所以x -1+x =7, 所以原式=(x 12+x -12)(x -1+x -1)+2x +x -1+3=3×(7-1)+27+3=2.自测反馈1. 计算:⎝⎛⎭⎫9412+(-9.6)0-⎝⎛⎭⎫278-23×⎝⎛⎭⎫322=__32__. 解析:原式=32+1-49×94=32. 2. 计算:[(1-2)2]12-(1+2)-1=__0__. 解析:原式=(2-1)2×12-11+2=2-1-(2-1)=0. 3. 下列结论中正确的有__③__.(填序号)①当a<0时,(a 2)32=a 3;②n a n =|a|;③若100a =5,10b =2,则2a +b =1;④函数y =(x -2)12-(3x -7)0的定义域是(2,+∞).解析:①当a<0时,(a 2)32>0,a 3<0,(a 2)32≠a 3,故①错误;②当n 为奇数且a<0时,n a n =a ,故②错误;③正确;④定义域为⎝⎛⎭⎫2,73∪(73,+∞),故④错误. 4. 若a>1,b>0,且a b +a -b =22,则a b -a -b 的值为__2__.解析:因为(a b -a -b )2=(a b +a -b )2-4=4,又因为a>1,b>0,所以a b >1,0<a -b <1,所以a b -a -b =2.1. 当n 为奇数时,n a n =a ;当n 为偶数时,n a n =|a|,负数无偶次方根,0的正数次幂都为0.2. 指数幂的化简原则:(1) 化负数指数幂为正数指数幂;(2) 化根式为分数指数幂;(3) 化小数为分数.指数幂的化简结果不要同时含有根号和分数指数幂,也不要既有分母又含有负数指数幂.3. 你还有哪些体悟,写下来:。
(江苏专用)2020版高考数学大一轮复习第九章平面解析几何9.8抛物线教案(含解析)
§9.8抛物线考情考向分析抛物线的方程、几何性质及与抛物线相关的综合问题是命题的热点.题型既有基础性的填空题,又有综合性较强的解答题.1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质概念方法微思考1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?提示过点F且与l垂直的直线.2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?提示直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( × )(3)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长AB =x 1+x 2+p .( √ )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ ) 题组二 教材改编2.[P53练习T2]过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则PQ =________. 答案 8解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,PQ =PF +QF =x 1+1+x 2+1=x 1+x 2+2=8.3.[P51T3]已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为____________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0)或x 2=2py (p ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .4.[P74T14]若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是________. 答案 2解析 由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离.∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即|3+7|32+42=2.题组三 易错自纠5.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是________. 答案 y 2=±42x解析 由已知可知双曲线的焦点为(-2,0),(2,0). 设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x .6.(2019·如皋调研)在平面直角坐标系xOy 中,抛物线y 2=2px (p >0)的焦点在直线2x +y -2=0上,则p 的值为________. 答案 2解析 直线2x +y -2=0与x 轴的交点坐标为(1,0), 所以抛物线的焦点坐标为(1,0),即p2=1,p =2.7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________. 答案 [-1,1]解析 Q (-2,0),当直线l 的斜率不存在时,不满足题意,故设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0, 由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0, 解得-1≤k ≤1.题型一抛物线的定义和标准方程命题点1 定义及应用例1设P是抛物线y2=4x上的一个动点,若B(3,2),则PB+PF的最小值为________.答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则P1Q=P1F.则有PB+PF≥P1B+P1Q=BQ=4,即PB+PF的最小值为4.引申探究1.若将本例中的B 点坐标改为(3,4),试求PB +PF 的最小值. 解 由题意可知点B (3,4)在抛物线的外部.∵PB +PF 的最小值即为B ,F 两点间的距离,F (1,0), ∴PB +PF ≥BF =22+42=25, 即PB +PF 的最小值为2 5.2.若将本例中的条件改为:已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,求d 1+d 2的最小值. 解 由题意知,抛物线的焦点为F (1,0). 点P 到y 轴的距离d 1=PF -1, 所以d 1+d 2=d 2+PF -1.易知d 2+PF 的最小值为点F 到直线l 的距离, 故d 2+PF 的最小值为|1+5|12+(-1)2=32,所以d 1+d 2的最小值为32-1. 命题点2 求标准方程例2 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,MF =5,若以MF 为直径的圆过点(0,2),则C 的标准方程为________________. 答案 y 2=4x 或y 2=16x解析 由题意知,F ⎝ ⎛⎭⎪⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝ ⎛⎭⎪⎫52,y M 2,所以圆的方程为⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝ ⎛⎭⎪⎫5-p 2,解得p =2或p =8,所以抛物线C 的标准方程为y 2=4x 或y 2=16x .思维升华 (1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.跟踪训练1(1)设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________. 答案5解析 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连结AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.(2)如图所示,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若BC=2BF,且AF=3,则此抛物线的标准方程为________.答案y2=3x解析分别过点A,B作AA1⊥l,BB1⊥l,且垂足分别为A1,B1,由已知条件BC=2BF,得BC =2BB1,所以∠BCB 1=30°. 又AA 1=AF =3, 所以AC =2AA 1=6,所以CF =AC -AF =6-3=3, 所以F 为线段AC 的中点. 故点F 到准线的距离为p =12AA 1=32,故抛物线的标准方程为y 2=3x .题型二 抛物线的几何性质例3(1)已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的射影分别为M ,N 两点,则S △MFN =________. 答案233p 2解析 不妨设P 在第一象限,过Q 作QR ⊥PM ,垂足为R ,设准线与x 轴的交点为E ,∵直线PQ 的斜率为3,∴直线PQ 的倾斜角为60°.由抛物线焦点弦的性质可得PQ =PF +QF =p1-cos60°+p 1+cos60°=2p sin 260°=83p .在Rt△PRQ 中,sin∠RPQ =QRPQ,∴QR =PQ ·sin∠RPQ =83p ×32=433p ,由题意可知MN =QR =433p ,∴S △MNF =12MN ·FE =12×433p ×p =233p 2.(2)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且PA =12AB ,则点A 到抛物线C 的焦点的距离为________. 答案 53解析 设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为点D ,E .∵PA =12AB , ∴⎩⎪⎨⎪⎧3(x 1+2)=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.思维升华在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练2(1)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 94解析 由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0, 因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34, 即4x -43y -3=0.方法一 联立直线方程与抛物线方程化简得 4y 2-123y -9=0,解得y A ,B =123±(-123)2+4×4×98=33±62,即y A +y B =33,y A ·y B =-94,故|y A -y B |=(y A +y B )2-4y A y B =6. 因此S △OAB =12OF ·|y A -y B |=12×34×6=94.方法二 联立直线方程与抛物线方程得x 2-212x +916=0,即x A ,B =212± ⎝ ⎛⎭⎪⎫-2122-4×9162=214±27,故x A +x B =212.根据抛物线的定义有AB =x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12AB ·h =94.(2)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________. 答案433解析 经过第一象限的双曲线C 2的渐近线方程为y =33x .抛物线C 1的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,双曲线C 2的右焦点为F 2(2,0).因为y =12p x 2,所以y ′=1p x .所以抛物线C 1在点M ⎝⎛⎭⎪⎫x 0,x 202p 处的切线斜率为33,即1p x 0=33,所以x 0=33p .因为F ⎝⎛⎭⎪⎫0,p 2,F 2(2,0),M ⎝ ⎛⎭⎪⎫33p ,p 6三点共线,所以p 2-00-2=p 6-p233p -0,解得p =433. 题型三 直线与抛物线例4设抛物线的顶点在坐标原点,焦点F 在y 轴正半轴上,过点F 的直线交抛物线于A ,B 两点,线段AB 的长是8,AB 的中点到x 轴的距离是3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点.连结QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.解 (1)设抛物线的方程是x 2=2py (p >0),A (x 1,y 1),B (x 2,y 2),由抛物线定义可知y 1+y 2+p =8,又AB 的中点到x 轴的距离为3, ∴y 1+y 2=6,∴p =2, ∴抛物线的标准方程是x 2=4y .(2)由题意知,直线m 的斜率存在,设直线m :y =kx +6(k ≠0),P (x 3,y 3),Q (x 4,y 4),由⎩⎪⎨⎪⎧y =kx +6,x 2=4y消去y 得x 2-4kx -24=0,∴x 3,4=4k ±16k 2+24×42,∴⎩⎪⎨⎪⎧x 3+x 4=4k ,x 3·x 4=-24.(*)易知抛物线在点P ⎝ ⎛⎭⎪⎫x 3,x 234处的切线方程为y -x 234=x 32(x -x 3),令y =-1,得x =x 23-42x 3,∴R ⎝ ⎛⎭⎪⎫x 23-42x 3,-1,又Q ,F ,R 三点共线,∴k QF =k FR ,又F (0,1), ∴x 244-1x 4=-1-1x 23-42x 3,即(x 23-4)(x 24-4)+16x 3x 4=0,整理得(x 3x 4)2-4[(x 3+x 4)2-2x 3x 4]+16+16x 3x 4=0, 将(*)式代入上式得k 2=14,∴k =±12,∴直线m 的方程为y =±12x +6.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要联立直线与抛物线方程求解.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 ①x 1x 2=p 24,y 1y 2=-p 2.②弦长AB =x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角). ③以弦AB 为直径的圆与准线相切.④通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.跟踪训练3(1)(2019·南京外国语学校阶段测试)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=________.答案 8解析 抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0)且斜率为23的直线为3y =2x +4,联立直线与抛物线C :y 2=4x , 消去x 可得y 2-6y +8=0,解得y 1=2,y 2=4,不妨设M (1,2),N (4,4),FM →=(0,2),FN →=(3,4). 则FM →·FN →=(0,2)·(3,4)=8.(2)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴NF =(1+1)2+(0-23)2=4,MF =MN =3-(-1)=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3.直线与圆锥曲线问题的求解策略例(14分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由. 规范解答解 (1)∵抛物线C :x 2=1m y ,∴它的焦点为F ⎝ ⎛⎭⎪⎫0,14m .[2分](2)∵RF =y R +14m ,∴2+14m =3,得m =14.[4分](3)存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0(m >0),依题意,有Δ=(-2)2-4×m ×(-2)=8m +4>0恒成立, 方程必有两个不等实根.[6分] 设A (x 1,mx 21),B (x 2,mx 22),∴x 1,2=2±4+8m2m,∴⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m. (*)∵P 是线段AB 的中点,∴P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m,y P ,∴Q ⎝ ⎛⎭⎪⎫1m ,1m ,[9分]得QA →=⎝⎛⎭⎪⎫x 1-1m,mx 21-1m ,QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m .若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0,[12分]结合(*)式化简得-4m2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,∵m >0,∴m =2.∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[14分]解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x 或y 的一元二次方程;第二步:求出两根,并求出Δ>0时参数范围(或指出直线过曲线内一点);第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.1.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为________. 答案 5解析 依题意可知抛物线的准线方程为y =-1, ∴点A 到准线的距离为4+1=5, ∴点A 与抛物线焦点的距离为5.2.若抛物线y 2=8x 的焦点恰好是双曲线x 2a 2-y 23=1(a >0)的右焦点,则实数a 的值为________.答案 1解析 抛物线y 2=8x 的焦点为(2,0),双曲线x 2a 2-y 23=1(a >0)的右焦点为(a 2+3,0),由题意,得a 2+3=2,解得a =1.3.动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,则动点P 的轨迹方程为____________. 答案 x 2=8y解析 ∵动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,∴动点P 到点A (0,2)的距离与它到直线y =-2的距离相等.根据抛物线的定义可得点P 的轨迹为以A (0,2)为焦点,以直线y =-2为准线的抛物线,其标准方程为x 2=8y .4.(2018·盐城模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA →|+|FB →|+|FC →|的值为________. 答案 3解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 5.抛物线x 2=4y 的焦点为F ,过点F 作斜率为33的直线l 与抛物线在y 轴右侧的部分相交于点A ,过点A 作抛物线准线的垂线,垂足为H ,则△AHF 的面积是________. 答案 4 3解析 由抛物线的定义可得AF =AH ,∵AF 的斜率为33,∴AF 的倾斜角为30°,∵AH 垂直于准线,∴∠FAH =60°,故△AHF 为等边三角形.设A ⎝ ⎛⎭⎪⎫m ,m 24,m >0,过F 作FM ⊥AH 于M ,则在△FAM 中,AM =12AF ,∴m 24-1=12⎝ ⎛⎭⎪⎫m 24+1,解得m =23,故等边三角形AHF 的边长AH =4,∴△AHF 的面积是12×4×4sin60°=4 3.6.抛物线C :y 2=2px (p >0)的焦点为F ,M 是抛物线C 上的点,若△OFM 的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =________. 答案 8解析 ∵△OFM 的外接圆与抛物线C 的准线相切, ∴△OFM 的外接圆的圆心到准线的距离等于圆的半径. ∵圆的面积为36π,∴圆的半径为6. 又∵圆心在OF 的垂直平分线上,OF =p2,∴p 2+p4=6,∴p =8.7.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为________. 答案 y 2=8x解析 由题意,设抛物线方程为y 2=2px (p >0),直线方程为x =my +p 2,联立⎩⎪⎨⎪⎧y 2=2px ,x =my +p 2,消去x 得y 2-2pmy -p 2=0,显然方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),则y 1,2=2pm ±4p 2m 2+4p 22,所以y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my 1+p 2⎝ ⎛⎭⎪⎫my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12,得p =4(舍负),即抛物线C 的方程为y 2=8x .8.已知直线l :y =kx +t 与圆:x 2+(y +1)2=1相切,且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是____________. 答案 (-∞,-3)∪(0,+∞)解析 由题意知k ≠0.因为直线l 与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .由k 2>0,得t >0或t <-2,再把直线l 的方程代入抛物线方程并整理得x 2-4kx -4t =0,于是由Δ=16k 2+16t =16(t 2+2t )+16t >0,得t >0或t <-3.综上,实数t 的取值范围是t >0或t <-3. 9.(2018·南京、盐城模拟)在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________.答案 6解析 由抛物线方程为y 2=6x ,可知焦点坐标F ⎝ ⎛⎭⎪⎫32,0,准线方程为x =-32,因为直线AF的斜率为-3,所以直线AF 的方程为y =-3⎝ ⎛⎭⎪⎫x -32,当x =-32时,y =33,所以A ⎝ ⎛⎭⎪⎫-32,33, 因为PA ⊥l ,A 为垂足,所以点P 的纵坐标为33,可得点P 的坐标为⎝ ⎛⎭⎪⎫92,33,根据抛物线的定义可知PF =PA =92-⎝ ⎛⎭⎪⎫-32=6.10.(2018·南京模拟)已知直线l :y =kx -k (k ∈R )与抛物线C :y 2=4x 及其准线分别交于M ,N 两点,F 为抛物线的焦点,若2FM →=MN →,则实数k =________.答案 ± 3解析 抛物线C :y 2=4x 的焦点F (1,0),直线l :y =kx -k 过抛物线的焦点.当k >0时,如图所示,过点M 作MM ′垂直于准线x =-1,垂足为M ′,由抛物线的定义,得MM ′=MF ,易知∠M ′MN 与直线l 的倾斜角相等,由2FM →=MN →,得cos∠M ′MN =MM ′MN =12,则tan∠M ′MN =3,∴直线l 的斜率k =3;当k <0时,可得直线l 的斜率k =- 3.11.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且AB =9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0.由题意知,Δ=25p 2-16p 2=9p 2>0,方程必有两个不等实根. 所以x 1,2=5p ±3p8,所以x 1+x 2=5p4,由抛物线定义得AB =x 1+x 2+p =5p4+p =9,所以p =4,从而抛物线方程为y 2=8x .(2)由于p =4,则4x 2-5px +p 2=0, 即x 2-5x +4=0,从而x 1=1,x 2=4, 于是y 1=-22,y 2=42,从而A (1,-22),B (4,42).设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22).又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.12.过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C 于A ,B 两点,且AB =8. (1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标.解 (1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1,2=(2k 2+4)±16(k 2+1)2k 2, ∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线定义知AB =x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1,∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, ∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0,恒过点(-1,0).13.如图所示,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且AF=4,则线段AB的长为________.答案16 3解析方法一如图所示,设l与x轴交于点M,过点A作AD⊥l并交l于点D,由抛物线的定义知,AD =AF =4,由F 是AC 的中点,知AF =2MF =2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则AF =x 1+p2=x 1+1=4,所以x 1=3,解得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得,3x 2-10x +3=0,所以x 2=13,AB =x 1+x 2+p =163.方法二 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,AD =AF =4,由F 是AC 的中点,知AF =2MF =2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则AF =x 1+p 2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以AB =x 1+x 2+p =163.方法三 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,AD =AF =4,由F 是AC 的中点,知AF =2MF =2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .因为1AF +1BF =2p ,AF =4,所以BF =43,所以AB =AF +BF =4+43=163.14.如图所示,抛物线y =14x 2,AB 为过焦点F 的弦,过A ,B 分别作抛物线的切线,两切线交于点M ,设A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),则:①若AB 的斜率为1,则AB =4;②(AB )min =2;③y M =-1;④若AB 的斜率为1,则x M =1;⑤x A ·x B =-4.以上结论正确的个数是________.答案 2解析 由题意得,焦点F (0,1),对于①,l AB 的方程为y =x +1,与抛物线的方程联立,得⎩⎪⎨⎪⎧y =x +1,y =14x 2,消去x ,得y 2-6y +1=0,所以y A ,B =6±422=3±22,所以y A +y B =6,则AB =y A +y B +p =8,则①错误; 对于②,(AB )min =2p =4,则②错误; 因为y ′=x 2,则l AM :y -y A =x A2(x -x A ),即y =12x A x -x 2A 4,l BM :y -yB =x B2(x -x B ),即y =12x B x -x 2B4,联立l AM 与l BM的方程得⎩⎪⎨⎪⎧y =12x A x -x 2A 4,y =12x Bx -x2B4,解得M ⎝⎛⎭⎪⎫x A +x B 2,x A ·x B 4.设l AB 的方程为y =kx +1,与抛物线的方程联立,得⎩⎪⎨⎪⎧y =kx +1,y =14x 2,消去y ,得x 2-4kx -4=0,所以x A ,B =4k ±16k 2+162=2k ±2k 2+1,所以x A +x B =4k ,x A ·x B =-4, 所以y M =-1,③和⑤均正确;对于④,当AB 的斜率为1时,x M =2,则④错误.15.已知曲线G :y =-x 2+16x -15及点A ⎝ ⎛⎭⎪⎫12,0,若曲线G 上存在相异两点B ,C ,其到直线l :2x +1=0的距离分别为AB 和AC ,则AB +AC =________. 答案 15解析 曲线G :y =-x 2+16x -15,即为半圆M :(x -8)2+y 2=49(y ≥0),由题意得B ,C 为半圆M 与抛物线y 2=2x 的两个交点,由y 2=2x 与(x -8)2+y 2=49(y ≥0)联立方程组得x2-14x +15=0,方程必有两个不等实根,设B (x 1,y 1),C (x 2,y 2),则x 1,2=14±(-14)2-15×42.所以AB +AC =x 1+12+x 2+12=14+1=15.16.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________.答案 (2,4)解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2, 又y 1+y 2=2y 0,所以y 0k =2. 由CM ⊥AB ,得k ·y 0-0x 0-5=-1, 即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上.将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<23, 因为点M 在圆上, 所以(x 0-5)2+y 20=r 2, 故r 2=y 20+4<12+4=16.又y 20+4>4(为保证有4条,在k 存在时,y 0≠0), 所以4<r 2<16,即2<r <4.。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第2课__集合及其基本运算(2)
____第2课__集合及其基本运算(2)______1. 熟练掌握集合间的交、并、补集的运算以及求集合的子集.2. 能应用分类讨论的思想解决简单的分类讨论问题.1. 阅读:阅读必修1第11~14页.2. 解悟:①从A ∩B =A 能得到什么结论?②从A ∪B =A 能得到什么结论?3. 践习:在教材空白处,完成第13页练习第6题,第14页习题第10、13题.基础诊断1. 集合U ={1,2}的子集个数为__4__.解析:根据子集个数的公式可得,子集的个数为22=4.2. 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,4},则集合∁U (A ∪B)=__{3}__. 解析:由题意得,A ∪B ={1,2,4},所以∁U (A ∪B)={3}.3. (1) 已知集合A ={y|y =log 2(x -1)},集合B ={y|y =2x },则A ∩B =__(0,+∞)__;(2) 已知集合A ={x|y =log 2(x -1)},集合B ={y|y =2x },则A ∩B =__(1,+∞)__;(3) 已知集合A ={(x ,y)|y =log 2x},集合B ={(x ,y)|y =x -1},则A ∩B =__{(1,0),(2,1)}__.解析:(1) 由题意得,集合A =R ,集合B ={y |y >0},所以A ∩B =(0,+∞).(2) 由题意得,集合A ={x |x >1},集合B ={y |y >0},所以A ∩B =(1,+∞).(3) 令log 2x =x -1,解得x =1或x =2,所以y =0或y =1,所以A ∩B ={(1,0),(2,1)}.4. 已知集合A ={0,1,2,3},B ={-1,0,2},则集合A ∪B 中所有元素之和为__5__. 解析:因为A ∪B ={-1,0,1,2,3},所以集合A ∪B 中所有元素之和为-1+0+1+2+3=5.范例导航考向❶ 对子集的分类讨论例1 已知集合A ={2,5},B ={x|x 2+px +q =0,x ∈R}.(1) 若B ={5},求p ,q 的值;(2) 若A ∩B =B ,求实数p ,q 满足的条件.解析:(1) 因为B ={5},所以方程x 2+px +q =0有两个相等的实根5,所以5+5=-p ,5×5=q ,所以p =-10,q =25.(2) 因为A ∩B =B ,所以B ⊆A .当B =∅时,Δ=p 2-4q <0,即p 2<4q ;当B ={2}时,可求得p =-4,q =4;当B ={5}时,可求得p =-10,q =25;当B ={2,5}时,可求得p =-7,q =10.综上所述,实数p ,q 满足的条件为p 2<4q 或⎩⎪⎨⎪⎧p =-4,q =4或⎩⎪⎨⎪⎧p =-10,q =25或⎩⎪⎨⎪⎧p =-7,q =10.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1) 当m =3时,求A ∩∁R B ;(2) 若A ∩B ={x |-1<x <4},求实数m 的值.解析:(1) 当m =3时,B ={x |-1<x <3},则∁R B =(-∞,-1]∪[3,+∞).又因为A =(-1,5],所以A ∩∁R B =[3,5].(2) 因为A =(-1,5],A ∩B ={x |-1<x <4},所以4是方程-x 2+2x +m =0的一个根, 所以-42+2×4+m =0,解得m =8.此时集合B ={x |-2<x <4},符合题意.因此实数m 的值为8.考向❷ 对集合中元素的分类讨论例2 已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.(1) 当a =4时,求A ∩B ;(2) 若A ⊆B ,求实数a 的取值范围.解析:(1) 由题意得,A =[-8,-4],当a =4时,B =(-∞,-7)∪(4,+∞),所以A ∩B =[-8,-7).(2) 方程x 2+3x -a 2-3a =0的两根分别为a ,-a -3.①当a =-a -3,即a =-32时, B =⎝⎛⎭⎫-∞,-32∪(-32,+∞),满足A ⊆B ; ②当a<-a -3,即a<-32时, B =(-∞,a)∪(-a -3,+∞),则a>-4或-a -3<-8,解得-4<a<-32; ③当a>-a -3,即a>-32时, B =(-∞,-a -3)∪(a ,+∞),则a<-8或-a -3>-4,解得-32<a<1. 综上所述,实数a 的取值范围是(-4,1).已知集合A ={x|x 2+2x -8>0},B ={y|y =x 2-2x +2,x ∈R},C ={x |(x -a )(x +4)≤0,a ∈R}.(1) 求A ∩B ;(2) 若∁R A ⊆C ,求实数a 的取值范围.解析:(1) 因为x 2+2x -8>0,解得x >2或x <-4,所以A =(-∞,-4)∪(2,+∞).因为y =x 2-2x +2=(x -1)2+1≥1,所以B =[1,+∞),所以A ∩B =(2,+∞).综上所述,A ∩B =(2,+∞).(2) 因为A =(-∞,-4)∪(2,+∞),所以∁R A =[-4,2].因为∁R A ⊆C ,且C ={x |(x -a )(x +4)≤0,a ∈R},所以a ≥2,所以a 的取值范围为[2,+∞).考向❸ 对自变量系数的分类讨论例3 已知集合A ={x|0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x|-12<x ≤2. (1) 若A ⊆B ,求实数a 的取值范围;(2) 若B ⊆A ,求实数a 的取值范围;(3) A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.解析:对于不等式0<ax +1≤5,当a =0时,0<1<5恒成立,即x ∈R ,集合A =R ;当a >0时,-1a <x ≤4a ,即集合A ={x |-1a <x ≤4a}; 当a <0时,4a ≤x <-1a ,即集合A ={x |4a ≤x <-1a}. (1) 若A 是B 的子集,则当a =0时,不满足题意;当a >0时,需要满足⎩⎨⎧-1a ≥-12,4a ≤2,解得a ≥2; 当a <0时,需要满足⎩⎨⎧4a >-12,-1a ≤2,解得a <-8. 综上所述,a 的取值范围是(-∞,-8)∪[2,+∞).(2) 若B 是A 的子集,则当a =0时,满足题意;当a >0时,需要满足⎩⎨⎧-1a ≤-12,4a ≥2,解得0<a ≤2; 当a <0时,需要满足⎩⎨⎧-1a >2,4a ≤-12,解得-12<a <0. 综上所述,a 的取值范围是⎝⎛⎦⎤-12,2.(3) 当A=B时,需满足A⊆B且B⊆A,即同时满足(1)和(2),所以a=2.自测反馈1. 设U为全集,集合A为U的子集,则A∩A=__A__;A∪A=__A__;A∩∅=__∅__;A∪∅=__A__;A∪∁U A=__U__;A∩∁U A=__∅__.2. 满足{1,3}∪A={1,3,5}的集合A的个数是__4__.解析:因为{1,3}∪A={1,3,5},所以A={5}或{1,5}或{3,5}或{1,3,5},共有4个.3. 对于集合A,B,我们将集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A-B.(1) 若A={1,2,3,4,5},B={4,5,6,7,8},则A-B=__{1,2,3}__;B-A =__{6,7,8}__;(2) 如果A-B=∅,那么集合A与B之间的关系是__A⊆B__.4. 已知集合P={y=x2+1},Q={y|y=x2+1},E={x|y=x2+1},F={(x,y)|y=x2+1},则与G={x|x≥1}为同一集合的是__Q__.解析:集合P中y=x2+1就是这个集合中的一个元素;集合Q={y|y=x2+1}={y|y≥1},与集合G为同一集合;集合E={x|y=x2+1}=R;集合F是一个点集,所以与集合G为同一集合的是Q.1. 区分点集和数集在书写上的不同.2. 解题时,注意分类讨论、数形结合等思想方法的运用.3. 你还有哪些体悟,写下来:。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练9
随堂巩固训练(9)1. 若二次函数f(x)=ax 2+bx +c 图象的顶点坐标为(2,-1),与y 轴的交点坐标为(0,11),则a ,b ,c 的值为__3,-12,11__.解析:由题意得⎩⎪⎨⎪⎧-b 2a =2,4a +2b +c =-1,c =11,解得⎩⎪⎨⎪⎧a =3,b =-12,c =11.故a ,b ,c 的值分别为3,-12,11.2. 函数f(x)=x 2-2x -2(x ∈[-2,2])的最小值是__-3__.解析:因为f(x)=x 2-2x -2=(x -1)2-3,所以函数f(x)在区间[-2,1]上单调递减,在区间[1,2]上单调递增,所以f(x)min =f(1)=1-2-2=-3.3. 如果函数f(x)=x 2+px +q 对任意的x 均有f(1+x)=f(1-x)成立,那么f(0)、f(-1)、f(1)从小到大的顺序为__f(1)<f(0)<f(-1)__.解析:由题意得函数f(x)的图象关于直线x =1对称,所以函数在区间(-∞,1]上是减函数,所以f(1)<f(0)<f(-1).4. 若f(x)=x 2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=__8__.解析:由题意得⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,所以f(x)=x 2-4x +3,所以f(-1)=1+4+3=8.5. 若f(x)=-x 2+(b +2)x +3,x ∈[b ,c]的图象关于直线x =1对称,则c =__2__.解析:由题意,得⎩⎪⎨⎪⎧-b +22×(-1)=1,b +c 2=1,解得⎩⎪⎨⎪⎧b =0,c =2,故c 的值为2. 6. 函数f(x)=2x 2-6x +1在区间[-1,1]上的最小值为__-3__,最大值为__9__.7. 已知函数f(x)=|x 2-2ax +b|(x ∈R ),给出下列命题:①f(x)必是偶函数;②当f(0)=f(2)时,f(x)的图象必关于直线x =1对称;③f(x)有最大值|a 2-b|;④若a 2-b ≤0,则f(x)在区间[a ,+∞)上是增函数.其中正确的序号是__④__.解析:当a =0时,函数f(x)为偶函数;当a ≠0时,函数f(x)既不是偶函数,也不是奇函数,故①错误;若f(0)=f(2),则|b|=|4-4a +b|,所以4-4a +b =b 或4-4a +b =-b ,即a =1或b =2a -2.当a =1时,函数f(x)图象的对称轴为直线x =1;当b =2a -2时,函数f(x)图象的对称轴为直线x =a ,故②错误;若a 2-b ≤0,则f(x)=|(x -a)2+b -a 2|=(x -a)2+b -a 2,所以函数在区间[a ,+∞)上是增函数,此时有最小值b -a 2,故③错误,④正确.8. 已知函数f(x)=ax 2+(a 3-a)x +1在区间(-∞,-1]上单调递增,则实数a 的取值范围是.解析:当a =0时,函数f(x)=1,不符合题意,舍去;当a ≠0时,⎩⎪⎨⎪⎧a<0,-a 3-a 2a ≥-1,解得-3≤a<0,故实数a 的取值范围是[-3,0).9. 已知二次函数f(x)=ax 2+(a 2+b)x +c 的图象开口向上,且f(0)=1,f(1)=0,则实数b 的取值范围是__(-∞,-1)__.解析:由题意得a>0,c =1,a +a 2+b +c =0,所以b =-(a 2+a)-1=-⎝⎛⎭⎫a +122-34.因为a>0,所以b<-1,故实数b 的取值范围为(-∞,-1).10. 函数y =(x +1)(x +2)(x +3)(x +4)+5在区间[-3,3]上的最小值为__4__.解析:因为y =(x +1)(x +2)(x +3)(x +4)+5=[(x +1)(x +4)][(x +2)(x +3)]+5=(x 2+5x +4)(x 2+5x +6)+5=(x 2+5x +5-1)(x 2+5x +5+1)+5=(x 2+5x +5)2+4.设t =x 2+5x +5,则y =t 2+4.因为t =x 2+5x +5=⎝⎛⎭⎫x +522-54,x ∈[-3,3],所以y =t 2+4,t ∈⎣⎡⎦⎤-54,29,抛物线开口向上,对称轴为直线t =0,所以y min =4,故y =(x +1)(x +2)(x +3)(x +4)+5在区间[-3,3]上的最小值是4.11. 已知二次函数f(x)=ax 2+bx +c.(1) 若f(-1)=0,试判断函数f(x)的零点个数;(2) 若对x 1,x 2∈R ,且x 1<x 2,f(x 1)≠f(x 2),证明方程f(x)=12[f(x 1)+f(x 2)]必有一个实数根属于(x 1,x 2).解析:(1) 因为f(-1)=0,所以a -b +c =0,即b =a +c.因为Δ=b 2-4ac =(a +c)2-4ac =(a -c)2,所以当a =c 时,Δ=0,函数f(x)有一个零点;当a ≠c 时,Δ>0,函数f(x)有两个零点. (2) 令g(x)=f(x)-12[f(x 1)+f(x 2)],则 g(x 1)=f(x 1)-12[f(x 1)+f(x 2)]=f (x 1)-f (x 2)2, g(x 2)=f(x 2)-12[f(x 1)+f(x 2)]=f (x 2)-f (x 1)2, 所以g(x 1)·g(x 2)=-14[f(x 1)-f(x 2)]2. 因为f(x 1)≠f(x 2),所以g(x 1)·g(x 2)<0,所以g(x)=0在区间(x 1,x 2)上必有一个实数根,即方程f(x)=12[f(x 1)+f(x 2)]必有一个实数根属于(x 1,x 2). 12. 已知函数f(x)=ax 2-1,a ∈R ,x ∈R ,集合A ={x|f(x)=x},B ={x|f(f(x))=x}且A =B ≠,求实数a 的取值范围.解析:①若a =0,则A =B ={-1};②若a ≠0,由A ={x|ax 2-x -1=0}≠,得a ≥-14且a ≠0. 集合B 中元素为方程a(ax 2-1)2-1=x ,即a 3x 4-2a 2x 2-x +a -1=0的实数根,所以a 3x 4-2a 2x 2-x +a -1=(ax 2-x -1)(a 2x 2+ax -a +1)=0.因为A =B ,所以a 2x 2+ax -a +1=0无实数根或其根为ax 2-x -1=0的根.由a 2x 2+ax -a +1=0无实数根,得a<34, 故a ∈⎣⎡⎭⎫-14,0∪⎝⎛⎭⎫0,34; 当a 2x 2+ax -a +1=0有实数根且为ax 2-x -1=0的根时,因为ax 2-x -1=0,所以ax 2=x +1,所以a 2x 2+ax -a +1=a(x +1)+ax -a +1=0,解得x =-12a ,代入ax 2-x -1=0得a =34. 综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,34. 13. 已知二次函数f(x)=ax 2+bx +1,若f(1)=0,且函数f(x)的值域为[0,+∞).(1) 求a ,b 的值;(2) 若h(x)=2f(x +1)+x|x -m|+2m ,求h(x)的最小值. 解析:(1) 显然a ≠0,因为f(1)=0,所以a +b +1=0. 又f(x)的值域为[0,+∞),所以Δ=b 2-4a =0. 由⎩⎪⎨⎪⎧a +b +1=0,b 2-4a =0,解得⎩⎪⎨⎪⎧a =1,b =-2.(2) 由(1)知f(x)=x 2-2x +1,h(x)=2x 2+x|x -m|+2m ,即h(x)=⎩⎪⎨⎪⎧3x 2-mx +2m ,x ≥m ,x 2+mx +2m , x<m. ①若m ≥0,则h(x)min =min ⎩⎨⎧⎭⎬⎫h (m ),h ⎝⎛⎭⎫-m 2, 即h(x)min =min ⎩⎨⎧⎭⎬⎫2m 2+2m ,-m 24+2m . 又2m 2+2m -⎝⎛⎭⎫-m 24+2m =9m 24≥0,所以当m ≥0时,h(x)min =-m 24+2m ; ②若m<0,则h(x)min =h ⎝⎛⎭⎫m 6=2m -m 212. 综上所述,h(x)min =⎩⎨⎧2m -m 24, m ≥0,2m -m 212, m<0.。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第6课__函数的表示方法
____第6课__函数的表示方法____1. 了解构成函数的三要素,进一步理解函数的概念.2. 掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数.3. 掌握求解函数解析式的几种类型及常用方法.4. 了解简单的分段函数,并能简单地应用.1. 阅读:阅读必修1第33~34页.2. 解悟:①函数的表示方法有哪些?回顾例1并比较三种表示方法的优劣;②你能在书本中找到分段函数的定义吗?分段函数是一个函数还是多个函数?③如何求分段函数的值域或最值?④函数的解析式是函数的一种表示方法,那么求函数解析式,你知道哪些方法?3. 践习:在教材空白处,完成第35页练习第3题和习题第2、4题.基础诊断1. 已知函数f(x)=11+x,g(x)=x 2+2,则f(2)=__13__;g(2)=__6__;f(g(2))=__17__;f(g(x))=__1x 2+3__. 解析:f(2)=11+2=13; g(2)=22+2=6;f(g(2))=f(6)=11+6=17; f(g(x))=11+x 2+2=1x 2+3. 2. 已知函数 f(x)=⎩⎪⎨⎪⎧log 3x , x>0,2x , x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=__14__. 解析:因为f ⎝⎛⎭⎫19=log 319=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=f(-2)=2-2=14. 3. 若f(x +1)=x 2+4x +1,则f(x)=x 2+2x -2.解析:因为f(x +1)=x 2+4x +1,令t =x +1,则x =t -1,所以f(t)=(t -1)2+4(t -1)+1=t 2+2t -2,故f(x)=x 2+2x -2.4. 若等腰三角形的周长是20,底边长y 是一腰长x 的函数,则y =__20-2x ,x ∈(5,10)__.解析:因为△ABC 是等腰三角形且周长为20,△ABC 的周长=2×腰长+底边长,所以20=2x +y ,即y =20-2x.又y<2x<20,解得5<x<10,故y =20-20x ,x ∈(5,10).5. 设二次函数f(x)的最大值是13,f(3)=f(-1)=5,则f(x)的解析式为__f(x)=-2x 2+4x +11__.解析:由题意可设f(x)=a(x -1)2+13,因为f(3)=f(-1)=5,所以a ×(-1-1)2+13=5,解得a =-2,所以f(x)=-2(x -1)2+13=-2x 2+4x +11.范例导航考向❶ 求函数的解析式 例1 (1) 已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,求函数f(x)的解析式;(2) 已知函数f(x)满足2f(x)+f ⎝⎛⎭⎫1x =3x ,求函数f(x)的解析式.解析:(1) 设f(x)=kx +b ,则由题意得3[k(x +1)+b]-2[k(x -1)+b]=2x +17,即kx +5k +b =2x +17,所以⎩⎪⎨⎪⎧k =2,5k +b =17,解得⎩⎪⎨⎪⎧k =2,b =7, 所以f(x)=2x +7.(2) 因为2f(x)+f ⎝⎛⎭⎫1x =3x ,①用1x 代替x ,则2f ⎝⎛⎭⎫1x +f(x)=3x,② 由①×2-②得,4f(x)-f(x)=6x -3x, 即3f(x)=6x -3x ,所以f(x)=2x -1x.(1) 已知f(x) 为二次函数,且满足f(0)=0,f(x +1)-f(x)=x +1,求函数f(x)的解析式;(2) 设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x 2+x +2,求函数f(x)和g(x)的解析式.解析:(1) 由题意可设f(x)=ax 2+bx.因为f(x +1)-f(x)=x +1,所以a(x +1)2+b(x +1)-(ax 2+bx)=x +1,整理得2ax +a +b =x +1,所以⎩⎪⎨⎪⎧2a =1,a +b =1,解得⎩⎨⎧a =12,b =12,所以f(x)=12x 2+12x. (2) 由题意可知f(x)=f(-x),g(-x)=-g(x).因为f(x)+g(x)=x 2+x +2,①所以f(-x)+g(-x)=x 2-x +2,即f(x)-g(x)=x 2-x +2.②由①+②得,2f(x)=2x 2+4,即f(x)=x 2+2,由①-②得,2g(x)=2x ,即g(x)=x ,所以f(x)=x 2+2,g(x)=x.考向❷ 分段函数的解析式例2 如图是函数f(x)的图象,OC 段是射线,曲线OBA 是抛物线的一部分,试写出f(x)的函数表达式.解析:当x ≤0时,由图象过点(-2,-2),(0,0)可知,直线OC 的斜率为1,所以射线OC 的函数表达式为y =x(x ≤0);当x>0时,f(x)是二次函数,所以设f(x)=a(x -1)2+b.由图可知,则⎩⎪⎨⎪⎧a ×(1-1)2+b =-1,a ×(2-1)2+b =0, 解得⎩⎪⎨⎪⎧a =1,b =-1,所以f(x)=(x -1)2-1=x 2-2x.故f(x)=⎩⎪⎨⎪⎧x , x<0,x 2-2x , x ≥0.设函数f(x)=|x +1|+|x -2|.(1) 将f(x)写成分段函数,并作出y =f(x)的图象;(2) 解不等式f(x)>5,并求出f(x)的最小值.解析:(1) 当x +1<0,即x<-1时,x -2<0,所以f(x)=-x -1-x +2=-2x +1;当x +1≥0且x -2≤0,即-1≤x ≤2时,f(x)=x +1-x +2=3;当x -2>0,即x>2时,f(x)=x +1+x -2=2x -1,所以y =f(x)=⎩⎪⎨⎪⎧1-2x ,x<-1,3, -1≤x ≤2,2x -1, x>2.函数图象为(2) 由题意可知,当x<-1时,1-2x>5,解得x<-2;当x>2时,2x -1>5,解得x>3, 所以f(x)>5的解集为(-∞,-2)∪(3,+∞).由图可知,f(x)的最小值为3.考向❸ 由不等式恒成立求函数解析式例3 已知二次函数f(x)=ax 2+bx +c 的图象经过点(-2,0)且不等式2x ≤f(x)≤12x 2+2对∀x ∈R 恒成立.(1) 求函数f (x )的解析式;(2) 若对∀x ∈[-1,1],不等式f (x +t )<f ⎝⎛⎭⎫x 3恒成立,求实数t 的取值范围.解析:(1) 因为二次函数f (x )=ax 2+bx +c 的图象过点(-2,0),所以4a -2b +c =0.①因为不等式2x ≤f (x )≤12x 2+2对∀x ∈R 恒成立, 所以当x =2时也成立,即4≤4a +2b +c ≤4,即4a +2b +c =4.②由①②求得b =1,4a +c =2,所以f (x )=ax 2+x +2-4a ,所以2x ≤ax 2+x +2-4a ≤12x 2+2, 即⎩⎪⎨⎪⎧ax 2-x +2-4a ≥0,⎝⎛⎭⎫a -12x 2+x -4a ≤0恒成立, 故⎩⎪⎨⎪⎧a >0,Δ=1-4a (2-4a )≤0,a -12<0,Δ=1-4⎝⎛⎭⎫a -12·(-4a )≤0,解得a =14,故c =1, 即函数f (x )的解析式为f (x )=14x 2+x +1. (2) 因为对∀x ∈[-1,1],不等式f (x +t )<f ⎝⎛⎭⎫x 3恒成立,即14(x +t +2)2<136(x +6)2恒成立,亦可化得⎝⎛⎭⎫x +t +22-x +66⎝⎛⎭⎫x +t +22+x +66<0,解得-4x +123<t <-2x 3. 又因为x ∈[-1,1],所以-83<t <-23, 故实数t 的取值范围为⎝⎛⎭⎫-83,-23.自测反馈1. 已知函数f(x)的定义域为(0,+∞),且f(x)=2f ⎝⎛⎭⎫1x ·x -1,则f(x)=33. 解析:因为f(x)=2f ⎝⎛⎭⎫1x ·x -1①,用1x代替x 得f ⎝⎛⎭⎫1x =2f(x)·1x -1②, 将②代入①得f(x)=2⎝⎛⎭⎫2f (x )·1x -1·x -1,化简得f(x)=4f(x)-2x -1,即f(x)=23x +13. 2. 若正比例函数f(x)满足f(f(x))=4x ,则f(x)=__±2x__.解析:根据题意可设f(x)=kx ,因为f(f(x))=4x ,所以k(kx)=4x ,即k 2x =4x ,所以k 2=4,解得k =±2,所以f(x)=±2x.3. 已知f(x 2-1)=x 4+x 2-2,则f(x)=__x 2+3x(x ≥-1)__.解析:令x 2-1=t(t ≥-1),则x 2=t +1,所以f(t)=(t +1)2+t +1-2=t 2+3t ,所以f(x)=x 2+3x(x ≥-1).4. 已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a , x<1,-x -2a , x ≥1,若f(1-a)=f(1+a),则实数a 的值为__-34__. 解析:因为a ≠0,f(1-a)=f(1+a).当a>0时,1-a<1<1+a ,则f(1-a)=2(1-a)+a =2-a ,f(1+a)=-(1+a)-2a =-1-3a ,所以2-a =-1-3a ,解得a =-32(舍去); 当a<0时,1+a<1<1-a ,则f(1-a)=-(1-a)-2a =-a -1,f(1+a)=2(1+a)+a =3a +2,所以-a -1=3a +2,解得a =-34. 综上所述,a 的值为-34. 5. 已知函数f(x)=⎩⎪⎨⎪⎧-x -1,-1≤x<0,-x +1,0<x ≤1,则f(x)-f(-x)>-1的解集为__⎣⎡⎭⎫-1,-12∪(0,1]__.解析:当-1≤x<0时,0<-x ≤1,所以f(x)-f(-x)=-x -1-(x +1)>-1,即-2x -2>-1,解得x<-12. 又因为-1≤x<0,所以-1≤x<-12; 当0<x ≤1时,-1≤-x<0, 所以f(x)-f(-x)=-x +1-(x -1)>-1,即-2x +2>-1,解得x<32. 又因为0<x ≤1,所以0<x ≤1.综上所述,原不等式的解集为⎣⎡⎭⎫-1,-12∪(0,1].1. 要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域,定义域是使式子有意义的x 的取值范围,同时也要注意变量的实际意义.2. 准确理解分段函数的定义、特点及应用.分段函数是指函数的表达式是分段表示的,它是一个函数.3. 你还有哪些体悟,写下来:。
2020年江苏省高中数学一轮复习南方凤凰台基础版课件第二章第9课二次函数
分类解密
求二次函数的解析式 已知二次函数 f(x)的二次项系数为 a,且 f(x)>-x 的解集为{x|1<x<2},方程 f(x)+2a=0 有两个相等的实数根,求 f(x)的解析式.
第14页
栏目导航
高考总复习 一轮复习导学案 ·数学
【解答】设 f(x)=ax2+bx+c(a≠0), 则 f(x)>-x 等价于 ax2+(b+1)x+c>0. 因为 f(x)>-x 的解集为{x|1<x<2},
a<0, 所以1+2=-b+a 1,
1×2=ac,
a<0, 所以b=-3a-1,
c=2a,
所以 f(x)=ax2-(3a+1)x+2a.
第15页
栏目导航
第二章 函数与基本初等函数Ⅰ
高考总复习 一轮复习导学案 ·数学
第6页
栏目导航
ห้องสมุดไป่ตู้
高考总复习 一轮复习导学案 ·数学
第二章 函数与基本初等函数Ⅰ
4. (必修 1P37 习题 3 改编)若关于 x 的方程 x2+mx+1=0 有两个不相等的实数根, 则实数 m 的取值范围是__(-__∞__,-__2_)_∪__(_2_,+__∞__) ______.
【解析】由 Δ=m2-4>0,得 m∈(-∞,-2)∪(2,+∞).
Δ=b2-4ac≥0, m<-2ba<n, fm>0, (2) 若 f(x)=0 在(m,n)(m<n)内有两个实数根,则需满足__f__n_>__0_.___________
第10页
栏目导航
高考总复习 一轮复习导学案 ·数学
第二章 函数与基本初等函数Ⅰ
(3) 设 x1,x2 为方程 f(x)=0 的两个实数根:①若 x1<m<x2,则 f(m) _____<______0;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
____第9课__二__次__函__数____
1. 熟练掌握二次函数的图象和性质.
2. 掌握二次函数、一元二次方程、一元二次不等式之间的联系,会用二次函数的图象和性质讨论一元二次方程根的分布.
3. 能解决与二次函数有关的一些综合性问题.
1. 二次函数的三种形式:一般式、顶点式和两根式,会根据条件选择合适的形式.
2. 二次函数的图象是抛物线,具有许多优美的性质,如对称性、单调性等,结合这些图象特征解决二次函数的问题,可以化难为易,形象直观.
3. 二次函数性质的研究:首先根据二次函数的图象开口向上或向下,分a>0或a<0两种情况分类考虑;同时要特别关注二次函数的对称轴位置,即对称轴与所给区间的位置关系,这样可以得到二次函数的变化情况.此外要注意c 的值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.
4. 三个二次(二次函数、一元二次方程、一元二次不等式)以二次函数为核心,即二次函数图象与横轴的交点和在横轴的上方、下方.
基础诊断
1. 若函数y =x 2+(a +2)x +3(x ∈[a ,b])的图象关于直线x =1对称,则b =__6__.
解析:由题意得-a +22=1,解得a =-4,且a +b 2=1,即-4+b 2
=1,解得b =6. 2. 已知二次函数f(x)=ax 2+bx +c 且f(x 1)=f(x 2),则f ⎝⎛⎭⎫x 1+x 22=__4ac -b 2
4a __. 解析:由题意可知,x 1+x 22=-b 2a
, 所以f ⎝⎛⎭⎫x 1+x 22=a·⎝⎛⎭⎫-b 2a 2+b·⎝⎛⎭⎫-b 2a +c =4ac -b 2
4a . 3. 已知二次函数y =x 2-2x +3在区间[0,m]上有最大值3,最小值2,则实数m 的取值范围为__[1,2]__.
解析:由题意得函数y =x 2-2x +3图象的对称轴为直线x =1.当x =0时,y =3,当x =1时,y =2,
所以⎩⎪⎨⎪⎧m ≥1,m 2-2m +3≤3,解得1≤m ≤2, 所以m 的取值范围是[1,2].
4. 如果方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是__(-∞,-3)__.
解析:设f(x)=x 2+(2m -1)x +4-2m ,由题意得,
⎩
⎪⎨⎪⎧Δ=(2m -1)2-4(4-2m )>0,f (2)=4+2(2m -1)+4-2m<0,
解得⎩⎪⎨⎪⎧m<-52或m>32,m<-3,
所以m<-3,故实数m 的取值范围是(-∞,-3).
范例导航
考向❶ 通过分类讨论对称轴与区间的位置关系,利用数形结合求最值
例1 求函数f(x)=x 2-2ax +2(x ∈[2,4])的最小值.
解析:f(x)图象的对称轴是直线x =a ,可分以下三种情况:
①当a <2时,f(x)在[2,4]上为增函数,所以f(x)min =f(2)=6-4a ;
②当2≤a ≤4时,f(x)min =f(a)=2-a 2;
③当a >4时,f(x)在[2,4]上为减函数,所以f(x)min =f(4)=18-8a.
综上所述,f(x)min =⎩⎪⎨⎪⎧6-4a , a<2,2-a 2, 2≤a ≤4,18-8a , a>4.
已知函数
f(x)=x 2-2x +2(x ∈[t ,t +1])的最小值为g(t),求g(t)的表达式.
解析:由题意得,f(x)=(x -1)2+1.
①当t +1<1,即t<0时,g(t)=f(t +1)=t 2+1;
②当t ≤1≤t +1,即0≤t ≤1时,g(t)=f(1)=1;
③当t>1时,g(t)=f(t)=t 2-2t +2.
综上所述,g(t)=⎩⎪⎨⎪⎧t 2+1, t<0,1, 0≤t ≤1,t 2-2t +2, t>1.
考向❷ 利用三个二次之间的关系,以二次函数为核心解决问题
例2 已知二次函数y =f(x)(x ∈R)的图象过点(0,-3),且f (x )>0的解集为(1,3).
(1) 若函数f (x )=f (x )-mx 在区间(0,1)上单调递增,求实数m 的取值范围;
(2) 求函数G (x )=f (sin x )在x ∈⎣⎡⎦
⎤0,π2上的最值. 解析:(1) 因为f (x )>0的解集为(1,3),
所以二次函数与x 轴的交点为(1,0)和(3,0),
所以可设f (x )=a (x -1)(x -3).
又因为函数图象过点(0,-3),代入f (x )得3a =-3,解得a =-1,
所以f (x )=-(x -1)(x -3)=-x 2+4x -3,所以f (x )=-x 2+4x -3-mx =-x 2+(4-m )x -3.
因为函数f (x )在区间(0,1)上单调递增,
所以-4-m 2×(-1)
≥1,解得m ≤2, 故实数m 的取值范围是(-∞,2].
(2) 由题意得,G (x )=-sin 2x +4sin x -3=-(sin x -2)2+1.
因为x ∈⎣⎡⎦
⎤0,π2,所以sin x ∈[0,1], 所以当sin x =0时,G (x )min =-3;
当sin x =1时,G (x )max =0,
故函数G (x )的最大值为0,最小值为-3.
若关于x 的方程
sin 2x +cos x +a =0有实数根,试确定实数a 的取值范围. 解析:由已知得a =-sin 2x -cos x =cos 2x -cos x -1=⎝⎛⎭⎫cos x -122
-54. 因为-1≤cos x ≤1,
所以a 的取值范围是⎣⎡⎦
⎤-54,1.
考向❸ 与绝对值综合的二次函数问题
例3 已知a ∈R ,函数f (x )=x |x -a |.
(1) 当a =2时,写出函数y =f (x )的单调增区间;
(2) 当a >2时,求函数y =f (x )在区间[1,2]上的最小值;
(3) 设a ≠0,函数y =f (x )在区间(m ,n )上既有最大值又有最小值,请分别求出m ,n 的取值范围(用a 表示).
解析:(1) 当a =2时,
f (x )=x |x -2|=⎩
⎪⎨⎪⎧x (x -2),x ≥2,x (2-x ), x <2. 由图象可知,y =f (x )的单调增区间为(-∞,1],[2,+∞).
(2) 因为a >2,x ∈[1,2],所以f (x )=x (a -x )=-x 2+ax =-⎝⎛⎭⎫x -a 22
+a 24. 当1<a 2≤32,即2<a ≤3时,f (x )min =f (2)=2a -4;当a 2>32
,即a >3时,f (x )min =f (1)=a -1, 所以f (x )min =⎩
⎪⎨⎪⎧2a -4,2<a ≤3,a -1, a >3. (3) f (x )=⎩
⎪⎨⎪⎧x (x -a ),x ≥a ,x (a -x ),x <a . ①当a >0时,图象如图1所示.
由⎩⎪⎨⎪⎧y =a 24,y =x (x -a ),
得x =1+22a , 所以0≤m <a 2,a <n ≤ 2+12
a . ②当a <0时,图象如图2所示.
由⎩⎪⎨⎪⎧y =-a 24,y =x (a -x ),
得x =1+22a , 所以2+12a ≤m <a ,a 2<n ≤0. 图1
图2
自测反馈 1. 已知f(x)=ax 2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a ,b 的值为__13
,0__. 解析:由题意得,f(-x)=f(x),即ax 2-bx +3a +b =ax 2+bx +3a +b ,即2bx =0对任
意x 恒成立,所以b =0.又因为a -1=-2a ,解得a =13,所以a ,b 的值分别为13
,0. 2. 函数y =-x 2+2||x +3的单调减区间是__[-1,0]和[1,+∞)__.
解析:令f(x)=-x 2+2|x|+3,
所以f(x)=⎩
⎪⎨⎪⎧-x 2+2x +3,x ≥0,-x 2-2x +3, x<0, 即f(x)=⎩
⎪⎨⎪⎧-(x -1)2+4,x ≥0,-(x +1)2+4, x<0, 所以当x ≥0时,函数f(x)的减区间为(1,+∞);当x<0时,函数f(x)的减区间为(-1,0),故单调减区间为(-1,0)和(1,+∞).
3. 若函数f(x)=x 2-2x +1在区间[]a ,a +2上的最大值为4,则a 的值为__-1或1__. 解析:由题意得,f(x)=x 2-2x +1=(x -1)2,对称轴为直线x =1.当a ≥0时,f(a +2)=4,即(a +2)2-2(a +2)+1=4,解得a =1或a =-3(舍去);
当a<0时,f(a)=4,即a 2-2a +1=4,解得a =-1或a =3(舍去).
综上,a 的值为1或-1.
4. 若不等式x 4+2x 2+a 2-a -2≥0对任意实数x 恒成立,则实数a 的取值范围是__(-∞,-1]∪[2,+∞)__.
解析:由题意得x 4+2x 2+a 2-a -2≥0,即(x 2+1)2≥-a 2+a +3,所以-a 2+a +3≤1,解得a ≥2或a ≤-1,
所以实数a 的取值范围是(-∞,-1]∪[2,+∞).
1. 求二次函数在给定区间上的值域时,要注意对称轴和给定区间的位置关系,必要时进行讨论.
2. 抓住三个二次的核心,运用二次函数的图象和性质解决有关二次型问题.
3. 你还有哪些体悟,写下来:。