中考总复习数学竞赛辅导讲义及习题解答 第6讲 转化—可化为一元二次方程的方程
九年级数学中考复习课件:专题一元二次方程
知识 结构 一般情势 ax2+bx+c=0(a≠0)
一 元 二 次 方
解法
直接开平方法 (x a)2 bb 0
配方法 公式法
x2
bx
b 2
2
x
b 2 2
cc
0
x b b2 4ac 0
2a
因式分解法 (x a)(x b) 0
程
根的判别式: b2 4ac
(2)3x²- y -1=0
(4)x
+
1 x
=0
例2:已知方程 2x m 1 2x 3 是关于x的一
元二次方程,则m=__________
【变式训练】
关于x的方程(a 1) xa2 2a1 x 5 0
是一元二次方程,则a=__________
• 二.一元二次方程的解法 • 1.直接开平方法 2. 配方法
根与系数的关系:x1
x2
b a
,
x1
x2
c a
应用 实际应用
思想方法 转化思想;整体思想;配方法、换元法
判断是否是一元二次方程的条件: 一元、二次、整式方程
ax2+bx+c=0:是一元二次方程的条件: a≠0
例:1、判断下列方程是不是一元二次方程
(1)4x- 1 x²+
2
3 =0
(3)ax²+bx+c=0
关键:方程的两边同时加上一次项系数一半的平方 注意:如果二次项系数不是1的要先把二次项系数转化为1
• 二.一元二次方程的解法 • 1.直接开平方法
2. 配方法 3. 公式法
基本步骤:
x= -b b2 4ac(b2 4ac 0) 2a
2021年中考数学复习第6讲 一元二次方程及其应用(精讲练习)
第6讲一元二次方程及其应用一、选择题1.(2020·临沂)一元二次方程x2-4x-8=0的解是(B)A.x1=-2+2 3 ,x2=-2-2 3B.x1=2+2 3 ,x2=2-2 3C.x1=2+2 2 ,x2=2-2 2D.x1=2 3 ,x2=-2 32.(2020·泰安)将一元二次方程x2-8x-5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是(A)A.-4,21 B.-4,11C.4,21 D.-8,693.(2020·河南)定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为(A)A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根4.(2020·铜仁)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于(B)A.7 B.7或6C.6或-7 D.65.(2020·鄂州)目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G 用户2万户,计划到2021年底全市5G用户数累计达到3.92万户.设全市5G用户数年平均增长率为x,则x值为(C)A.20% B.30% C.40% D.50%6.(2020·随州)将关于x的一元二次方程x2-px+q=0变形为x2=px-q,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,又如x3=x·x2=x(px-q)=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:x2-x-1=0,且x>0,则x4-2x3+3x的值为(C)A.1- 5 B.3- 5C.1+ 5 D.3+ 5二、填空题7.(2020·江西)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为__-2__.8.(2020·荆门)已知关于x的一元二次方程x2-4mx+3m2=0(m>0)的一个根比另一个根大2,则m的值为__1__.9.(2020·邵阳)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为__x(x+12)=864__.10.(2020·山西)如图是一张长12 cm ,宽10 cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24 cm 2的有盖的长方体铁盒.则剪去的正方形的边长为__2__ cm .三、解答题11.(2020·无锡)解方程:x 2+x -1=0.解:x 1=-1+52 ,x 2=-1-52.12.关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.解:∵关于x 的方程x 2-2x +2m -1=0有实数根,∴b 2-4ac =4-4(2m -1)≥0,解得:m ≤1,∵m 为正整数,∴m =1,∴x 2-2x +1=0,则(x -1)2=0,解得:x 1=x 2=1.13.(2020·上海)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8,9月份营业额的月增长率为x ,依题意,得:350(1+x)2=504, 解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.14.(丽水一模)新定义:如果一个矩形,它的周长和面积分别是另外一个矩形的周长和面积的一半,则这个矩形是另一个矩形的“减半”矩形.(1)已知矩形ABCD 的长12、宽2,矩形EFGH 的长4、宽3,试说明矩形EFGH 是矩形ABCD 的“减半”矩形.(2)矩形的长和宽分别为2,1时,它是否存在“减半”矩形?请作出判断,并请说明理由.解:(1)矩形EFGH 的周长为14,面积为12,矩形ABCD 的周长为28,面积为24,所以矩形EFGH 是矩形ABCD 的“减半”矩形;(2)不存在.理由如下:假设存在,不妨设“减半”矩形的长和宽分别为x ,y ,则⎩⎪⎨⎪⎧x +y =32,xy =1,可得x 2-32 x +1=0,Δ=b 2-4ac =94 -4=-74 <0,所以不存在.15.如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD.(1)若∠A =28°,求∠ACD 的度数.(2)设BC =a ,AC =b.①线段AD 的长是方程x 2+2ax -b 2=0的一个根吗?说明理由.②若AD =EC ,求a b的值.解:(1)∵∠ACB =90°,∠A =28°,∴∠B =62°,∵BD =BC ,∴∠BCD =∠BDC =59°,∴∠ACD =90°-∠BCD =31°;(2)①由勾股定理得,AB =AC 2+BC 2 =a 2+b 2 ,∴AD =a 2+b 2 -a ,解方程x 2+2ax -b 2=0得,x =-2a±4a 2+4b 22=±a 2+b 2 -a ,∴线段AD 的长是方程x 2+2ax -b 2=0的一个根;②∵AD =AE ,∴AE =EC =b 2 ,由勾股定理得,a 2+b 2=(12 b +a)2,整理得,a b =34.。
2024年中考广东省数学专用梳理一轮复习第6课 一元二次方程的解法及应用课件
(A)
3. (1)已知实数x1,x2是方程x2+x-1=0的两根,则x1x2 =___-__1____;
(2)(2023·上海)已知关于x的一元二次方程ax2+6x+1= 0没有实数根,那么a的取值范围是___a_>__9___.
4. 解方程:2x2-5x+3=0.
解:因式分解,得(2x-3)(x-1)=0,
1 4
且m≠0.
(2)已知关于x的方程[x,2x-1]*[mx+1,m]=0有两个 实数根,求m的取值范围.
解:依题意,得x(mx+1)-m(2x-1)=0,
整理,得mx2+(1-2m)x+m=0,
∵关于x的方程[x,2x-1]*[mx+1,m]=0有两个实数根,
∴Δ=(1-2m)2-4m·m≥0且m≠0,
解得m≤
根的倒数和为1,则m的值为____2____.
14. (2023·遂宁)我们规定:对于任意实数a,b,c,d有[a, b]*[c,d]=ac-bd,其中等式右边是通常的乘法和减 法运算,如:[3,2]*[5,1]=3×5-2×1=13. (1)求[-4,3]*[2,-6]的值; 解:[-4,3]*[2,-6]=-4×2-3×(-6)=10;
9. (2023·黑龙江)如图,在长为100 m,宽为50 m的矩形 空地上修筑四条宽度相等的小路,若余下的部分全部 种上花卉,且花圃的面积是 3 600 m2,求小路的宽是 __5__m____.
10. (2023·武威)关于x的一元二次方程x2+2x+4c=0有两 个不相等的实数根,则c=__-__2_(答__案__不__唯__一__)__(写出一 个满足条件的值).
8. (2023·荆州)已知关于x的一元二次方程kx2-(2k+4)x+ k-6=0有两个不相等的实数根. (1)求k的取值范围;
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程一元二次方程是初中数学中常见的一种形式,解决一些实际问题时常常会遇到需要将问题转化为一元二次方程的情况。
本讲将介绍如何将一些方程转化为一元二次方程进行求解。
一、将线性方程转化为一元二次方程1.将方程2x+5=0转化为一元二次方程。
解答:通过观察发现方程左边的2x恰好是x的一次方,所以可以将整个方程看作是一元二次方程的标准形式。
设转化后的方程为 ax^2 + bx + c = 0,那么将 2x + 5 = 0 转化为一元二次方程的形式就是将方程两边同时乘以一个合适的倍数得到的。
我们可以将方程两边同时乘以2,得到4x+10=0,这就是将方程2x+5=0转化为一元二次方程的结果。
2.将方程3(x-1)-2(x+2)=0转化为一元二次方程。
解答:首先将方程进行化简,得到3x-3-2x-4=0。
接下来,我们将该方程转化为一元二次方程。
将方程两边同时合并同类项,得到x-7=0。
再将方程两边同时乘以一个合适的倍数,得到2(x-7)=0。
这就是将方程3(x-1)-2(x+2)=0转化为一元二次方程的结果。
二、将含有多个未知量的方程转化为一元二次方程1.将x+y=6转化为一元二次方程。
解答:在这个例子中,我们需要将两个未知量x和y合并成一个只含有一个未知量的方程。
我们可以通过将x+y的形式进行平方处理来得到一个一元二次方程。
先将原方程两边同时平方,得到 (x + y)^2 = 6^2、这里需要使用平方公式:(a + b)^2 = a^2 + 2ab + b^2将 (x + y)^2 展开,得到 x^2 + 2xy + y^2 = 36、这就是将方程 x + y = 6 转化为一元二次方程的结果。
2. 将 x^2 + xy + y^2 = 4 转化为一元二次方程。
解答:在这个例子中,我们需要将含有多个未知量的方程转化为只含有一个未知量的方程。
事实上,该方程就是一个一元二次方程了,但我们可以通过配方的方式将其转化为另一种形式。
新人教版九年级数学导学案课件:第6课时解一元二次方程习题课
解:x1=2,x2=4.
C组
9. 三角形两边长分别为2和4,第三边是方程x2-6x+8=0
的解,则这个三角形的周长是
( A)
A. 10 B. 8或10
C. 8
D. 8和10
10. 若代数式4x2-2x-5与-3x2-3的值互为相反数,求x
的值. 解:由题意,得4x2-2x-5+(-3x2-3)=0.
试利用十字相乘法解下列方程:
(1)x2+4x+3=0;
(2)x2+5x-6=0.
解:x1=-1,x2=-3.
解:x1=-6,x2=1.
变式训练
2. 用十字相乘法解下列方程:
(1)x2-4x-12=0;
(2)x2+5x+6=0;
解:x1=6 ,x2=-2.
解:x1=-2,x2=-3.
(3)x2-x-90=0;
(1)x2-2=6;
(2)x2-6x=2;
解:x1=2 ,x2=-2 . 解:x1=3+ ,x2=3- .
(3)2x2-4x-3=0;
解:x1=
,x2=
.
(4)3x(x-2)=x-2. 解:x1= 2 ,x2= .
B组 7. 解方程:2x2+1=2 x.
解:x1=
,x2=
.
8. 解方程:(2x-1)2=x(3x+2)-7.
(4)x2+3x-18=0.
解:x1=10 ,x2=-9.
解:x1=-6,x2=3.
分层训练
A组
3. 方程x2-1=0的根为
(
A. x1=1,x2=-1 C. x=1
B. x=0 D. x=-1
初中数学竞赛专题选讲 一元二次方程的根(含答案)
初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。
一元二次方程解法讲义
专 题一元二次方程的解法教学目标1. 理解一元二次方程及其有关概念2. 会解一元二次方程,并能熟练运用四种方法去解重点、难点1. 一元二次方程的判定,求根公式2. 一元二次方程的解法与应用考点及考试要求1. 一元二次方程的定义,一般形式,配方式2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去3. 一元二次方程在实际问题中的综合应用教学内容考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax注:当b=0时可化为02=+c ax 这是一元二次方程的配方式(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:02=++c bx ax 时,应满足(a≠0)(4)难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为。
初中数学竞赛辅导讲义及习题解答第6讲转化—可化为一元二次方程的方程
第六讲转化—可化为一元二次方程的方程数学(家)特有的思维方式是什么 假设从量的方面考虑,通常运用符号进行形式化抽象,在一个概念和公理体系内实施推理计算,假设从“转化〞这个侧面又该如何答复 匈牙利女数学家路莎·彼得在 无穷的玩艺 一书中写道:“作为数学家的思维来说是很典型的,他们往往不对问题进行正面攻击,而是不断地将它变形,直至把它转化为已经能够解决的问题.〞转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的根本思想.解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解.【例题求解】【例1】 假设0515285222=-+-+-x x x x ,那么1522--x x 的值为. 思路点拨 视x x 522-为整体,令y x x =-522,用换元法求出y 即可.【例2】 假设方程x x p -=-2有两个不相等的实数根,那么实数p 的取值范围是( )A .1->pB .0≤pC .01≤<-pD .01<≤-p思路点拨 通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注02≥-=-x x p 的隐含制约.注:转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到以下不同途径的转化:实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等.解以下方程:〔1〕121193482232222=+-++-++x x x x x x xx ; (2)1)1998()1999(33=-+-x x ;〔3〕42)113(1132=+-++-x x x x x x . 按照常规思路求解繁难,应恰当转化,对于(1),利用倒数关系换元;对于(2),从1)1998()1999(=-+-x x 受到启示;对于(3),设113+-=x x y ,那么可导出y x +、xy 的结果. 注:换元是建立在观察根底上的,换元不拘泥于一元代换,可根据问题的特点,进行多元代换.【例4】 假设关于x 的方程xkx x x x x k 1122+=---只有一个解(相等的解也算作一个),试求k 的值与方程的解.思路点拨 先将分式方程转化为整式方程,把分式方程解的讨论转化为整式方程的解的讨论,“只有一个解〞内涵丰富,在全面分析的根底上求出k 的值.注:分式方程转化为整式方程不一定是等价转化,有可能产生增根,分式方程只有一个解,可能足转化后所得的整式方程只有一个解,也可能是转化后的整式方程有两个解,而其中一个是原方程的增根,故分式方程的解的讨论,要运用判别式、增根等知识全面分析.【例5】 关于x 的方程655)(2-=--+xa x x a x 有两个根相等,求a 的值.思路点拨 通过换元可得到两个关于x 的含参数a 的一元二次方程,利用判别式求出a 的值.注:运用根的判别式延伸到分式方程、高次方程根的情况的探讨,是近年中考、竞赛中一类新题型,尽管这种探讨仍以一元二次方程的根为根底,但对转换能力、思维周密提出了较高要求.学历训练1.假设关于x 的方程0111=--+x ax 有增根,那么a 的值为;假设关于x 的方程122-=-+x a x 曾=一1的解为正数,那么a 的取值范围是.2.解方程121)10)(9(1)2)(1(1)1(1)1(1=+++++++++-x x x x x x x x 得. 3.方程m x m x -=+2123有一个根是2,那么m =. 4.方程9733322=-+-+x x x x 的全体实数根的积为( )A .60B .一60C .10D .一105.解关于x 的方程1112+=---x x x k x x 不会产生增根,那么是的值是( ) A .2 B .1 C .不为2或一2 D .无法确定6.实数x 满足01122=+++x x xx ,那么x x 1+的值为( ) A .1或一2 B .一1或2 C .1 D .一27.(1)如表,方程1、方程2、方程3、……,是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的空格处;(2)假设方程11=--bx x a (b a >)的解是1x =6,2x =10,求a 、b 的值.该方程是不是(1)中所给的一列方程中的一个方程 如果是,它是第几个方程8.解以下方程:〔1〕619122112222=++++++++x x x x x x x ; 〔2〕081318218111222=--+-++-+x x x x x x ; (3)120)4)(3)(2)(1(=++++x x x x ;(4)1)1(3)1(222=+-+x x xx . 9.关于x 的方程02212222=-+-++m x x m x x ,其中m 为实数,当m 为何值时,方程恰有三个互不相等的实数根 求出这三个实数根.10.方程222121x x xx +=--的解是. 11.解方程214127165123112222=++++++++++x x x x x x x x 得. 12.方程87329821+++++=+++++x x x x x x x x 的解是. 13.假设关于x 的方程03121422=-+x x a 恰有两个不同的实数解,那么实数a 的取值范围是.14.解以下方程:(1)6)1)(43()76(2=+++x x x ;(2)222222)243()672()43(+-=+-+-+x x x x x x ;〔3〕3)1(22=++x x x ; 〔4〕310221=+++x x x. 15.当a 取何值时,方程2212212--+=+----x x a x x x x x 有负数解 16.01585234=+-+-x x x x ,求xx 1+的值. 17.:如图,四边形ABCD 为菱形,AF ⊥上AD 交BD 于E 点,交BC 于点F .(1)求证:AD 2=21 DE ×DB ; (2)过点E 作EG ⊥AE 交AB 于点G ,假设线段BE 、DE(BE<DE)的长为方程02322=+-m mx x (m>0)的两个根,且菱形ABCD 的面积为36,求EG 的长.参考答案。
初三上册数学直升班培优讲义学生版第2讲可化为一元二次方程的其他方程(学生版)
可化为一元二次方程的其他方程I -模块一可化为一元二次方程的高次方程模块二可转化为一元二次方程的分式方程模块三可化为一元二次方程的绝对值方程模块四可转化为一元二次方程的根式方程模块一可化为一元二次方程的高次方程在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法.1.因式分解法:如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式分解法.2 .整体换元法:在一个式子中要善于观察几个式子的关系,有某种特殊的关系如倒数、几倍、差值为常数、或者和为常数的,可以用整体换元法,实现降次的目的.模块二可化为一元二次方程的分式方程在遇到这类可转化为一元二次方程的分式方程时,通常有两种转化方法.1.去分母法:在遇到分式方程时,往往先去分母,即通分然后求解.2 .整体换元法:在一个分式方程中,如果有的式子含有某种特殊的关系如倒数、几倍、差值为常数、或者和为常数的时候可以考虑整体换元法,实现化简的目的.注意:在分式方程中,不管用什么方法解出来,最后一定要验根,因为要使得分式方程有意义, 分母不为0,在这个过程中可能产生增根.模块三可化为一元二次方程的绝对值方程在遇到这种可转化为一元二次方程的绝对值方程时,通常有两种转化方法.1.分类讨论法:遇到绝对值方程时,可以先去绝对值,而去绝对值,就意味着要分类讨论.第一步,找出分段点,考虑当绝对值符号内的式子等于0时,x的取值,由此划分x取值.第二步,根据x取值讨论去绝对值,得到相应转化的一元二次方程.第三步,用合适的方法求解,但是解得的解应该在讨论的x取值内.第四步,依次写出满足绝对值方程的所有根.2 .整体换元法:在遇到一个特定的方程时,如果分类讨论,虽然可行但较为繁琐,可以考虑用整体换元法.注意:在绝对值方程中,要记着考虑绝对值的非负性.模块四可转化为一元二次方程的根式方程在遇到这类可转化为一元二次方程的根式方程时,通常有两种转化方法.1.两边平方法:等式的两边同时平方,然后化简得到相应的一元二次方程.2 .整体换元法:在含根式方程的一个方程中,如果几个式子存在特殊的关系,可以考虑整体换元法.特别注意:在根式中解的时候,解一定要使得根号下非负;在整体换元的时候要考虑到换的元的取值范围内,在取值范围内的解才有意义,最后也要像分式方程那样进行验根.0 模块一可化为一元二次方程的高次方程解方程:(1) x(2)(x(3)(x xx ) x xx) (x )=模块二可转化为一元二次方程的分式方程解分式方程:(1)-x x(X )xxxx xXXX模块三可化为一元二次方程的绝对值方程IIUJ(2) (x )(x ) x可转化为一元二次方程的根式方程IIIJ 解方程:(1)x解方程:• x x x练1解方程:(x x )(x x)xx x(X )x x(3) x -解方程:(1)x x x x (2)x 2 x 2 x +2 x 29x+演练5」解方程:x |x| |x|x。
初中九年级数学竞赛培优讲义全套专题07 一元二次方程的应用-精选
专题07 一元二次方程的应用阅读与思考一元二次方程是解数学问题的有力工具,许多数学问题都可转化为解一元二次方程、研究一元二次方程根的性质等而获解. 现阶段,一元二次方程的应用主要有以下两方面: 1. 求代数式的值;2. 列二次方程解应用题.从本质上讲,列二次方程解应用题与前面我们已经学过的列一元二次方程解应用题没有区别,通常都要经过设、列、解、答等四个步骤,解题的关键是寻找实际问题中的等量关系. 特别需要注意的是,列出的一元二次方程一般会有两个不同的实数根,所以在检验时应特别注意,很可能其中有不符合实际问题的根,必须舍去.例题与求解【例1】 甲、乙两地分别在河的上、下游,每天各有一班船准点以匀速从两地对开,通常它们总在11时于途中相遇,一天乙地的船因故晚发了40分钟,结果两船在上午11时15分在途中相遇,已知甲地开出的船在静水中的速度数值为44千米/时,而乙地开出的船在静水中的速度为水流速度ν千米/时数值的平方,则ν的值为___________.(安徽省竞赛试题)解题思路:利用甲船15分钟所行路程是乙船(40-15)分钟所行路程建立方程.【例2】 自然数n 满足()()1616247222222-+--=--n n n n n n ,这样的n 的个数是( )A .1个B .2个C .3个D .4个 (江苏省竞赛试题) 解题思路:运用幂的性质,将问题转化为解方程.【例3】 如图,在平面直角坐标系中,直线1+=x y 与343+-=x y 交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1) 求点A ,B ,C 的坐标;(2) 当△CBD 为等腰三角形时,求点D 的坐标.(太原市中考试题) 解题思路:对于(2),利用“腰相等”建立方程,解题的关键是分类讨论.yx BCAO【例4】如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在直角边AC上(点E与A,C两点均不重合).;(1)若点F在斜边AB上,且EF平分Rt△ABC的周长,设AE=x,试用x的代数式表示SAEF(2)若点F在折线ABC上移动,试问:是否存在直线EF将Rt△ABC的周长和面积同时平分?若存在直线EF,则求出AE的长;若不存在直线EF,请说明理由. (常州市中考试题)解题思路:几何计算问题代数化,通过定量分析回答是否存在这样的直线EF,将线段的计算转化为解方程.【例5】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出. 每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?(绍兴市中考试题)解题思路:解题的关键是把复杂的数量关系分解成若干个小问题,再寻找各个小问题间量与量的关系.【例6】 已知:如图1,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1cm /s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2 cm /s .连结PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图2,连结PC ,并把△PQC 沿QC 翻折,得到四边形PQP ´C ,那么是否存在某一时刻t ,使四边形PQP ´C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. (青岛市中考试题) 解题思路:对于(3),先求出PQ 平分Rt △ACB 周长时t 的值,再看求出t 的值是否满足由面积关系建立的方程.图2图1P'ACB B CAQ PQ P能力训练A 级1. 某工厂把500万元资金投入新产品生产,第一年获得了一定的利润,在不抽调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获利润与投入生产资金的比)比第一年的利润率增加了8%.如果第二年的利润为112万元,为求第一年的利润率,可设它为x ,那么所列方程为_______________. (济南市中考试题)2. 如图,在长为10cm 、宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下阴影部分面积是原矩形面积的80%,则所截去的小正方形的边长是_________. (广东省中考试题)3. 有一旅客携带了30千克行李从南京禄口国际机场乘飞机去天津. 按民航规定,旅客最多可免费携带20千克行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客买了120元的行李票,则他的4. 已知实数x 、y 满足3,3243424=+=+y y xx ,则444y x +的值为( ) A.7 B.2131+ C.2137+ D. 5 5. 一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系式是()()125+--=t t h ,则运动员起跳到入水所用的时间是( )A. -5秒B. 1秒 C . -1秒 D. 2秒6. 某种出租车的收费标准时:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的最大值是( ) A. 11 B. 8 C . 7 D.57. 如图,菱形ABCD 的边长为a ,O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a =( ) A .215+ B . 215- C . 1 D .2DCABO第2题图 第7题图8. 我市向民族地区的某县赠送一批计算机,首批270台将于近期起运. 经与某物流公司联系,得知用A 型汽车若干辆刚好装完;用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B 型汽车比A 型汽车每辆车可多装15台,则A ,B 两种型号的汽车各能装计算机多少台? (2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元。
【一轮复习】2023年中考数真题分点透练-6 一元二次方程及其应用
第六讲一元二次方程及其应用【命题点1 一元二次方程及其解法】类型一解一元二次方程1.(2022•临沂)方程x2﹣2x﹣24=0的根是()A.x1=6,x2=4B.x1=6,x2=﹣4C.x1=﹣6,x2=4D.x1=﹣6,x2=﹣42.(2022•渝北区自主招生)按如图所示的程序运算,如果输出的y的值为9,则输入的x的值可能是()A.3B.﹣3C.﹣3或8D.83.(2022•甘肃)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6 4.(2022•雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为()A.﹣3B.0C.3D.95.(2022•聊城)用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A.B.C.2D.6.(2022•凉山州)解方程:x2﹣2x﹣3=0.7.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.8.(2022•贵阳)(1)a,b两个数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.类型二一元二次方程解的应用9.(2022•长寿区自主招生)关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.0 10.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是.11.(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.12.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是.【命题点2 一元二次方程根的判别式】类型一已知方程判断根的情况13.(2022•郴州)一元二次方程2x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根14.(2022•荆州)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根15.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定类型二根据方程根的情况求字母的取值(范围)16.(2022•攀枝花)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<B.m≤C.m≥﹣D.m>﹣17.(2022•西宁)关于x的一元二次方程2x2+x﹣k=0没有实数根,则k的取值范围是()A.k<﹣B.k≤﹣C.k>﹣D.k≥﹣18.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.19.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.【命题点3 一元二次方程根与系数的关系】20.(2022•益阳)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.221.(2022•贵港)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是()A.0,﹣2B.0,0C.﹣2,﹣2D.﹣2,0 22.(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.123.(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0B.﹣10C.3D.10 24.(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是.25.(2022•巴中)α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.26.(2022•眉山)设x1,x2是方程x2+2x﹣3=0的两个实数根,则x12+x22的值为.27.(2022•随州)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.28.(2022•凉山州)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.【命题点4 一元二次方程的实际应用】类型一变化率问题29.(2022•宁夏)受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是()A.6.2(1+x)2=8.9B.8.9(1+x)2=6.2C.6.2(1+x2)=8.9D.6.2(1+x)+6.2(1+x)2=8.930.(2022•南通)李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21% 31.(2022•眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?类型二传播、分裂问题32.(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.9类型三图形面积问题33.(2022•青海)如图,小明同学用一张长11cm,宽7cm的矩形纸板制作一个底面积为21cm2的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为xcm,则可列出关于x的方程为.34.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?类型四每每问题35.(2022•巴南区自主招生)某快餐店有A、B两种招牌套餐,A套餐的成本为10元/份,B套餐成本为12元/份,一份B套餐的售价比一份A套餐的售价贵3元钱,买6份A套餐与买5份B套餐花费一样.(1)求快餐店A套餐和B套餐的单价分别为多少元;(2)商家统计发现,每天平均可售A套餐300份和B套餐200份,如果将A套餐的单价每提高0.1元,则每天将少售出A套餐5份;如果将B套餐的单价每提高0.2元,则每天将少售出B套餐7份;该快餐店决定将两种套餐都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该商家每天销售这两种套餐获取的利润共2055元.36.(2022•北碚区自主招生)某水果店以每千克30元出售一批草莓.一位顾客购买了2千克草莓,水果店获得利润20元.(1)求草莓的进价为每千克多少元?(2)已知该水果店第一天以每千克30元的单价售出草莓30千克.为了让顾客获得实惠,第二天水果店决定把草莓降价促销,若在第一天销售单价的基础上每降价1元,第二天的草莓销量就会在第一天销量的基础上增加6千克.通过这两天的销售,这批草莓全部售完,水果店销售完这批草莓的利润一共为600元,求第二天的草莓每千克降价多少元?37.(2022•毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)A款钥匙扣B款钥匙扣类别价格进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?类型五其他类型38.(2022•荣昌区自主招生)“创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段,某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块80元,B型号地砖每块40元(1)若采购地砖的费用不超过3200元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了2560元就购得所需地砖,其中A型号地砖a块,求a的值.39.(2022•宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?答案与解析【命题点1 一元二次方程及其解法】类型一解一元二次方程1.(2022•临沂)方程x2﹣2x﹣24=0的根是()A.x1=6,x2=4B.x1=6,x2=﹣4C.x1=﹣6,x2=4D.x1=﹣6,x2=﹣4【答案】B【解答】解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0或x+4=0,解得x1=6,x2=﹣4,故选:B2.(2022•渝北区自主招生)按如图所示的程序运算,如果输出的y的值为9,则输入的x的值可能是()A.3B.﹣3C.﹣3或8D.8【答案】C【解答】解:根据新定义可知,x≤0时,9=x2,此时x=﹣3;x>0时,9=x+1,此时x=8,∴符合题意的x为﹣3或8.故选:C.3.(2022•甘肃)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6【答案】C【解答】解:x2﹣2x=2,x2﹣2x+1=2+1,即(x﹣1)2=3.故选:C.4.(2022•雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为()A.﹣3B.0C.3D.9【答案】C【解答】解:x2+6x+c=0,x2+6x=﹣c,x2+6x+9=﹣c+9,(x+3)2=﹣c+9.∵(x+3)2=2c,∴2c=﹣c+9,解得c=3,故选:C.5.(2022•聊城)用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A.B.C.2D.【答案】B【解答】解:∵3x2+6x﹣1=0,∴3x2+6x=1,x2+2x=,则x2+2x+1=,即(x+1)2=,∴a=1,b=,∴a+b=.故选:B.6.(2022•凉山州)解方程:x2﹣2x﹣3=0.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0或x+1=0∴x1=3,x2=﹣1.7.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.8.(2022•贵阳)(1)a,b两个数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x====﹣1±.∴x1=﹣1+,x2=﹣1﹣;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2.∴x1=2+2,x2=2﹣2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.类型二一元二次方程解的应用9.(2022•长寿区自主招生)关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.0【答案】C【解答】解:把x=0代入方程(m﹣1)x2+x+m2+2m﹣3=0,得m2+2m﹣3=0,解得m=1或﹣3.故选:C.10.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是.【答案】6【解答】解:∵a是一元二次方程x2+2x﹣3=0的一个根,∴a2+2a﹣3=0,∴a2+2a=3,∴2a2+4a=2(a2+2a)=2×3=6,故答案为:6.11.(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.【答案】1【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.12.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是.【答案】1【解答】解:把x=1代入方程mx2+nx﹣1=0得m+n﹣1=0,解得m+n=1.故答案为:1.【命题点2 一元二次方程根的判别式】类型一已知方程判断根的情况13.(2022•郴州)一元二次方程2x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解答】解:∵Δ=12﹣4×2×(﹣1)=1+8=9>0,∴一元二次方程2x2+x﹣1=0有两个不相等的实数根,故选:A.14.(2022•荆州)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根【答案】B【解答】解:∵关于x的方程x2﹣3kx﹣2=0根的判别式Δ=(﹣3k)2﹣4×1×(﹣2)=9k2+8>0,∴x2﹣3kx﹣2=0有两个不相等实数根,故选:B.15.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【答案】A【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.类型二根据方程根的情况求字母的取值(范围)16.(2022•攀枝花)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<B.m≤C.m≥﹣D.m>﹣【答案】C【解答】解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m)=1+4m≥0,解得m≥﹣,故选:C.17.(2022•西宁)关于x的一元二次方程2x2+x﹣k=0没有实数根,则k的取值范围是()A.k<﹣B.k≤﹣C.k>﹣D.k≥﹣【答案】A【解答】解:∵关于x的一元二次方程2x2+x﹣k=0没有实数根,∴Δ<0,∴12﹣4×2×(﹣k)<0,∴1+8k<0,∴k<﹣.故选A.18.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.【答案】k<2且k≠1【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.19.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.【解答】(1)证明:∵a=1,b=﹣2,c=﹣3m2,∴Δ=(﹣2)2﹣4×1•(﹣3m2)=4+12m2>0,∴方程总有两个不相等的实数根;(2)解:由题意得:,解得:,∵αβ=﹣3m2,∴﹣3m2=﹣3,∴m=±1,∴m的值为±1.【命题点3 一元二次方程根与系数的关系】20.(2022•益阳)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2【答案】B【解答】解:设x2+x+m=0另一个根是α,∴﹣1+α=﹣1,∴α=0,故选:B.21.(2022•贵港)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是()A.0,﹣2B.0,0C.﹣2,﹣2D.﹣2,0【答案】B【解答】解:设方程的另一根为a,∵x=﹣2是一元二次方程x2+2x+m=0的一个根,∴4﹣4+m=0,解得m=0,则﹣2a=0,解得a=0.故选:B.22.(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1【答案】A【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.23.(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0B.﹣10C.3D.10【答案】A【解答】解:∵m、n是一元二次方程x2+2x﹣5=0的两个根,∴mn=﹣5,∵m是x2+2x﹣5=0的一个根,∴m2+2m﹣5=0,∴m2+2m=5,∴m2+mn+2m=m2+2m+mn=5﹣5=0.故选:A.24.(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是.【答案】3【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两个根,∴x1•x2=3,故答案为:3.25.(2022•巴中)α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.【答案】﹣4【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.26.(2022•眉山)设x1,x2是方程x2+2x﹣3=0的两个实数根,则x12+x22的值为.【答案】10【解答】解:∵x1,x2是方程x2+2x﹣3=0的两个实数根,∴x1+x2=﹣2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1x2=(﹣2)2﹣2×(﹣3)=10;故答案为:10.27.(2022•随州)已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.【解答】解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.28.(2022•凉山州)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.【解答】解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2==,x1x2==﹣,故答案为:,﹣;(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,∴m+n=,mn=﹣,∴====;(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,∴s+t=,st=﹣,∴(s﹣t)2=(s+t)2﹣4st,(s﹣t)2=()2﹣4×(﹣),(s﹣t)2=,∴s﹣t=,∴====.【命题点4 一元二次方程的实际应用】类型一变化率问题29.(2022•宁夏)受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是()A.6.2(1+x)2=8.9B.8.9(1+x)2=6.2C.6.2(1+x2)=8.9D.6.2(1+x)+6.2(1+x)2=8.9【答案】A【解答】解:依题意得6.2(1+x)2=8.9,故选:A.30.(2022•南通)李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21%【答案】B【解答】解:设从1月到3月,每月盈利的平均增长率为x,由题意可得:3000(1+x)2=3630,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:每月盈利的平均增长率为10%.故答案为:B.31.(2022•眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.类型二传播、分裂问题32.(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.9【答案】B【解答】解:设共有x支队伍参加比赛,根据题意,可得,解得x=10或x=﹣9(舍),∴共有10支队伍参加比赛.故选:B.类型三图形面积问题33.(2022•青海)如图,小明同学用一张长11cm,宽7cm的矩形纸板制作一个底面积为21cm2的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为xcm,则可列出关于x的方程为.【答案】(11﹣2x)(7﹣2x)=21【解答】解:由题意可得:(11﹣2x)(7﹣2x)=21,故答案为:(11﹣2x)(7﹣2x)=21.34.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?【解答】解:设路宽应为x米根据等量关系列方程得:(50﹣2x)(38﹣2x)=1260,解得:x=4或40,40不合题意,舍去,所以x=4,答:道路的宽应为4米.类型四每每问题35.(2022•巴南区自主招生)某快餐店有A、B两种招牌套餐,A套餐的成本为10元/份,B套餐成本为12元/份,一份B套餐的售价比一份A套餐的售价贵3元钱,买6份A套餐与买5份B套餐花费一样.(1)求快餐店A套餐和B套餐的单价分别为多少元;(2)商家统计发现,每天平均可售A套餐300份和B套餐200份,如果将A套餐的单价每提高0.1元,则每天将少售出A套餐5份;如果将B套餐的单价每提高0.2元,则每天将少售出B套餐7份;该快餐店决定将两种套餐都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该商家每天销售这两种套餐获取的利润共2055元.【解答】解:(1)设快餐店A套餐的单价为x元,B套餐的单价为y元,依题意得:,解得:.答:快餐店A套餐的单价为15元,B套餐的单价为18元.(2)依题意得:(15+a﹣10)(300﹣5×)+(18+a﹣12)(200﹣7×)=2055,整理得:17a2﹣8a﹣129=0,解得:a1=3,a2=﹣(不符合题意,舍去).答:a的值为3.36.(2022•北碚区自主招生)某水果店以每千克30元出售一批草莓.一位顾客购买了2千克草莓,水果店获得利润20元.(1)求草莓的进价为每千克多少元?(2)已知该水果店第一天以每千克30元的单价售出草莓30千克.为了让顾客获得实惠,第二天水果店决定把草莓降价促销,若在第一天销售单价的基础上每降价1元,第二天的草莓销量就会在第一天销量的基础上增加6千克.通过这两天的销售,这批草莓全部售完,水果店销售完这批草莓的利润一共为600元,求第二天的草莓每千克降价多少元?【解答】解:(1)30﹣20÷2=20(元).答:草莓的进价为每千克20元.(2)设第二天的草莓每千克降价x元,则每千克的销售利润为(30﹣x﹣20)元,销售量为(30+6x)千克,依题意得:(30﹣20)×30+(30﹣x﹣20)(30+6x)=600,整理得:x2﹣5x=0,解得:x1=5,x2=0(不符合题意,舍去).答:第二天的草莓每千克降价5元.37.(2022•毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)A款钥匙扣B款钥匙扣类别价格进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:.答:购进A款钥匙扣20件,B款钥匙扣10件.(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,依题意得:30m+25(80﹣m)≤2200,解得:m≤40.设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,依题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.类型五其他类型38.(2022•荣昌区自主招生)“创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段,某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块80元,B型号地砖每块40元(1)若采购地砖的费用不超过3200元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了2560元就购得所需地砖,其中A型号地砖a块,求a的值.【解答】解:(1)设购买A型号地砖x块,由题意,得80x+40(60﹣x)≤3200.解得x≤20.答:最多能购买A型号地砖20块.(2)由题意,得80(1﹣a%)a+40(1﹣a%)(60﹣a)=2560解得a1=a2=20.经检验,符合题意.答:a的值为20.39.(2022•宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【解答】解:(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,依题意得:x+2x﹣100=800,解得:x=300,∴2x﹣100=2×300﹣100=500.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1+%)×500(1+m%)=660000,整理得:m2+300m﹣6400=0,解得:m1=20,m2=﹣320(不合题意,舍去).答:m的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,依题意得:1200(1+y)2•a(1+y)=(1+25%)×1200(1+y)•a,∴1200(1+y)2=1500.答:6月份每吨再生纸的利润是1500元.。
初三数学讲义:《一元二次方程》全章复习与巩固—知识讲解(基础)
《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根是0,则a 的值为( )A .1B .﹣1C .1或﹣1D . 【思路点拨】根据方程的解的定义,把x=0代入方程,即可得到关于a 的方程,再根据一元二次方程的定义即可求解.【答案】B ;【解析】解:根据题意得:a 2﹣1=0且a ﹣1≠0,解得:a=﹣1.故选B .【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x 2-=0; (2) (x+a)2=;(3) 2x 2-4x-1=0; (4) (1-)x 2=(1+)x .【答案与解析】(1)原方程可化为0.5x 2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴12 3x=,21x=.(2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =. 类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=.∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC的长为20m.6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0.解得,x1=2,x2=3.∴当x=2时,2x=4;当x=3时,2x=6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.。
人教版九年级数学中考总复习 第6课时 一元二次方程 含解析及答案
第6课时 一元二次方程知能优化训练一、中考回顾1.(2020湖南邵阳中考)设方程x 2-3x+2=0的两根分别是x 1,x 2,则x 1+x 2的值为( )A.3B.-32C.32D.-22.(2021云南中考)若一元二次方程ax 2+2x+1=0有两个不相等的实数根,则实数a 的取值范围是( )A.a<1B.a ≤1C.a ≤1,且a ≠0D.a<1,且a ≠03.(2021江苏连云港中考)若关于x 的方程x 2-3x+k=0有两个相等的实数根,则k= .4.(2021四川成都中考)若m ,n 是一元二次方程x 2+2x-1=0的两个实数根,则m 2+4m+2n 的值是 .35.(2020青海中考改编)在解一元二次方程x 2+bx+c=0时,小明看错了一次项系数b ,得到的解为x 1=-2,x 2=-3;小刚看错了常数项c ,得到的解为x 1=1,x 2=4.请你写出正确的一元二次方程 .2-5x+6=0 二、模拟预测 1.对形如(x+m )2=n 的方程,下列说法正确的是( )A.都可以用直接开平方得x=-m ±√nB.都可以用直接开平方得x=-n ±√mC.当n ≥0时,直接开平方得x=-m ±√nD.当n ≥0时,直接开平方得x=-n ±√m2.如果关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为x 1=1,x 2=-1,那么下列结论一定成立的是( )A.b 2-4ac>0B.b 2-4ac=0C.b 2-4ac<0D.b 2-4ac ≤03.已知三角形的两边长分别为2和6,第三边长是方程x 2-10x+21=0的解,则第三边的长为( )A.7B.3C.7或3D.无法确定4.若关于x 的方程(m-2)x 2-√3-m x+14=0有两个实数根,则m 的取值范围为( )A.m>52B.m ≤52,且m ≠2C.m ≥3D.m ≤3,且m ≠25.已知关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1,x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A.1B.-1C.1或-1D.26.若关于x 的一元二次方程x 2-3x-2a=0有两个实数根,则a 可取的最小整数为 .17.已知x 1,x 2是关于x 的一元二次方程x 2-(2m+3)x+m 2=0的两个不相等的实数根,且满足x 1+x 2=m 2,则m 的值是 .8.某地特产专卖店销售核桃,其进价为40元/千克,如果按60元/千克出售,那么平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?设每千克核桃应降价x 元,根据题意,得(60-x-40)(100+x 2×20)=2240.化简,得x 2-10x+24=0.解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元,因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为60-6=54(元),所以5460×100%=90%.答:该店应按原售价的九折出售.。
初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答
初中数学竞赛之一元二次方程培优讲义形如0=a 的方程叫做一元二次方程。
当240b ac -≥时,一元二次方程的两根为1242b x a-±=、一、专题知识1.直接开平方法、配方法、公式法、因式分解发是一元二次方程的四种基本解法。
2.公式法是解一元二次方程最一般地方法:(1)240b ac ->时,方程20(0)ax bx c a ++=≠有两个不相等的实数根122b x a-±=、(2)240b ac -=时,方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-(3)240b ac -<时,方程20(0)ax bx c a ++=≠无实数根二、经典例题例题1已知m n 、是有理数,方程20x mx n ++=2-,求m n +的值。
解:由题意得22)2)0m n ++=即(92)(0m n m -++-而m n 、是有理数,必有92040m n m -+=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩,所以m n +的值为3.例题2求证:一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。
证明:用反证发假设方程20(0)ax bx c a ++=≠有三个不同的实数根1x 、2x 和3x ,则有2110(0)ax bx c a ++=≠①2220(0)ax bx c a ++=≠②2330(0)ax bx c a ++=≠③①—②得22121212()()0,a x x b x x x x -+-=≠有12()0a x xb ++=④同理②—③有23()0a x xb ++=⑤④—⑤得1313()0()a x x x x -=≠必有0a =,与已知条件矛盾,所以一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。
例题3已知首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a a a --+++=及222(1)(+2)(+2)0(,)b x b x b b a b Z -++=∈有一个公共根,求a bb aa b a b --++的值。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 转化—可化为一元二次方程的方程
数学(家)特有的思维方式是什么?若从量的方面考虑,通常运用符号进行形式化抽象,在一个概念和公理体系内实施推理计算,若从“转化”这个侧面又该如何回答?匈牙利女数学家路莎·彼得在《无穷的玩艺》一书中写道:“作为数学家的思维说是很典型的,他们往往不对问题进行正面攻击,而是不断地将它变形,直至把它转化为已经能够解决的问题.”
转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的基本思想.解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解.
【例题求解】
【例1】 若051
528
5222=-+-+-x x x x ,则1522--x x 的值为 .
思路点拨 视x x 522-为整体,令y x x =-522,用换元法求出y 即可.
【例2】 若方程x x p -=-2有两个不相等的实数根,则实数p 的取值范围是( )
A .1->p
B .0≤p
C .01≤<-p
D .01<≤-p
思路点拨 通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注02≥-=-x x p 的隐含制约.
注:转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到下列不同途径的转化:实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等. 解下列方程:
(1)12
11934
82232222=+-++-++x x x x x x x
x ;
(2)1)1998()1999(33=-+-x x ;
(3)42)1
13(1132=+-++-x x x x x x .
按照常规思路求解繁难,应恰当转化,对于(1),利用倒数关系换元;对于(2),从
1)1998()1999(=-+-x x 受到启示;对于(3),设1
13+-=x x y ,则可导出y x +、xy 的结果.
注:换元是建立在观察基础上的,换元不拘泥于一元代换,可根据问题的特点,进行多元代换.
【例4】 若关于x 的方程x
kx x x x x k 1122+=---只有一个解(相等的解也算作一个),试求k 的值与方程
的解.
思路点拨 先将分式方程转化为整式方程,把分式方程解的讨论转化为整式方程的解的讨论,“只有一个解”内涵丰富,在全面分析的基础上求出k 的值.
注:分式方程转化为整式方程不一定是等价转化,有可能产生增根,分式方程只有一个解,可能足转化后所得的整式方程只有一个解,也可能是转化后的整式方程有两个解,而其中一个是原方程的增根,故分式方程的解的讨论,要运用判别式、增根等知识全面分析.
【例5】 已知关于x 的方程655)(2-=--+x
a x x a x 有两个根相等,求a 的值. 思路点拨 通过换元可得到两个关于x 的含参数a 的一元二次方程,利用判别式求出a 的值.
注:运用根的判别式延伸到分式方程、高次方程根的情况的探讨,是近年中考、竞赛中一类新题型,尽管这种探讨仍以一元二次方程的根为基础,但对转换能力、思维周密提出了较高要求.
学历训练
1.若关于x 的方程
0111=--+x ax 有增根,则a 的值为 ;若关于x 的方程12
2-=-+x a x 曾=一1的解为正数,则a 的取值范围是 . 2.解方程12
1)10)(9(1)2)(1(1)1(1)1(1=+++++++++-x x x x x x x x 得 .
3.已知方程m x m x -=+2
123有一个根是2,则m = . 4.方程97
33322=-+-+x x x x 的全体实数根的积为( ) A .60 B .一60 C .10 D .一10
5.解关于x 的方程1
112+=---x x x k x x 不会产生增根,则是的值是( ) A .2 B .1 C .不为2或一2 D .无法确定
6.已知实数x 满足011
2
2=+++x
x x x ,那么x x 1+的值为( ) A .1或一2 B .一1或2 C .1 D .一2
7.(1)如表,方程1、方程2、方程3、……,是按照一定规律排列的一列方程,解方程1,并将它的
解填在表中的空格处;
(2)若方程11=--b
x x a (b a >)的解是1x =6,2x =10,求a 、b 的值.该方程是不是(1)中所给的一列方程中的一个方程?如果是,它是第几个方程?
(3)请写出这列方程中的第n 个方程和它的解,并验证所写出的解适合第n 个方程.
8.解下列方程: (1)
619122112222=++++++++x x x x x x x ; (2)08
1318218111
222=--+-++-+x x x x x x ; (3)120)4)(3)(2)(1(=++++x x x x ; (4)1)1(3)1(222=+-+x x x
x . 9.已知关于x 的方程0221
2222=-+-++m x x m x x ,其中m 为实数,当m 为何值时,方程恰有三个互不相
等的实数根?求出这三个实数根.
10.方程222121x x x
x +=--的解是 .
11.解方程21
412
716512311
2222=++++++++++x x x x x x x x 得 . 12.方程8
7329821+++++=+++++x x x x x x x x 的解是 .
13.若关于x 的方程03121422=-+
x x a 恰有两个不同的实数解,则实数a 的取值范围是 . 14.解下列方程:
(1)6)1)(43()76(2=+++x x x ;
(2)222222)243()672()43(+-=+-+-+x x x x x x ;
(3)3)1(
22=++x x x ; (4)310221=+++x x x
. 15.当a 取何值时,方程2
212212--+=+----x x a x x x x x 有负数解?
16.已知01585234=+-+-x x x x ,求x
x 1+的值. 17.已知:如图,四边形ABCD 为菱形,AF ⊥上AD 交BD 于E 点,交BC 于点F .
(1)求证:AD 2=2
1 DE ×DB ; (2)过点E 作EG ⊥AE 交AB 于点G ,若线段BE 、DE(BE<DE)的长为方程02322=+-m mx x (m>0)的两个根,且菱形ABCD 的面积为36,求EG 的长.
参考答案。