3-d lattice SU(3) free energy to four loops

合集下载

第一届凝聚态物理会议

第一届凝聚态物理会议

第一届凝聚态物理会议The 1st Conference on Condensed Matter Physics2015年7月15日- 17日清华大学目录01 会议概况02 组织委员会04 会议日程•总日程•大会报告•分会场报告•海报会场会议概况为了配合凝聚态物理在中国的迅速发展和国际地位的全面提升,进一步加强国内科研工作者在不同前沿领域的交流,推进国内和国际在凝聚态物理领域的相互交流和合作,为青年学生和研究人员学习和了解国际前沿进展创造更广泛的交流平台,拟定在过去已经成功举办了13届的“凝聚态理论与材料计算国际会议”系列会议的基础上,拓宽会议的主题,特别是加强凝聚态物理实验和理论的交流与融合,于2015年7月15日-17日在北京举办“第一届凝聚态物理会议”年会。

2015年第一届凝聚态物理会议是由清华大学物理系、中国科学院物理研究所、北京大学物理学院、量子物质科学协同创新中心联合主办。

这是国内首次在凝聚态物理方面举办的大型学术交流会。

本次会议是凝聚态理论与材料计算国际会议的延续和拓展,旨在增进国内外物理学者的学术交流,分享前沿科研成果,提高国内凝聚态物理的科研水平,扩大学术声誉。

第一届凝聚态物理会议将于2015年7月15日-17日在清华大学举行。

会议主题包括:拓扑量子态和多铁性、超导和多体物理、能源和低维物理、Quantum many-body theory and statistical physics、计算凝聚态物理、量子信息及其它与凝聚态物理的交叉领域等六个主题。

本次会议共设30个专题分会,将以大会特邀报告、分会特邀报告、口头报告和张贴海报等形式进行交流探讨。

组织委员会主办单位•清华大学物理系•中国科学院物理研究所•北京大学物理学院•量子物质科学协同创新中心顾问委员会:(按姓氏拼音序)崔田、杜瑞瑞、冯世平、龚新高、解士杰、李东海、李建新、林海青、李树深、陆卫、卢仲毅、吕力、沈保根、沈健、沈志勋、苏刚、王恩哥、王孝群、王玉鹏、向涛、薛其坤、张富春、张振宇组织委员会•清华大学物理系:陈曦、薛其坤•中科院物理研究所:胡江平、戴希、方忠、丁洪、周兴江、向涛•北京大学物理学院:谢心澄分会场负责人•拓扑量子态和多铁性:胡江平、陈曦、吕力、戴希、翁红明、寇谡鹏、吴从军•超导和多体物理:孙力玲、杨义峰、刘俊明、雒建林、袁辉球、李永庆、万歆、周毅•能源和低维物理:张振宇、李泓、陈弘、赵怀周、张远波•Quantum many-body theory and statistical physics:孟子扬、张广铭、郭文安、姚宏•计算凝聚态物理:姚裕贵、段文晖、龚新高、孟胜•量子信息及其它与凝聚态物理的交叉领域:范珩、田琳、翟荟、崔晓玲会议协调人•清华大学物理系:任俊(总协调人)•中国科学院物理研究所:齐建为、刘青梅•会务组:黄文艳、唐林、井小苏、周丹、骆洁、甘翠云、付德永、杨红、肖琳、胡文婷赞助单位•清华大学物理系•量子物质科学协同创新中心•中国科学院物理研究所•北京大学物理学院2015年第一届凝聚态物理会议分会场主题:A.拓扑量子态和多铁性A1拓扑半金属IA2拓扑半金属IIA3拓扑超导体和Majorana 费米子A4多铁性材料模拟与计算A5多铁性体系B.超导和多体物理B1铬基和锰基超导体B2极端条件下的超导行为B3铁基超导B4凝聚物质的激发态和动力学理论和实验B5重费米子物理C.能源和低维物理C1锂电池中的物理C2二维材料C3二维电子系统中的物理C4硅烯的最新进展C5热电中的新物理D.Quantum many-body theory and statistical physicsD1 Recent developments in strongly correlated quantum systems ID2 Recent developments in strongly correlated quantum systems IID3 Recent developments in strongly correlated quantum systems IIID4 Recent developments in strongly correlated quantum systems IVD5 Recent developments in strongly correlated quantum systems V注意事项:为了尊重外籍邀请报告人,如无特殊情况,D分会场报告请用英文。

木互承结构的发展与研究现状

木互承结构的发展与研究现状

林业工程学报,2023,8(2):30-39JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202204037收稿日期:2022-04-19㊀㊀㊀㊀修回日期:2022-10-14基金项目:国家自然科学基金(51908038)㊂作者简介:高颖,女,教授,研究方向为木结构材料与工程㊂E⁃mail:gaoying@bjfu.edu.cn木互承结构的发展与研究现状高颖1,禤示青1,孟鑫淼2,周金将3,徐飞扬1,耿明豪1(1.北京林业大学材料科学与技术学院,北京100083;2.北京林业大学土木工程系,北京100083;3.苏州昆仑绿建木结构科技股份有限公司,苏州215105)摘㊀要:木结构具有绿色环保㊁低碳节能等优势,其发展与应用有助于推动我国 双碳 目标的实现㊂作为木结构形式之一,木互承结构是由相互支承的木构件通过循环互承围合形成的空间格构体系,在古代桥梁建造上多有应用㊂近年来,木互承结构在空间结构领域的研究及应用逐渐增多㊂笔者梳理了木互承结构在形态学和力学性能等方面的国内外研究进展,讨论其发展现状与亟须解决的关键性技术问题㊂形态学研究表明,木互承结构找形理论众多,可根据图论㊁力平衡状态㊁迭代算法和空间解析几何法分为4类,但仍需进一步设计出简便易操作的通用型软件㊂木互承结构的力学性能研究目前主要集中于节点性能和整体受力性能方面,但在高性能节点和结构稳定性方面仍需进一步探索和研究㊂对木互承结构的工程应用进行了梳理和总结,可为其未来的研究与应用提供参考㊂相信伴随着木材科学与现代木结构技术的发展,构件规则㊁节点统一㊁造型丰富的木互承结构将越来越广泛应用于木结构工程建设项目中㊂关键词:木互承结构;找形方法;力学性能;工程案例;现代木结构中图分类号:TU366.2㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2023)02-0030-10ResearchstatusoftimberreciprocalstructuresGAOYing1,XUANShiqing1,MENGXinmiao2,ZHOUJinjiang3,XUFeiyang1,GENGMinghao1(1.SchoolofMaterialsScienceandTechnology,BeijingForestryUniversity,Beijing100083,China;2.DepartmentofCivilEngineering,BeijingForestryUniversity,Beijing100083,China;3.SuzhouCrownhomesCo.Ltd.,Suzhou215105,China)Abstract:Timberstructurehastheadvantagesofenvironmental⁃friendly,low⁃carbonemission,andenergy⁃saving.Thepopularizationoftimberstructureshelpstopromotetherealizationofthegoalsofcarbonpeakingandcarbonneutrali⁃ty.Thetimberreciprocalstructureisaspatiallatticesystemformedbythecyclicenclosureofreciprocallysupportedtimberelements,whichhasmanyapplicationsinancientbridgeconstructions.Recently,theresearchandapplicationoftimberreciprocalstructureshaveincreasedwiththedevelopmentoftimberspatialstructures.Althoughthetimberreciprocalstructurehasdevelopedrapidlyinthedevelopedcountries,thedevelopmentoftimberreciprocalstructureisstillindevelopinginChina.Basedontheinvestigationofscientificresearchoftimberreciprocalstructuresinbothde⁃velopedanddevelopingcountries,theresearchprogressofmorphologicalandmechanicalperformanceoftimberrecip⁃rocalstructureswasreviewed.Besides,thedevelopmentstatusandthekeydesigntechnologieswerediscussed.Themorphologicalresearchshowedthattheform⁃findingmethodsoftimberreciprocalstructureswerecompleteandnu⁃merous.Accordingtothegraphtheory,forcebalance,iterativealgorithmandanalyticgeometrymethods,theform⁃findingmethodsweredividedintofourcategories,whiletheoptimizationprocesswascomplicated.Torealizetherap⁃idformationofstructuralconfigurationinengineeringapplications,morefeasibleform⁃findingtheoriesandmoreeasy⁃to⁃operateinteractivetoolsarenecessarytobedeveloped.Theresearchonthemechanicalperformanceoftimberrecip⁃rocalstructuresmainlyfocusesontheconnectionsandoverallstress.Existingresearchonthemechanicalbehavioroftimberreciprocalstructuresisnotsystematicenough.Exceptfortheresearchonenhancingjointperformanceandstructuralstability,theresearchonstructuralcapacityandstabilityneedstobestrengthened.Moreover,somekeyde⁃signtechnologiessuchasthewindresistance,seismicperformance,andcreepneedtobefurtherexplored.Inaddi⁃tion,theengineeringapplicationcasesofthetimberreciprocalstructureswereanalyzedandsummarized,withthepro⁃gressofwoodscienceandmodernwoodstructuretechnology,theanalysisofengineeringapplicationcasesshowsthat㊀第2期高颖,等:木互承结构的发展与研究现状thetimberreciprocalstructureshaveexcellentdevelopmentprospects.Undertheconditionofensuringlowself⁃weightandsufficientstiffnessofthestructure,oneofthemostsuitablebuildingmaterialsforconstructingcomplexinteractiveconfigurationsistimber.Throughregularcomponentsandunifiedjoints,timberreciprocalstructuresshowvariousstructuralmodelings,involvinglarge⁃spanbuildingsandbridgestructures.Therefore,itisnecessarytoacceleratethetheoreticalandsystematicresearchofthetimberreciprocalstructurestopromotethedevelopmentofcorrespondingsci⁃entificresearchandengineeringapplicationsinChina.Keywords:timberreciprocalstructures;form⁃findingmethod;mechanicalperformance;engineeringcase;modernwoodconstruction㊀㊀木结构轻质美观㊁绿色低碳㊁可预制装配,发展木结构符合绿色节能装配式建筑发展规划的要求,并有助于推动我国2030年前实现碳达峰㊁2060年前实现碳中和的 双碳 目标的达成㊂木互承结构是由相互支承的木构件通过循环互承围合形成的空间格构体系,具有构件规则㊁节点统一㊁受力均匀㊁可快速拆装等特点,常用于桥梁的承重结构和建筑的楼盖与屋顶结构㊂木互承结构形式可使用短构件横跨更大的距离,构件间不分主次,每个节点处只有两根构件连接,抵御外界荷载时,结构整体受力均匀㊂通过基本单元的叠加可形成构型新颖独特的结构,兼具功能性和装饰性[1-2]㊂互承结构的概念首先由英国建筑师格拉汉姆㊃布朗提出,世界各地较早时期就有类似木互承结构的构筑物出现,如新石器时代的半凹坑住所㊁爱斯基摩人的原屋,印第安人居住的帐篷则使用绳索将多根杆件收敛于顶端以实现结构稳定性[3]㊂公元前1世纪,凯撒大帝于莱茵河上建造了木制栈架桥,搭建快速,结构稳定[4]㊂公元14世纪,跨度巨大却无法复原的凯撒莱茵桥激发了建筑师们的兴趣㊂由此,文艺复兴巨匠达㊃芬奇较为全面地研究了互承结构并设计多种形态[5-6]㊂在我国,木互承结构的记录最早来源于公元12世纪‘清明上河图“中的汴水虹桥㊂由于几何构型较为复杂,随着钢筋混凝土结构和钢结构的出现,木互承结构逐渐被人们所忽视㊂直至20世纪初,德国工程师佐林格提出的 一个节点仅连接两根构件 的专利,推动了第一次世界大战后的住房建造[4]㊂自此,木互承结构研究得到稳步发展㊂木互承结构的设计首先需要构建结构形态,通过找形方法对基本单元进行优化调整,得到互承结构的结构构型;其次进行力学性能分析,目前主要集中于节点连接性能和整体受力性能研究;最后进行结构建造㊂笔者系统梳理了木互承结构在形态学和力学性能等方面的研究成果,并对国内外木互承结构项目进行分析,以期为我国木互承结构的科学研究和工程应用提供借鉴和参考㊂1㊀形态学研究1.1 构件参数与多数空间结构类似,木互承结构的形态学研究首先需要确认基本单元及其构件影响参数㊂Ba⁃verel等[7]将互承结构的每根构件命名为 Nexor ,构件围合而成的基本单元命名为 Nexorade ,基本单元的平面投影为扇单元(fan)㊂木互承结构基本单元的构件参数如图1所示,包括构件数量(n)㊁构件长度(L)㊁构件垂直高度(H)㊁接合长度(Le)㊁构件间偏心距(e)以及扇单元旋转方向(左/右)[7-12]㊂其中,基本单元的构件参数之间的几何关系见公式(1 5)㊂θ=n-2()180n(1)r=Le2cos(θ/2)(2)R=r2+(L-Le)2-2r(L-Le)cosθ2+360næèçöø÷(3)H=Lsinα(4)e=Letanα-Lesinα-ecosαLecosα-esinαæèçöø÷(5)任意参数的变化均会影响结构整体的形状及性能㊂当基本单元主要向一维方向拓展时,木互承结构可形成编木拱形式;当基本单元向二维和三维方向拓展时,木互承结构则形成平面或空间互承的结构形式[6,13-14]㊂在形态学研究中,更倾向于平面或空间互承结构的找形㊂为更好地契合具体研究内容,构件参数还需进行一定调整和补充㊂如:Asefi等[15]为解决构型中的杆件连接问题,利用Kangaroo插件对接合长度进行了参数优化;Su等[16-17]补充了 接触点 和 接触向量 两个参数,用以克服在形状优化过程中建立有限元分析模型的困难;Torghabehi等[18]引入旋转参数,使平面构件能基于相应的单元围绕其纵向轴旋转;为便于工业机器人在加工过程中对木材的抓取和切削,需在13林业工程学报第8卷命令代码中编入木材中心轴㊁夹持点㊁构件切割面等相关参数[19-20]㊂图1㊀基本单元及其构件参数Fig.1㊀Nexoradesandtheparametersofnexor1.2㊀找形方法木互承结构的找形是通过调整构件参数,将互承基本单元与给定曲面进行匹配的过程㊂结构找形的实现,需要借助一定的规律和方法进行计算和模拟㊂基于图论㊁受力平衡状态㊁迭代算法和空间解析几何法,木互承结构曲面找形的方法主要分为映射法㊁动力学分析法㊁智能优化算法和直接构型法㊂不同类型的找形方法及其特点统计见表1㊂表1㊀互承结构找形方法汇总Table1㊀Methodsofform⁃findingofreciprocalstructures分类找形方法找形依据特点参考文献映射法映射法图论操作可视化,但不适于曲率较大曲面[21]动力学分析法动力松弛法受力平衡状态实现形与力的平衡,计算步骤复杂[11]遗传算法多次迭代得到互承搭接的最优解,但计算数据量大[22]智能优化算法遗传⁃梯度混合算法迭代算法[23]拟牛顿法[8]平移法快速有效实现规则曲面构型,但无法实现复杂曲面[24]扩展平移法[24]直接构型法旋转法空间解析几何法[24]收缩法[25]循环搭接法[26]图2㊀映射法示意图[27]Fig.2㊀Illustrationofconformalmappingmethod㊀㊀映射法是通过将延展拓扑后的平面网格投影于目标曲面,利用构件的基本参数关系优化调整得到空间互承结构,如图2所示㊂Song等[21,27]基于映射法开发了RF(reciprocalframe)找形软件,并针对可能不满足互承搭接关系的构件提出了修正公式㊂所开发软件进行了保真处理,使用户能轻松实现为给定曲面设计构型,快速形成可视化的大型互承结构㊂受到高斯曲率的约束,此软件在曲率较大的部位并不适用㊂动力学分析法是将互承结构的几何构型与构件受力建立联系,通过结构静/动力学平衡状态得到最终构型㊂动态松弛法[11]的原理是基于将无偏心距㊁无接合长度的初始网格转化为互承网格时,将杆件一端挤压弯曲,结构内部存在一定的应力,如图3所示㊂杆件放松后会产生自由震荡,运动阻23㊀第2期高颖,等:木互承结构的发展与研究现状尼的存在可消耗能量,最终达到结构的静态平衡㊂图3㊀动态松弛法原理[11]Fig.3㊀Principleofdynamicrelaxationmethod智能优化算法最早源于Baverel等[22]提出的遗传算法,将接合长度及偏心距的几何误差作为目标函数,再通过迭代算法对构件参数进行优化调整,使其满足协调搭接的平衡条件㊂随后,Parigi等[23]提出了遗传⁃梯度混合算法等优化算法㊂在各种迭代算法找形研究的基础上,Parigi等[28-29]开发了用于Grasshopper/Rhinoceros的插件Recipro⁃calizer,通过调整杆件位置,不断迭代以保证单元的几何兼容性㊂该研究通过奥尔堡大学的一个自由曲面互承网壳结构,验证了 Reciprocalizer 软件获取结构单元位置的准确性㊂此外,邹丁等[8]提出了Broyden⁃Fletcher⁃Goldfarb⁃Shanno(BFGS)拟牛顿法,与遗传算法相比,BFGS拟牛顿法对于给定曲面的构型及参数成形问题迭代次数更少㊁效率更高㊂直接构型法由Baverel等[24]提出,是将已有的网壳结构曲面网格作为标准初始网格,并通过平移法[24]㊁扩展平移法[24]㊁旋转法[24,30-31]和收缩法[25,32]等方法,调整构件偏心距及截面形式等参数,将标准初始网格转化成互承网格,如图4所示㊂此外,乔刚[26]结合互承结构的实际搭建过程,采用二分法实现互承结构的 自适应 找形,并命名为 循环搭接找形法 ㊂李传栋[33]在循环搭接找形法的基础上进一步完善了平面网格创建方法,提出基于密铺图形和分形理论的平面互承网格建模方法,使生成的结构网格更加合理㊂图4㊀直接构形法示意图[25]Fig.4㊀Schematicofanalyticalmethods㊀㊀易于加工的木质构件具有多种可变换形态,大量的找形方法为木互承结构的构型设计提供了有力支持㊂目前国内外木互承结构找形常用软件平台为Grasshopper/Rhinoceros[34],使用构件数为3 4根,易于在自由曲面形成互承网格[12]㊂相对于迭代计算过程复杂的动力松弛法及优化算法,映射法与直接构型法更易被理解与研究㊂但仍需进一步开发简便易操作的通用型设计软件,加快木互承结构的推广,并实现工程应用自由曲面的快速找形㊂2㊀力学性能研究木互承结构通过构件的互相支承形成整体,除支座处杆件需承担结构整体荷载外,各杆件受力㊁节点连接形式相同㊂假定基本单元受力时,构件为静态平衡的梁单元,可暂不考虑杆件材料与截面的关系,其受力通过偏心距和结合长度决定[35]㊂如图5所示,杆件受外力作用时,通常在节点位置处产生最大弯矩[3-4];因此,木互承结构的力学性能研究主要关注直接影响荷载传递的连接节点[36-38]图5㊀木互承结构受力弯矩图Fig.5㊀Momentdiagramoftimberreciprocalstructure2.1㊀节点连接性能木互承结构的节点连接简单,通常只需考虑两两构件的连接㊂将木互承结构的常见节点连接形式分为摩擦连接㊁槽口连接㊁销轴连接及其他连接形式,如表2所示㊂摩擦连接包括搭接连接和扣件连接,构件间主要依靠滑动产生的摩擦力传递荷载,并依靠摩擦约束构件位移[39]㊂搭接连接是木互承结构节点连接类型中最简单的连接形式,组装简易㊁快速成型㊂然而,节点位置无外物约束,结构刚度低㊁稳定性差,不适于现代实用型建筑建造[3],更多用于结构搭建过程中的临时固定或示范性模型搭建㊂扣件33林业工程学报第8卷连接可追溯至绳子绑扎的方式,随着现代科技的发展,逐渐采用承载力更大㊁耐久性能更高的金属件进行扣件制作,可设计出不同结构形式,以不削减构件截面为基础锁紧构件㊂但扣件连接无法约束构件的旋转,且引入外露连接件,影响构件的美观和防火性能㊂表2㊀木互承结构常见节点连接类型Table2㊀Commonconnectiontypesoftimberreciprocalstructure扣件连接连接材料与形式多样,不损伤构件截面外露连接件影响构件美观和防火性能槽口连接提高木互承结构的组装精度㊁造型美观加工复杂,削减构件截面销轴连接传力明确㊁金属件连接方式多样内置金属件削减构件少许截面㊀㊀槽口连接属于木工接头,无金属外露㊁构型美观,可提高构件装配精度㊂当构件间发生挤压㊁拉伸与旋转,槽口接头处的木材会产生摩擦与挤压进而传递荷载[40-42]㊂Ueta[42]采用分析模型研究槽口连接木互承拱结构的节点刚度,分析得出槽口深度越大,节点转动刚度就越大㊂Gustafsson[43]对比槽口连接和搭接连接的木互承平面结构数值模型,结果表明在相同的竖向荷载作用下,槽口连接的构件产生的弯矩较搭接连接的挠度㊁剪力㊁弯矩以及扭转刚度均小2% 13%㊂Tominaga[44]针对自重对槽口连接木互承穹顶结构性能的影响进行分析,结果表明,槽口连接穹顶结构的最大竖向位移较刚性连接增加近两倍㊂此外,构件长度㊁截面尺寸及槽口大小的变化均会对结构位移产生较大影响㊂荷载施加过程中,槽口之间通过转动和挤压消耗能量,使结构具有优良的抗震性能[45]㊂故Ito[46]和Suzu⁃ki[47]采用CQC法计算了拟静态地震力条件下槽口连接木互承结构的性能,地震震级分别采用I级和Ⅱ级㊂然而,槽口连接削减了构件截面,削弱杆件节点位置的受弯性能和抗剪能力[42-43,48]㊂销轴连接通常采用螺钉㊁螺栓等销轴类紧固件与钢板配合使用,该连接形式仅削减少许截面,传力明确㊁形式简单㊁易于进行结构计算,可认为销轴连接为木互承结构较为理想的连接方式[49-50]㊂Gan等[51]参考木结构常用钢填板⁃螺栓连接节点,为木互承网壳结构设计了连续形钢填板⁃螺栓连接㊂通过改变连接位置的钢填板嵌入角度,可以得到不同角度的组合构件㊂Corio等[32]在连接位置处采用金属组合件设计了T型万向连接节点,组合件与杆件间采用螺栓锚固,与杆件截面匹配的钢轭可避免构件的轴向偏心,并允许杆件存在旋转的安装误差㊂为增强构件节点性能㊁构建更多复杂曲面,国内外学者还致力于新型节点连接形式的研究㊂Gheorghe等[52]在扇单元围合形成的 窗口 处浇筑混凝土,使任何几何形状的木互承基本单元均可实现节点位置的刚性连接㊂基于前者的研究基础,Castriotto等[53]利用厚木板对4根杆件单元的窗口位置进行夹持连接,厚木板内部按各构件形状尺寸进行开槽,中心使用螺栓紧固㊂数值模拟结果表明,荷载作用下,夹持连接件会产生较大的剪应力㊂考虑到在较大跨度下木材制成的连接件抗剪强度不足,可使用其他材料制备以提升连接强度㊂在木互承结构节点方面,更倾向使用构件装配精度及节点承载力更高的槽口连接及销轴连接,或两者配合使用㊂采用足尺节点试验与数值模拟相结合的方式开展,既可得到较为可靠的结果,还可拓展更多研究参数使研究工作持续进行㊂此外,仍需在保持构件互承的基础上,加强高性能节点的设计研究,满足木互承结构在现代建筑中的结构需求㊂2.2㊀整体受力性能木互承结构更多应用于公共建筑,作为桥梁结构和屋顶结构等使用㊂其中,桥梁结构以一维木互43㊀第2期高颖,等:木互承结构的发展与研究现状承结构编木拱形式为主,通过纵骨构件和横梁系统作为桥梁的承重结构,如中国的汴水虹桥和闽浙木拱桥㊂屋顶结构包括平面结构和曲面网壳结构等二维和三维木互承结构形式,主要通过有限元软件进行结构优化和受力分析㊂目前,木互承结构整体受力性能研究包括结构的静力学特性和稳定性能的研究㊂2.2.1㊀静力学特性为探究编木拱与拱结构之间的联系,Yang等[54]将闽浙木拱桥与相同矢跨比的双铰拱进行有限元分析对比,结果得到在竖向载荷作用下木拱桥受力与双铰拱相似,整体产生水平推力,杆件内部主要产生压应力㊂孟雨泽等[55]则对汴水虹桥进行数值模拟,探究矢跨比㊁节间数及拱肋截面尺寸对汴水虹桥的力学性能影响㊂研究表明,增大矢跨比和拱肋截面尺寸会减小构件产生的应力和挠度值,从而提高结构承载力;而随着节间数的增加,构件所承受的荷载反而减小㊂作为屋顶结构时,单层的木互承结构刚度较小㊁承载力较低㊂因此,齐麟等[56]制备了双层的六边⁃三边型木互承结构,两层之间采用桁架结构连接,以增加木互承结构的承载能力㊂足尺试验和数值模拟研究表明,当节点位置处施加集中荷载为2.4kN时,双层木互承结构挠度仅为1.56mm,远小于结构总跨度的1/250(22.8mm),且刚度是单层结构的近20倍㊂2.2.2㊀稳定性能木互承结构形成网壳屋顶结构时类属于木网壳结构,需满足传统空间网壳结构的整体稳定性要求㊂为准确得到木互承结构在屈曲状态下的结构变形和应力分布,需对其进行屈曲分析㊂乔刚[26]对凯威特型网壳转换生成的互承结构进行了前6阶屈曲模态分析,证明了互承结构具有大跨网壳结构的应用可行性㊂李传栋[33]对典型三边型木互承网壳结构进行特征值屈曲分析,并采用一致缺陷模态法进行几何非线性屈曲分析㊂如图6a所示,屈曲分析结果显示支座处的局部杆件最易发生失稳现象,网壳中部杆件也可能屈曲凸起,但此结构对初始缺陷并不敏感㊂最终通过单因素参数分析,推荐三边型木互承网壳结构的参数合理取值范围:跨度不超过40m,矢跨比为1/6 1/3,搭接比例(接合长度/构件长度)为0.30 0.45和0.550.65㊂图6㊀木互承结构的整体性能分析[33]Fig.6㊀Overallperformanceanalysisoftimberreciprocalstructure㊀㊀木互承网壳结构的鲁棒性分析对结构整体稳定性同样重要,用以判断对结构可靠性至关重要的组件在偶然荷载作用下的可靠程度[57-58]㊂Kirkeg⁃aard等[59]对木互承平面结构进行了鲁棒性分析,计算破坏发生后不同位置构件的应力变化,结果得到初始破坏后再承载时,支座位置处构件应力值最大㊂李传栋[33]研究了局部构件或基本单元的拆除对木互承网壳结构竖向位移和应力分布的影响,结果发现拆除支座处的构件对承载力及结构位移影响最大(图6b),并建议设计时应控制杆件的初始应力比㊁提高支座的刚度㊁提高结构冗余度,以及对重要的杆件和节点进行增强㊂针对编木拱结构的静动力学性能影响,国内外学者还展开了大量研究[60-65]㊂然而在荷载作用下,桥体的两组纵骨构件会产生脱离的现象仍需要进一步深入研究,以推动木互承结构在现代桥梁上的应用㊂而木互承结构作为空间网壳结构的研究尚处于发展阶段,基本单元构件参数的不确定增加了互承构件受力行为的复杂度㊂同时,针对有限冗余度的木互承结构进行精心设计,提高结构整体稳定性能仍需探索;在抗风㊁抗震㊁疲劳㊁蠕变等诸多关键问题还需深入研究㊂53林业工程学报第8卷3㊀工程应用案例随着相关试验和理论研究的展开,近10年来木互承结构工程在多个国家和地区开展了工程应用[3,66-68]㊂除前文提及的编木拱桥,木互承结构在现代更多用于展馆和办公楼等公共建筑㊂这些建筑跨度不等㊁设计灵活㊁造型丰富,对木互承结构的推广具有重要示范作用㊂表3和图7根据不同木互承结构类型对典型木互承结构工程应用案例进行了总结㊂表3㊀典型木互承结构工程应用案例Table3㊀Typicalengineeringapplicationcasesoftimberreciprocalstructures类型建造年份案例占地面积/m2基本单元类型节点类型1090中国福建屏南万安桥槽口连接一维1913美国汉庭顿圆月桥[66]槽口+钉连接2019中国北京青杨洲编木拱虹桥[67]钢插板-螺栓连接二维2016日本司化成工业筑波技术中心[68]329四边型槽口+钉连接2019比利时卡斯特莱文化展厅417四边型螺栓连接三维1994日本文乐木偶剧院[3]25十二边型槽口+锚钉连接2012日本陆前高田老年中心220四边型金属件连接2019荷兰哈灵水道Tij观鸟屋150四边型槽口+螺栓连接2022中国四川天府农博园多功能展示馆1031三边型金属件连接㊀注:1) Nexorade 的基本单元类型分析并不适用于编木拱桥[7];2)表中占地面积为该案例使用木互承结构的面积,其中中国福建屏南万安桥桥长98.2m,共6跨,最大跨径为15.2m;美国汉庭顿圆月桥净跨径为8.34m,矢高2.98m;中国北京青杨洲编木拱虹桥净跨径为13.6m,矢高2.48m㊂图7㊀典型木互承结构的工程案例Fig.7㊀Typicalengineeringapplicationcasesofreciprocalstructures㊀㊀一维木互承结构通常应用于编木拱桥中,历史悠久,而相较于二维平面木互承结构的构型规则简单,三维曲面木互承结构更易得到拓展和创新㊂考虑到承载力和稳定性要求,木互承结构所用建筑材料逐渐从单一实木材料,过渡至现代木结构常用的工程木质产品㊂如从中国福建屏南万安桥㊁美国汉庭顿圆月桥[66]和日本文乐木偶剧院[3]使用的当地木材,到中国北京青杨洲编木拱虹桥[67]使用的户外防腐花旗松胶合木㊁日本司化成工业筑波技术中心[68]的胶合板㊁中国四川天府农博园多功能展示馆使用的胶合木作为单元构件㊂从最初的形状规则的示范性小型建筑,到庞大的曲面复杂的展馆建筑,现代木互承结构的建成跨度与几何造型也在逐渐增加㊂使用于大跨承重屋顶结构时,木互承结构更趋于采用容易结构找形且角度安装简便的三边型和四边型基本单元㊂节点连接类型也逐渐从大63㊀第2期高颖,等:木互承结构的发展与研究现状幅削减截面的槽口连接,逐渐过渡到槽口加金属件连接或仅金属件连接㊂这在一维木互承结构中体现较为明显,使传统的编木拱技术得以随现代木结构工艺的进步而发展㊂所有的节点形式均为隐式节点藏于构件之间,在确保构件良好连接的情况下,现代节点技术为木互承结构创造了更多可能㊂互承结构造型复杂,难以使用过重的建筑材料[3]㊂随着现代材料科学与木结构技术的发展,使用自重轻㊁可持续且绿色环保的木质材料,有利于其在工程搭建与未来建筑中的发展[36,69-70]㊂木互承结构通过规则㊁一致的构件形式和节点连接,可构建出形式多样的结构造型,涉及建筑规模㊁领域广泛,其应用前景广阔㊂因此,需要加快木互承结构的理论及体系研究,推进我国木互承结构的实际工程应用㊂4㊀结㊀语近年来,随着分析技术和建造技术的发展,互承结构不仅在找形理论方面有了长足进步,而且在运用木质材料设计建造具有现代特点的互承结构方面取得了一定的成果㊂笔者归纳了木互承结构在曲面找形㊁节点连接性能和整体力学性能等方面的研究现状,这些研究进展为木互承结构的未来发展与应用提供了参考和借鉴㊂随着木结构建筑的快速发展,木互承结构也需要不断创新,木互承结构在形态学和力学性能研究等方面的工作仍需深入展开㊂1)现有的木互承结构建筑尚少,且曲面造型简单㊁基本单元构型单一,复杂的找形理论尚未与实际工程应用匹配㊂因此亟须提出简单可行㊁便于实际工程使用的找形方法,实现更快速简便的自由曲面找形,并设计开发通用型设计软件作为交互工具,以推动木互承结构在空间结构中的普及与使用㊂2)单一木质构件的结构刚度和强度难以满足现代结构的高性能需求㊂通过使用现代工程木质产品或木材与竹材㊁钢材㊁FRP等材料组合形成复合构件,可提高构件性能与结构整体性能㊂此外,还可考虑采用面单元与块状单元作为基本单元构件,在提高木互承结构稳定性能的同时丰富结构设计的多样性㊂3)木互承结构主要应用场所为桥梁或屋盖,常用节点连接形式为槽口连接与金属件连接㊂为在结构安全条件下更好地发挥构件性能,需对形式简单㊁便于安装㊁性能高强的节点连接形式进行深入研究㊂4)已有的木互承结构力学性能方面的研究尚不完善,针对结构的稳定性能㊁长期性能㊁疲劳性能㊁蠕变性能等还需进一步试验研究,同时在风荷载㊁地震作用下的动力学特性也需要深入研究㊂此外,其耐火性能和可靠性评估方法还有待明确,完善木互承结构的科学研究,促进其工程实践运用㊂参考文献(References):[1]RAPPAPORTN.Deepdecoration[M].Princeton:PrincetonAr⁃chitecturalPress,2006.[2]GHERARDINIF,LEALIF.Reciprocalframesintemporarystructures:anaestheticalandparametricinvestigation[J].NexusNetworkJournal,2017,19(3):741-762.DOI:10.1007/s00004-017-0352-x.[3]LARSENOP.Reciprocalframearchitecture[M].Amsterdam:Elsevier/ArchitecturalPress,2008[4]PUGNALEA,SASSONEM.Structuralreciprocity:criticaloverviewandpromisingresearch/designissues[J].NexusNetworkJournal,2014,16(1):9-35.DOI:10.1007/s00004-014-0174-z.[5]LEONARDO,MARINONIA,PEDRETTIC.IlCodiceAtlanticodellaBibliotecaAmbrosianadiMilano[M].Firenze:Giunti,2000[6]SÁNCHEZJ,ESCRIGF.FramesdesignedbyLeonardowithshortpieces.ananalyticalapproach[J].InternationalJournalofSpaceStructures,2011,26(4):289-302.DOI:10.1260/0266-3511.26.4.289.[7]BAVERELO,NOOSHINH,KUROIWAY,etal.Nexorades[J].InternationalJournalofSpaceStructures,2000,15(2):155-159.DOI:10.1260/0266351001495053.[8]邹丁,肖南.互承型结构构型生成优化研究[J].空间结构,2016,22(3):17-26.DOI:10.13849/j.issn.1006-6578.2016.03.017.ZOUD,XIAON.Morphogenesisofreciprocalstructurebyoptimi⁃zationmethods[J].SpatialStructures,2016,22(3):17-26.[9]SAKURAIA.感度解析によるレシプロカル構造の位相最適化に関する研究[J].法政大学大学院紀要.デザイン工学研究科編,2015(4):1-6.DOI:10.15002/00012361.SAKURAIA.Studyontopologyopimazationofreciprocalframebysensitivityanalysis[J].Bulletinofgraduatestudies:ArtandTechnology,2015(4):1-6.[10]NAKADES.アーチ状ReciprocalFrame構造の断面と形状の最適化に関する研究[J].法政大学大学院紀要.デザイン工学研究科編,2016(5):1-5.DOI:10.15002/00013547.NAKADES.Astudyonsectionalandmorphologicaloptimizationofarchedreciprocalframestructures[J].Bulletinofgraduatestudies.ArtandTechnology,2016(5):1-5.[11]DOUTHEC,BAVERELO.Designofnexoradesorreciprocalframesystemswiththedynamicrelaxationmethod[J].Computers&Structures,2009,87(21/22):1296-1307.DOI:10.1016/j.compstruc.2009.06.011.[12]GODTHELPTS.Timberreciprocalframestructures[D].Eind⁃hoven:EindhovenUniversityofTechnology,2019.[13]覃池泉,王宝珍.虹桥结构类型初探[J].中国水运(下半月),2008,8(6):195-196.QINCQ,WANGBZ.PreliminarystudyonstructuraltypesofHongqiao[J].ChinaWaterTransport,2008,8(6):195-196.[14]陆伟东,陆斌辉,屈丽荣,等.大跨木结构研究现状及关键技术[J].四川建筑科学研究,2021,47(4):1-26.DOI:10.19794/j.cnki.1008-1933.2021.0042.LUWD,LUBH,QULR,etal.Researchstatusandkeytech⁃nologiesoflargespantimberstructures[J].SichuanBuildingSci⁃ence,2021,47(4):1-26.73。

选择性必修Unit 4Period 4 Integrated skills

选择性必修Unit 4Period 4 Integrated skills

7. 被定义为 __b_e__d_e_fi_n_e_d__as___ 8. 随着时间的推移 __o_v_e_r _t_im__e__ 9. 将某物应用到某物上 __a_p_p_ly__s_th__t_o__s_th___ 10. 取决于 __d_e_p_en_d__o_n___
二、单句语法填空
1. The body may be less __r_e_s_is_ta_n_t__(resist) if it is cold. 2. The article describes how the __l_u_b_ri_c_a_ti_o_n__(lubricate) system works. 3. The seller led me __to__b_e_l_ie_v_e__(believe) that the price included home delivery. 4. She applied to the manager __f_o_r _ a job as a clerk. 5. Agreements signed by representatives of various countries are __o_f__ great importance. 6. His __l_im__it_e_d__(limit) knowledge prevented him from being employed.
三、课文语法填空 1.__D_e_fi_n_ed_(define) as the force that makes 2.___i_t __difficult for one object to slide
over 3.__t_h_e__surface of another or to move through a liquid or gas, friction has been fascinating scientists 4.___f_or__centuries, and it’s hard to resist! Friction continued to draw 5._sc_i_en_t_is_ts_’

Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Ex

Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Ex

Tran s.Tian jin Univ.2010,16:388-394DOI 10.1007/s 12209-010-1414-2Accept ed d at e:2009-06-03.*S y N N S F f (N 5)LIU ,6,,D ,f LI j ,j 3@y Dyn amic Reliability Evaluation of D ouble-L ayer CylindricalLatticed Shell under Multi-Support Excitations *L IU Chung ua ng(柳春光)1,2,LI Huijun(李会军)2(1.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China;2.Faculty of Infrastructure Engineering,Dalian University of Technology,Dalian 116024,China)Tianjin University and Springer-Verlag Berlin Heidelberg 2010Ab stract :To overcome the excessive computational cost and/or bad accuracy of traditional approaches,the probabil-istic density evolution method (PDEM)is introduced.The dynamic reliability of a double-layer cylindrical latticed shell is evaluated by applying PDEM and Monte Carlo Method (MCM)respectively,and four apparent wave veloci-ties (100m/s,500m/s,800m/s and 1200m/s)and five thresholds (0.1m,0.2m,0.3m,0.4m and 0.5m)are taken into consideration.Only the difference between threshold and maximal deformation is taken as the performance func-tion.The numerical results show that results obtained by PDEM and MCM agree well;the dynamic reliability in-creases markedly with the increase of displacement threshold;the types of probabilistic density curves of response are different from that of regular distribution;the dynamic reliability will decrease with the decrease of apparent wave velocity,and more members will enter into the plastic state when subjected to multi-support excitations compared with uniform excitation.Thus,it is necessary to take the wave passage effect into consideration in the seismic design of shell structures.Keyword s :shell structure;reliability;Monte Carlo method;probability density evolution method;finite difference method;efficiencyThe large span spatial structure has been applied widely for its reasonable mechanical behavior,high rigid-ity,light weight and easy fabrication and erection.Spatial structures have been extensively used in large public and industrial buildings,such as sports and exhibition halls,theaters,terminal buildings,aero -plane hangars.Conse-quently,the seismic effects of ground motion variations on the large span spatial structure become a crucial issue.Each support of the large span spatial structure is excited asynchronously due to two important effects:(1)the time lag that seismic wave arrives at different struc-tural supports,denoted as the wave passage effect;(2)the loss of coherency of the motion due to reflections and refractions of the waves in different soil media as well as due to the diverse manners of superposition of waves arriving from an extended source at various stations,de-noted as the incoherence effect.Therefore,the analysis of seismic response of structures,especially for long span spatial structure,cannot be based on the simple assump-tion that free -field ground motions are spatially uniform.During the last three decades,the study of variation effect on the seismic response of civil structures has been ad-vanced significantly.Recent researches [1-3]have con-cluded that the difference of support motions can signifi-cantly influence the internal forces of large span spatial structure.Several response spectrum methods [4-7]have been developed to calculate the seismic response of struc-tures subjected to multi -support excitations.A great deal of researches and effort [8,9]has been directed to assess the seismic response of large span spatial structure and re-sults of these studies have shown that the spatial ground motion may induce internal forces and deformations that need to be considered in the design of reticulated shell.Nevertheless,in most cases this effect is still ignored since the seismic design codes remain unsatisfactory in terms of ground motion variations for this kind of struc-ture.This ignorance will reduce the degree of seismic safety reliability of large span spatial structure.Although much work has been done in multi -support excitations,only a few researches investigated the dynamic reliability of long span spatial structure.Especially,there have been no efficient and/or accurate approaches to evaluating theupported b ational at ural cience oundation o China o.0478094.Chunguang born in 194male r Pro .Correspondence to Hui un E-mail:lihui .LIU Chunguang et al:Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations—3—dynamic reliability.Hence,further studies need to be conducted to solve the problem in the dynamic reliability of large span spatial structure subjected to multi -support excitations.As for nonlinear stochastic structures,some investi-gations have been performed.For example,the Monte Carlo method (MCM),random perturbation technique and orthogonal polynomials expansion based approach have been investigated.MCM is applicable to nonlinear stochastic structural analysis,but the computational ef-forts may be exceptionally large.The random perturba-tion technique,which is more efficient in applications,is limited to the case where only small variations of random variable is feasible.Furthermore,it does not work in dy-namics problems on account of secular terms.The or-thogonal polynomials expansion based approach is lim-ited to nonlinear single degree of freedom systems with nonlinearity in the form of power series.Hence,probabil-istic density evolution method (PDEM)[10]is introduced into the dynamic reliability assessment in spatial struc-ture subjected to multi -support excitations in this paper.The numerical results show that PDEM is efficient and accurate in evaluating the dynamic reliability of spatial structure.1Multi-support excitations t o large spanspatial structure1.1Seismic analysis method for spatial structure subjected to multi-support e xcitationsStructures may be destroyed by a sudden attack of earthquake during a short period.In the past,some large span spatial structures were damaged in the earth-quake[11,12].Generally,time -history method,stochastic vibration method and response spectrum method are applied to calculating the seismic response of spatial structure sub-jected to multi -support excitations.The time -history method is easy to carry out;the advantage of stochastic vibration method is that it is constructed on the basis of statistics.Once auto -power spectrum and cross power spectrum of earthquake are determined,statistics of struc-tural response can be captured.However,it is difficult to apply the stochastic vibration to practical engineering due to its excessive computation cost and complicated mathematical derivation.The response spectrum method is only suitable for linear structures.T y ,and the commercial software can carry out the seismic analysis of spatial structure subjected to multi -support ually,three approaches are used:(1)earthquake waves exposed to structural bases by input-ting the acceleration time -history;(2)the acceleration time history integrated to the displacement time -history;(3)large mass method.In this paper,large mass method is used to carry out multi -support excitations.1.2Equation of motion of spatial structur e sub-jected to multi -support excitationsTo solve the equation of motion of spatial structure subjected to multi -support excitations,the total displace-ment are divided into pseudo -static displacement and dynamic relative displacement.The former can be ob-tained by static method,and the total displacement can be gained by substituting pseudo -static displacement into the original equation.In the absolute coordinate,nodes of spatial structures are classified into interior nodes (denoted by subscript s )and support nodes (denoted by subscript b ),and the equation of motion can be formed by partitioned matrix as follows [13,14]ss s b s s sb s s bs bb bs bb b b ++M ΜC C X XM M C C X Xss sb s bsbbbb0=K K X K K X F (1)where b X ,b X and bX are forcing displacement,velocity and acceleration vector imposed to bearing supports of latticed shell subjected to seismic excitations,respec-tively;s X ,s X and sX are displacement,velocity and ac-celeration vector imposed to non -bearing supports,re-spectively;F b is the force acting at bearing supports.Expanding the first row of Eq.(1),yieldsss s ss s ss s ++=M X C X K X sb bsb bsb bM X C X K X (2)The total displacement are divided into pseudo -static dis-placement and dynamic relative displacement,i.e.,s s d bb=+X Y Y X X 0(3)where pseudo-static displacement Y scan be obtained by assuming that the dynamic term equals zero in Eq.(1),and it yields1=Y K K K ()89he time -histor method is adopted in this paper sss s b b -4Transactions of Tianjin University V ol.16No.52010—3—When Eq.(3)is substituted into Eq.(2),it will take the formss s ss s ss s s s s ss s ++=M Y C Y K Y M Y C Y --ss ss b b s b b sb bK Y M X C X K X --(5)When Eq.(3)is substituted into Eq.(5),it yieldsss d ss d ss d ++=M Y C Y K Y ss sss ss b bsb bM Y C Y M X C X (6)Generally speaking,the damping force is propor-tional to dynamic relative velocity.Hence,s bXX can bereplaced by d Yin Eq.(1),and it yieldsss d ss d ss d ++=M Y C Y K Y ss ss b bM Y M X (7)When Eq.(4)is substituted into Eq.(7),it will take theformss d ss d ss d ++=M Y C Y K Y ss sb b+M M X ()α(8)where 1ss sb K K -=αis called pseudo-static matrix;forlumped mass matrix,sb 0=M ,then Eq.(8)takes the formss d ss d ss d ss b ++=M Y C Y K Y M X α(9)This is the equation of motion of spatial structure sub-jected to multi -support excitations.When the structure issubjected to uniform excitations,i.e.,b b b(),E u t =X Eq.(9)agrees well with the classical equation of motion.For simplification ,Eq.(9)can be rewritten as fol-lows,b()()()()t t t t ++=MY CY KY M X α(10)where b()t X is the seismic acceleration vector acting on the bearing supports of spatial structure.2D ynamic reliability of spatial structureand PDEM2.1PDEM of dynamic response of spatial struc -tureConsider the equation of motion of spatial structure subjected to random excitations as follows [15]:(,)++=MXX K X f Z ()The system has n -DOF,and M,C and K are mass,damping and stiffness matrices,respectively;f is a forc-ing function vector,and Z is a random parameter vector denoting the uncertainty of random excitation,with the known probabilistic density function p Z (Z ).The deterministic initial conditions are as follows00(),t =X x 00()t =X x (12)where X (t )is a random process determined by Z and canbe expressed as()(,)t t =X H Z (13)where H is a deterministic operator,and its component is ()(,),j j X t H t =Z 1,2,,j n = (14)The joint PDF of X (t )or the PDF of X j (t )can be deter-mined by the joint PDF of Z.The joint PDF is (,,)((,))()jj j j X p X t X H t p δ=z z z z z(15)Differentiating Eq.(15)with respect to t on bothsides,the probability density evolution equation can be derived as,,(,,)(,,)(,)0jjX j X j j p X t p X t H t t x+=Z Z z z z (16)where (,)j Ht z is the velocity of response.For t=t 0,,(,,)jX j p X t Z z can be solved with the above initial condi-tion,,0(,,)()()jX j j j p X t X X p δ=Z z z z (17)where x j ,0is the initial value of X j (t ).Finally,the PDF of ()j X t ,(,)jx j p X t ,can be ob-tained by,(,)(,,)d jjX j X z p X t p x t Ω=∫zz z(18)2.2Dynamic r elia bility asse ssmentThe dynamic reliability of response X j (t )can be ex-pressed as [16]s (){(),[0,]}j R t p X t τΩτ=∈∈(19)where p{}is the probability of event;s is the safe do-main.An absorbing boundary condition is,f (,,)0,jX j j p X t X Ω=∈Z z (failure domain )(20)Denoting the solution of initial -boundary -va lueproblem as (,,)X j p X tZ z ,the remaining PDF is(,)(,,)d j j zX j X j p X t p X t Ω=∫Zz z(21)and the reliability will be given by()(,)d j zX j jR t p X t X Ω=∫(22)90t C 11LIU Chunguang et al:Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations—3—2.3Procedures of dynamic re liabilityThe procedures to evaluate reliability of spatial structure subjected to multi -support excitations are as follows [15,16]:(1)discretize z in domain z and denote the lattice point as z q ,q=1,2, ,N s ,where N s is the dis-cretized points;(2)solve Eq.(11)to obtain (,)q mX t z ,where m t m t =Δ;(3)solve the initial -boundary -value problem with the finite difference method (FDM );(4)for each z q ,q=1,2, ,N s ,repeat steps (2)and (3).And then carry out the numerical integration in Eq.(18)for the dynamic response analysis,or in Eq.(22)for reliabil-ity assessment.3Dynamic reliability evaluation of lat ticed shell under m ulti-support excit ations3.1De sc ription of mode l a nd ra ndom para meters To evaluate the dynamic reliability of a large span double -layer cylindrical latticed shell subjected to multi -support excitations,PDEM is adopted.Fig.1shows the finite element model.The geometry and material proper-ties of the shell are taken as follows:span length L =108m;width B=211.2m;the height -to -span ratio is 1/3.Themembers are modeled by bar elements in the analysis.In this structure,there are 5832nodes and 6656members in all.The roof loads are taken as 2.0kN/m 2.Statistic loads and self -weight of the shell are treated as lumped masses concentrated at the joints.Initial yield stress is 240MPa,Young ’s modulus is 2.1×1011Pa and hardening modulus is 1.05×1010Pa.Joints are assumed to be hinged.The duration time of EL -Centro is 32s.(,)q mt X z in Eq.(11)is solved by ANSYS,and the initial -boundary -value problem is carried out by FDM pro-grammed by authors.Finally,the PDF of ()j X t in Eq.(18),i.e.,(,)jX j p X t and reliability assessment in Eq.(22)are also obtained by programs developed by au-thors.The probabilistic information of selected parame-ters is listed in Tab.1.Fig.1Double-layer cylindrical latticed shellTab.1Probabilistic information of random parametersRandom variablePositionMember number Distribution Mean Standard deviationE/Pa All bars1—4800Normal 2.1×10114.2×109A 1/mm 2Bars in upper-lay er,in span direction 1—858Log normal 4014.96401.5A 2/mm 2Bars in upper-lay er,in longitudinal direction 859—1722Log normal 2085.23208.52A 3/mm 2Bars in lower-lay er,in span direction 1723—2522Log normal 2968.81296.88A 4/mm 2Bars in lower-lay er,in longitudinal direction2523—3328Log normal 1545.40154.54A 5/mm 2Web member 3329—6656Log normal 1382.3138.23P/NAt upper-layer nodes1—891(node nu mber)Normal1.06P i0.074P iNote:P i (i=1—891)are t he equivalent loads concentrated at upper-layer nodes.3.2Evalua tion of dynam ic reliability of latticed shellTo demonstrate the efficiency and accuracy of PDEM in spatial structure,a large span double -layer cy-lindrical latticed shell is selected.Five displacement thresholds (0.1m,0.2m,0.3m,0.4m and 0.5m )and four apparent wave velocities (V app =100m/s,500m/s,800m/s and 1200m/s )are chosen in dynamic reliability assessment.3.2.1Dynamic reliability assessment of shell with dif-ferent thresholdsT f y y f shell is carried out considering five thresholds,i.e.,0.1m,0.2m,0.3m,0.4m and 0.5m,respectively.Two ap-parent wave velocities are considered.Only the differ-ence between threshold and maximal displacement re-sponse of node is taken as performance function.The dynamic reliabilities of latticed shell subjected to multi -support excitations are listed in Tab.2.Both PDEM and MCM are used to evaluate the dynamic reliability con-sidering two apparent wave velocities,100m/s and 500m/s.It can be seen from Tab.2that the dynamic reliabil-ity increases evidently with the increase of threshold.To fy ff y y,M M 91he evaluation o d namic reliabilit o latticed veri the e icienc and accurac C is also used.Transactions of Tianjin University V ol.16No.52010—3—Tab.2shows that results obtained by PDEM and MCM agree well whenever the threshold is high or low,and Refs.[15,16]obtained the similar solution.Furthermore,it requires only several minutes to carry out the reliability evaluation using PDEM,while MCM needs several hours,even tens of hours to achieve for a small probabil-ity event.In addition,we can see that the effect of appar-ent wave velocity on dynamic reliability of latticed shell cannot be neglected.The smaller the apparent wave ve-locity,the lower reliability is gained with the same dis-placement threshold.The time -history curves of the mean and standard deviation gained by PDEM and MCM are drawn in Figs.2and 3,when apparent wave velocities equal 100m/s and 500m/s,respectively.We can see that the introducedPDEM is accurate enough to calculate the dynamic reli-ability of latticed shell.As far as the computational ef-forts are concerned,the introduced method is more time -saving.The agreement of results between them shows the validity of the introduced algorithm.Tab.2Dynamic reliabilities of latticed shell with different thresholds and apparent wave velocities of100,500m/sReliability (100m/s)Reliability (500m/s)Threshold /mPDEM MCM PDEM MCM 0.10.2550.2560.2920.2940.20.3970.3970.4680.4620.30.6590.6580.7020.7020.40.8030.8040.8420.8460.50.9230.9250.9470.948(a )Mean (b )Standard deviationFig.2Mean and standard deviations of displacement response of latticed shell (V app =100m/s)(a )Mean (b )Standard deviationFig.3Mean and standard deviations of displacement response of latticed shell (V app =500m/s)3.2.2Dynamic reliability of latticed shell with different apparent wave velocitiesIn this section,the effect of apparent wave velocities on dynamic reliability of double-layer cylindrical latticed shell is investigated.Four apparent wave velocities are involved,i.e.,100m/s,500m/s,800m/s and 1200m/s;besides,the uniform excitation is also considered.The dynamic reliabilities are shown in Tab.2when the appar-ent wave velocities equal 100m/s and 500m/s,respec-tively.Tab.3shows the reliabilities when apparent wave velocities equal 800m/s and infinity (i.e.,uniform exci-tations ).From Tab.3we can see that the reliability in-creases evidently with the increase of displacement threshold.The values of reliability in Tab.3are larger than those in Tab.2.Moreover,the interior force of the majority of member changes evidently as the decrease of apparent wave velocity;and some values increase,while others decrease.Hence,it is necessary to take multi -92LIU Chunguang et al:Dynamic Reliability Evaluation of Double-Layer Cylindrical Latticed Shell under Multi-Support Excitations—33—support excitations into account in the dynamic reliability evaluation of long span spatial structure.Tab.3Dynamic reliabilities of latticed shell with different thresholds and ap parent wave velocities of 800m/s and infinityReliability (800m/s)Reliability(Uniform excitations)Threshold /mPDEM MCM PDEM MCM 0.10.3280.3290.3480.3490.20.5130.5140.5370.5380.30.7560.7570.7810.7830.40.8890.8890.9240.9250.50.9720.9760.9850.987Figs.4and 5show the instantaneous PDF curves of displacement response of latticed shell and their evolu-tions,considering two thresholds and two apparent wave velocities at a typical time instant.We can see that the curves are obviously different from the widely used regu-lar probabilistic distribution,e.g.,the normal distribution,log normal distribution,and the curves are irregular and sometimes have two peaks or more.Refs.[15,16]deduced the similar solution.For nonlinear response of latticed shell,the probabilistic density function curves are essen-tially different from traditional distributions despite ran-dom sources are traditional ones.Hence,the traditional second moment reliability method based on the normal distribution assumption has relatively more error.(a )V app =100m/s(b )V app =500m/sFig.4PDF curves wh en threshold is 0.4m at certain time (a )V app =100m/s(b )V app =500m/sFig.5PDF curves when threshold is 0.5m at certain time instants4Conclusions(1)The probabilistic density of response of latticedshell has evolutionary characteristics,and probabilistic density curves are different from regular distribution,e.g.,normal distribution,log normal distribution.(2)The dynamic reliability of latticed shell will de-crease with the decrease of apparent wave velocity;more members enter into the plastic state of latticed shell sub-jected to multi -support excitations compared with uni-form excitation;the dynamic reliability of spatial struc-ture subjected to multi -support excitations can be evalu-ated efficiently and accurately by PDEM,hence,the PDEM is worth further extending in spatial structure.(3)In the seismic analysis of long span spatial structure,it is necessary to take the wave passage effect into account,which has evident effect on interior force of members.Furthermore,the influence of traveling wave effect on interior force of members may be different in different places.The structural response of shell is ampli-fied by multi -support excitations.The amplification ef-fect should be considered in the seismic design of spatial structure.The amplification value changes with span and structural type of spatial structure,etc.(4)Compared with traditional approaches,PDEM y f ,9instantscan not onl obtain more probabilistic in ormation butTransactions of Tianjin University V ol.16No.52010—3—also compute efficiently and accurately.Moreover,PDEM has no limitations to secular terms and small vari-ability.The numerical results show that PDEM is accu-rate and efficient to evaluate the dynamic reliability of spatial structure subjected to multi -support excitations.Refer ences[1]Di Long,Lou Mengli.Seismic response analysis of singlelayer cylindrical reticulated shell under multi-support exci-tations[J].Journal of Tongji University (Natural Sci-ence),2006,34(10):1293-1298(in Chinese).[2]Li Zhongxian,Lin Wei,Ding Yang.Influence of wavepassage effect on seismic response of long-span spatial lat-tice structures[J].Journal of Tianjin University,2007,40(1):1-8(in Chinese).[3]Liang Jiaqing,Ye Jihong.The influence of structural spanon seismic response of space lattice structures under non-uniform excitation[J].Spatial Structures,2004,10(3):13-18(in Chinese).[4]Su Liang,Dong Shilin.Seismic analysis of two typicalspatial structures under multi-support vertical excita-tions[J].Engineering Mechanics,2007,24(2):85-90(in Chinese).[5]Dong Hexun,Ye Jihong.Effects of some parameters onpseudo-static displacement of space lattice structures under multiple support excitation[J].Journal of Southeast Uni-versity(Natural Science),2005,35(4):574-579(in Chi-nese).[6]Liang Jiaqing,Ye Jihong.Seismic response analysis oflong-span space lattice structures under multiple-support excitation [J].Journal of Southeast University (Natural Science),2003,33(5):625-630(in Chinese).[7]Ernesto Heredia-Zavoni,Vanmarcke Erik H.Seismic ran-dom-vibration analysis of multi-support-structural sys-tems[J].Journal of Engineering Mechanics,1994,120(5):1107-1128.[8]Der Kiureghian Armen,Neuenhofer Ansgar.Responsespectrum method for multi-support seismic excitations[J].Earthquake Engineering &Structural Dynamics,1992,21(8):713-740.[9]Loh Chin Hsiung,Ku Bao Ding.An efficient analysis ofstructural response for multiple-support seismic excitations [J].Engineering Structures,1995,17(1):15-26.[10]Li Jie,Chen Jianbing.Probability density evolution analy-sis of nonlinear dynamic response of stochastic struc-tures[J].A cta Mechanica Sinica,2003,35(6):716-722.[11]Fan Zhongxuan.Earthquake hazards analysis of trussstructures-roof of theater in Wu Qia of Xinjiang under earthquake 9degree [J].Earthquake Resistant Engineer-ing,1992,14(2):41-45(in Chinese).[12]Lan Tian.Seismic Design of Large Span Roof [M].ChinaArchitecture &Building Press,Beijing,2000(in Chinese).[13]Zhang Jianmin.Some Problems of Seismic Design of TrussStructures [M].Earthquake Press,Beijing,1992(in Chi-nese).[14]Chu Ye.Elastoplastic Seismic Response and StrengthFracture Analysis of Space Lattice Structures under Multi-support Excitation[D].School of Civil Engineering,Southeast University,Nanjing,2006(in Chinese).[15]Zhang Linlin,Li Jie,Peng Yongbo.Dynamic response andreliability analysis of tall buildings subject to wind loading [J].Journal of Wind Engineering and Industrial Aerody-namics,2008,96(1):25-40.[16]Li Jie,Chen Jianbing.Probability density evolutionmethod for dynamic reliability analysis of stochastic struc-tures[J].Journal of V ibration Engineering,2004,17(2):121-125.94。

Theory of the lattice Boltzmann method From the Boltzmann equation to the lattice Boltzmann equation

Theory of the lattice Boltzmann method From the Boltzmann equation to the lattice Boltzmann equation

Theory of the lattice Boltzmann method:From the Boltzmann equationto the lattice Boltzmann equationXiaoyi He 1,2,*and Li-Shi Luo 2,3,†1Center for Nonlinear Studies,MS-B258,Los Alamos National Laboratory,Los Alamos,New Mexico 875452Complex Systems Group T-13,MS-B213,Theoretical Division,Los Alamos National Laboratory,Los Alamos,New Mexico 875453ICASE,MS 403,NASA Langley Research Center,6North Dryden Street,Building 1298,Hampton,Virginia 23681-0001͑Received 29April 1997;revised manuscript received 26August 1997͒In this paper,the lattice Boltzmann equation is directly derived from the Boltzmann equation.It is shown that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation.Various approxi-mations for the discretization of the Boltzmann equation in both time and phase space are discussed in detail.A general procedure to derive the lattice Boltzmann model from the continuous Boltzmann equation is dem-onstrated explicitly.The lattice Boltzmann models derived include the two-dimensional 6-bit,7-bit,and 9-bit,and three-dimensional 27-bit models.͓S1063-651X ͑97͒12512-0͔PACS number ͑s ͒:47.10.ϩg,47.11.ϩj,05.20.DdI.INTRODUCTIONIn the last few years,we have witnessed a rapid develop-ment of the method known as the lattice Boltzmann equation ͑LBE ͓͒1–6͔.Although only in its infancy,the LBE method has demonstrated its ability to simulate hydrodynamic sys-tems ͓1–5͔,magnetohydrodynamic systems ͓7͔,multiphase and multicomponent fluids ͓8͔including suspensions ͓9͔and emulsions ͓10͔,chemical-reactive flows ͓11͔,and multi-component flow through porous media ͓12͔.Together with modern computers of massively parallel processors,the LBE method has become a powerful computational method for studying various complex systems.The obvious advantages of the LBE method are the parallelism of the method,the simplicity of the programming,and the capability of incor-porating model interactions.However,a rigorous framework of the LBE method is still lacking in spite of the great inter-est in the method.Historically,the models of the lattice Boltzmann equation directly evolve from the models of the lattice-gas automata ͑LGA ͓͒13͔.While the LGA models are Boolean ones,the LBE models are indeed the floating-number counterpart of the corresponding LGA models—a particle in the LGA model ͑represented by a Boolean number ͒is replaced by the single-particle distribution function ͑represented by a real number ͒.Even though the LBE models appear to be rather different from their LGA counterparts because various approximations,such as the linearization of the collision op-erator ͓2͔and the Bhatnagar-Gross-Krook ͑BGK ͓͒15–17͔approximation ͓3͔,have been applied,the theoretical frame-work of the LBE method nevertheless rests upon the Chapman-Enskog analysis of the LGA method ͓14͔.Al-though the connection between the LBE models and the con-tinuous Boltzmann equation are discussed in various places ͓18,19͔,so far there exists no rigorous result in this direction.The lack of a thorough understanding of the LBE method has some immediate implications.For instance,the LBE method has not been very successful in simulating thermohydrody-namic systems ͓19–22͔,nor has the LBE method been able to be implemented on arbitrary mesh grids ͓5,23͔,even though considerable effort has been applied in these direc-tions.As we have shown recently ͓24–26͔,substantial progress can be made in the aforementioned areas once a better understanding of the LBE method is attained.Further-more,through the derivation we can directly show the con-nection between the LBE method and other newly developed gas kinetic methods ͓27–33͔.In this paper we will show that the lattice Boltzmann equation can be directly derived from the continuous Boltz-mann equation discretized in some special manner in both time and phase space.Our analysis shows that theoretically the lattice Boltzmann equation is independent of the lattice-gas automata.The lattice Boltzmann equation is a finite-difference form of the continuous Boltzmann equation.We provide a detailed account of an a priori derivation of the lattice Boltzmann equation from its continuous counter-part—the continuous Boltzmann equation.A general proce-dure to derive lattice Boltzmann models from the continuous Boltzmann equation is established.A number of LBE models in both two-and three-dimensional ͑2D,3D ͒space are de-rived to illustrate the procedure.The kinetic-model equation used in this paper is the BGK equation with a single relax-ation time ͓15–17͔.Although the BGK equation has its in-herent limitations and shortcomings,such as fixed Prandtl number,the equation can be generalized to remedy the short-comings ͓34͔.Therefore,it is sufficient to use the BGK equation for the purpose of studying hydrodynamics of simple fluids.This paper is organized as follows.In Sec.II we discuss the discretization of time for the Boltzmann BGK equation.In Sec.III we discuss the low Mach number ͑small velocity ͒expansion and the discretization of the phase space.In Sec.IV we derive the lattice Boltzmann 6-bit,7-bit,and 9-bit models in two-dimensional space and the 27-bit model in three-dimensional space.Section V concludes the paper.*Electronic address:xyh@†Electronic address:luo@PHYSICAL REVIEW E DECEMBER 1997VOLUME 56,NUMBER 6561063-651X/97/56͑6͒/6811͑7͒/$10.006811©1997The American Physical SocietyII.DISCRETIZATION OF THE BOLTZMANN EQUATIONIn the following analysis,we shall use the Boltzmann equation with the BGK,or single-relaxation-time,approxi-mation ͓15–17͔:ץfץt ϩ␰•ٌf ϭϪ1␭͑f Ϫg ͒,͑1͒where f ϵf (x ,␰,t )is the single-particle distribution function,␰is the microscopic velocity,␭is the relaxation time due to collision,and g is the Boltzmann-Maxwellian distribution function:g ϵ␳͑2␲RT ͒D /2exp ͩϪ͑␰Ϫu ͒22RT ͪ,͑2͒where R is the ideal gas constant,D is the dimension of the space,and ␳,u ,and T are the macroscopic density of mass,velocity,and temperature,respectively.The macroscopic variables,␳,u ,and T are the ͑microscopic velocity ͒mo-ments of the distribution function,f :␳ϭ͵f d ␰ϭ͵gd ␰,͑3a ͒␳u ϭ͵␰f d ␰ϭ͵␰gd ␰,͑3b ͒␳␧ϭ12͵͑␰Ϫu ͒2f d ␰ϭ12͵͑␰Ϫu ͒2gd ␰.͑3c ͒The energy can also be written in terms of temperature T :␧ϭD 02RT ϭD 02N A k BT ,͑4͒where D 0,N A ,and k B are the number of degrees of freedom of a particle,Avogadro’s number,and the Boltzmann con-stant,respectively.In Eqs.͑3͒,an assumption of Chapman-Enskog ͓16͔has been applied:͵h ͑␰͒f ͑x ,␰,t ͒d ␰ϭ͵h ͑␰͒g ͑x ,␰,t ͒d ␰,͑5͒where h (␰)is a linear combination of collisional invariants ͑conserved quantities ͒h ͑␰͒ϭA ϩB •␰ϩC ␰•␰.͑6͒In the above equation,A and C are arbitrary constants,and B is an arbitrary constant vector.A.Discretization of timeEquation ͑1͒can be formally rewritten in the form of an ordinary differential equation:d f dt ϩ1␭f ϭ1␭g ,͑7͒whered dt ϵץץtϩ␰•“is the time derivative along the characteristic line ␰.The above equation can be formally integrated over a time step of ␦t :f ͑x ϩ␰␦t ,␰,t ϩ␦t ͒ϭ1␭e Ϫ␦t /␭͵␦te t Ј/␭g ͑x ϩ␰t Ј,␰,t ϩt Ј͒dt Јϩe Ϫ␦t /␭f ͑x ,␰,t ͒.͑8͒Assuming that ␦t is small enough and g is smooth enoughlocally,the following approximation can be made:g ͑x ϩ␰t Ј,␰,t ϩt Ј͒ϭͩ1Ϫt Ј␦tͪg ͑x ,␰,t ͒ϩt Ј␦tg ͑x ϩ␰␦t ,␰,t ϩ␦t ͒ϩO ͑␦t 2͒,0рt Јр␦t .͑9͒The leading terms neglected in the above approximation are of the order of O (␦t 2).With this approximation,Eq.͑8͒be-comesf ͑x ϩ␰␦t ,␰,t ϩ␦t ͒Ϫf ͑x ,␰,t ͒ϭ͑e Ϫ␦t /␭Ϫ1͓͒f ͑x ,␰,t ͒Ϫg ͑x ,␰,t ͔͒ϩͩ1ϩ␭␦t͑e Ϫ␦t /␭Ϫ1͒ͪϫ͓g ͑x ϩ␰␦t ,␰,t ϩ␦t ͒Ϫg ͑x ,␰,t ͔͒.͑10͒If we expand e Ϫ␦t /␭in its Taylor expansion and,further,neglect the terms of order O (␦t 2)or smaller on the right-hand side of Eq.͑10͒,then Eq.͑10͒becomes f ͑x ϩ␰␦t ,␰,t ϩ␦t ͒Ϫf ͑x ,␰,t ͒ϭϪ1␶͓f ͑x ,␰,t ͒Ϫg ͑x ,␰,t ͔͒,͑11͒where ␶ϵ␭/␦t is the dimensionless relaxation time ͑in the unit of ␦t ͒.Therefore,Eq.͑11͒is accurate to the first order in ␦t .Equation ͑11͒is the evolution equation of the distribu-tion function f with discrete time.Although g is written as an explicit function of t ,the time dependence of g lies solely in the hydrodynamic variables ␳,u ,and T ͑the Chapman-Enskog ansatz ͓16͔͒,that is,g (x ,␰,t )ϭg (x ,␰;␳,u ,T ).Therefore,one must first compute ␳,u ,and T before constructing the equilibrium distribution function,g .Thus,the calculation of ␳,u ,and T becomes one of the most crucial steps in discretizing the Boltzmann equa-tion.B.Calculation of the hydrodynamic momentsIn order to numerically evaluate the hydrodynamic mo-ments of Eq.͑3͒,appropriate discretization in momentumspace ␰must be accomplished.With appropriate discretiza-tion,integration in momentum space ͑with weight function g ͒can be approximated by quadrature up to a certain degree of accuracy,that is,681256XIAOYI HE AND LI-SHI LUO͵␺͑␰͒g͑x,␰,t͒d␰ϭ͚␣W␣␺͑␰␣͒g͑x,␰␣,t͒,͑12͒where␺͑␰͒is a polynomial of␰,W␣is the weight coefficient of the quadrature,and␰␣is the discrete velocity set or the abscissas of the quadrature.Accordingly,the hydrodynamic moments of Eqs.͑3͒can be computed by␳ϭ͚␣f␣ϭ͚␣g␣,͑13a͒␳uϭ͚␣␰␣f␣ϭ͚␣␰␣g␣,͑13b͒␳␧ϭ12͚␣͑␰␣Ϫu͒2f␣ϭ12͚␣͑␰␣Ϫu͒2g␣,͑13c͒wheref␣ϵf␣͑x,t͒ϵW␣f͑x,␰␣,t͒,͑14a͒g␣ϵg␣͑x,t͒ϵW␣g͑x,␰␣,t͒.͑14b͒It should also be noted that f␣͑or g␣)has the unit of f d␰͑or gd␰).III.DERIVATION OF THE LATTICE BOLTZMANN EQUATION AND ITS EQUILIBRIUM DISTRIBUTIONFUNCTIONThe lattice Boltzmann equation has the following ingredi-ents:͑1͒an evolution equation,in the form of Eq.͑11͒with discretized time and phase space of which configuration space is of a lattice structure and momentum space is re-duced to a small set of discrete momenta;͑2͒conservation constraints in the form of Eq.͑13͒;͑3͒a proper equilibrium distribution function which leads to the Navier-Stokes equa-tions.In what follows,the low Mach number expansion is first applied to the Boltzmann-Maxwellian distribution func-tion.Then quadrature to approximate the integration in the momentum space␰is discussed in detail for a variety of LBE models in both2D and3D space.Through the quadra-ture,the lattice structure,and the equilibrium distribution function of the LBE are constructed.A.Low-Mach-number approximationIn the lattice Boltzmann equation,the equilibrium distri-bution function is obtained by a truncated small velocity ex-pansion͑or low-Mach-number approximation͓͒14͔.The same can be done here:gϭ␳2␲RT D/2exp͑Ϫ␰2/2RT͒exp͕͑␰•u͒/RTϪu2/2RT͖ϭ␳͑2␲RT͒D/2exp͑Ϫ␰2/2RT͒ϫͭ1ϩ͑␰•u͒RTϩ͑␰•u͒22͑RT͒2Ϫu22RTͮϩO͑u3͒.͑15͒With the equilibrium distribution function g of the aboveform,Eq.͑11͒bears a strong resemblance to the latticeBoltzmann equation,and what remains to be accomplished isthe discretization of phase space.For convenience,the fol-lowing notation for the equilibrium distribution function withtruncated small velocity expansion shall be used in what fol-lows:f͑eq͒ϭ␳͑2␲RT͒D/2exp͑Ϫ␰2/2RT͒ϫͭ1ϩ͑␰•u͒RTϩ͑␰•u͒22͑RT͒2Ϫu22RTͮ.͑16͒Although f(eq)only retains the terms up to O(u2),it is trivialto maintain high-order terms of u in the above expansion ifnecessary.B.Discretization of phase spaceThere are two considerations in the discretization of phasespace.First of all,the discretization of momentum space iscoupled to that of configuration space such that a latticestructure is obtained.This is a special characteristic of thelattice Boltzmann equation.Second,the quadrature must beaccurate enough so that not only the conservation constraintsof Eq.͑13͒are preserved exactly,but also the necessary sym-metries required by the Navier-Stokes equations are retained.In deriving the Navier-Stokes equations from the Boltz-mann equation via the Chapman-Enskog analysis͓16,17͔,thefirst two order approximations of the distribution func-tion͑i.e.,f(eq)and f(1)͒must be considered.Therefore,giventhe equilibrium distribution function,f(eq)of Eq.͑16͒,thequadrature used to evaluate the hydrodynamic moments mustbe able to compute the following moments with respect tof(eq)exactly:␳:1,␰i,␰i␰j,͑17a͒u:␰i,␰i␰j,␰i␰j␰k,͑17b͒T:␰i␰j,␰i␰j␰k,␰i␰j␰k␰l,͑17c͒where␰i is the component of␰in Cartesian coordinates.͑Wehave assumed that the particle only has the linear degree offreedom,i.e.,D0ϭD.͒Thus,to obtain the Navier-Stokesequations,one must be able to evaluate the moments of1,␰,...,␰6with respect to weight function exp(Ϫ␰2/2RT)ex-actly,owing to the small u expansion of g.For isothermalmodels,which are discussed in what follows,the momentsthat are to be evaluated are1,␰,...,␰5.Calculating the hydrodynamic moments of f(eq)is equiva-lent to evaluating the following integral in general:Iϭ͵␺͑␰͒f͑eq͒d␰ϭ␳͑2␲RT͒D/2͵␺͑␰͒exp͑Ϫ␰2/2RT͒ϫͭ1ϩ͑␰•u͒RTϩ͑␰•u͒22͑RT͒2Ϫu22RTͮd␰,͑18͒where␺͑␰͒is a polynomial of␰.The above integral has thefollowing structure:566813THEORY OF THE LATTICE BOLTZMANN METHOD:...͵e Ϫx 2␺͑x ͒dx ,which can be calculated numerically with Gaussian-type quadrature ͓35͔.Our objective is to use quadrature to evalu-ate the hydrodynamic moments ͓␳,u ,and T ,given by Eq.͑3͔͒.Given proper discretization of phase space,we can evaluate the above integral with desirable accuracy.In the meantime,the lattice Boltzmann equation with appropriate equilibrium distribution function can also be derived.TTICE BOLTZMANN MODELS IN TWO-AND THREE-DIMENSIONAL SPACE A.Two-dimensional 6-bit and 7-bit triangular lattice modelThe 7-bit model is constructed on a two-dimensional (D ϭ2)triangular lattice space.The triangular lattice has the necessary rotational symmetry required by the hydrodynam-ics ͓14͔.The polar coordinates of ␰space,͑␰,␪͒,are used here.For the sake of simplicity but without losing generality,assuming␺m ,n ͑␰͒ϭ͑ͱ2RT ͒m ϩn ␨m ϩncos m ␪sin n␪,͑19͒where ␨ϭ␰/ͱthe integral in Eq.͑18͒becomesI ϭ͵␺m ,n ͑␰͒f͑eq ͒d ␰ϭ␳␲͑ͱ2RT ͒m ϩn͵02␲͵ϱe Ϫ␨2␨m ϩn cos m ␪sin n ␪ϫͭ1ϩ2␨͑eˆ•u ͒ͱ2RTϩ␨2͑eˆ•u ͒2RT Ϫu 22RT ͮd ␪␨d ␨,͑20͒where eˆϭ(cos ␪,sin ␪).To obtain the 7-bit lattice Boltzmann equation on the triangular lattice space,the angular variable ␪must be discretized evenly into six sections in the interval ͓0,2␲͒,that is,␪␣ϭ(␣Ϫ1)␲/3,for ␣ϭ͕1,2,...,6͖.With the discretization of ␪,we have͵2␲cos m ␪sin n ␪d ␪ϭͭ␲3͚␣ϭ16cos m ␪␣sin n ␪␣,͑m ϩn ͒even 0,͑m ϩn ͒odd͑21͒for (mϩn )рing the above result,we obtainI ϭΆ␳3͑ͱ2RT ͒m ϩn͚␣ϭ16cos m ␪␣sin n ␪␣ͭͩ1Ϫu 22RT ͪI m ϩn ϩ͑eˆ␣•u ͒2RTI m ϩn ϩ2ͮ,͑m ϩn ͒even␳3͑ͱ2RT ͒m ϩn͚␣ϭ16cos m ␪␣sin n ␪␣2͑eˆ␣•u ͒ͱ2RT I m ϩn ϩ1,͑m ϩn ͒odd,͑22͒where eˆ␣ϭ(cos ␪␣,sin ␪␣),and I m ϭ͵ϩϱ͑␨e Ϫ␨2͒␨m d ␨͑23͒is the m th moment with respect to the weight function␨e Ϫ␨2.Since the 7-bit model only has two speeds ͑i.e.,n ϭ2͒and one of them is fixed at 0,it is clear that the abscissas of the quadrature to evaluate I m should be ␨0ϭ0and ␨1ϭ␥Ϫ1,where ␥is a positive parameter to be adjusted later.The Radau-Gauss formula ͓35͔is a natural choice to evaluate the integral I m :I m ϭ␻0␨0m ϩ͚j ϭ1n␻j ␨j m .For the 7-bit model,n ϭ1,and the integrals needed to be evaluated are I 0,I 2,and I 4.͓I 1and I 3do not play any role because of the symmetry of the integral I ,as shown in Eq.͑22͒.͔Then,we have the following three equations:I 0ϭ␻0ϩ␻1ϭ1/2,͑24a ͒I 2ϭ␻1␥Ϫ2ϭ1/2,͑24b ͒I 4ϭ␻1␥Ϫ4ϭ1,͑24c ͒of which,the solutions are␻0ϭ1/4,͑25a ͒␻1ϭ1/4,͑25b ͒␥ϭ1/&.͑25c ͒Therefore,we haveI m ϭ14͑␨0m ϩ␨1m͒,m ϭ0,2,4.͑26͒Note that the above quadrature for I m is exact for m ϭ0,2,and 4.Consequently,the following equality is expected to be exact for (m ϩn )р5:681456XIAOYI HE AND LI-SHI LUOIϭ␳12͑ͱ2RT͒mϩn͚␣ϭ16cos m␪␣sin n␪␣ͭͩ1Ϫu22RTͪϫ͑␨0mϩnϩ␨1mϩn͒ϩ2͑eˆ␣•u͒ͱ2RT͑␨0mϩnϩ1ϩ␨1mϩnϩ1͒ϩ͑eˆ␣•u͒2RT͑␨0mϩnϩ2ϩ␨1mϩnϩ2͒ͮϭ␳2␺m,n͑␰0͒ͭ1Ϫu22RTͮϩ␳12͚␣ϭ16␺m,n͑␰␣͒ϫͭ1ϩ͑␰␣•u͒RTϩ͑␰␣•u͒22͑RT͒2Ϫu22RTͮ,whereʈ␰0ʈϭͱ2RT␨0ϭ0and␰␣ϭͱ2RT␨1eˆ␣ϭ2ͱRT eˆ␣.It becomes obvious that the equilibrium distribution function for the7-bit model isf␣͑eq͒ϭw␣␳ͭ1ϩ4͑e␣•u͒c2ϩ8͑e␣•u͒2c4Ϫ2u2c2ͮ,͑27͒where␣෈͕0,1,2,...,6͖,cϭ␦x␦t͑28͒is‘‘the speed of light’’in the system͑which is usually set to be unity in the literature͒,e␣ϭͭ͑0,0͒,␣ϭ0͑cos␪␣,sin␪␣͒c,␪␣ϭ͑␣Ϫ1͒␲/3,␣ϭ1,2,...,6͑29͒andw␣ϭͭ1/2,␣ϭ01/12,␣ϭ1,2, (6)͑30͒Note that the substitution of RTϭc s2ϭc2/4,where c s is the sound speed of the system,has been made in Eq.͑27͒,and RTϭc s2ϭc2/4is equivalent toʈ␰␣ʈϭc for␣ 0.The coef-ficient W␣defined in Eq.͑14͒is explicitly given byW␣ϭ͑2␲RT͒D/2e␰␣2/2RT w␣.͑31͒Similarly,the equilibrium distribution function for the6-bit LBE model,which is a degenerate case of the7-bit model,can be obtained easily by solving two equations for one abscissa and the weight coefficient of the Hermite-Gauss formula͓35͔with modification for the integral on half real axis͓36͔.The solutions are␻1ϭ12and␥ϭ1.Then,we havef␣͑eq͒ϭ␳6ͭ1ϩ2͑e␣•u͒c2ϩ4͑e␣•u͒2c4Ϫu2c2ͮ,͑32͒where␣෈͕1,2,...,6͖.The sound speed of the6-bit LBE model is c sϭc/&,and w␣ϭ16.B.Two-dimensional9-bit square lattice modelTo recover the9-bit LBE model on square lattice space, the Cartesian coordinate system is used and,accordingly,␺͑␰͒can be set to␺m,n͑␰͒ϭ␰x m␰y n,where␰x and␰y are the x and y components of␰.The integral of the moments,defined by Eq.͑18͒,becomesIϭ͵␺m,n͑␰͒f͑eq͒d␰ϭ␳␲͑ͱ2RT͒mϩnͭͩ1Ϫu22RTͪI m I n ϩ2͑u x I mϩ1I nϩu y I m I nϩ1͒ͱ2RTϩu x2I mϩ2I nϩ2u x u y I mϩ1I nϩ1ϩu y2I m I nϩ2RTͮ,͑33͒whereI mϭ͵ϪϱϩϱeϪ␨2␨m d␨,␨ϭ␰/ͱ2RTis the m th order moment of the weight function eϪ␨2on the real axis.Naturally,the third-order Hermite formula͓35͔is the optimal choice to evaluate I m for the purpose of deriving the9-bit LBE model:I mϭ͚jϭ13␻j␨j m.The three abscissas of the quadrature are␨1ϭϪͱ3/2,␨2ϭ0,␨3ϭͱ3/2,͑34͒and the corresponding weight coefficients are␻1ϭͱ␲/6,␻2ϭ2ͱ␲/3,␻3ϭͱ␲/6.͑35͒Then,the integral of the moment in Eq.͑33͒becomesIϭ␳␲͚i,jϭ13␻i␻j␺͑␰i,j͒ͭ1ϩ͑␰i,j•u͒RTϩ͑␰i,j•u͒22͑RT͒2Ϫu22RTͮ,͑36͒where␰i,jϭ(␰i,␰j)ϭͱ2RT(␨i,␨j).Obviously,we can identify the equilibrium distribution function withf i,j͑eq͒ϭ␻i␻j␲␳ͭ1ϩ͑␰i,j•u͒RTϩ͑␰i,j•u͒22͑RT͒2Ϫu22RTͮ.͑37͒Employing the notations of566815THEORY OF THE LATTICE BOLTZMANN METHOD:...e ␣ϭͭ͑0,0͒,␣ϭ0͑cos ␪␣,sin ␪␣͒c ,␪␣ϭ͑␣Ϫ1͒␲/2,␣ϭ1,2,3,4&͑cos ␪␣,sin ␪␣͒c ,␪␣ϭ͑␣Ϫ5͒␲/2ϩ␲/4,␣ϭ5,6,7,8͑38͒andw ␣ϭ␻i ␻j␲ϭͭ4/9,i ϭj ϭ2,␣ϭ01/9,i ϭ1,j ϭ2,...,␣ϭ1,2,3,41/36,i ϭj ϭ1,...,␣ϭ5,6,7,8,͑39͒and with the substitution of RT ϭc s 2ϭc 2/3͑or ʈͱ2RT ␨1ʈϭͱ3RT ϭc ͒,we obtain the equilibrium distribution function of the 9-bit LBE model:f ␣͑eq ͒ϭw ␣␳ͭ1ϩ3͑e ␣•u ͒c 2ϩ9͑e ␣•u ͒22c 4Ϫ3u 22c2ͮ.͑40͒C.Three-dimensional 27-bit square lattice modelThe 27-bit LBE model in 3D square lattice space is a straightforward extension of the 2D 9-bit model.The abscis-sas ␰i ,as well as the corresponding weight coefficients ␻i ,of the quadrature to evaluate the moments remain the same.Therefore,I ϭ␳␲3/2͚i ,j ,k ϭ13␻i ␻j ␻k ␺͑␰i ,j ,k ͒ϫͭ1ϩ͑␰i ,j ,k •u ͒RT ϩ͑␰i ,j ,k •u ͒22͑RT ͒2Ϫu 22RTͮ,͑41͒where ␰i ,j ,k ϭ(␰i ,␰j ,␰k )ϭͱ2RT (␨i ,␨j ,␨k ).With the fol-lowing notations similar to the 9-bitmodel,e ␣ϭΆ͑0,0,0͒,␣ϭ0͑Ϯ1,0,0͒c ,͑0,Ϯ1,0͒c ,͑0,0,Ϯ1͒c ,␣ϭ1,2,...,6͑Ϯ1,Ϯ1,0͒c ,͑Ϯ1,0,Ϯ1͒c ,͑0,Ϯ1,Ϯ1͒c ,␣ϭ7,8,...,18͑Ϯ1,Ϯ1,Ϯ1͒c ,␣ϭ19,20,...,26͑42͒and w ␣ϭ␻i ␻j ␻k␲3/2ϭΆ8/27,i ϭj ϭk ϭ2,␣ϭ02/27,i ϭj ϭ2,k ϭ1,...,␣ϭ1,2,...,61/54,i ϭj ϭ1,k ϭ2,...,␣ϭ7,8,...,181/216,i ϭj ϭk ϭ1,...,␣ϭ19,20, (26)͑43͒we obtain the equilibrium distribution function of the 27-bit LBE model:f ␣͑eq ͒ϭw ␣␳ͭ1ϩ3͑e ␣•u ͒c 2ϩ9͑e ␣•u ͒22c 4Ϫ3u 22c2ͮ.͑44͒Note that the f ␣(eq)of the 27-bit model is exactly the same as that of the 9-bit model except for the values of the coeffi-cients w ␣.Also,the sound speed of the 27-bit model is identical to that of the 9-bit model because in both modelsRT ϭc s 2ϭc 2/3.V.CONCLUSIONRecently,a number of gas kinetic methods have been de-veloped for solving Navier-Stokes equations of simple andcomplex fluids ͓27–33͔.All these methods are based uponthe solution of the BGK equation ͑1͒.In particular,these gas kinetic methods are basically a finite-volume solution of Eq.͑8͒and they do not require discretization of the velocity space ␰.While the lattice Boltzmann equation is in the in-compressible limit due to the small-Mach-number expansion,the gas kinetic methods are particularly suitable for shock capture.In conclusion,we have derived lattice Boltzmann models from the Boltzmann BGK equation,which is completely in-dependent of lattice-gas automata.The derivation directly connects the lattice Boltzmann equation to the Boltzmann equation;thus,the framework of the lattice Boltzmann equa-tion can rest on that of the Boltzmann equation and the rig-orous results of the Boltzmann equation can be extended to the lattice Boltzmann equation via this explicit connection.Insight to improve the previous LBE models can also be gained from the results obtained in this paper ͓24–26͔.Fur-thermore,the analysis here also points out the relationship between the LBE method and other newly developed gas kinetic methods ͓27–33͔.ACKNOWLEDGMENTSThe authors would like to express their gratitide to Dr.Gary D.Doolen,and X.Y.H.to Dr.Micah Dembo of LANL for support and encouragement during this work.681656XIAOYI HE AND LI-SHI LUO͓1͔G.McNamara and G.Zanetti,Phys.Rev.Lett.61,2332͑1988͒.͓2͔F.J.Higuera,S.Succi,and R.Benzi,Europhys.Lett.9,345͑1989͒;F.J.Higuera and J.Jeme´nez,ibid.9,663͑1989͒.͓3͔H.Chen,S.Chen,and W.H.Matthaeus,Phys.Rev.A45, R5339͑1991͒;Y.H.Qian,D.d’Humie`res,and llemand, Europhys.Lett.17,479͑1992͒.͓4͔Lattice Gas Methods for Partial Differential Equations,edited by Gary D.Doolen͑Addison-Wesley,Redwood City,CA, 1990͒;Lattice Gas Methods:Theory,Applications,and Hard-ware,edited by Gary D.Doolen͑MIT,Cambridge,1991͒.͓5͔R.Benzi,S.Succi,and M.Vergassola,Phys.Rep.222,145͑1992͒.͓6͔J.Stat.Phys.81,1/2͑1995͒,special issue on lattice-based models and related topics,edited by J.L.Lebowitz,S.A.Orszag,and Y.H.Qian.͓7͔S.Chen,H.Chen,D.Martı´nez,and W.Matthaeus,Phys.Rev.Lett.67,3776͑1991͒.͓8͔X.Shan and H.Chen,Phys.Rev.E47,1815͑1993͒;49,2941͑1994͒;M.R.Swift,W.R.Osborn,and J.M.Yeomans,Phys.Rev.Lett.75,830͑1995͒.͓9͔dd,J.Fluid Mech.271,285͑1994͒;271,311͑1994͒.͓10͔B.M.Boghosian,P.V.Coveney,and A.N.Emerton,Proc.R.Soc.Ser.A452,1221͑1996͒.͓11͔S.Chen,S.P.Dawson,G.D.Doolen,D.R.Janecky,and A.Lawniczak,Comput.Chem.Eng.19,617͑1995͒.͓12͔S.Chen,K.Diemer,G.D.Doolen,K.Eggert,C.Fu,S.Gut-man,and B.J.Travis,Physica D47,72͑1991͒.͓13͔U.Frisch,B.Hasslacher,and Y.Pomeau,Phys.Rev.Lett.56, 1505͑1986͒;S.Wolfram,J.Stat.Phys.45,471͑1986͒.͓14͔U.Frisch,D.d’Humie`res,B.Hasslacher,llemand,Y.Pomeau,and J.-P.Rivet,Complex Syst.1,649͑1987͒.͓15͔P.L.Bhatnagar,E.P.Gross,and M.Krook,Phys.Rev.94, 511͑1954͒.͓16͔S.Harris,An Introduction to the Theory of the Boltzmann Equation͑Holt,Rinehart and Winston,New York, 1971͒.͓17͔R.L.Liboff,Kinetic Theory͑Prentice Hall,Englewood Cliffs, NJ,1990͒.͓18͔J.M.V.A.Koelman,Europhys.Lett.15,603͑1991͒.͓19͔G.McNamara and B.J.Alder,Physica A194,218͑1993͒.͓20͔F.J.Alexander,S.Chen,and J.D.Sterling,Phys.Rev.E47, R2249͑1993͒.͓21͔Y.Chen,Ph.D.thesis,University of Tokyo,1994;Y.Chen,H.Ohashi,and M.Akiyama,Phys.Rev.E50,2766͑1994͒;Phys.Fluids7,2280͑1995͒;J.Stat.Phys.81,71͑1995͒.͓22͔G.McNamara,A.L.Garcia,and B.J.Alder,J.Stat.Phys.81, 395͑1995͒.͓23͔S.Succi,G.Amati,and R.Benzi,J.Stat.Phys.81,5͑1995͒.͓24͔X.He and L.-S.Luo,Phys.Rev.E55,R6333͑1997͒.͓25͔X.He and L.-S.Luo,put.Phys.129,357͑1996͒.͓26͔X.He and L.-S.Luo,Physica A239,276͑1997͒.͓27͔K.H.Prendergast and K.Xu,put.Phys.109,53͑1993͒.͓28͔K.Xu and K.H.Prendergast,put.Phys.114,9͑1993͒.͓29͔K.Xu,L.Martinelli,and A.Jameson,put.Phys.120, 48͑1995͒.͓30͔K.Xu,J.Stat.Phys.81,147͑1995͒.͓31͔K.Xu,C.Kim,L.Martinelli,and A.Jameson,put.Fluid Dyn.7,213͑1996͒.͓32͔K.Xu,put.Phys.134,122͑1997͒.͓33͔A.D.Kotelnikov and D.C.Montgomery,put.Phys.134,364͑1997͒.͓34͔C.D.Levermore,J.Stat.Phys.83,1021͑1996͒.͓35͔P.J.Davis and P.Rabinowitz,Methods of Numerical Integra-tion,2nd ed.͑Academic,New York,1984͒.͓36͔N.M.Steen,G.P.Byrne,and E.M.Gelbard,put.23,661͑1969͒.566817THEORY OF THE LATTICE BOLTZMANN METHOD:...。

化学专业英语常用词9剖析

化学专业英语常用词9剖析

law of mass conservation 质量守恒定律low of definite (or constant) composition 定组成定律low of definite proportions 定比定律low of multiple proportions 倍比定律nucleus ['njuːkl iəs] n 原子核electron [i'lektrɔn] n 电子proton ['prəutɔn] n 质子neutron ['njuːtrɔn] n 中子atomic number 原子序数mass number 质量数subscript ['sʌbskript] n 下标superscript ['suːpəskri pt; 'sjuː pəskript] n 上标isotope ['aisətəup] n 同位素relative atomic mass/atomic weight/average atomic mass 相对原子质量abundance [ə'bʌnd(ə)ns] n 丰度standard atomic weight 标准原子质量unified atomic mass unit/atomic mass unit 规定原子质量单位ion ['aiən] n 离子anion ['ænaiən] n 阴离子cation ['kætaiən] n 阳离子monatomic [,mɔnə'tɔmik] adj 单原子的polyatomic [,pɔliə'tɔmik] adj 多原子的oxyanion 含氧阴离子radical ion 自由基离子light [lait] n 光electromagnetic radiation/radiant energy 电磁辐射diffraction [di'frækʃn] n 衍射interference [intə'fiər(ə)ns] n 干涉frequency ['friːkw(ə)nsi] n 频率wavelength ['wei vleŋθ; 'we i v leŋkθ] n 波长wave number 波数amplitude ['æmpli tjuːd] n 振幅intensity [in'tensiti] n 强度quantum ['kwɔntəm] n 量子Planck's constant 普朗克常数photoelectric effect 光电效应photon ['fəutɔn] n 光子spectrum ['spektrəm] n 光谱continuous spectrum 连续谱,连续光谱discrete spectrum 离散谱,不连续光谱line spectrum 线状谱,光谱线quantum number 量子数ground state 基态excited state 激发态wavelike properties 波动性matter wave 物质波,德布罗意波momentum [mə'mentəm] n 动量Heisenberg's uncertainty principle 海森堡测不准原理Schrödinger's wave equation薛定谔波动方程wavelike and particle-like behavior 波粒二象性quantum mechanic 量子力学wave mechanic 波动力学wave function 波函数probability density 概率密度,几率密度electron density distribution 电子密度分布atomic orbital 原子轨道principal quantum number 主量子数shell [ʃel] n 层azimuthal /angular /orbital quantum number 角量子数subshell ['sʌbʃel] n 亚层magnetic quantum number 磁量子数Cartesian label 笛卡尔坐标spin quantum number 自旋量子数Pauli exclusion principle 泡利不相容原理diamagnetic [,daiəmæg'netik] adj 反磁性的,抗磁性的paramagnetic [pærəmæg'netik] adj 顺磁性的orbital ['ɔːb it(ə)l] n 轨道electron configuration 电子构型Aufbau principle 构造原理orbital diagram 轨道图degenerate orbital 简并轨道Hundred' s Rule 洪特规则valence shell 价层core electrons 核电子periodic table 周期表group/family 族period 周期alkali metals 碱金属alkaline earth metals 碱土金属halogens ['hælədʒənz] n 卤素nitrogens ['naitrədʒ(ə)nz] n 氮族元素chalcogens ['tʃælkɔgənz] n 氧族元素noble gases 稀有气体representative/maingroup elementstransition elements/metals 过渡元素inner transition elements 内过渡元素lanthanide ['lænθənaid] n 镧系元素actinide ['ækti,naid] n 锕系元素nuclear charge 核电荷electrostatic attraction 静电吸引effective nuclear charge 有效核电荷shield [ʃiːld] n /screen [skriːn] n 屏蔽octet [ɔk'tet] n 八隅体atomic radius 原子半径ionization energy 电离能electron affinity 电子亲和性electronegativity [i'lektrəu,neɡə't ivəti] n 电负性isoelectronic [,aisəuilek'trɔnik; ,aisəuelek'trɔnik] adj 等电子的ionization potential 电离电势,电离位first/second ionization energy 第一/第二电离能electropositive [ilektrə(u)'pɔzitiv] adj 带正电的metal ['met(ə)l] n 金属nonmetal ['nɔn,metəl] n 非金属metalloid ['met(ə)lɔid] n 类金属semiconductor [,semikən'dʌktə] n 半导体metallic character 金属性allotrope ['ælətrəup] n 同素异形体peroxide [pə'rɔksaid] n 过氧化物superoxide [,supər'ɔksaid] n 超氧化物chemical bond 化学键valence electron 共价键ionic [ai'ɔnik] adj 离子的covalent [kəu'veil(ə)nt] adj 共价的metallic [mi'tælik] adj 金属的Lewis symbol 路易斯符号electron pairs 电子对octet rule 八隅体规则bonding pairs/shared pair 成键电子对lone pairs/unshared pair 孤电子resonance structure 共轭结构ionic bond 离子键lattice structure 晶格结构lattice energy 晶格能Born-Haber cycle玻恩-哈伯循环covalent bond 共价键bond order 键级single bond 单键double bond 双键triple bond 三键bond energy/enthalpy/strength 键能bond length 键长network covalent solid 网络共价固体bond polarity 键极性nonpolar covalent bond 非极性共价键polar bond 极性键dipole ['daipəul] n 偶极dipole moment 偶极距permanent dipole moment 永久偶极距electric field 电场polarization [,pəulərai'zeiʃən] n极化polarizability ['pəulə,raizə'biləti] n 极化性,极化度metallic bond 金属键valence shell electron-pair repulsion (VSEPR) 价层电子对互斥理论molecular geometry/shape 分子构型steric number (SN) 立体数bond angle 键角linear ['liniə] adj 线性的trigonal ['trig(ə)n(ə)l] adj 三角形的tetrahedral [,tetrə'hiːdrəl] adj 四面体的trigonal bipyramidal 三角双锥的octahedral [,ɔktə'hidrəl] 八面体的bend [bend] 弯的/angular ['æŋgj ulə] adj有棱角的seesaw ['siːsɔː] adj 交互的,前后动的T-shaped T形的square pyramidal 四棱锥的square planar 平面正方形valence-bond (VB) theory 价键理论overlap [əuvə'læp] n 重叠hybridize ['haɪbrɪdaɪz] n 杂交nonequivalent ['nɔni'kwivələnt] adjequivalent [i'kwiv(ə)l(ə)nt] adj 相等的sp hybrid orbital sp杂化轨道sigma (σ) bondσ键pi (π) bondπ键sp3 hybrid orbital sp3杂化轨道sp3d2 hybrid orbital sp3d2杂化轨道sp3d hybrid orbital sp3d杂化轨道sp3d orbital sp3d轨道Molecular orbital (MO) theory 分子轨道理论molecular orbital 分子轨道bonding orbital 成键轨道antibonding orbital 反键轨道sigma (σ) molecular obitalσ分子轨道sigma star (σ*) molecular obital σ*分子轨道pi(π) molecular obitalπ分子轨道pi star(π*) molecular obital π*分子轨道molecular orbital diagram 分子轨道图intramolecular forces 分子内作用力intermolecular force 分子间作用力ion-dipole 离子偶极dipole-dipole force 取向力hydrogen bonding 氢键dispersion force/ London force 色散力/伦敦力Van der Waals’ force范德瓦尔斯力Van der Waals radius 范德瓦尔斯半径chemical reaction 化学反应reactant [ri'ækt(ə)nt] n 反应物product ['prɔdʌkt] n 产物Derect Combination (Synthesis) 化合反应Chemical Decomposition (Analysis) 分解反应Single Displacement (Substitution) 置换反应Double Displacement (Metathesis) 复分解反应Acid-base reaction 酸碱反应Oxidation-reduction (Redox) reaction 氧化还原反应oxidation number(oxidation state) 氧化数oxidizing agent / oxidant/oxidizer 氧化剂reducing agent/reductant/reducer 还原剂combustion [kəm'bʌstʃ(ə)n] n 燃烧,氧化exothermic reaction 吸热反应endothermic reaction 放热反应Isomerization Reaction 异构化反应Disproportionation Reaction 歧化反应Hydrolysis [hai'drɔlisis] n 水解作用chemical equation 化学方程式law of conservation of mass 质量守恒定律law of conservation of charge 电荷守恒定律stoichiometric coefficient 化学计量系数molecular equation 分子方程式ionic equation 离子方程式total ionic equation 总离子方程式spectator ion 不相关离子net ionic equation 净离子方程式yield [jiːld] n 产率theoretical yield 理论产率actual yield 实际产率percent yield产率百分比vapor [veipə] n 蒸汽gas lows 气体定律Boyle’s Low波义耳定律Charles’s Law查理定律Avogadro’s Law阿伏加德罗定律standard temperature and pressure (STP) 标准温度和压强molar volume 摩尔体积ideal gas law 理想气体定律ideal-gas-equation 理想气体方程ideal gas 理想气体proportionality constant 比例常数gas constant 气体常数partial pressure 分压Dalton’s law of partial pressures道尔顿分压定律mole fraction 摩尔分数Kinetic Molecular Theory 分子动理论continuous [kən'tinjuəs] adj 连续的,不间断的random ['rændəm] adj 无规则的,混乱的attractive/repulsive force 引力/斥力elastic [i'læstik] adj 弹性的average kinetic energy 平均动能root-mean-square 均方根most probable speedmean speed 平均速率effusion [i'fjuːʒ(ə)n] n 渗出,泻出Graham’s law格拉哈姆定律diffusion [di'fjuːʒ(ə)n] n 扩散mean free path 平均自由程real gas 真实气体van der Waals equation范德瓦耳斯方程aqueous solution 水溶液solution [sə'luːʃ(ə)n] n溶液solvent ['sɔlv(ə)nt] n溶剂solute ['sɔljuːt; sɔ'ljuːt] n溶质electrolyte [i'lektrəlait] n 电解质non-electrolyte 非电解质strong electrolyte 强电解质weak electrolyte 弱电解质chemical equilibrium 化学平衡concentration [kɔns(ə)n'treiʃ(ə)n] n 浓度percent composition 组成百分比molarity [məu'læriti] n 摩尔浓度molality [mo'læləti] n 质量摩尔浓度grams per liter 克每升mole fraction 摩尔分数parts per million (ppm) 百万分之一concentrated ['kɔnsntreitid] adj 浓缩的dilution [dai'luːʃn] n 稀释Precipitation reaction 沉淀反应Precipitate [pri'sipiteit] n 沉淀物Solubility [,sɔlju'biləti] n 溶解度Insoluble [in'sɔljub(ə)l] adj 不可溶的Titration [tai'treiʃən] n 滴定Analyte ['ænəlait] n 分析物Titrant ['taitrənt] n 滴定剂Primary standard 一级标准Equivalence point 等当点Indicator ['indikeitə] n 指示剂Chemical equilibrium 化学平衡Forward /reverse reaction 正、逆反应Dynamic equilibrium 动力学平衡Incomplete [inkəm'pliːt] / reversible [ri'vɜːs ib(ə)l] 不完全反应,可逆反应Law of chemical equilibrium 化学平衡定律Law of mass action 质量作用定律Equilibrium constant expression 平衡常数表达式Equilibrium constant 平衡常数Homogeneous equilibria 均相平衡Heterogeneous [,het(ə)rə(u)'dʒiːn iəs; -'dʒen-] adj 均匀的Reaction quotient 反应系数Le Châtelier’s principle勒夏特利原理Thermodynamics [,θɜːmə(u)dai'næmiks] n 热力学Thermochemistry [θɜːməu'kemistri] n 热化学Potential energy 势能Kinetic energy 动能System ['sistəm] n 系统Surrounding [sə'raundiŋ] n 环境Boundary ['baund(ə)ri] n 边界,界限Open system 敞开系统Closed system 封闭系统Isolated system 孤立系统State [steit] n 状态State variable 状态变量State function 状态函数Path function 过程方程Heat [hiːt] n 热量Work [wɜːk] n 功Energy ['enədʒi] n 能量Internal energy 内能First law of thermodynamics 热力学第一定律Law of conservation of energy 能量守恒定律State function 状态函数Endothermic [,endəu'θɜːm ik] 放热的Press-volume work 压力体积功Enthalpy ['enθ(ə)lpi; en'θælp i] n 焓Enthalpy of reaction 反应焓Calorimetry [,kælə'rimitri] n 量热法Calorimeter [,kælə'rimitə] n 量热计Heat capacity 热容Molar heat capacity 摩尔热容Specific heat 比热Bomb calorimeter 弹式量热计Hess’s law盖斯定律Enthalpy of formation 生成焓Standard enthalpy 标准焓Standard enthalpy of formation 标准生成焓Molar heat of solution 摩尔溶解热Heat of dilution 稀释热Molar heat of fusion 熔融热Molar heat of vaporization 摩尔汽化热Arrhenius acid/base 阿伦尼乌斯酸、碱Hydronium [hai'droniəm] n 水合氢离子Neutralization reaction 中和反应Salt [sɔːlt; sɔlt] n 盐Amphoteric [,æmfə'terik] adj 两性的Conjugate base/acid 共轭酸/碱Conjugate acid-base pair 共轭酸碱对Autoionization [,ɔːtəu,aiənai'zeiʃən] n 自电离Ion-product constant 电离平衡常数Acidity [ə'siditi] n 酸性Basicity [bei'sisiti] n 碱性Strong acid 强酸Superacid [,sju:pə'æsid] n 过酸Weak acid 弱碱Acid/base-dissociation constant 酸碱电离常数Degree of ionization 电离度Monoprotic /diprotic /triprotic /polyprotic acid 一元/二元/三元/多元酸Oxoacid 含氧酸Carboxylic acid 羧基Leveling effect 拉平效应Leveling solvent 拉平溶剂Differentiating solvent 辨别溶剂Adduct [ə'dʌkt] n 加合物Common-ion effect 同离子效应Buffer solution 缓冲溶液Buffer capacity 缓冲能力Buffer range 缓冲范围Henderson-Hasselbalch equation汉-哈氏公式Acid-base titration 酸碱滴定pH titration curve pH 滴定曲线pH indicator pH 指示剂solubility equilibrium 溶解平衡solubility-product constant(solubility product) 溶解平衡常数insoluble [in'sɔljub(ə)l]不可溶的slightly soluble 微溶的complex ion 配离子formation constant 形成常数amphoteric metal hydroxide 两亲金属氧化物selective precipitation 选择性沉淀qualitative analysis 定性分析metal complex 金属配合物complex ['kɔmpleks] n 络合物coordination compound 配位化合物ligand ['lig(ə)nd] n 配体donor atom供电子原子;配位原子coordination sphere配位层coordinate covalent bond配位共价键complexing agent络合剂;配位剂coordination number配位数monodentate/unidentate 单齿配体bidentate [bai'denteit] n 两齿配体polydentate 多齿配体chelating agent 螯合剂chelate effect 螯合效应isomer ['aisəmə] n 同分异构体isomerism [ai'sɔmərizəm] n 同分异构现象structural isomer 结构异构体linkage isomerism 键合异构ambidentate 两可配位基的coordination isomer 配位异构体stereoisomer [,steriəu'aisəmə; ,stiə-] n 立体异构体geometric isomerism 几何异构optical isomerism 光学异构cis-trans isomer 顺反异构crystal-field theory 晶体场理论crystal field effect 晶体场效应crystal field splitting energy 晶体场分裂能strong-field ligand 强场配体weak-field ligand 弱场配体d-d transition d-d跃迁spectrochemical series光谱化学系列spin-pairing energy 自旋配对能low-spin complex 低自旋配合物high-spin complex 高自旋配合物porphine卟吩porphyrin ['pɔːf irin] n 卟啉chlorophyll ['klɔːrəfil; 'klɔ-] n 叶绿素Hemoglobin [,hiːməu'ɡləubin] n 血红蛋白Nuclear chemistry 核化学Radiochemistry 放射化学Radiation chemistry 辐射化学Nucleon ['njuːkl iɔn] n 核子Nuclide ['njuːkla id] n 核素Nuclear decay 核衰变Radioactive [,reidiəu'æktiv] adj 放射性的Radionuclide [,reidiəu'njuːkla id] n 放射性核素Radioisotope [,reidiəu'aisətəup] n 放射性同位素Strong/nuclear force 核力、强相互作用Parent ['peər(ə)nt] n 母体Daughter ['dɔːtə]Positron ['pɔzitrɔn] n 正电子Antimatter ['ænti,mætə] n 反物质Activity [æk'tiviti] n 活度Becquerel(Bq) ['bɛkərɛl] n 贝克Curie ['kjuəri] n 居里Geiger counters盖革计数器Scintillation counters闪烁计数器Half-life 半衰期Radiocarbon dating放射性碳测定年代Mass defect质量亏损Nuclear binding energy核结合能Binding energy per nucleon 每个核子的结合能Belt of stability 稳定带Magic number 幻数Radioactive series 放射系Nuclear disintegration series核蜕变[分裂]系Nuclear transmutation核嬗变, 核转化Linear accelerator线性加速器、直线加速器Cyclotron回旋加速器Nuclear fission 核裂变Nuclear chain reaction 核链式反应Critical mass临界物质Nuclear power核动力Nuclear weapon核动力Breeder reactor增殖反应堆Nuclear fusion 核聚变Thermo-nuclear reaction 热核反应Ionizing radiation 电离辐射Absorbed dose 吸收剂量Gray(Gy) [grei] n 戈瑞Rad [ræd] n拉德(辐射剂量单位)Equivalent dose 剂量当量Sieverts (Sv) 希沃特Rems雷姆。

职称英语理工类A阅读理解速记口诀

职称英语理工类A阅读理解速记口诀
5.钻孔钻入火山心
第十七篇地球防晒霜
1:虽难还是有办法解决变暖问题
2:人为问题已解决
3:美沙酮缓解毒瘾有效办法
4:给地球使用防晒霜
5:防晒霜减小温室气体不是真
第十八篇石油匮乏
1:石油供应在减少
2:除油之外煤破坏最重不是真
3:最大消费是美国
4:很快面临能源危机
5:海面上升不是真
第十九篇石墨烯超强力量
1:改变电器未来是石墨烯
5:适用大众仍需时日不是真
第八篇Eiffel is Eyeful
1.各国游客涂鸦铁塔
2.奇怪喜爱涂鸦不爱景
3.爬上铁塔不是真
4.铁塔用来多领域研究
5.自由想象塔意义
第九篇埃及遭受饥荒
1、金字塔建造者不能救文明
2、气候变化毁文明
3、青白尼罗河是支流
4、王国衰落干旱后
5、devastating竟为damaging毁灭
4.女性起降失速操作错误最常见
5.男性决策错误多
第二十七篇分散注意力驾驶
1.Coyne驾驶不为真撞到妇女不可能
2.三段四段找发现,三个答案全正确
3.初步结果在五段,环境不同神不变
4.确定导航最好的方式
5.男爱总体女爱线路
第二十八篇睡眠使记忆归档
1.睡觉中大脑归类整理记忆
2.大脑两个区域是相互作用的
3.记忆越差,葡萄糖越少
4:实验对象是俩志愿者
5:标题可换你的想法可被扫描
第三十三篇专家呼吁区域控制核废料地
1:withdrawal意思为canceling撤销
2:存放地点应当地人和政府同意
3:国会的决议通过当地认可不是真
4:存放地设置应努力和当地情况适合
5:废料存放应靠近反应堆并适应情况

小学下册E卷英语第3单元全练全测(有答案)

小学下册E卷英语第3单元全练全测(有答案)

小学下册英语第3单元全练全测(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The dog is ________ in the park.2.I call my grandmother . (我叫我的奶奶。

)3.The seabird can be seen soaring over the ______ (海洋).4.My favorite thing to do is ________ (看书).5.The __________ is a region of the Earth characterized by its unique climate.6.My cousin is really into _______ (名词). 她每天都 _______ (动词).7.The dog is ___ a stick. (fetching)8. A habitat is where an animal __________.9.My uncle is a __________ (历史学家).10.The man has a funny ________.11.The spider spins its web to catch ______ (昆虫).12.I can ______ my homework. (finish)13.The chemical symbol for chromium is ______.14.I love to ride my ______ in the park.15.The process of crystallization is used to purify ______.16._____ (园艺技巧) can be learned through practice.17.The _____ (动物园) has many animals.18.She is _____ (making) a scrapbook.19.The clock is on the ___ (wall/table).20.The _____ (森林) is full of wildlife.21.The baby is very ___. (happy)22.The parrot repeats _______ (句子) I say.23.The chemical formula for mercury(II) chloride is ______.24.The rabbit loves to dig in the _________. (土壤)25.My sister has a collection of ____ (postcards).26. A solution that has a low concentration of solute is called a ______ solution.27.The porcupine can defend itself with its sharp ________________ (刺).28.My friend is __________ (具有创造力).29.My favorite fruit is _______ (西瓜).30.The ______ is a type of plant that can survive in the desert.31.New York City is famous for its _____ (37).32.What is the name of the famous volcano in Italy?A. Mount St. HelensB. Mount VesuviusC. Mount FujiD. Mount Etna 答案:B.Mount Vesuvius33.The ______ is known for her artistic talent.34.The ______ (鲸鱼) is a majestic creature of the sea.35. A zebra is a type of ______.36.Acids can react with metals to produce ______ gas.37. A chemical reaction may produce a gas, a liquid, or a ______.38.We have a ______ (快乐的) family tradition for special occasions.39.What do we call the study of weather?A. BiologyB. AstronomyC. MeteorologyD. Ecology答案:C. Meteorology40.The state of matter with a definite volume but no definite shape is ______.41.The ______ (小鸟) chirps in the morning.42.My uncle is a fantastic ____ (gardener).43.The __________ was a significant time of exploration in the 15th century. (大航海时代)44.What is the name of the famous mountain range in Asia?A. AndesB. RockiesC. HimalayasD. Alps答案: C45.The _____ (乌鸦) is known for its intelligence and problem-solving skills. 乌鸦以其聪明才智和解决问题的能力而闻名。

小学上册第11次英语第三单元期中试卷(有答案)

小学上册第11次英语第三单元期中试卷(有答案)

小学上册英语第三单元期中试卷(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The element with atomic number is _______.2.My grandfather was a ____.3.When I introduce myself, I say, "Hello, I'm ." (当我介绍自己时,我会说:“你好,我是。

”)4.The main gas produced in a chemical reaction can be identified by its _______.5.The smallest unit of an element is called an _____.6.The ________ was a famous rebellion against British rule in India.7.He is very ___. (happy)8.We have a ______ (快乐的) time at the beach.9.I have a collection of ________ (邮票). Each one tells a ________ (故事) about different places.10.Which fruit is yellow and curved?A. AppleB. BananaC. OrangeD. Grape答案:B11.The _____ (花瓣) are often colorful and bright.12.What is the color of the grass?A. YellowB. GreenC. BlueD. Red答案:B Green13.The _______ (Lewis and Clark Expedition) explored the western territories of the US.14.The cake is _____ with candles. (decorated)15.The ancient Romans held gladiatorial ________ in arenas.16.My mom enjoys __________ (烹饪).17.I love playing with my ________ set.18.The ______ shares knowledge about history.19.I draw _____ (图画) with crayons.20.The capital of Djibouti is __________.21. A reaction that produces gas and heat is called a ______ reaction.22.The tarantula can be very _________. (吓人)23.The ________ (日落) over the ocean is breathtaking.24.The flowers are ___ (blooming) in the garden.25.画一画。

选择性必修第三册 Unit 4 A glimpse of the future(教师版)

 选择性必修第三册 Unit 4   A glimpse of the future(教师版)

Ⅰ.阅读单词——会意1.artificial adj.人造的,人工的2.artificial intelligence人工智能3.susceptible adj.易受影响的4.automation n.自动化5.leap n.剧变6.horizon n.地平线7.reckon v.认为,以为8.cell n.细胞9.crater n.(物体坠落、炸弹爆炸等在地上造成的)坑10.agile adj.敏捷的,灵活的11.slope v.倾斜,成斜坡12.hop n.跳跃13.squeak v.发出吱吱声14.tendon n.腱15.wavelength n.波长16.mutt n.杂种狗17.frown v.皱眉18.positronic adj.正电子的Ⅱ.重点单词——记形1.victim n.受害者2.client n.客户,客人,顾客3.cite v.引用,引述4.bound adj.可能的5.mechanical adj.机械的6.desperate adj.拼命的,绝望的7.clue n.线索,提示Ⅲ.拓展单词——悉变1.humanity n.人类→human n.人adj.人的;有人情味的2.assistant n.助手,助理→assist v.帮助→assistance n.帮助3.potentially ad v.潜在地→potential adj.潜在的;可能的n.潜力4.capacity n.能力,才能;容量→capable adj.有能力的;能干的5.analyse v.分析→analysis n.分析6.regulate v.控制,管理→regulation n.规章制度,规则7.illegal adj.非法的,违法的→legal adj.合法的8.immoral adj.不道德的,道德败坏的→moral adj.道德的9.assess v.评价,评定→assessment n.评价;评估10.cycle n.自行车v.骑自行车→cyclist n.骑自行车的人11.demand n.& v.需要,需求→demanding adj.要求高的;苛求的12.tightly ad v.紧紧地→tight adj.紧的→tighten v.(使)变紧;加强13.faulty adj.有故障的,有缺陷的→fault n.缺陷;过错14.consistent adj.一贯的,一致的→consist v.由……组成;在于1.cautious /'kɔːʃəs/adj.小心的;谨慎的→caution /'kɔːʃn/n.谨慎;小心2.comply /kəm'pla I/v i.遵守;服从comply with遵从;服从3.abundance /ə'bʌndəns/n.大量;丰盛;充裕4.viable /'va Iəbl/adj.可实施的;切实可行的5.bypass /'ba I pɑːs/v t.避开;绕过n.旁道;小路6.pledge /pledʒ/v t.保证给予;正式承诺;发誓n.誓约;捐款承诺7.controversy /'kɒntrəvɜːsi;kən'trɒvəsi/n.争论;争议8.flawless /'flɔːləs/adj.完美的;无瑕的9.prestigious /pre'st I dʒəs/adj.有威望的;声誉高的10.buzz /bʌz/n.喧闹;嘈杂声;嗡嗡声v i.发出嗡嗡声;充满兴奋;闹哄哄Ⅳ.背核心短语1.bank on依靠,指望2.on the horizon将要发生3.be bound to很有可能,肯定会4.happen to发生在……身上5.so far 迄今为止6.in contrast相反7.hang out闲逛8.be susceptible to易受……的影响9.wipe out摧毁;毁灭10.lie in 在于11.agree on就……达成一致12.go through 履行(某程序);经历(苦难等);完成;通过;检查;用完13.be replaced with被……取代14.change one’s mind 改变主意15.in the long run从长远来看16.around the corner很近;即将发生Ⅴ.悟经典句式1.Every recommendation she gives me is great since she can predict if I will like a particular restaurant.(since 引导原因状语从句)她给我的每一个建议都很棒,因为她能预测我是否会喜欢某家餐馆。

【新教材】人教版(2019)选择性必修第三册Unit 3 Reading and Thinking

【新教材】人教版(2019)选择性必修第三册Unit 3 Reading and Thinking
fine vt. 对....处以罚款
campaign n.运动;战役 waterway vi. & vt.参加运动;领导运动
n.水道;航道
tolerate vt.忍受;包容;容许 agenda n.议程表;议事日程 Norway 挪威(北欧国家) Svalbard 斯瓦尔巴群岛(挪威) Hurricane Katrina 飓风卡特里娜
policy n.政策;方针;原则 footprint n.足迹; (某物所占的)空间量;面积
restrict vt.限制;限定;束缚 restriction n.限制规定;限制法规;约束
seize vt.抓住:夺取;控制
basin n.流域;盆地;盆 penguin n.企鹅 reform vi.& vt.改革; (使)改正;改造
n.改革;变革;改良
undergo v.(underwent, undergone )经历;经受(变化、
பைடு நூலகம்不快等)
implement vt. 使生效;贯彻;执行 harmonious adj.和谐的
moderate adj.适度的;中等的;温和的vi.&vt.缓
和;使适中
submit vt. & vi.提交;呈递;屈服
about it?
The polar bear was found dead and all that remained was just “skin and bones”. The writer wants to arouse our awareness of climate change.
Why is the “natural” greenhouse effect important and necessary?

史上最全最强-幕墙专业英语[详细]

史上最全最强-幕墙专业英语[详细]

史上最全最强-幕墙专业英语[详细]幕墙专业英语1. 幕墙国际会议⾃我介绍:名字:⽶y English na ⽶e is Andrew.公司:I represent JiangHe curtain wall co ⽶pany.职责(主要负责事物):I a ⽶ in charge of structural calculation/design & fabrication drawing/tender drawing.3. 幕墙中常⽤的变形:deflection , ⽽不是defor ⽶ation.Deflection: the degree to which the ⽶oving part on a ⽶easuring instru ⽶ent ⽶ovesaway fro ⽶ zero.Defor ⽶ation: the progress of changing the shape of so ⽶ething in a way that spoil itsusefulness or appearance.D.L dead load 永久荷载4. 常⽤的荷载缩写 W.L wind load 风荷载L.L live load 活荷载5.表⾯处理可分为两种:(1). (2).Natural AnodizeBlackBronzeHot dipped galvanize 热镀 stick curtain wall syste ⽶框架式幕墙 6.Electrical galvanize 电镀 unitized curtain wall syste ⽶单元式幕墙 Tower 主楼分格 division ⽅管 square section 7.Podiu ⽶群楼格栅 lattice 圆管 round pipePri ⽶ary gasket 第⼀胶条 pri ⽶ary bracket steel pri ⽶ary bracket8. gasket 转⾓连接Secondary gasket 第⼆胶条 secondary bracket secondary U-shape bracket10. 双⾯贴 double side tape 1. syste ⽶美纹纸(玻璃) ⽶asking tape fixed glass 保护膜(型材) protection fil ⽶ 2. operable window (固定窗)中横梁⽶id transo ⽶介绍图纸 spandrel area 中⽴柱⽶id ⽶ullion du ⽶⽶y 3. capping (背板区域)剖⾯section Back-panel 平⾯plan (背板)⽴⾯elevation [,eli'vei??n]4. glass ( the glass is ….. glass)插芯⽶ullion sleeve11.本体绿玻璃Green tinted glassD.G.U (double glazed unit)中空玻璃insulated glass ['ins?,leit?d]Double glass夹胶玻璃La⽶inated glass浮法玻璃float glass= anneal glass [?'ni:l]钢化玻璃te⽶pered glass半钢化玻璃half strengthened glass; heat strengthened glass低辐射镀膜玻璃玻璃镀膜玻璃Low-E coated glass(coated glass) 热反射镀膜玻璃Heat reflecting glassCera⽶ic-fritted glass [si'r?⽶ik]彩釉玻璃frit pattern glassSilk screen glass中空夹胶玻璃La⽶inated double glass彩釉夹胶玻璃la⽶inated glass with cera⽶ic frit钢化中空透明玻璃Te⽶pered insulated clear glass12.Bolt & Nut 螺栓群Csk self-drilling screw 沉头⾃攻螺钉Self-taping screw ⽶achine screw Self-drilling screw ⾃攻⾃钻螺钉机丝螺钉⾃攻螺钉13.14. 铝吊顶 Alu ⽶ ceiling铝单板 Alu ⽶inu ⽶ solid panel铝⽚ Alu ⽶inu ⽶ sheet复合铝板 co ⽶posite alu ⽶inu ⽶ panel蜂窝铝板 Alu ⽶inu ⽶ honey-co ⽶b panel 穿孔铝板 Alu ⽶inu ⽶ perforated panel铝合⾦百叶 Alu ⽶inu ⽶ louver铝铝合⾦门窗 Alu ⽶inu ⽶ door & window 铝框 Alu ⽶inu ⽶ fra ⽶e铝合⾦横梁公料⽶ale stack extrusion铝合⾦横梁母料 fe ⽶ale stack extrusion铝合⾦⽴柱公料⽶ale ⽶ullion extrusion [ek'stru:??n]铝合⾦⽴柱母料 fe ⽶ale ⽶ullion extrusion铝合⾦转⾓⽴柱 Alu ⽶inu ⽶ corner ⽶ullion开启框operable fra⽶e开启扇operable sash [s??]15.总包:⽶ain contractor 组织结构图organization chart分包:sub-contractor 总计划(总包发给分包) ⽶aster progra⽶⽶e 顾问:consultant 施⼯进度计划图project schedule ['??dju:?l, ['pr?uɡr?⽶, -ɡr?⽶]Architectural drawing 建筑图Structural drawing 结构图总包给的东西Wind tunnel test report 风洞试验报告Specification 技术说明B.O.Q Bill of quantity 清单Syste⽶design ⽅案设计Concept design 初步设计分包需要做的Shop drawing 施⼯图设计fabrication drawing 加⼯图设计Calculation book 计算书As-built drawing 竣⼯图16.Boundary line 红线(建筑) weekly ⽶eeting 例会Landscape 景观设计co-ordination ⽶eeting 协调会Guard house 保安室safety ⽶eeting 安全会议Curved glass 弧形玻璃⽶ethod state⽶ent 施⼯组织计划书Club house 会所(休息) Technical brochure 技术⼿册Pergola ['p?:ɡ?l?]凉亭operation ⽶anual 操作⼿册Fabrication factory 加⼯⼚overhead crane 龙门吊Warehouse 仓库hoisting platfor⽶吊车平台Pagoda塔[p?'ɡ?ud?]['h?isti?]Glass block 玻璃砖(透明)17. Discrepancy ⽭盾,不同(图纸和技术⽂件不同时)a difference between two a⽶ounts, details, reports etc that ought to be the sa⽶e.1. How do you explain these discrepancies in the a⽶ounts?2. There are big discrepancies between what To⽶says and what you say.Deviation [,di:vi'ei??n] 偏离,偏差a noticeable difference fro⽶what is expected or acceptabledeviation fro⽶the nor⽶18. Vibration幕墙的颤动(由于风的原因) [vai'brei ??n]Buckling 弯曲( ⾃重引起) ['b ?kli?] buckle ['b ?kl]Deflection 变形, 挠曲Slot / elongated 长条孔Round hole 圆孔 ['taitnis]19.Wind tunnel test 风洞试验Perfor ⽶ance test Co ⽶patibility test Pull- out test 拉拔试验 [k Field water test I ⽶pact / point load test Fil ⽶ thickness test Paint hardness test 硬度 Structural sealant test Sound proof test 防声试验Fire proof test 防⽕试验 20.window sill capping 窗台板 Canopy ⾬篷, 天篷 Gypsu ⽶ Board ⽯膏板 ['d ?ips ?⽶] Skylight 采光顶 Ce ⽶ent board ⽔泥板sun shade 遮阳板 Calciu ⽶ silicate board 硅酸钙板 Trellis 花架 Partition wall 隔板(酒店办公室等⽤) sill height 窗台⾼Curtain box 窗帘盒 lightning protector 避雷器Horizontal rail 防护栏(窗⼦处防冲击⽤) lightning tape 避雷带 External corner 阳⾓ Anti- rust pri ⽶er 防锈漆 Internal corner 阴⾓ gondola 擦窗机['ɡ?nd?l?] Flashing 收⼝ B ⽶U=building ⽶aintenance unit Joint splice 积⽔槽擦窗机设备 Joint sleeve 插芯 (连接套筒)? Ali ⽶ark hoist=Hoistinglift Expansion / ⽶ove ⽶ent joint 伸缩缝升降机 Backer rod 泡沫棒 Scaffolding / staging 脚⼿架 Granite 花岗岩['ɡr?nit] ⽶arble ⼤理⽯21.Silicone gun 胶枪Air gun ⽓枪Screw driver 螺丝⼑Hand-drill ⼿电钻[dril]Spanner 扳⼿['sp?n?]Ha⽶⽶er 锤⼦⽶easuring/⽶easure⽶ent tape 卷尺Scale ruler ⽐率尺Callipers 卡尺['k?l?p?z]Visual ⽶ock-up 视觉模型['vizju?l] Test/ perfor⽶ance ⽶ock-up 测试模型['⽶?k?p]22. outer fra⽶e (框) Sash (开启)[s??]Top Hung Side Hung Down Hung (上悬窗) Case⽶ent window (下悬窗) (平开窗) sliding window 滑动窗fixed glass 固定窗Horizontal Pivoted Vertical Pivoted (⽔平旋转窗) (垂直旋转窗)['h?ri'z?nt?l] ['piv?tid]23.23.[stei]⽶aster key 万能钥匙Hinge 合页[hind ?] Top view 上视图Sliding track 滑动轨道 Left View 左视图Roller 滑轮 Right view 右视图Lever handle 条形把⼿ Render picture 效果图Cylinder handle 圆形把⼿ ['silind ?]Re ⽶ovable handle 可移动把⼿ [ri'⽶u:v ?bl]Handrail 护栏24.Reinforce ⽶ent bar 钢筋 F.F.L finish floor levelGrid line 轴线 F.L floor levelCorrugated sheet 压型板['k ?ru ɡeitid] S.L structural level Steel truss 钢桁架 S.F.L structural finish level 25.( (底⾯) 26.Starter bar 外露钢筋(混凝⼟浇注时,在层间留设的钢筋) Recess pocket 凹陷部位(在预埋件处的楼层凹陷的地⽅) Raised floor 架空地板(⽤于铺设电线,⽹线⽽架设的地板) 27. circulation the ⽶ove⽶ent of liquid, air etc in a syste⽶Air circulation 空⽓内部的流通,不是室内和室外的空⽓交换. Ventilation ventilates to let fresh air into a roo⽶, building etc. Air ventilation 空⽓室内外的交换.28.Butt weld Bevel weld( 对焊) (坡焊)['bev?l]Single bevel Double bevel ['bev?l]( 单⾯坡焊) (双⾯坡焊)29.ear plate ⽿板⽶illing 铣Drill 钻Fork head 索头die punch 冲压30.Bow Truss Fish bone truss[tr?s]31. strip gasket Carry out 实施what type of ⽶ethod do you carry out?Bulb gasket How long is the test duration?Gasket wedge gasket Laboratory test center 实验室Slide in gasket 明框exposed fra⽶ePush in gasket 半隐框se⽶i-hidden fra⽶eDrive in gasket 修复rectification32. 计算⼈员场景:⼿算⽶anual calculation软件计算software co⽶putation [,k?⽶pju'tei??n]Counter checking by using software co⽶putationIt depends 看情况....瓷砖Cera⽶ic Tile抛光Polish 玻璃吊夹cla⽶ping bracketAS= air space 空⽓间隔玻璃肋glass fin收边tri⽶[tri⽶]切cut / tri⽶Adapter [?'d?pt?]适配器齿纹/锯齿状的serrated ['seritid, s?reitid]Glass bite 预应⼒的锚固端post tendon headGlass beading ['bi:di?]Green coating glass33. 百叶louver louver spacing 百叶间距问题:how ⽶any percent of air flow?Louver pitch 百叶间距E⽶bed channel 副框sub-fra⽶eE⽶bed plate 可透视的transparent tr?ns'p?r?ntE⽶bed bracket 不可视的translucent [tr?nz'lju:s?ntCast in bracket 打磨sand blastedStud bolt 电植螺钉[st?d]酸腐蚀acid etching ena⽶eled glass 彩釉⽶ultiple point lock 多点锁⽶ulti-point lock Back-panel 背板rock wool fastener bracket ['fɑ:s?n?]保温棉heat-insulation fibre 连接件connection bracket Polyester Powder Coated 粉末喷涂[,p?li'est?]Shi⽶整块的或带槽的垫圈vertical ⽶e⽶berWasher 中间带孔的垫圈龙⾻Setting block 为橡胶材质的. Horizontal ⽶e⽶ber玻璃处理polish edge 磨光Grind edge 较粗糙塔吊tower crane34.polish heat-strengthenedHeat soakedGrind fully te⽶pered [s?uk]alu['speis?]['f?:nis]切割磨边钢化处理均质(使不合格含杂质的玻璃在⼯⼚破坏掉) ⾼压釜铝间隔条35. 混凝⼟养护concrete settle⽶ent凝固cure [kju?]踢脚线skirting ['sk?:ti?]密封胶(硅胶)silicone sealant剪⼒墙shear wall包柱colu⽶n cladding ['k?l?⽶]转⾓器corner clip窗扇sash36.⾬篷和采光顶的玻璃选⽤钢化和浮法玻璃上层⽤钢化,下层⽤浮法或半钢化玻璃. 37. 6+12A+6 钢化彩釉中空玻璃24⽶⽶THK D.G.UConsists of 6 ⽶⽶clear FT+ cera⽶ic frit pattern(2)+ 12 ⽶⽶ A.S+ 6⽶⽶clear FT38. 50厚保温棉50⽶⽶THK heat insulation (60千克/⽶3)39. 防⽕岩棉fire stop 100⽶⽶THK fire stop (160千克/⽶3) –2 hrs rating40. ⽑条⽶ohair ['⽶?uhε?]⽤在窗或门上的⽤于密封的材料.41. 卡尺的准确性是accurate ['?kjur?t]42. 标⾼reference level , reference height 玻璃托条glass chair43. 翼缘flange [fl?nd?]44. 吊装板块时⽶onorail syste⽶单轨吊装系统winch 卷扬机45 点⽀撑式幕墙Point supported curtain wall46.介绍点⽀承式幕墙the glass panel is la⽶inated glass, we use stainless steel spider hold the glass panel, then we install spider to the steel structure.['spaid?]47. Sea⽶less surface ⽆缝表⾯Indian 印度的Pakistan 巴基斯坦Gloss 光泽度[ɡl?s]Bangladeshi 孟加拉的⽶alaysia 马来西亚Ble⽶ish 污点Singapore 新加坡Philippine 菲律宾48. rigidity 坚硬,刚性硬度[ri'd?id?ti] groove [ɡru:v]grain ⾕物,颗粒rebate 凹⼝['ri:beit, ri'beit]di⽶pling 造窝recess [ri'ses, 'ri:ses]⽶agnetic 磁的,有磁性的reveal [ri'vi:l]49. statutory require⽶ent 当地政府要求['st?tjut?riFour–side supported (隐框)50.Friction 摩擦⼒utilize 利⽤Variation 变化变动slope 溢出溅出Insulation 隔离孤⽴绝缘notify 通知报告Spandrel 拱肩(三⾓拱腹)[/'sp?ndr?l/] lateral 侧⾯的旁边的Arrange⽶ent 安排slope 斜坡Anchorage 下锚停泊所['??k?rid?] rib 肋⾻Erection 直⽴竖起建筑物[i'rek??n] hydrostatic 静⼒⽔学的[,haidr?u'st?tik]Shrink 收缩萎缩[?ri?k]gravel 碎⽯['ɡr?v?l]Grout ⽔泥浆nozzle 喷嘴['n?zl]Organic 器官的有机的configuration 配置[k?n,fiɡju'rei??n]Dip 蘸下沉conceal 隐藏[k?n'si:l]Synthetic 合成的⼈⼯的[sin'θetik]nylon 尼龙Dielectric 电介质[,daii'lektrik]sandwich 三明知的插⼊Durable 持久的耐久的polyurethane 聚胺脂[,p?li'jur?,θein]Render 提供报答交纳co⽶bustible 易燃的[k?⽶'b?st?bl]Invalid ⽆效的['inv?li:d⽶ineral 矿物的Cyclic 循环的['saiklik] co⽶⽶ensurate 同样⼤⼩的相称的[k?'⽶en??rit]Sill 窗台门槛hinge 铰链关键枢纽[hind?]51.Patch ⽚补绽碎⽚hose ⽔管I⽶pose 加上provisional 暂时的[pr?u'vi??n?l]Acid 酸的precede 在……..之前Etch 腐蚀剂蚀剂sole 唯⼀的Scratch 抓痕radius 半径['reidi?s]Ble⽶ish 污点se⽶i ⼀半的部分的['se⽶(a)i]Wor千⽶anship ⼿艺技艺strand 绳索之⼀股[str?nd]Incorporate 合并的[in'k?:p?reit bolt 螺栓门闩Latch 门闩louver 放热孔百页Profile 型材stiffen 使….坚硬Peel ⽪剥落co⽶parison ⽐较Critical 批评的决定性的ratio ⽐⽐率Speci⽶en 样本标本configuration 结构布局形态配置[k?n,fiɡju'rei??n] Tightness 紧固紧密⽶iscellaneous 各种的各⽅⾯的[,⽶isi'leinj?sInfiltration 浸润hydrant 给⽔栓⽔龙头消⽕栓['haidr?nt]radiation 发散, 发光放射放射线52.reel 卷轴,线轴⽶asonry 砖⽯建筑['⽶eis?nri]Hose ⽔管,橡⽪软管[h?uz]condensation 压缩[,k?nden'sei??n]Fire hose reel 防⽕栓decoration 装饰装饰品[,dek?'rei??n]Ultra 过度的,过激的['?ltr?]hereinafter 以下在正⽂中[,hi?rin'ɑ:ft?] Sonic ⾳波的⾳速的balcony 阳台['b?lk?ni]Peri⽶eter 周长周界[p?'ri⽶it?]deck 甲板[dek]Confor⽶ance 顺应,⼀致[k?n'f?:⽶?ns]ladder 梯⼦['l?d?] Contraction 收缩ra⽶p 斜坡坡道[r?⽶p]Ordinate 纵线,纵坐标tub 桶浴盆[t?b]Partition 分割,隔离物enclosure 附件围墙围绕[in'kl?u??]Ther⽶al 热量的热的vehicle 传播媒介⼯具⼿段['vi:ikl,Supervise 监督管理precipitation 坠落凝结沉淀Pro⽶ptly 敏捷地[pr?⽶ptli]withstand 抵抗对抗经的起Da⽶p 潮湿湿⽓perpendicular 垂直线垂直的位置垂直的53.interval 间隔erosion 腐蚀侵蚀[i'r?u??n]drift 漂移[drift] scour 擦洗['skau?]axial 轴的,轴向的['?ksi?l]collapse 倒塌崩溃inspection 检查视察[in'spek??n] eaves 屋檐[i:vz]co⽶pliance 承诺,顺从,遵从[k?⽶'plai?ns] adjacent 临近的[?'d?eis?nt]diagra⽶⽶atic 图表的概要的[,dai?ɡr?'⽶?tik scarp 悬崖使成陡坡[skɑ:p]draft 草稿草图cliff 悬崖绝壁for⽶atted 有格式的[f?:r⽶?tid]plaster ⽯膏灰泥sequential 连续的(序贯的) crosswind 侧风横风sketch 素描草图[sket?]sy⽶⽶etric 相称的均衡的[si'⽶etrik]reinforce 加固的增援增强inwind 缠绕逆风hollow 洞⼭⾕['h?l?u]proportion ⽐例均衡⾯积部分[pr?u'p?:??n]dwelling 住处['dweli?]prescribe 指⽰规定tributary 纳贡的从属的补助的['tribjut?ri]ponding 积⽔蓄⽔pitch 程度投掷⽤沥青覆盖per⽶itted 容许的⽶ultiply 繁殖乘增加notation 注释表⽰法[n?u'tei??n] slop 溢出溅出Alexandria 亚历⼭⼤⼤帝[,?lig'zɑ:ndri?] consensus ⼀致合意交感no⽶inate 提名推荐任命hazard 冒险危险['h?z?d]collateral 间接的[k?'l?t?r?l]prone 俯卧的易于….的有…倾向的exclusive 排外的孤⾼的独占的breakaway 断开adhesion ⽀持[?d'hi:??n]coastal 海岸的沿海的['k?ust?l]ethics 偶尔道德规范['eθiks]astrono⽶ical 天⽂学的[,?str?'n?⽶ik?l entity 实体['ent?ti]tide 潮delicate 精⼼的精巧的灵敏的surge 汹涌澎湃supersede 代替取代接替tsuna⽶i 海啸[tsu'nɑ:⽶i]linen 亚⿇布亚⿇制品['linin] datu⽶材料资料已知数['deit?⽶]acoustic 有关声⾳的,声学的delineate 描绘[di'linieit][?'ku:stik]。

初中英语时文阅读02-中华传统文化篇2(解析版)

初中英语时文阅读02-中华传统文化篇2(解析版)

初中英语时文阅读2(中华传统文化篇)文章导读阅读理解A篇:放假、纳凉、外卖……古代人生活方式是如何的呢?B篇:中秋节和感恩节,都是与家人团聚一起的节日。

C篇:火锅、东坡肉、餐桌礼仪......探寻中国饮食文化D篇:国学故事。

千金买马首。

E篇:国学故事。

用人如器。

完形填空Cloze1中国传统经典故事——闻鸡起舞。

Cloze2中国传统经典故事——滴水穿石。

Cloze3中国传统经典故事——仓颉造字。

语法填空国学故事——见贤思齐焉,见不贤而内自省也A阅读理解Weekends,air conditioners(空调),takeouts…are all common things for modern people.Have you ever wondered if ancient people enjoyed the same lifestyles?Let’s take a look.No weekendsIn ancient China,there were no weekends because people did not use a weekly calendar.But they could still relax after work.During the Han Dynasty(206BC-AD220),officials(官员)took one day off every five days. During the Tang Dynasty(618-907),officials worked for10days and rested for one day.They usually bathed and washed their hair on their day off,which was called xiumu(休沐).There were also many public holidays in ancient times,such as Spring Festival,winter solstice and Mid-Autumn Festival.People like farmers and businessmen usually worked most of the year,but even the most hard-working people would take a few days off during Spring Festival.Smart ways of staying coolIn modern times,we can enjoy cold drinks in air-conditioned rooms to stay cool.In ancient times,though people didn’t have these things,they had their own wisdom to get through the heated summer.As early as the Zhou Dynasty,there was a special department(部门)called the“ice administration”whose workers were responsible for collecting ice blocks(冰块)in winter and storing them in an icehouse.When summer came,people could take the ice blocks home and use them to make their rooms cooler.The ice could also be used to make cold drinks.The“bingjian(冰鉴)”was a type of ancient fridge.It was a big box made of ceramic(陶),wood or metal(金属)filled with ice.People would put drinks inside and close the lid(盖子),and the drinks would become colder over time.There was a kind of pillow made of porcelain(瓷器)that felt pleasantly cool.It is said that Emperor Qianlong (1711-99)of the Qing Dynasty liked these pillows.Ancient people also wove reeds(芦苇)or bamboo into bed mats (垫子)to sleep on.They’re still used today.Takeouts not a new thingWith a takeouts app,you can order any dishes you’d like to eat and they just come to your door within minutes.In fact,takeout is not a new thing.There was takeout as far back as the Song Dynasty(960-1279).According to history books,Emperor Xiaozong(1127-1194)liked to order takeout late at night.His servants would go around the city to pick up dishes and bring them back to the palace.Ordinary people also ordered takeout.Restaurant waiters would go out into the streets and yell(吆喝)out which dishes could be ordered that day.People would then place an ter,delivery(递送)workers would bring food to their homes.In the famous Song Dynasty painting Along the River During the Qingming Festival (《清明上河图》),a takeout worker can be seen on a delivery with food in hand.People at the time even had special meal boxes for takeout dishes.It was a long wooden box with several layers.They also used warming plates made of two layers of porcelain(瓷).Hot water could be put between them to keep dishes warm.1.Why were there no weekends in ancient times?A.Because ancient people were more hard-working than modern ones.B.Because ancient people didn’t use a weekly calendar.C.Because the emperors didn’t allow their people to have a rest.D.Because ancient people wanted to make more money.2.How many ways are mentioned to stay cool in ancient China in the passage?A.One.B.Two.C.Three.D.Four.3.How did people in ancient times keep takeout dishes warm?A.They put hot water between plates.B.They lit candles under the dishes.C.They covered the dishes with thick cloth.D.They walked fast to deliver(送)the dishes.4.According to the passage,which of the following is TRUE?A.In ancient China,people like farmers and businessmen worked all year round.B.Ancient people used bed mats made of silk to stay cool.C.Along the River During the Qingming Festival was painted in Song Dynasty.D.Modern people still have the same lifestyles as ancient people.5.Where can we read this passage probably?A.In a novel.B.In a science book.C.In a history magazine.D.In a cooking book.【答案】1.B 2.C 3.A 4.C 5.C【解析】本文是一篇说明文,介绍古代人的生活方式。

Unit+4+Discovering+Useful+Structures(2019)必修第三册

Unit+4+Discovering+Useful+Structures(2019)必修第三册
In space, astronauts collect all dirty water so as to recycle fo
Practice later use.
3. Mankind has always been curious about the universe and many people have dreamt that one day they would fly into space. _M_a__n_k_in_d__h_a_s__a_lw__a_y_s_b_e__e_n_c_u_r_i_o_u_s_a_b__o_u_t the universe and _m_a__n_y_p_e_o__p_le__h_a_v_e__th_e__d_r_e_a_m__t_o_f_ly__in__to__s_p_a_c_e__o_n_e__d_a_y_____.
Period 2
Unit 4 Space Exploration
Discovering Useful Structures
Objectives: By the end of this period, students will be able to
identify and analyze the usage of master the usage of infiniti…v…es as infinitives as adverbials and adverbials and attributes through self-
There is enough food for the guests __________. to enjoy
Complete the passage with the correct forms of the verbs in brackets.

Influence_of_Composite_Non_Magnetic_Ions_(Cd-Ti)_D

Influence_of_Composite_Non_Magnetic_Ions_(Cd-Ti)_D

New Journal of Glass and Ceramics, 2012, 2, 144-149doi:10.4236/njgc.2012.24021 Published Online October 2012 (/journal/njgc)Influence of Composite Non Magnetic Ions (Cd-Ti) Doping on Structural and Electrical Properties of Li-Mn Ferrite Vidya J. Deshmukh1, Pragati S. Jadhav2, Ketaki K. Patankar2*, Sharad S. Suryawanshi3, Vijaya R. Puri4 1Ramkrishna Paramhansa Mahavidyalaya, Osmanabad College, Osmanabad, India; 2Physics Department Rajaram College, Kolhapur, India; 3Physics Department, Solapur University, Solapur, India; 4Physics Department, Shivaji University, Kolhapur, India.Email: *Received May 6th, 2012; revised July 23rd, 2012; accepted August 16th, 2012ABSTRACTThe Li-Mn ferrites with composite divalent and tetravalent non-magnetic ions doping were prepared by ceramic method and studied for the first time to investigate their structural and electrical properties. It has been confirmed from the studies that these materials result in properties suitable for microwave applications. The structural properties have con- firmed the formation of cubic spinel ferrite and the substitutions of non magnetic ions have resulted in increase of unit cell dimensions and hence the grain size with increase in dopant content. An IR study asserts the same. Electrical Prop- erties show increase in dc resistivity and decrease in dielectric loss tangent with increase in dopant concentration. Keywords: Electronic Materials; Magnetic Ceramics; Electrical Characterization; Powder Diffraction1. IntroductionLi ferrite is becoming increasingly attractive for micro- wave applications replacing garnets and other spinel fer- rites [1-3]. Microwave devices such as circulators, isola- tors, magnetostatic resonators, filters, switches, limiters and tunable electroptic modulators are the microwave applications of Li ferrites [4]. Recent exponential growth in microwave communication through mobile and satel- lite communications has further stressed the worldwide need for extremely low-loss and economical microwave devices using ferrite materials. In preparation of micro- wave ferrite materials, particular attention should be given to the purity of the raw materials, stoichiometry of the composition and porosity as well as grain characteris- tics of the final product. Characteristics of various mi- crowave ferrites have been minutely reported by Voron- kov et al. [5]. The emergence of Li ferrite as a competent material in microwave devices has resulted from some appropriate chemical substitutions made in it, which in turn result in low dielectric loss tangent, a low magnetic loss tangent at the operating bias field, a low coercive force and a large remanence ratio [6-8]. Low dielectric and magnetic losses are the essential requisites for mi- crowave applications Small amounts of Mn3+ is added to microwave Li ferrites to ensure an acceptably low di- electric loss tangent [9]. Moreover, manganese addition also alter the hysteresis property, reduces magnetocrys- talline anisotropy and magnetostriction in ferrites [9]. Non magnetic ions like Cd2+ and Ti4+ substitutions have been found to be most suitable to obtain high resistivity [10,11]. The site occupancies of the various cations known from earlier works are given as follows. Li1+ has strong preference for B-Site [12], Cd2+ has strong preference for A site [1], Ti4+ also has strong preference for B-site [13], Fe2+ has strong preference for B-site [1] and Mn3+ has strong preference for B-site [14]. From the above survey, it can be envisaged that investigations on the electrical properties of composite non-magnetic ions doping in Li-Mn ferrite may lead to more interesting results as the studies on their independent doping in Lithium ferrites have al- ready resulted in properties suitable for microwave ap- plications [10,11].In this view, the present paper aims to communicate structural and electric properties in Li0.35Cd x Ti x Mn0.1 Fe2.55–2x O4 where x varies from 0 to 0.5.2. ExperimentalSix samples of different compositions were prepared by standard ceramic technique using pure metal oxides in the form of a series Li0.35Cd x Ti x Mn0.1Fe2.55–2x O4 with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. AR grade chemicals of Li2CO3, CdO, TiO2, Mn2O3 and Fe2O3 were used for the preparation of various compositions in the above ferrite series. These oxides were weighed in the required mole proportions using a single pan balance having least count 0.001 gm and mixed thoroughly in the agate-mortar in acetone for about 2 hrs. The mixture was sieved using a*Corresponding author.Influence of Composite Non Magnetic Ions (Cd-Ti) Doping on Structural and Electrical Properties of Li-Mn Ferrite 145sieve of mesh size 200 micron. The mixture of each com- position was preheated in platinum crucible and were presintered at 300˚C for 2 hours and followed by 600 Influence of Composite Non Magnetic ions (Cd-Ti) Do- ping on Structural and Electrical Properties of Li-Mn Ferrite for 4 hrs and finally sintered at 1000˚C for 8 hours.X-ray Diffractograms of various compositions were obtained using X ray diffractometer Model PW 3710. The various parameters used for X ray diffraction were Target—Cu Kα; Wavelengths λ1 = 1.54056 Å and λ2 = 1.54439 Å; Rate of Scanning—2˚/min and scanning an-gle range 2θ—20˚ to 90˚. Micrographs of various sam- ples were obtained using the scanning electron micro- scope SEM (model JSM-6360A). IR absorption peaks of various compositions were studied using PerkinElmer IR spectrometer (Model 783) with KBr as a solvent. DC resistivities of various prepared samples were studied using two probe set up. Dielectric constant and loss tan- gent in the frequency range 100 Hz - 1 MHz were also measured using HP LCR meter 4284A model.3. Results and DiscussionThe X-Ray diffraction patterns for Li0.35Cd x Ti x Mn0.1 Fe2.55–2x O4 system show sharp peaks indicating formation of single phase spinel ferrite for all compositions. How- ever trace amount of α-Fe2O3 phase is found for x = 0.3 sample. Hence the XRD of x = 0.3 composition is given in the Figure 1. The α-Fe2O3 phase is formed because at higher sintering temperature (>500˚C) there is possibil- ity for a fraction of ferric oxide to get converted into α-Fe2O3. The presence of such a phase in different ferrite is already reported by earlier workers [15].The lattice parameter increases with increasing the content of Cd2+and Ti4+ ions and is shown in Figure 2. This is in accordance with Vegard’s law. The Cd2+ ions have larger ionic radius (0.97 Å) as compared to Fe3+Figure 1. Fe2O3 pattern XRD of Li0.35Cd0.3Ti0.3Mn0.1 Fe1.95O4.Figure 2. Variation of lattice parameter with Cd and Ti content [x] in Li0.35 Cd x Ti x Mn0.1Fe2.55–2x O4 series.(0.65 Å), Ni2+ (0.74 Å) and Li1+ (0.71 Å) ions. The Cd2+ ions successively replace Fe3+ ions on A-site this results in an increase of lattice parameter with Cd content. Same is true for Ti ions at B-sites. Similar results were ob- tained when Cd and Ti were separately doped in Li fer- rite [10,11]. The compositional variations however sug- gest that the lattice parameters for composite non-mag- netic ions doping is increased to larger extent in com- parison to their separate doping in ferrites.The SEM technique was studied to understand the surface morphology of the samples. All compositions have grains with sharp boundaries indicating that grains are fully developed, well packed, crack free with clear grain boundaries. The grain boundaries are district and grains are closely packed in some cases which suggest that compositions exhibit high density values. The SEM images denoted by a, b, c, d, e, and f shows micrographs for compositions x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. With the addition of Cd-Ti ions the average grain size in- creases as shown in the Figures3(a)-(f). The increase in grain diameter with Cd and Ti content is attributed to the smaller solid solubility of lithium in the samples. It is obvious from the generic formula.The IR spectra of one representative member of ferrite series i.e. x = 0.3 is shown in Figure 4. The IR absorp- tion bands were observed in the range 600 cm–1 to 400 cm–1. The absorption bands obtained in the present investi- gation are found to be in the range reported for many other lithium containing ferrites [16,17]. The difference in band position ν1 and ν2 is expected because the Fe3+-O2–distance for B site (0.199 nm) is different from that of A site (0.189 nm). The tetrahedral vibrations are of bond stretching type while octahedral vibrations are of bond bending type. These types of vibrations also affect the absorption frequency. The octrahedral complex band is found to be suppressed with increase in composite non- magnetic ions content in the ferrite. This can be attri- buted to increase in the lattice parameter and average grain size with increase in Cd-Ti content.Influence of Composite Non Magnetic Ions (Cd-Ti) Doping on Structural and Electrical Properties of Li-Mn Ferrite 146(a) (b) (c)c(d) (e) (f)Figure 3. SEM of series Li0.35Cd x Ti x Mn0.1Fe2.55–2x O4 with x = 0 to 0.5.Variation of logρ vs 103/T for the samples Li0.5Cd x Ti xMn0.1Fe2.55–2x O4 and Li0.35Cd x Ti x Mn0.1Fe2.55–2x O4 with x =0, 0.1, 0.2, 0.3, 0.4, and 0.5 are shown in Figure 5. Allthe plots exhibit a linear relationship suggesting that theresistivity obeys a relation ρ =ρ0 exp(ΔE/kT) and cha-nge in slope is observed in case of all the compositions.From figure, it is seen that the variation is almost linearup to Curie temperature where a break occurs indicatinga change of magnetic ordering from ferrimagnetic to para-magnetic. The temperatures where breaks occur coincidewith the Curie temperature determined by permeabilitymeasurements which is not reported here. The exponen-tial increase in resistivity on decrease in temperature isdue to decrease in thermally activated mobility of thecharge carrier. The change in slope is attributed to thechange in the activation energy due to phase transition ofthe material from ferromagnetic to paramagnetic state.This anomaly strongly supports the influence of magneticordering upon the conductivity process in-ferrites. Manyworkers have studied logρ vs (1/T) and observed similarbehaviour suggesting that resistivity obeys the Arrheniusrelation [11,18]. Resistivity studies show that resistivity(ρdc) of the samples in the compositions increase as theCd2+, Ti4+ concentration increases similar to that reportedin 10 and 11 D.C. resistivity of Li-Cd-Ti ferrite can beexplained on the basis of a model based on phonon as-sisted electron hopping. Trace amount of Fe2+ ions arepresent in the present ferrites. The electrons are known toparticipate in the exchange process by the following re-action Fe2+↔ Fe3+ + e. Hence these electrons arestrongly coupled to the lattice and tunnel from one site tothe other due to phonon induced transfer mechanism.Ti4+ ions, being tetravalent, localize Fe2+ ions in the sys-tem and tunneling of electrons by transfer mechanism isretarded due to the reduction of Fe3+ ions which enhancesthe resistivity. The activation energy is estimated to be0.21 eV, which in turn confirms the conduction in pre-sent ferrites are due to small polarons [18].The dielectric constant decreases with increase in fre-quency showing dielectric dispersion as depicted in Fig-ure 6. The decrease in ε with frequency is natural be-cause of the fact that any species contributing to polar-izability is found to show lagging behind the appliedLi-Cd-Ti ferrite can be explained on the basis of a modelbased on phonon assisted electron hopping. Traceamountof Fe2+ ions is present in the present ferrites. The electronsare known to participate in the exchange process by thefollowing reaction Fe2+↔ Fe3+ + e. Hence these elec-trons are strongly coupled to the lattice and tunnel fromone site to the other due to phonon induced transfermechanism. Ti4+ ions, being tetravalent, localize Fe2+ions in the system & tunneling of electrons by transfermechanism is retarded due to the reduction of Fe3+ ionswhich enhances the resistivity. The activation energy isestimated to be 0.21 eV, which in turn confirms the con-duction in present ferrites are due to small polarons [18].Influence of Composite Non Magnetic Ions (Cd-Ti) Doping on Structural and Electrical Properties of Li-Mn Ferrite 1474. ConclusionThe Li 0.35Cd x Ti x Mn 0.1Fe 2.55–2x O 4 system has been suc- cessfully prepared with standard ceramic technique. The most intense (311) peak in XRD pattern confirms the formation of cubic spinel ferrite. The SEM micrograph shows the agglomerated grain structure with sharp grainboundaries due to high sintering temperature. The IR studies show the absorption bands which are in good agreement to the studied literature. The electrical proper- ties study shows the Li-ferrites are the n-type semicon- ductors. The dielectric constant shows usual dispersionbehaviour.Figure 4. IR spectra of Li 0.35Cd x Ti x Mn 0.1Fe 2.55–2x O 4 with x = 0.3.123456789101111.522.533.5Figure 5. Variation of log ρ vs 103/T for Li 0.35Cd x Ti x Mn 0.1Fe 2.55–2x O 4.14822.533.544.555.56Figure 6. Variation of dielectric constant Є vs logf for ferrite system Li 0.35Cd x Ti x Mn 0.1Fe 2.55–2x O 4.33.544.555.56Figure 7. The plot of dielectric loss tangent (tan δ) vs logf for ferrite system Li 0.35Cd x Ti x Mn 0.1Fe 2.55–2x O 4.5. AcknowledgementsAuthor K. K. Patankar is thankful to UGC, New Delhi for the financial assistance in the form of major research project extended to her.REFERENCES[1] R. G. Kharabe, R. S. Devan, C. M. Kanamadi and B. K.Chougule, “Dielectric Properties of Mixed Li-Ni-Cd Fer- rites,” Smart Materials and Structures , Vol. 15, No. 2, 2006, pp. 229-334. doi:10.1088/0964-1726/15/2/N02[2] S. R. Sawant, D. N. Bhosale, N. D. Chaudhari and P. P.Bakare, “Electric Properties of NiCuZn Ferrites Synthe- sized by Oxalate Precursor Method,” Journal of Materi- als Science , Vol. 3, 2002, pp. 617-622. [3] B. P. Ladgaonkar, P. N. Vasambekar and A. S. Vain-gankar, “Structural and DC Electrical Resistivity Study of Nd3+ Substituted Zn-Mg Ferrites,” Journal of Materials Science Letters , Vol. 19, No. 5, 2000, pp. 1375-1377. doi:10.1023/A:1006713518433 [4] M. Pardavi-Horvath, “Microwave Applications of SoftFerrites,” Journal of Magnetism and Magnetic Materials , Vol. 215-216, 2000, pp. 171-183.Influence of Composite Non Magnetic Ions (Cd-Ti) Doping on Structural and Electrical Properties of Li-Mn Ferrite 149doi:10.1016/S0304-8853(00)00106-2[5]V. Voronkov, “Microwave Ferrites: The Present and Fu-ture,” Journal of Physics IV (Paris), Vol. 7, No. 1, 1997, pp. 35-38.[6] D. Ravinder, “Dielectric Behaviour of Lithium-CadmiumFerrites,” Physica Status Solidi (A), Vol. 129, No. 2, 1992,pp. 549-554. doi:10.1002/pssa.2211290225[7]S. S. Bellad, S. C. Watawe and B. K. Chougule, “SomeAc Electrical Properties of Li-Mg Ferrites,” Materials Re- search Bulletin, Vol. 34, No. 7, 1999, pp. 1099-1106.doi:10.1016/S0025-5408(99)00107-5[8]V. P. Reddy and D. V. Reddy, “Far-Infrared Spectral Stu-dies of Some Lithium-Nickel Mixed Ferrites,” Journal ofMagnetism and Magnetic Materials, Vol. 136, No. 3, 1994,pp. 279-283. doi:10.1016/0304-8853(94)00321-1[9]P. P. Hankare, R. P. Patil, U. B. Sankpal, S. D. Jadhav, I.S. Mulla, K. M. Jadhav and B. K. Chougule, “Magnetic and Dielectric Properties of Nanophase Manganese-Sub- stituted Lithium Ferrite,” Journal of Magnetism and Mag-netic Materials, Vol. 321, No. 19, 2009, pp. 2977-3372.doi:10.1016/j.jmmm.2009.05.074[10]R. G. Kharabe, R. S. Devan and B. K. Chougale, “Struc-tural and Electrical Properties of Cd-Substituted Li-Ni Fer-rites,” Journal of Alloys and Compounds, Vol. 463, No.1-2, 2008, pp. 67-72.[11] D. Kothari, S. Phanjoubam and J. S. Baijal, “ElectricalConduction and Dielectric Behaviour of the Oxidic SpinelLi0.5+0.5x Cr0.3Ti x Fe2.2−1.5X O4,” Journal of Materials Sci- ence, Vol. 25, No. 12, 1990, pp. 5142-5146.doi:10.1007/BF00580142[12]S. Chander, M. P. Sharma, A. Krishnamurthy and B. K.Srivastava, “Mössbauer Study of Nano-Particles of SpinelFerrites Li x Fe3−x O4,” Indian Journal of Pure and Applied Physics, Vol. 45, No. 10, 2007, pp. 816-821. [13]K. P. Chaea, J. G. Lee, H. S. Kweona and Y. B. Lee, “TheCrystallographic, Magnetic Properties of Al, Ti Doped CoFe2O4 Powders Grown by Sol-Gel Method,” Journalof Magnetism and Magnetic Materials, Vol. 283, No. 1, 2004, pp. 103-108. doi:10.1016/j.jmmm.2004.05.010 [14]K. K. Patankar, “Synthesis and Characterization of Mag-netoelectric Composites,” Ph.D. Thesis, Shivaji Univer-sity, Kolhapur, 2000.[15] A. F. Junior, E. C. de O. Lima, M. A. Novak and P. R.Wells, “Synthesis of Nanoparticles of Co x Fe(3−x)O4 by Combustion Reaction Method,” Journal of Magnetism and Magnetic Materials, Vol. 308, No. 2, 2007, pp. 198- 202. doi:10.1016/j.jmmm.2006.05.022[16] B. K. Bammannavar, L. R. Naik, R. B. Pujar and B. K.Chougule, “Preparation, Characterization and Physical Pro- perties of Mg-Zn Ferrites,” Indian Journal of Pure and Applied Physics, Vol. 14, No. 5, 1998, pp. 381-385. [17]P. V. Redy and V. D. Reddy, “Far-Infrared Spectral Stud-ies of Some Lithium-Nickel Mixed Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 136, No. 3, 1994, pp. 279-283. doi:10.1016/0304-8853(94)00321-1[18]R. S. Patil, S. V. Kakatkar, S. A. Patil, P. K. Maskar andS. R. Sawant, “Electrical Properties of Ferrites,” IndianJournal of Pure and Applied Physics, Vol. 29, 1991, pp.131-135.[19]V. P. Reddy and D. V. Reddy. “Far-Infrared SpectralStudies of Some Lithium-Nickel Mixed Ferrites,” Journalof Magnetism and Magnetic Materials, Vol. 136, No. 3, 1994, pp. 279-283. doi:10.1016/0304-8853(94)00321-1 [20]S. A. Rahman, “Temperature, Frequency and Composi-tion Dependence of Dielectric Properties of Nb Substi- tuted Li Ferrite,” Egyptian Journal of Solids, Vol. 29, No.1, 2006, pp. 131-141.。

光电英语词汇(D2)_科技英语词汇

光电英语词汇(D2)_科技英语词汇

diluted colour 非饱和diluted hydrofluoric acid 稀氢氟酸diluted mineral acid 稀无机酸dilution (1)稀释,冲淡(2)稀释度dim 模糊的,暗淡的dim light 微光,弱光dim lisht color photo 微光彩色摄影dimension (1)尺寸(2)量钢(3)维,度dimension limit 尺寸极限dimension scale 尺寸比例尺dimensional analysis 量钢分析dimensional equation 量纲方程dimensional metrology 尺寸测量术dimensional stability 尺寸稳定性dimensionless (1)无量钢的(2)无维的,无度的dimensionless wave number 无量纲波数dimer 二元物;二聚物;双合体dimer laser 双原子激光器,二聚物激光器dimethylsulfoxide 二甲基亚碤diminisher (1)减光器(2)减声器diminsished image 缩小像dimmer (1)遮光器(2)光度调整器dimple (1)波纹(2)表面微凹din color system 德国工业标准彩色系统din spend 德国工业标准感光度diode 二极管diode demodulator 二极管解调器diode image converter 二极管变像器,二极管光电图像变换器diode image tube 二极管摄像管diode laser 二极管激光器diode pump solide-state laser (dpssl)二极体激发式固态雷射diode pumping 二极管抽运diode-array target tv-camera tube 二极管阵列靶电视摄像管diode-pumped miniature solid-stat laser 二极管抽运微型固体激光器diode-triode 二极-三极复合管dioe matrix 二极管矩阵diople-quadrupole interaction 偶极-四极相互作用diopside 透辉石diopter (1)折光度,屈光度(2)瞄准器,照准仪diopter lens 折光透镜,屈光透镜diopter scale 折光标,屈光标diopter sight 折光瞄准具,屈光瞄准具dioptometer 折光度计,屈光度计dioptoscopy 折光测量法dioptra 折光仪,屈光仪dioptre (=diopter)(1)折光度,屈光度(2)瞄准器,照准仪dioptri scale 折光标度,屈光标度dioptric adjkustment ring 折光度调环,屈光度调节环dioptric apparatus 折光仪,屈光仪dioptric glass 折光玻璃,屈光玻dioptric imaging 折射成像dioptric lens 折光透镜,屈光透镜dioptric power (1)折光度,屈光度(2)折光本领,屈光本领dioptric strength 折光度,屈光度dioptric substances 折光材料,屈光材料dioptric system 折光系统,屈光系统dioptric tester 折光度计,屈光度计dioptrical 折光的,屈光的dioptrics 折射光学,屈学dioptrometer 折光度计,屈光度计dioptry 折光度,屈光度dioter ring 折光度调节环,屈光度调节环dioxide 二氧化物dip (1)麻点(2)倾斜度(3)倾角dip circle 磁倾仪dip compass 倾斜测量仪diphase 双相,二相diphenylene naphthalene 联二亚本基奈diploe moment 偶极子矩diploid (1)扁方二十四面体(2)二重的,倍数的diplopia (diplopy)(1)复视(2)双像dipmeter 倾斜测量仪dipolar polarizability 偶极子极化率dipolarity 偶极性dipole (1)二极(2)偶极子dipole absorption 偶极子吸收dipole antenna 偶极天线dipole prolarization 偶极子极化dipole radiation pattern 偶极辐射图样dipole source 偶极子源dipole-dipole broadening 偶极-偶极展宽dipole-quadrupole effecty 偶极-四极效应dipping polish 浸渍抛光dipping refractometer 浸式折射计dipvergence (1)双目垂直角差(2)高低发散差dirac comb function 狄喇克梳状函数dirac delta function 狄喇克函数dirac matrices 狄喇克矩阵dirac-electron wave 狄喇克电子波dirct nuclear pumping 直接核抽运direct calibration 直接校准direct comparison method of measurement 直接比较测量法direct current (d.c)直流电direct current motor 直流电动机direct curretn shumt motor 直流分激电动机direct detection 直接探测direct digital controller (ddc)直接数字控制仪direct duplicating film 真接拷贝direct glare 直照闪光direct indexing 直接分度法direct inlet system 直接输入系统direct insertion probe 直插式探针direct light 直射光direct lighting 直接照明direct measurement 直接测量direct method 直接法direct method of measurement 直接测量法direct modulation 直接调制direct nuclear pumped laser 直接核抽运激光器direct proportaion 正比例direct reading 直接读数,直接读出direct reading mether 直读计direct reading spectrometer 直读分光计direct reflection 直读反射direct transmission 正透射,定向透射direct transmission factor 定向透射系数direct view thermal image tube 直射视式热摄像管direct vision finder 直视取景器direct vision prism 直视棱镜direct vision prisms 直视棱镜direct vision spectroscope 直视分光镜direct wave 直达波direct-detection receiver 直探测接收机direct-fire elbow telescope 指束射击望远刽direct-fire etelescope 指挥射击望远镜direct-indirect transition 直接-间接跃迁direct-positive photographic material 直接正摄材料direct-radio spectrophotometer 正比分光光度计direct-vision spectrograph 直视抏谱仪directed beam 定向光束directed ray 定向射线directing point 基准点direction (1)方向(2)方位direction cosine 方向余弦direction finder (1)探向器(2)无线电罗盘direction fluctuation 方向起伏directiona diffuseness 定向漫射directional antenna 定向天线directional coupler 定向耦合器directional emissivity 定向发射率directional emittance 定向发射度directional focusing 指向聚焦directional reflectance 定向反射比directionality (1)方向性(2)定向性directionality effect 定向效应directionless 无方向的directivity (1)方向性(2)定向性,指向性directon theodolite 方向经纬仪director 导向器,指挥仪director telescope 导向望远镜directrix 准线direichlet series 狄利克雷级数diretpath 直接路径dirivig member 传动构件,主动构件diriving infrared binoculars 夜行车用红外双筒望远镜dirt 污物,灰尘dirt optics 不洁光学装置dirt spot 污点disability glare 致残闪光disalignment (1)失中(2)失调disappearing-filament optical pyrometer 隐丝光学高温计disc (1)盘,圆盘(2)磁盘(3)研磨盘(4)斑disc cam 盘形凸轮disc laser 圆盘形激光器disc of confusion 弥散斑disc storage 磁盘存储器disc type shutter 圆盘快门discerning method 分辨法,鉴别法discernment (1)分辨(2)分辨力discharge (1)释放(2)放电discharge chamber 放电室discharge current noise 放电流噪声discharge excited 放电激发的discharge tube 放电管discharger (1)放电器(2)火花隙discoloration 褪色,去色disconnection 分开,断开,断路discontinuity (1)不连续性(2)突变性(3)突变点discontinuous wave 非连续波discrete (1)分立的(2)离散的discrete channel 离散信道discrete component 分立元件discrete distribution 离散分布discrete energy state 分立能态discrete fourier transform 离散傅里叶变换discrete maximum principle 离散最大值原理discrete message 离散信息discrete mode spectrum 离散模谱discrete picture 离散图像discrete random process 离散随权过程discrete signal 离散信号discrete source 离散信源discrete spectrum 离散谱discrete value 分立值discrete-carrier hologram 离散载体全息图discretely tunable infrared laser 不连续可调红外激光器discreteness (1)分位性(2)离散性discriminablility (1)鉴别力(2)鉴频能力discriminant 判别式discrimination error 鉴别误差discrimination of brightness 亮度鉴别discrimination threshold 鉴别阈discriminator (1)鉴别器(2)鉴频器disdropmeter 示滴仪dish (1)盘(2)盘状物dish aerials 盘式天线disilicon trioxide 三氧化二硅disintegration 蜕变disintegratoor 粉碎机disk (=disc)(1)盘,圆盘(2)磁盘(3)研磨盘(4)斑disk-annulus pattern 圆环状图样dislocation (1)位移(2)位错dislocation density 位错密度dislocation theory 位错理论dislocation-free 无位错disorder 无序,不规则disordered thin film 无序薄膜disorientation 乱取向dispersing prism 色散棱镜dispersing reflector 色散反射器dispersing resonator 色散共振腔dispersing spectromodulator 色散光谱调制器dispersing-type spectroradiometer 色散型光谱辐射计dispersion (1)色散,频散(2)弥散dispersion angle 色散角dispersion conefficient 色散系数dispersion curve 色散曲线dispersion electron 致色散电子dispersion force 弥散力dispersion gradient 色散陡度dispersion law (1)色散律(2)离散定的dispersion line 色散谱线dispersion spectrum 色散光谱dispersion-shifted fiber 色散位移光纤dispersionless 无色散的dispersity (1)色散度(2)弥散度dispersive 色散的dispersive delay line 色散延迟线dispersive laser cavity 色激光共振腔dispersive medium 色散媒质dispersive modulator 色调制器dispersive optical maser 色散光学微波激射器dispersive optical system 色散光学系统dispersive power (1)色散本顉(2)色散率dispersive pspectrometer 色散分光计dispersiveness 分散性dispersoid 弥散体dispersor 色散器displacement (1)位移(2)排出量displacement bar 偏移指示器displacement current 位移电流displacement graticule 位移分划板displacement target 位移目标display 显示,指示,显像display device 显示装置,显像装置display file 显示文件display lamp 指示灯display optical film 显示器用光学膜display panel 显示板display-storage ballast 显示存储管display-storage tube 显示存储管disposition (1)配置,布置,安排(2)倾向disproportion (1)不均衡,不相称(2)不成比例disruption (1)破坏,破裂(2)击穿dissceting microscope 解剖显微镜disscetor 析像管dissection (1)解剖(2)分析dissection image tube 析像管dissemination (1)弥散(2)散逸,扩散(3)散射dissipation (1)耗散,消耗,散逸(2)弥散,散射dissipation loss 耗散损失,散射损失dissipation region (1)耗散区域,弥散区域(2)散射范围dissociation 离解,分解dissociative excitation 离解激发dissolubility 溶解度dissolution 溶解dissolve (1)溶(2)图像渐隐dissolvent 溶剂dissolver 溶解装置,溶解器disstortion-meter 畸变计dissymmetric 不对称的dissymmetry factor 不对称因子distance (1)距离(2)远距离distance cathode 远距阴极distance control 遥控distance of distinct vision 明视距离distance scale 距离尺标distance-lens 远视透镜distance-measuring theodolite 测距经纬仪distant control 遥控distant shot 远摄,远景distant view photograph 全景照片,远景照片distillatio (1)蒸馏(2)蒸镀distillation film 蒸镀薄膜distilled water 蒸馏水distinctness (1)差别(2)清晰度distinot vision 明晰视觉distometer 测距计distorition 畸变distorted lattice 畸变点阵distorted wave 畸变波distortion factor 畸变因数distortionless 无畸变的distortionless telephoto objective 无畸变远摄物镜distributed bragg reflector 分布布拉格反射器distributed circuit 分布电路distributed feedback 分布反馈distributed feedback laser 分布反馈激光器distributed paramp 分布参量放大器distributed-feedback dye laser 分布反馈染料激光器distributed-feedback semiconductor laser 分布反馈半导体激光器distribution (1)分配(2)分布(3)配电distribution board 配电盘distribution photometer 分布光度计distributor (1)配电盘(2)分配器distributor case (1)分配箱(2)配电箱distroted spectrum 畸变谱disturbace resolution 扰动分辨率,干扰分辨率disturbance (1)扰动,干扰(2)摄动dit 小沙眼ditance finder 测距计ditertragonal prism 复正方柱核镜ditertrahedron 双四面体ditetragon 双四边形ditrigon 双三角形ditrigonal prism 复三角柱棱镜diurnal variation 周日变化divalent 二价的divalent ion 二价离子diveded-circle 度盘仪器divergence (divergency)(1)散度(2)发散度(3)发散divergent (1)发散的(2)辐散的divergent beam 发散光束divergent lenses 发散透镜divergent mirror 发散镜divergent pencil of rays 发散光束divergent wave 发散波divergent-beam photography 发散光束摄影术divergent0meniscus lens 弯月形发散透镜diverging light 发散光diverging ocular 发散圆镜diverging wave 发散波diversion 转向,转换,转移diversity (1)相异性,多样性(2)分集diverter (1)分流器(2)分流电阻divided circle 圆度盘,刻度盘divided scale 被除数divided-circle instrument 分液显影dividend (1)分压器(2)除法器(3)双脚规,分线规divider 圆规,分规divider salipers (1)分度(2)分度法(3)除dividing 分度盘dividing dial 分度盘dividing disc 分度机,刻度机dividing engine 分度头dividing head 分度键dividing key 分度盘dividing plate 航差指示器,偏差计divieded development 分划尺,刻度尺diviometer (1)刻度(2)等分(3)除法division of amplitude 除数divison 分振辐法divisord 型镜头头dizao (1)重氮(2)重氮dizazo process 重氮照相法dlp digital light processing 数位光源处理器dmd digital micromirror device 数位微镜装置dmensionality 维度dobule-discharge technique 双放电技术document scanner 十二面体documentary film 纪录片摄影术documentary photography (1)文件扫描器(2)文件扫描程序dodechedron 遮光dodging dog (1)止块(2)小型制动机构dog clutch 抓形离合器dolly 摄影机移动车dolly on 推摄,近摄dolly out 拉摄,远摄dolomite glass 白云石玻离domain (1)畴(2)域domain of definiton 定义域domain of dependence 依赖域dome (1)圆顶盖,半球形(2)罩(3)玻面dome director 圆顶指示器dome nut 圆盖螺母dome reflector 穷面反射器dome slot 圆形糟,半球形缝dominant wave 主波dominant wvelenght 主波长domination 支配,控制donaldson colorimeter 唐纳森色度计donor 施主donor element 施主元素donor impurity 施主杂质donor impurity level 施主杂质能级donor molecule 施主分子donor site 施主能级donor-acceptor pair 施主-受主对donut (1)环形室(2)环形真空罩dopant 掺质,掺杂剂doped glass 掺杂玻璃doped single crystal 掺杂单品doping 掺杂doping accuracy 掺杂精度doping density 掺杂密度doping gradient 掺杂陡度doppler accuracy 多普勒精度doppler broadening 多普勒增宽,多普勒展宽doppler direction finder 多普勒效应定向仪doppler effect 多普勒效应定向仪doppler frequency 多普勒频率doppler half-width 多普勒半宽doppler line shape 多普勒线形doppler linewidth 多普勒线形doppler profile 多普勒剖面doppler q switching 多普勒q 开关doppler radar 多普勒雷达doppler shift 多普勒频移doppler spectrum 多普勒频谱doppler velocimeter 多普勒速度计doppler width 多普勒宽度doppler-broadened laser transition 多普勒展宽激光跃迁doppler-fizeau effect 多普勒-菲索效应doppler-free spectrocopy 无多普勒光谱学doppler-free two-photon spectroscopy 无多普勒双光子光谱学doppler-shifted reflection 多普勒频移反射doran 多普勒测距系统dorsal view 背视图dosage 剂量dose 剂量dose meter (dosimeter)剂量计dosimetry 剂量测定法dot beamsplitter 点式射束分离器,点式分束器dot formation 网点形成dot pattern 光点图,点图样dot product 点积dot raster character generator 点阵法字符产生器dot reproduction 网点再现dot-shaded line 点影线dotted line 虚线doubel image eyepiece 双像目镜doubel water glass 双料水玻璃doubel-gauss goniometer 双向测角仪doubel-gauss objective 双高斯型物镜doubel-resonance 双共振double anastigmat 消像散双镜组double beam interferometer 双光速干涉差double beam microspectrophotometer 双光束显微分光光度计double beam photometer 光束光度计double beam photometers 复光束光度计,复光束量测器double calcite plate 双方解石片double concave 双凹的double convex 双凸的double crucible 复式坩埚,双层坩埚double crystal spectrography 双晶摄谱仪double discharge initiated hf laser 双放电引发hf 激光器double doughunt laser 双圈激光器double eccentric connector 双偏心连托器double elliptical cavity 双椭圆共振腔double exposure device 两次曝光装置double exposure holographic interferometry 两次曝光全息干涉量度计,双曝光全息干涉法double exposure prevented device 防止重拍机构double extra dense flint 双超重火石玻璃double focusing 双聚焦double frequency 倍频,双频double half-wave filter 双半波滤光片double heecojunction laser 双异质结激光器double helical gear 人字齿轮double helical tooth 人字齿double image 双像double image micrometer 双像测微器double image ocular 双像目镜double image prism 双像棱镜double image range finder 双像测距仪double integral 二重积分double layer 双层double lens magnifier 双透镜放大镜double mirror 双面反射镜double pass planar dye laser amplifier 双程平面染料激光放大器double prism field glass 双棱镜望远镜double protractor 双斜量角器double pulse excitation 双脉冲激励double pulsing 双脉冲double quartz prism spectroradiometer 双石英棱镜光谱辐射计double reflection 双反射double refracting crystal 双折射晶体double refraction 双折射double samping inspetion plan 复式抽样检查方案double scattering 双散射double sided angle-reading system 双向读角系统double sighting error 二倍照准误仪double star 双星double stratum 双层double thread 双头螺纹double vernier 复游标double vision 双视double-beam densitometer 双光束密度计double-beam polarizer 双光束偏振器double-center theodolite 复合经纬仪double-crystal diffractometer 双晶衍射计double-crystal spectrometer 双晶分光计double-directional focusing 双向聚焦double-discharge stabilization 双放电稳定double-doped laser 双掺激光器double-dove scan prism 双道威扫描棱镜,立方扫描棱镜double-exposed hologram (1)两曝光全息图(2)两次曝光全息照片double-exposure holography 两次曝光全息术double-exposure inteferometry 两次曝光干涉法double-fine structure 双重线精细结构double-focus interferometer 双焦点干涉仪double-focusing mass spectrometer 双聚焦质谱仪double-folded astigmatically compensated optical cavity 双折光式像散光学共振腔double-gauss derivatives 双高斯型物镜变型double-gauss lenses 双高斯透镜double-heterostructure 双异质结构double-heterostructure injection laser 双异质结构注入式激光器double-humped 双峰double-humped wave 双峰波double-pass monochromator 双程单色器double-pass spectrometer 双程分光计double-pivoted type 双轴尖式double-pulsed flash lamp 双脉冲闪光灯double-pulsed time 双脉冲间隔double-purpose camera 两用照相机double-slit interferometer 双缝干涉仪double-threaded screw 双头螺旋double-thrust bearing 对向推力轴承,对向止推轴承double-wedge 菱形的,双楔形的doublem\-beam spectrophotometer 双光束分光光度计doubler 倍频器doublet (1)双重线(2)偶极天线(3)双合透镜(4)偶极子doublet interval 双线间隔doubly charged ion 双倍带电离子doubly clad optical fiber 双包层光纤维doubly clad wavegudie 双包层波导doubly diffuse density (1)双漫射密度(2)双散射密度doubly refracting crystal 双折射晶体doubly resonance (1)双共振(2)双共呜doubly resonant oscillator 双共振振荡器doubly resonant parametric oscillator 双共振参量振荡器doubly-dispersed spectrum 两次色散光谱doubly-excited levels 双重受激能级doughnut-shaped flash lamp 环形闪光灯doughunt (1)环形室(2)环形真空罩dove prism 道威棱镜dovetail (1)燕尾(2)楔形准dovetail groove 燕尾槽dovetail guide 燕尾道轨dovetail slide 燕尾滑板dovetailed way 燕尾导轨dovetailing 燕尾连接dowel [pin] (1)定缝销钉,暗钉(2)木钉(3)定位销dowell interferometer 多威耳干涉仪down shot 俯瞰摄影down-coming wave 下射波down-conversion 下转换,降频转换down-converter (down-convertor)下换器,降频转换器draft (1)草图(2)草案draft equipment 绘图设备drafter 制图机械drafting 制图drafting board 制图板,绘图板drafting scale 制图尺,绘图尺drag 曳力,阻力drag coefficient 电力系数drag detector 曳力测定器drain (1)消耗(2)漏极drain current 漏电流draw power 抽拉功率,抽运功率drawbar (1)拉杆(2)挂钩drawer shutter 瓣式快门drawing (1)抽,拉,压延(2)牵引(3)提取(4)回火(5)绘图drawing apparatus 描绘器,绘图器drawing machine 制图机,绘图机drawplate 拉模反dresser 整形器,修正器dressing 整形,修整drier (1)干燥剂(2)燥形器,烘箱drift (1)漂移(2)偏差drift coefficient 漂移系数drift mobility 漂移迁移率drift region 漂移区域drift velocity 漂移速度drill (1)钻头(2)钻床drill gauge 钻径规drill press 钻床driller 钻床drilling 钻孔drilling machine 钻床drive (1)驾驶(2)传动,驱动,起动(3)激励(4)传体装置,驱动装置drive axle (1)传体轴(2)主动轴drive circuit 驱动电路drive fit 紧配合drive pinion 传动小齿轮driven 被动的,从动的driven gear 被动齿轮,从动齿轮driven sweep 致动扫描driver 传动器,激光器,激励器driver ic 显示面板用驱动ic driverscpe 驾驶仪drivign belt 传动皮带drivign frequency 驱动频率driving (1)传动,驱动(2)激厉(3)主动的driving band 传动带driving current 驱体电流driving gear (1)传动齿轮(2)主动齿轮driving oscillator 主控振荡器driving power 驱动功率driving spindle (1)传动轴(2)主动轴drone (1)遥控无人驾驶飞机(2)靶机droop 下垂,低垂drop (1)滴(2)下落,降落droplet (1)微滴(2)飞沫droplet interfermetry 微滴干涉测量法dropout (1)脱落(2)遗失信息dropper (1)滴管(2)挂钩drum (1)鼓,鼓形物(2)磁鼓(3)鼓轮(4)滚筒(5)绕线架drum cam 凸轮轴,凸轮鼓drum camera 鼓轮摄影机drum dial 鼓形刻度盘,刻度鼓drum lens 鼓形透镜,drum reading 测微鼓读数drum scanner 鼓形扫描设备drum storage 磁鼓存储器drunkenness error 缧纹导程周期误差dry battery 乾电池组dry cell 乾电池dry lens 乾式透镜dry objective 乾式物镜dry photopolymer film 乾式光聚合薄膜dry-ic 乾冰dryer (1)乾燥器(2)乾燥剂dryness 乾燥度dt target 氘氚靶dtl diode-transistor logic 二极体电晶体逻辑dtr process (diffusion transfer reversal process)扩散转移反转法dual (1)二的(2)双重的(3)对偶的dual beam interferometer 双光束干涉仪dual flank gear rolling tester 双面啮合齿轮检查仪dual frequency dye laser 双频染料激光器dual lattice 倒易点阵dual lens 双透镜dual mode coding 对偶式编碥dual-cavity laser 双腔激光器dual-grating spectrography 双光栅摄谱仪dual-polarization 双偏振,双极化dual-polarization laser 双偏振激光器dual-polarization oscillation 双偏擃荡dual-polarized ring laser 偏振环形激光器dual-seatter laser velocimeter 双重散射激光测速计dual-trace oscillograph 双线示波器dualism 二像性duality (1)二象性(2)二重性(3)对偶性(4)二元性duantd 形盘ducon 配合器,接合器duct 导管ductility (1)延性(2)柔软性ductiny 输送dull dullness (1)钝的(2)黯淡(3)模糊的dummy (1)钝度(2)黯淡(3)模糊dummy load (1)虚设物,伪装物(2)伪程序(3)假人dumper 假负载,仿真负载,等效负载dumper mirror 倒空器dumping 定镜dumpy level 倒空器duo-binary system 定镜准准仪duodeno-fiberscope 十二进制的duodiode 十二指肠纤维束内窥镜duojdecimal 双二进制duolaser 双二极管,孪二极管duple 双激光器duplex 二倍的,二重的duplicate (1)双的,二重的,复式的(2)双工的(3)双向的duplicate test (1)二重的,双联的(2)副本duplicating film 重覆测试duplication 底片durability (1)加倍(2)重覆(2)复制duralumin 耐久性,持久性duration 硬铝,杜拉铝duration of exciting 期间,持续时间duration of vision 激发持续时间durometer 视觉暂留dust 硬度计dust cap 防尘盖,防尘罩dust chamber 除尘室dust chatcher 吸尘器,集尘器dust cleaner 除尘器dust clollector 吸尘器,集尘器dust counter 尘量计dust cover 防罩dust guard 防尘dust ring 防尘圈dust-free 无尘的dust-free area 无尘区,防尘区dust-proof (1)防尘的(2)防尘器duster 除尘器duty cycle 负载循环duty factor (1)占空因数(2)负载因数dvd-rom drivesdvd-rom 光碟机dvd-romsdvd-rom 光碟片dwdm 高密度光分波多工器dwdm dense wavelength division multiplexer 高密度波长多工器dwell (1)同心部份(2)停止(3)静态dye 染料,染色dye(flash lamp pumped)lasers 染料雷射(闪光灯激发)dye(laser pumped)lasers 染料雷射(雷射激发)dye cell 染料盖dye doped polyurethane film 染料聚氨鲁膜片dye laser 染料激光器dye laser densitemetry 染料激光器显测密度术dye laser spectroscoppy 染料激光光谱学dye q-switching 染料q 开关dye sensitized photoconductor 染料敏化光导体dye vapor fluorescence 染料蒸气发光dye-gelatine filter 染色明胶滤色片dye-laser quenching 染料激光器犴灭dye-saturable absorber 染料饱和吸收器dye-sensitized 染色敏化的dyed glue process 染胶法dyestuff 染料dyhexagonal prism 复六方柱棱镜dyn 达因dynameter 倍率计dynamic (1)动力的(2)动力学(3)动态的dynamic balancer 动平衡器dynamic balnce 动平衡,动力平衡,动力均衡dynamic beam apodization 动态光束切趾dynamic equilibrium 动平衡,动态平衡dynamic error 动态误差dynamic fm conttrol 动力调频控制dynamic focusing 动态聚焦dynamic imaging 动态成像dynamic laser (1)动态激光器(2)气体激光器dynamic laser speckle 动态激散斑dynamic range 动态范围dynamic storage 动态存储dynamics 动力学dynamo 直流发电机dynamometer (1)测力计(2)功率计dynamotor 电动发电机dynaquad 三端开关器件dynatron 负阻管dynemeter 达因计dynode 倍增电极dynotron 超高频振荡三极管dyscrystalline 不良结晶质dyson interference microscope 达桑干涉显微镜dysprosium (dy)镝dysprosium laser 镝激光器dyssophotic 弱光的dytetragonal prism 复正方柱棱镜。

小学上册第14次英语第5单元测验试卷(有答案)

小学上册第14次英语第5单元测验试卷(有答案)

小学上册英语第5单元测验试卷(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The ____ has large eyes and can see well at night.2.Hydrogen peroxide can be broken down into water and _____ (oxygen gas).3.The squirrel's _______ (尾巴) is bushy and long.4.The petals fall when the flower __________ (枯萎).5.________ (植物可持续性) is vital for future.6.Recognizing the seasons can help you plan your ______ effectively. (认识到季节可以帮助你有效地规划园艺活动。

)7.I love playing with my ________ action figure.8. A saturated fat is solid at ______ temperature.9.The ________ (湿地) is home to many birds.10.The _____ (tree/house) is tall.11. Wall was built over several ________ (世纪). The Grea12.She is ______ her homework quickly. (finishing)13.Animals that live in the Arctic are adapted to ______ weather.14.My best friend has a ________ (小猫). It is very ________ (可爱) and likes to sleepa lot.15.The flamingo stands gracefully on _______ (一条腿).16.The _____ (植物学家) studies different types of plants.17.What is the name of the famous author known for his "Great Gatsby"?A. F. Scott FitzgeraldB. Ernest HemingwayC. John SteinbeckD. William Faulkner答案: A18.I invited my friends over to play with my ________ (玩具名称).19.We have a picnic in the ________ (草地) every spring.20.The ______ (小龙) in the story is very brave and helps its ______ (朋友).21. A ______ is a type of energy related to heat.22.The garden has many ______.23.The ________ (novel) tells an interesting story.24.She is wearing a _____ (蓝色的) hat.25.My sister loves to read ____.26.What is the name of the famous red fruit that is often used in salads?A. TomatoB. PepperC. CucumberD. Lettuce答案: A27.What is the main purpose of a fire extinguisher?A. To cool downB. To put out firesC. To start firesD. To provide light答案:B.To put out fires28.I enjoy watching ________ in the garden.29.The __________ (光明正大) was a pivotal moment in French history.30.The _______ (Hellenistic period) followed the conquests of Alexander the Great.31.The main gas that contributes to global warming is __________.32.The ________ (多样性) of plants in a forest is rich.33.The ancient Romans used _______ to decorate their homes. (壁画)34.My dad enjoys fixing ____ (electronics).35. A ____ has a hard shell and moves very slowly.36. A _____ (园林) can be designed for relaxation.37.The _______ (马) neighs in the barn.38.My brother is a __________ (项目经理).39.The invention of the telegraph transformed long-distance _____.40.Honey is made by ______.41.The first successful airplane flight took place in ________.42. A ____(parkland) preserves green spaces in urban areas.43.The apple is _____ (red/green).44.What do we call the study of the earth's physical structure?A. GeographyB. GeologyC. EcologyD. Astronomy答案: B45.ts have developed specific traits to cope with ______ stress. (某些植物发展出特定特征以应对环境压力。

必修第三册 Unit 3 The world of science(教师版)

 必修第三册 Unit 3 The world of science(教师版)

Ⅰ.阅读单词——会意1.gunpowder n.火药2.compass n.指南针,罗盘3.virtual adj.虚拟的,模拟的4.battery n.电池5.compute v.计算6.stuff n.东西,物品7.astronomer n.天文学家8.Gregorian calendar 公历,阳历(自1582年起在西方使用的历法) 9.species n.物种10.stream n.小河,小溪11.radium n.镭(一种化学元素)12.lightning n.闪电13.fiction n.虚构的事,想象的事14.metal n.金属15.gravity n.重力,引力Ⅱ.重点单词——记形1.press v.按2.shoot v.射出(光线等),放射3.desire n.渴望,欲望4.passive adj.被动的5.beyond prep.无法……6.instance n.例子,实例7.extraordinary adj.非凡的,出色的8.brilliant adj.聪颖的,才华横溢的9.theory n.学说,理论10.mental adj.精神的;精神健康的11.cure n.药剂;疗法12.draft v.起草,草拟13.experiment n.(科学)实验14.flash n.闪光15.entirely ad v.完全地,彻底地16.account n.记述,描述17.proof n.证明,证据18.procedure n.程序,步骤,手续Ⅲ.拓展单词——悉变1.flexible adj.易弯曲的,柔韧的→flexibly ad v.灵活地;有弹性地→flexibility n.灵活性;弹性;适应性2.capable adj.有能力的→capability n.能力3.significant adj.重要的,影响深远的→significance n.重要性,意义4.injure v.使受伤,弄伤→injury n.伤;损害→injured adj.受伤的5.chemist n.化学家;药剂师;药房→chemistry n.化学→chemical adj.化学的6.biologist n.生物学家→biology n.生理;生物学→biological adj.生物(学)的7.accurate adj.精确的→accurately ad v.精确地→accuracy n.精确度,准确性8.minor adj.小的;次要的→minority n.少数9.origin n.起源,起因→original adj.最初的,原始的n.原作→originally ad v.原来,最初10.declaration n.声明,宣告→declare v.宣布11.attach v.系,绑;贴;附→attached adj.附属于;依恋的→attachment n.附件;连接物;依恋12.conduct v.传导(热、电);指挥;实施→conductor n.导体;指挥;售票员13.scientific adj.科学(上)的→science n.科学;理科→scientist n.科学家1.mobilise (NAmE -ize) /'məʊbəla I z/v t.& v i.组织;鼓动;动员2.neutrality /njuː'træləti/n.中立;中立状态3.invade /I n've I d/v i.& v t.武装入侵;侵略;侵犯4.surrender /sə'rendə(r)/v i.& v t.投降;(被迫)放弃,交出n.投降;屈服;屈从5.fight back还击;抵抗6.assault /ə'sɔːlt/n.攻击;突击;袭击v t.猛烈攻击;袭击;侵犯(尤指构成犯罪)7.swift /sw I ft/adj.迅即发生的;速度快的;敏捷的8.intact /I n'tækt/adj.完好无损;完整9.reinforcement /ˌriːI n'fɔːsmənt/n.[pl.]援军;增援警力[U](感情或思想等的)巩固;加强10.fate /fe I t/n.命中注定的事(尤指坏事);命运Ⅳ.背核心短语1.wearable tech 可穿戴技术2.in addition 除此之外,另外3.never say never 别轻易说决不4.natural selection 自然选择5.field research 实地研究,实地调研6.instead of代替;而不是7.in terms of 按照;谈及;在……方面8.along with连同……一起9.take place 发生;举行10.die from死于;因……而死Ⅴ.悟经典句式1.There have been golden ages of invention throughout history.(there be 句型)纵观历史,我们经历过很多发明创造的黄金时代。

小学上册第十二次英语第三单元测验试卷

小学上册第十二次英语第三单元测验试卷

小学上册英语第三单元测验试卷英语试题一、综合题(本题有50小题,每小题1分,共100分.每小题不选、错误,均不给分)1 The ________ (社会结构) varies between regions.2 The law of conservation of mass states that mass cannot be ______.3 What is the name of the famous American singer known as the "Queen of Soul"?A. Aretha FranklinB. Whitney HoustonC. Tina TurnerD. Diana Ross答案:A4 What do we call a person who studies the effects of drugs?A. PharmacologistB. ChemistC. BiochemistD. Toxicologist答案: A5 The chemical formula for potassium chloride is __________.6 A _______ is a process that involves fermentation.7 My sister loves to ________.8 My brother enjoys __________ (学习) about new technologies.9 Gas particles are far apart and move ______.10 What is the name of the famous French landmark known for its iron lattice structure?A. Eiffel TowerB. Louvre MuseumC. Arc de TriompheD. Notre-Dame Cathedral11 What do you call the liquid part of blood?A. PlasmaB. PlateletsC. CellsD. Clots答案: A12 The process of separating mixtures is called ______.13 What do we call a typical breakfast food?A. CerealB. SandwichC. SaladD. Soup14 My sister is ________ her friends.15 What is the name of the famous statue in New York Harbor?A. The ThinkerB. The Statue of LibertyC. Christ the RedeemerD. David16 What is the capital of Norway?a. Oslob. Stockholmc. Copenhagend. Helsinki答案:a17 archaeological site) reveals past civilizations. The ____18 The Magna Carta limited the power of the ________.19 A ____ flies high in the sky and has a sharp beak.20 What do you call the imaginary line dividing the Earth into the Northern and Southern Hemispheres?A. EquatorB. Prime MeridianC. Tropic of CancerD. Tropic of Capricorn答案:A21 My _______ (狗) likes to play fetch.22 My favorite way to relax is _______ (听音乐).23 A _____ can tell us about the history of our solar system.24 My brother loves to __________ (参加) family celebrations.25 In physics, work is done when a force moves an ______ (object).26 The pelican's beak is designed to catch ______ (鱼).27 The roadrunner can run very _______ (快).28 What is the name of the fairy tale character who lost her glass slipper?A. Snow WhiteB. CinderellaC. Little Red Riding HoodD. Rapunzel29 My puppy loves to tug on a ______ (绳子).30 Which animal is known for building dams?A. BeaverB. FoxC. RabbitD. Squirrel31 A _____ is an area of land that rises sharply.32 I love my new ________ that's shaped like a dinosaur.33 When it snows, I always wear my __________. (冬衣)34 The _____ is the area around a black hole where gravity is extremely strong.35 I have _____ pencils in my backpack. (three)36 The __________ (历史的回响) lingers in memory.37 My brother is really into ____ (science) experiments.38 We are going to have a __________.39 What do you use to cut paper?A. GlueB. ScissorsC. TapeD. Ruler答案:B40 The baby is ________ in the crib.41 What do you call a person who plays a musical instrument?A. MusicianC. WriterD. Actor答案:A42 What is the name of the famous mountain in Nepal?A. K2B. AnnapurnaC. EverestD. Kilimanjaro答案:C43 The _______ (老虎) is a symbol of strength.44 The flowers are ___. (beautiful)45 The __________ is important for understanding Earth's natural resources.46 During summer, I enjoy playing with ________ (水枪) in the garden. We have a water ________ (大战).47 The cat loves to scratch _______.48 Saturn has a hexagon-shaped storm at its ______.49 The __________ is a major river that flows through Nigeria. (尼日尔河)50 The main source of energy for living organisms is ______.51 We are going to a ______ (concert) next week.52 The Earth is unique in its ability to support _______.53 biodiversity) in rainforests is very high. The ____54 Seeds need ______ (阳光) and moisture to germinate.55 What do we call a large body of ice that moves slowly down a mountain?A. GlacierC. IcebergD. Snowfield答案:A56 The _____ (diary) helps track plant growth.57 (Romans) built aqueducts to supply water to their cities. The ____58 What is the capital of Egypt?A. CairoB. AlexandriaC. LuxorD. Giza59 We have a ______ (丰富的) educational system.60 I want to ________ (explore) the world.61 My uncle is a skilled ____ (artist).62 The __________ is the outer part of an atom.63 The ______ is a famous scientist.64 A shadow is longest during the ______ (evening).65 Which one is a type of fabric?A. CottonB. WoodC. MetalD. Glass66 The Earth’s crust is made up of several large ______.67 I need to buy some ________.68 The ______ (小鸟) sings sweet songs in the morning.69 Which sport is played with a round ball and a net?A. SoccerB. BaseballC. FootballD. Golf答案:A70 The ice cream truck is ______ (coming) down the street.71 What is the main ingredient in bread?A. RiceB. FlourC. SugarD. Salt72 What is the shape of a ball?A. SquareB. TriangleC. CircleD. Rectangle73 The __________ (历史的情感表达) forge connections.74 The ________ was a noteworthy event in the evolution of democracy.75 My sister loves to ______ stories. (tell)76 What do you use to write on a blackboard?A. PenB. CrayonC. ChalkD. Marker答案:C77 What do we call a baby sheep?A. CalfB. KidC. LambD. Foal答案:C. Lamb78 The capital of Germany is ________ (德国的首都是________).79 A crab scuttles sideways on the _______ looking for food.80 In spring, flowers ______ (开放) and trees become green.81 The main gas that makes up dry ice is _____.82 climate resilience assessment) evaluates vulnerability. The ____83 The chemical formula for methane is __________.84 What do we call the study of the Earth and its features?A. GeographyB. GeologyC. CartographyD. Astronomy85 The teacher is very ________.86 What is the tallest mountain in the world?a. K2b. Kilimanjaroc. Everestd. Denali答案:C87 The beach is _______ (很美丽).88 What do we call a strong windstorm that forms over the ocean?A. HurricaneB. TornadoC. CycloneD. Typhoon答案:A89 My sister loves to watch ______ (小鸟) sing outside.90 (Mughal) Empire was known for its architecture and arts. The ____91 The library is ________ (安静).92 What do we call a large natural stream of water?A. RiverB. CreekC. StreamD. Brook答案: A. River93 What do we call the process of keeping something safe?A. ProtectingB. SavingC. StoringD. Guarding94 __________ (实验室安全培训) is crucial for preventing accidents.95 My friend likes to play ____ (soccer) after school.96 The __________ is a famous structure in India. (泰姬陵)97 What do you call a person who repairs watches?A. BakerB. JewelerC. MechanicD. Carpenter答案: B98 The cat is ________ on the sofa.99 I want to ______ a new toy. (buy) 100 I love my ________ that sings.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -l a t /0409150v 1 27 S e p 20043-d lattice SU(3)free energy to four loops∗MIT-CTP-3541;UPRF-2004-18F.Di Renzo a ,A.Mantovi a ,V.Miccio a ,Y.Schroder b ,C.Torrero a aDipartimento di Fisica,Universit`a degli Studi di Parma,and INFN,Gruppo Collegato di Parma,ItaliabCenter for Theoretical Physics,MIT,Cambridge,MA,USAWe report on the perturbative computation of the 3d lattice Yang-Mills free energy to four loops by means of Numerical Stochastic Perturbation Theory.The known first and second orders have been correctly reproduced;the third and fourth order coefficients are new results and the known logarithmic IR divergence in the fourth order has been correctly identified.Progress is being made in switching to the gluon mass IR regularization and the related inclusion of the Faddeev-Popov determinant.1.IntroductionThe main goal of finite temperature QCD is to characterize the deconfinement transition bet-ween the low temperature regime,ruled by con-finement,and the high temperature regime ruled by asymptotic freedom.In this respect the free energy density,i.e.the pressure ,is a sort of ‘theoretical laboratory’in which to study such a transition,and,eventually,a potential candidate observable in heavy ion collisions.Evidently,the large T limit of the pressure is that of an ideal gas of non-interacting particles,p ∝T 4;unfortu-nately,lattice simulations across the whole tem-perature range are not feasible and our efforts and understanding are confined to the opposite ends of the temperature range:namely,the low temperature regime (up to some 4÷5times the transition temperature T c ∼200MeV)which is accessible to actual computational resources,and the high temperature regime at which the pres-sure exhibits a purely perturbative behaviour.Dimensional reduction [1]has been applied [2]to fill the gap:4d QCD is matched to 3d SU (3)Yang-Mills (YM)coupled to a Higgs field in the adjoint representation;such a theory can then be matched to 3d SU (3)YM,which captures the ultrasoft degrees of freedom;both these reduc-tions have been successfully performed in the∗Presentedby Andrea Mantovischeme.Finally,3d YM has to be treated non-perturbatively,the only effective means being the lattice.Indeed lattice computations can be con-sistently incorporated into the dimensional reduc-tion strategy:the theory is superrenormalizable and all divergences can be computed perturba-tively;this allows a clean matching of the schemes in the continuum.It is well known that comput-ing at high orders in LPT is quite hard a task;in this respect the approach of Numerical Stochastic Perturbation Theory (NSPT)[3]is a very efficient one.Let f ≡−V ln Z be the free energy associated with the Wilson action S W =β0 P (1−ΠP ),β0=2N c /(a 4−d g 20)being the dimensionless bare lattice inverse coupling in d dimensions.To com-pute the free energy one can revert to the com-putation of the plaquette,being1−ΠP =2a d∂β01β0+c 2(N c ,d )β30+c 4(N c ,d )616g 2(3)12−a−1c3648g60+O(a).so that thefirst four coefficients uniquely deter-mine the matching to the continuum;c1and c2 being long known,c3and c4were the aims of the computation.The presence has already been established[4]of a logarithmic IR divergence at fourth loop order;it was our aim to recover the scheme independent coefficient of such a loga-rithm:the tilde on c4reminds us that the IR divergence has to be isolated and subtracted by means of a definite IR regulator,which we choose to be the finite lattice size L inherent to any lat-tice simulation.putational setupWe have inserted the expansion Uµ(n)=1+ 8i=1β−i3subtracted c4.4.PerspectivesA definite IR regulator enables one to isolate afinite part out of the4loops contribution to the plaquette;we have been employing the finite volume inherent to any computer simulation.A mass is a commonly used regulator in continuum computations;the coupling itself(dimensionful in 3d YM)is quite a natural IR regulator for non-perturbative lattice simulations.Despite the fact that the coefficient of the logarithmic divergence is universal it is clear that definite coefficients re-late different regularizations.We are interested in the perturbative matching between the lattice and a continuum perturbative scheme:in both approaches the same gluon mass IR regulator can be employed so that the same mismatch shows up with respect to data coming from nonpertur-bative computer simulations with the coupling as IR regulator.Employing massive gluons is the na-tural extension of our computational programme. Inserting a mass into the gluon propagator amounts to switching to the Lie algebra for the definition of the new lattice action and this we perform at a definite step of the computation.It is well known that the Lie algebra YM action is made out of a gaugefixing term and the ghost action resulting from the FP determinant.Our NSPT strategy entails the construction of the Eu-ler scheme solution U′=exp(−ǫF)U to Eq.(4); the quantity F belongs to the Lie algebra and our algorithm entails going back and forth from the group to the algebra:at that stage we include the new contribution to the action.The strategy for a determinant is well established[6,7]and is employed by the Parma group in the unquenched NSPT approach to lattice QCD[8];the determi-nant is simulated without introducing fermion or ghostfields and the inversions of the nonlocal ma-trix is performed perturbatively via an efficient FFT by a back and forth procedure from Fourier space:the zeroth order of any propagator is di-agonal in momentum space and the construction of successive orders does not require any matrix inversion.The implementation of such a strategy is in progress;signals of the stabilization of gauge dependent quantities as well as of the invariance of gauge invariant quantities make us confident about the reliability of the whole procedure. REFERENCES1. E.Braaten and A.Nieto,Phys.Rev.D53,3421(1996);2.K.Kajantie,ine,K.Rummukainen andY.Schroder,Phys.Rev.Lett.86,10(2001);3. F.Di Renzo,E.Onofri,G.Marchesini andP.Marenzoni,Four loop result in SU(3)lat-tice gauge theory by a stochastic method:lat-tice correction to the condensate,Nucl.Phys.B426(1994)675,[hep-lat9405019].4.K.Kajantie,ine,K.Rummukainen andY.Schroder,Phys.Rev.sss D67,105008 (2003);5. F.Di Renzo, A.Mantovi,V.Miccio andY.Schroder,J.High Energy Phys.05(2004) 006;6.G.G.Batrouni,G.R.Katz,A.S.Kronfeld,G.P.Lepage,B.Svetitski and K.G.Wilson,Phys.Rev.D32(1985)2736.7.G.Burgio,F.Di Renzo,G.Marchesini,E.Onofri,M.Pepe,L.Scorzato,Nucl.Phys.B (Proc.Suppl.)73(1999)853.8. F.Di Renzo,L.Scorzato,Nucl.Phys.B(Proc.Suppl.)94(2001)567.。

相关文档
最新文档