2015-2016学年度北师大版七年级数学下册第3章变量之间的关系单元试卷及答案
北师大版七年级数学下册--第三章--变量之间的关系-单元试卷(附参考答案)
七年级下册第三章变量之间的关系单元测试题(北师大版)一、选择题(本题共计10 小题,每题3 分,共计30分)1. 某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是()A.70B.xC.yD.不确定2. 生活中太阳能热水器已进入千家万户,你知道吗,在利用太阳能热水器来加热水的过程中,热水器里的水温所晒时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.所晒时间D.热水器3. 圆的周长公式C=2πR中,下列说法错误的是()A.C、π、R是变量,2是常量B.C、R是变量,2π是常量C.R是自变量,C是R的函数D.当自变量R=2时,函数值C=4π4. 圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量5. 圆的周长C与半径r之间的函数关系式C=2πr中,变量是()A.CB.2πC.rD.C和r6. 甲、乙两地相距50千米,若一辆汽车以50千米/时的速度从甲地到乙地,则汽车距乙地的路程s(千米)与行驶的时间t(时)之间的关系式s=50−50t(0≤t≤1)中,常量的个数为()A.1个B.2个C.3个D.4个7. 如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A.S和pB.S和aC.p和aD.S,p,a8. 以固定的速度v0(米/秒)向上抛一个小球,小球的高度ℎ(米)与小球的运动的时间t (秒)之间的关系式是ℎ=v0t−4.9t2,在这个关系式中,常量、变量分别为()A.4.9是常量,t,ℎ是变量B.v0是常量,t,ℎ是变量C.v0,−4.9是常量,t,ℎ是变量D.4.9是常量,v0,t,ℎ是变量9. 下列图象中,不能表示变量y是变量x的函数的是()A. B.C.D.10. 弹簧挂上物体会伸长,测得一弹簧的长度x(cm)与所挂的物体的重量y(kg)间的关系如下表:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.弹簧不挂物体时的长度为0cmC.物体质量每增加1kg ,弹簧的长度y 增加0.5cmD.所挂的物体的质量为7kg 时,弹簧的长度为13.5cm二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 11. 圆的面积计算公式S =πR 2中________是变量,________是常量.12. 在公式s =50t 中常量是________,变量是________.13. 某市居民用电价格是0.53元/千瓦时,居民生活用电x(千瓦时)与应付电费y (元)之间满足y =0.53x ,则其中的常量为________,变量是________.14. 一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么就是说x 是________,y 是x 的________.15. 对于圆的周长公式c =2πr ,其中自变量是________,因变量是________.16. 在圆的周长公式C =2πr 中,自变量为________,常量为________.17. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π,指出其中的变量为________.18. 学校食堂现库存粮食21000kg ,平均每天用粮食200kg ,那么剩余库存粮食ykg ,食用的天数为x ,其中常量是________,变量是________.19. 我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示温度,ℎ表示距地面的高度,则________是变量.20. 汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt.如果汽车以每时60km的速度行驶,那么在s=vt中,变量是________,常量是________;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是________,常量是________;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是________,常量是________.三、解答题(本题共计6 小题,共计60分,)(1)上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?22. 我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?23. 阅读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500米赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20米/分的速度跑了10分时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10米/分的速度匀速爬向终点.40分后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30米/分的速度跑向终点时,它比乌龟足足晚了10分.24. 行驶中的汽车,在刹车后由于惯性的作用,还将继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对回答下列问题:(1)上表反映了哪两个变量之间的关系?(2)如果刹车时车速为60千米/时,那么刹车距离是多少米?25. 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.参考答案:一、1.A 2.A 3.A 4.B 5.D 6.B 7.B 8.C 9.A 10.B二、11. S R;π 12. 50;S t13. 0.53 y x14.自变量因变量15.r c 16.r 2π17. c r 18.21000 20 x y 19.t h20.s t 60 s v 1 v t 200三.21解:(1)反映时间(分)与电话费(元)的关系;时间(分)是自变量,电话费(元)是因变量。
北师大版七年级数学下册单元试卷-第三章变量之间的关系(包含答案)
北师大版七年级数学下册单元试卷-第三章《变量之间的关系》姓名:班级:座号:一、单选题(共8题;共24分)1. 函数y= x+2x−5中自变量x的取值范围是()。
A. x>5B. x<5C. x≠5D. x=52. 用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为()。
A. rB. πC. 2D. 2π3. 如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的解析式为()。
A. y=32x B. y=23x C. y=12x D. y=18x4. 下列说法正确的是()。
A. 周长为10的长方形的长与宽成正比例B. 面积为10的等腰三角形的腰长与底边长成正比例C. 面积为10的长方形的长与宽成反比例D. 等边三角形的面积与它的边长成正比例5. 已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系,则()。
A. y随x的增大而增大B. 质量每增加1kg,度增加0.5cmC. 不挂物体时,长度为6cmD. 质量为6kg时,长度为8.cm6. 如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()。
A. B. C. D.7. 匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t之间的函数关系如图所示,则该容器可能是()。
A. B. C. D.8. 如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()。
A. B. C. D.二、填空题(共6题;共24分)−2y=1,用含x的代数式表示y为:y=______________。
.1. 已知x32. 在函数y=√x−1中,自变量x的取值范围是______________。
北师大七年级下《第三章变量之间的关系》单元测试题(含答案)
第三章自我综合评价本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷36分,第Ⅱ卷64分,共100分,考试时间90分钟.第Ⅰ卷 (选择题 共36分)一、选择题(每小题3分,共36分)1.在以x 为自变量,y 为因变量的关系式y =2πx 中,常量为( )A .2B .πC .2,πD .π,x2.在三角形面积公式S =12ah ,a =2中,下列说法正确的是( ) A .S ,a 是变量,12,h 是常量 B .S ,h 是变量,12是常量 C .S ,h 是变量,12,a 是常量 D .S ,h ,a 是变量,12是常量 3.变量y 与x 之间的关系式为y =2x +5,当自变量x =6时,因变量y 的值为( )A .7B .14C .17D .214.一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形的周长为y cm ,则y 与x 之间的关系式是( )A .y =12-4x(0<x<3)B .y =4x -12(0<x<3)C .y =12-x(0<x<3)D .y =(3-x)2(0<x<3)5.图3-Z-1可以近似地刻画下列哪个情景( )A.小明匀速步行上学时离学校的距离与时间的关系B.匀速行驶的汽车的速度与时间的关系C.小亮妈妈到超市购买苹果的总费用与苹果质量的关系D.一个匀速上升的气球的高度与时间的关系图3-Z-16.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是( )A.在这个变化过程中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20 ℃时,声音5 s可以传播1740 mD.当温度每升高10 ℃,声速增加6 m/s7.右表列出了一项试验的统计数据,表示的是皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这个关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+25 8.一根弹簧原长12 cm,它所挂的物体质量不超过10 kg,并且挂重1 kg就伸长1.5 cm,则挂重后弹簧的长度y(cm)与挂重x(kg)之间的关系式是( )A.y=1.5(x+12)(0≤x≤10) B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0) D.y=1.5(x-12)(0≤x≤10)图3-Z-29.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的路程y(米)和所经过的时间x(分)之间的图象如图3-Z-2所示,则下列说法不正确的是( )A.小刘家与超市相距3000米B.小刘去超市途中的速度是300米/分C.小刘在超市停留了30分钟D.小刘从超市返回家比从家里去超市的速度快10.已知三角形ABC的底边BC上的高为8 cm,当BC的长从16 cm 变化到5 cm时,三角形ABC的面积( )A.从20 cm2变化到64 cm2B.从64 cm2变化到20 cm2C.从128 cm2变化到40 cm2D.从40 cm2变化到128 cm211.小亮家与姥姥家相距24千米,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家.小亮和妈妈的行进路程(千米)与时间(时)的图象如图3-Z-3所示.根据图象得到下列结论,其中错误的是( )A.小亮骑自行车的平均速度是12千米/时B.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12千米处追上小亮D.9:30妈妈追上小亮图3-Z-312.如图3-Z-4,某工厂有甲、乙两个大小相同的容器,且中间有管道连通,现要向甲容器注水.若单位时间内的注水量不变,则从注水开始,乙容器水面上升的高度h与注水时间t之间的关系图象可能是( )图3-Z-4图3-Z-5请将选择题答案填入下表:第Ⅱ卷(非选择题共64分)二、填空题(每小题3分,共12分)13.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:上表反映了两个变量之间的关系,其中,自变量是________,因变量是________.14.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=________________,当学生有45人时,需要的总费用为________元.15.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表:(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.图3-Z-616.如图3-Z-6描述了某汽车在行驶过程中速度与时间的关系,下列说法中正确的是________.(填序号)①第3分钟时,汽车的速度是40千米/时;②第12分钟时,汽车的速度是0千米/时;③从第3分钟到第6分钟,汽车行驶了120千米;④从第9分钟到第12分钟,汽车的速度从60千米/时减小到0千米/时.三、解答题(共52分)17.(8分)写出下列问题中两个变量之间的关系式:(1)设地面气温是20 ℃,如果每升高1 km,气温下降6 ℃,气温t(℃)与高度h(km)之间的关系式;(2)一盛满30 t水的水箱,每小时流出0.5 t水,试用流水时间t(h)表示水箱中的剩余水量y(t).18.(8分)某生物兴趣小组在四天的试验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成如图3-Z-7所示的图象,请根据图象完成下列问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多长时间?(2)第三天12时这头骆驼的体温是多少?图3-Z-719.(8分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.20.(8分)某学校的复印任务原来由甲复印社承包,其收费y(元)与复印页数x(页)的关系如下表:(1)根据表格信息写出y与x之间的关系式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费.乙复印社每月收费y(元)与复印页数x(页)之间的关系式为________________;(3)若学校每月复印页数在1200页左右,应选择哪个复印社?21.(10分)小明同学骑自行车去郊外春游,骑行1小时后,自行车出现故障,维修好后继续骑行,如图3-Z-8表示他离家的距离y(千米)与所用的时间x(时)之间关系的图象.(1)根据图象回答:小明到达离家最远的地方用了多长时间?此时离家多远?(2)求小明出发2.5小时后离家多远;(3)求小明出发多长时间离家12千米.图3-Z-822.(10分)某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图3-Z-9所示,根据图象回答:(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?图3-Z-9详解详析1.C2.C3.C4.A5.[解析] A 该图象是因变量随着自变量的增大而减小.A.小明匀速步行上学时离学校的距离与时间的关系是距离随着时间的增加而减小,符合题意,故本选项正确;B.匀速行驶的汽车的速度与时间的关系的图象是平行于横轴的一条直线,不符合题意,故本选项错误;C.小亮妈妈到超市购买苹果的总费用与苹果质量的关系是总费用随着苹果质量的增加而增加,不符合题意,故本选项错误;D.一个匀速上升的气球的高度与时间的关系是高度随着时间的增加而增加,不符合题意,故本选项错误.6.[解析] C 因为在这个变化过程中,自变量是温度,因变量是声速,所以选项A正确;因为根据表中数据,可得温度越高,声速越快,所以选项B正确;因为342×5=1710(m),所以当空气温度为20 ℃时,声音5 s可以传播1710 m,所以选项C错误;因为324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),所以当温度每升高10 ℃,声速增加6 m/s,所以选项D正确.故选C.7.C8.[解析] B 挂重x kg时弹簧伸长1.5x cm,挂重后弹簧的长度y(cm)与挂重x(kg)之间的关系式是y=1.5x+12(0≤x≤10).故选B.9.[解析] D A项,观察图象发现:小刘家距离超市3000米,故正确;B项,小刘去超市共用了10分钟,行程3000米,速度为3000÷10=300(米/分),故正确;C项,小刘在超市停留了40-10=30(分),故正确;D项,小刘去时用了10分钟,回时用了15分钟,所以小刘从超市返回的速度比去时的速度慢,故错误.故选D.10.B11.D12.D13.[答案] 香蕉数量售价[解析] 因为香蕉的售价随着卖出的香蕉数量的变化而变化,所以表中反映了两个变量之间的关系,其中,自变量是香蕉数量,因变量是售价.14.10+5x(x为正整数) 23515.(1)所售豆子数量和总售价总售价总售价所售豆子数量(2)5 (3)616.[答案] ①②④[解析] 横轴表示时间,纵轴表示速度.在第3分钟时,对应的速度是40千米/时,故①对;第12分钟的时候,对应的速度是0千米/时,故②对;从第3分钟到第6分钟,汽车的速度保持不变,是40千米/时,行驶的路程为40×120=2(千米),故③错;在第9分钟和第12分钟,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减小到0千米/时,故④对.综上可得:正确的是①②④.故答案为①②④.17.解:(1)t=20-6h(h≥0).(2)y=30-0.5t(0≤t≤60).18.[解析] 解答本题的关键是要弄清横轴和纵轴上的数据所表示的意义,明白图象上的点所表示的实际意义.解: (1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时.(2)第三天12时这头骆驼的体温是39 ℃.19.解:(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4<59,所以用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了.当x =15时,y =-0.1x 2+2.6x +43=-0.1×152+2.6×15+43=59.5>59.所以用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.20.解:(1)y =0.4x (x ≥0且x 为整数).(2)y =0.15x +200(x ≥0且x 为整数).(3)当x =1200时,甲复印社的收费为480元,乙复印社的收费为380元.480>380,故若学校每月复印页数在1200页左右,应选择乙复印社.21.解:(1)小明到达离家最远的地方用了3小时,此时离家30千米.(2)CD 段的速度为30-153-2=15(千米/时), 15+152=22.5(千米), 即小明出发2.5小时后离家22.5千米.(3)AB 段的速度为15-01=15(千米/时),1215=0.8(时). EF 段的速度为307-4=10(千米/时),4+30-1210=5.8(时). 即小明出发0.8小时或5.8小时离家12千米.22.解: (1)观察图象可以发现当用水5吨时,刚好交水费10元,所以用水不足5吨时,每吨收费105=2(元);而当用水量为8吨时,交水费20.5元,所以超过5吨的部分收费20.5-10=10.5(元),故超过5吨部分每吨收费10.58-5=3.5(元). (2)由(1)可知每月用水3.5吨应交水费3.5×2=7(元);交17元水费,则用水5+17-5×23.5=7(吨).。
北师大版七年级下册数学第三章《变量之间的关系》测试题
2015—2016学年度第二学期中山二中七年级数学单元测试卷第三章变量之间的关系(说明:本试题考试时间90分钟,满分150分)班级:姓名:成绩:一、选择题:(每小题4分,共48分)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是()A、沙漠B、体温C、时间D、骆驼2、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下下列说法不正确的是()A、x与y都是变量,且x是自变量,y是因变量B、弹簧不挂重物时的长度为0cmC、物体质量每增加1kg,弹簧长度y增加0.5cmD、所挂物体质量为7kg时,弹簧长度为13.5cm3、在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A、①②⑤B、①②④C、①③⑤D、①④⑤4、如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()A、y=12xB、y=18xC、y=D、y=5、已知△ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC的面积()A、从20cm2变化到64cm2B、从64c m2变化到20cm2C、从128cm2变化到40cm2D、从40cm2变化到128cm26、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()7、下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度A 、2b d = B 、2b d = C 、D 、25b d =+8、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
北师版七年级数学下册第三章《变量之间的关系》单元测试题(含答案)
北师版七年级数学下册第三章《变量之间的关系》单元测试题(含答案)一、选择题1.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度与时间变化情况的是A.B.C.D.2.对于关系式,下列说法:① 是自变量,是因变量;② 的数值可以任意选择;③ 是变量,它的值与无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤ 与的关系还可以用列表格和图象法表示.其中正确的是A.①②③B.①②④C.①②⑤D.①④⑤3.如图所示的图象(折线)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是A.第时汽车的速度是B.第时汽车的速度是C.从第到第,汽车行驶了D.从第到第,汽车的速度从减少到4.在物理学中,导线的电阻随温度的变化而变化,有一段导线时电阻为欧姆,温度每增加,电阻会增加欧姆,则电阻与温度的关系是A.B.C.D.5.某工程队修筑A村到B村的公路,前期修筑的是平路,后期修筑的是坡路,修筑的公路长度()与时间(天)之间的函数关系如图,则下列结论中错误的是A.平路长B.平路上每天修筑C.坡路长D.坡路上每天修筑6.某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B地后跑步回A地,乙先跑步到B地再骑自行车回到A地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A地.已知甲骑自行车的速度比乙骑自行车的速度快.若学生离开A地的距离与所用的时间的关系用图象表示(实线表示甲的图象,虚线表示乙的图象),则下面中正确的是A.B.C.D.7.今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是A.小丽在便利店时间为B.公园离小丽家的距离为C.小丽从家到达公园共用时间D.便利店离小丽家的距离为8.某市推出电脑上网课包月制,每月收取上网费用(元)与上网时间之间的关系如图,其中是线段,且轴,是射线.小芳三月份在家上网课费用为元,则她家三月份上网时间是A.B.C.D.二、填空题9.如图,在一个半径为的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.()在这个变化过程中,自变量、因变量是;()如挖去的圆半径为,圆环的面积与的关系式是;()当挖去圆的半径由变化到时,圆环面的面积由变化到.10.小强与父亲同时出发,到达同一目的地后都立即返回.小强去时骑自行车,返回时步行;父亲往返都是步行.两人的步行速度不等,每个人的往返路程与时间的关系分别是图中两个图象中的一个.请你根据图象回答下列问题:()一个往返的距离是;()完成一个往返,小强用,父亲用;()小强骑车的速度是,小强步行的速度是父亲步行的速度是.11.小斌从家骑车上学,先经过一段平路到达地后,再上坡到达地,最后下坡到达学校,所行驶路程与时间的关系如图所示,如果返回时,上坡、下坡、平路的速度仍然保持不变,那么小斌从学校回到家需要的时间是.三、解答题12.如图,已知正方形的边长为,有一点在上运动梯形的面积会发生变化.(1) 在这个变化过程中,自变量、因变量各是什么?(2) 如果长为,那么梯形的面积可以表示为什么关系式?(3) 已知,试确定点的位置.13.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度与操控无人机的时间之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是 ;(2) 无人机在高的上空停留的时间是;(3) 在上升或下降过程中,无人机的速度为;(4) 图中表示的数是;表示的数是;(5) 求第时无人机的飞行高度是多少米?14.绵州大剧院矩形专场音乐会,成人票每张元,学生票每张元.暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案:购买一张成人票赠送一张学生票;方案:按总价的付款.某校有名老师与若干名(不少于人)学生听音乐会.(1) 设学生人数为(人),付款总金额为(元),分别建立两种优惠方案中与的关系式;(2) 请计算并确定出最节省费用的购票方案.15.小红与小兰从学校出发到距学校的书店买书,下图反应他们两人离开学校的路程与时间的关系.根据图形尝试解决提出的下列问题:(1) 小红与小兰谁先出发?谁先达到?(2) 描述小兰离学校的路程与时间的变化关系;(3) 小兰前的速度和最后的速度是多少?怎样从图象上直观地反映速度的大小?(4) 小红与小兰从学校到书店的平均速度各是多少?16.如图(),已知是三角形边上的高,且,是一个动点,由点向点移动,其速度与时间的变化关系如图()所示,已知.(1) 当点在运动过程中,求三角形的面积与运动时间之间的关系式;(2) 当点停止后,求的面积.17.如图,正方形的边长为,动点从点出发,在正方形的边上由运动,设运动的时间为(),三角形的面积为(),与的图象如图.(1) 求点在上运动的时间范围;(2) 当为何值时,三角形的面积为.答案一、选择题1. A2. C3. C4. A6. B7. A8. B二、填空题9. 小圆半径;圆环面积;;;10. ;;;;;11.【解析】根据图象可知:小明从家骑车上学,上坡的路程是,用,则上坡速度是;下坡路长是,用,则速度是,他从学校回到家需要的时间为.三、解答题12. 【答案】(1) 自变量是的长度,因变量是梯形的面积;(2) ;(3) 根据等式建立方程,,解得即点在距离点处.13. 【答案】(1) 时间(或);飞行高度(或)(2)(3)(4) ;(5) .答:第时无人机的飞行高度是.【解析】(2) 无人机在高的上空停留的时间是.(3) 在上升或下降过程中,无人机的速度.(4) 图中表示的数是;表示的数是.14. 【答案】(1) 按优惠方案①可得,,按优惠方案②可得,.(2) ①当时,,当购买张票时,两种优惠方案付款一样多;②当时,,优惠方案①付款较少;③当时,,优惠方案②付款较少.15. 【答案】(1) 小兰先出发,她们同时到达.(2) 小兰从学校出发,经走了后遇到事情停下来,后继续出发,最后骑车花时间与小红同时到达书店.(3) 小兰前速度为,后速度为.(4) 小红平均速度为,小兰的平均速度为.16. 【答案】(1) 由图()可知,点的速度为,,即.(2) 当点停止后,即点与点重合时的面积,当时,.三角形面积为.17. 【答案】(1) 根据图象得:点在上运动的时间范围为.(2) 点在上时,三角形的面积;点在时,三角形的面积;点在上时,,三角形的面积当时,,三角形的面积为,即时,,;当时,,;当为时,三角形的面积为.。
北师大版初一数学下册第三章《变量之间的关系》单元测试卷 含答案
17.在小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑米,直线表示小明的路程与时间的关系,大约秒时,小明追上了小强,小强在这次赛跑中的速度是。
印刷数量x(张)
…
100
200
300
400
…
收费y(元)
…
15
30
45
60
…
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)从上表可知:收费y(元)随印刷数量x(张)的增加而 ;
(3)若要印制1 000张宣传单,收费多少元?
22. (8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):
B.x与y都是变量,且x是自变量,y是因变量
C.物体质量每增加1 kg,弹簧长度y增加0.5 cm
D.所挂物体质量为7 kg时,弹簧长度为23.5 cm
3.一辆汽车以平均速度60km/h的速度在公路上行驶,则它所走的路程s(km)与所用的时间t(h)之间的关系式为 ()
A.s=60tB.s= C.s= D.s=60t
4. 某地区用电量与应缴电费之间的关系如表:
用电量(千瓦·时)
1
2
3
4
…
应缴电费(元)
0.55
1.10
1.65
2.20
…
则下列叙述错误的是( )
A.若所缴电费为2.75元,则用电量为6千瓦·时
北师大版七年级数学(下) 第3章 变量之间的关系 单元测试卷 含答案
北师大版七年级数学(下)第3章变量之间的关系单元测试卷含答案一.选择题(共12小题)1.下列函数中,表示是同一函数的是()A.y=x与y=B.y=x与y=()2C.y=x与y=D.y=x与y=2.函数y=|x|﹣1中的自变量x的取值范围是()A.x≠±1 B.x≠1C.x≠﹣1 D.x为全体实数3.已知f(x)=10x+1,如:当x=3时,f(3)=3×10+1=31,则当f(x)=21时,x 的值为()A.﹣2 B.3 C.2 D.74.下列图象中,表示y不是x的函数的是()A.B.C.D.5.已知函数,当y=6时,x的值是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x 的值是7,则输出y的值是()A.1 B.﹣1 C.2 D.﹣27.邮购一种图书,每册定价36元,另加书价的4%作为邮费,若购书x册,则付款y(元)与x(册)的函数解析式为()A.y=36x+4%x B.y=36(1+4%)xC.y=36.04x D.y=35.96x8.一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8 D.y=0.5x+89.某水果商店规定:如果购买苹果不超过10千克,那么每千克售价3元;如果超过10千克,那么超过的部分每千克降低10%,某单位购买48千克水果,则应付的钱数为()A.129.6元B.132.6元C.141元D.144元10.如图所示,在一个玻璃器中,放有一个正方形铁块,用同样的速度向容器注水,则下列函数的图象,能表示水面的高度h与注水时间t的关系式的是()A.B.C.D.11.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等12.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.二.填空题(共4小题)13.为了加强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t 时,水价为每吨2.2元;超过10t时,超过部分按每吨2.8元收费,该市每户居民5月份用水xt(x>10),应交水费y元,则y关于x的关系式.14.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.15.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.16.某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.三.解答题(共2小题)17.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3时,y与x之间的函数关系式;(2)写出用水多于7m3时,y与x之间的函数关系式.18.如图,在矩形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,(1)当x=3时,y=;当x=12时,y=;当y=6时,x=;(2)分别求当0<x<4、4≤x≤10、10<x<14时,y与x的函数关系式.参考答案与试题解析一.选择题(共12小题)1.【解答】解:A、y=x与y=中,第二个函数x≠0,故不是表示同一函数;B、y=x与y=()2中,第二个函数x≥0,故不是表示同一函数;C、y=x与y==x,故表示同一函数;D、y=x与y=的值域不同,故不是表示同一函数;故选:C.2.【解答】解:函数y=|x|﹣1中的自变量x的取值范围是x为全体实数.故选:D.3.【解答】解:∵f(x)=10x+1,f(x)=21,∴10x+1=21,解得x=2.故选:C.4.【解答】解:A、C、D对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有B选项对于x的每一个确定的值,有两个y与之对应,不符合函数的定义.故选:B.5.【解答】解:∵函数y=,∴当x<2时,x2+1=6,得x1=﹣,x2=(不合题意,舍去),当x≥2时,=6,得x=(不合题意,舍去),故当y=6时,x的值是﹣,故选:A.6.【解答】解:若输入x的值是2,则输出y的值是1,∴1=﹣2×2+b,解得b=5,∴当x=7时,y==﹣1,故选:B.7.【解答】解:由题意得;购买一册书需要花费(36+36×4%)元∴购买x册数需花费(36+36×4%)x元即:y=(36+36×4%)x=36(1+4%)x,故选:B.8.【解答】解:∵挂上1kg的物体后,弹簧伸长2cm,∴挂上xkg的物体后,弹簧伸长2xcm,∴弹簧总长y=2x+8.故选:C.9.【解答】解:由题意可知:3×10+(48﹣10)×3×0.9=132.6元,故选:B.10.【解答】解:在未淹住正方形铁块时,水面高度会比较快速的上升,而超过铁块后,速度会减慢.故选:D.11.【解答】解:A、小明中途休息的时间是:60﹣40=20分钟,故本选项正确;B、小明在上述过程中所走路程为4800米,故本选项错误;C、小明休息前爬山的速度为=60(米/分钟),故本选项正确;D、因为小明休息后爬山的速度是=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选:B.12.【解答】解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.二.填空题(共4小题)13.【解答】解:∵该市每户居民5月份用水xt(x>10),∴应交水费y元关于x的关系式为:y=10×2.2+2.8(x﹣10)=2.8x﹣6.故答案为:y=2.8x﹣6.14.【解答】解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:15.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④16.【解答】解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.三.解答题(共2小题)17.【解答】解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x;(2)超出7立方米时:y=7×1.2+(x﹣7)×(1.5+0.4)=1.9x﹣4.9.18.【解答】解:(1)如图1,∵点R运动的路程为x,△MNR的面积为y,∴当x=3时,y=MN×RN=×6×3=9,如图2,当x=12时,y=RM×MN=×2×6=6,根据以上计算可以得出当y=6时,x=2或12,故答案为:9,6,2或12;(2)当0≤x<4时,R在PN上运动,y=MN×RN=×6×x=3x;当4≤x≤10时,R在QP上运动,y=MN×PN=×6×4=12;当10<x≤14时,R在QM上运动,y=MN×RM=×6×[4﹣(x﹣10)]=42﹣3x.。
北师大版七年级数学下第3章变量之间关系单元测试卷含答案
第3章变量之间的关系一.选择题〔共10小题〕1.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,那么其中的常量是〔〕A.金额B.数量C.单价D.金额和数量2.以下关于变量x、y的关系式中,y不是x的函数是〔〕A.y+x=0B.y=C.y2=16x D.y=|2x+4|3.正方形的边长为4,假设边长增加x,那么面积增加y,那么y关于x的函数表达式为〔〕A.y=x2+16B.y=〔x+4〕2C.y=x2+8x D.y=16﹣4x24.小明从家到学校5公里,那么小明骑车时间t与平均速度v之间的函数关系式是〔〕A.v=5t B.v=t+5C.D.5.如图,以下各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是〔〕A.y=2n+1B.y=2n+1+n C.y=2n+nD.y=2n+n+16.在函数y=中,自变量x的取值范围是〔〕A.x>0B.x≥﹣5C.x≥﹣5且x≠0 D.x≥0且x≠07.假设定义f〔x〕=3x﹣2,如f〔﹣2〕=3×〔﹣2〕﹣2=﹣8,以下说法中:①当f 〔x〕=1时,x=1;②对于正数x,f〔x〕>f〔﹣x〕均成立;③f〔x﹣1〕+f〔1﹣x〕=0;④当a=2时,f〔a﹣x〕=a﹣f〔x〕.其中正确的选项是〔〕A.①②B.①③C.①②④D.①③④8.如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家,其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,以下说法正确的选项是〔〕A.食堂离小明家B.小明在图书馆呆了20minC.小明从图书馆回家的平均速度是.图书馆在小明家和食堂之间9.在矩形ABCD中,E点为AB上的一点,AB=8,AD=6,连接CE,作DF⊥CE于F点,令CE=x,DF=y,以下关于y与x的函数关系图象大致是〔〕A.B.C.D.10.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程y〔米〕与时间/〔分钟〕之间的函数关系图象如下列图,请你根据图象判断,以下说法正确的有〔〕①甲队率先到达终点;②甲队比乙队多走了200米路程;③乙队比甲队少用分钟;④比赛中两队从出发到分钟时间段,乙队的速度比甲队的速度快.A.1个B.2个C.3个D.4个二.填空题〔共5小题〕11.将长为25cm、宽为10cm的长方形白纸,按如下列图的方法粘合起来,粘合局部的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.12.函数y=中,自变量x的取值范围是.13.函数y=,那么当函数值x=﹣1时,y=.14.如图,是甲、乙两家商店销售同一种产品的销售价数图象.以下说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是.y〔元〕与销售量x〔件〕之间的函15.某地出租车的收费标准如下:路程在3千米以下收费8元;路程超过3千米的,超过的路程按元/千米收费.例如:行驶10千米那么收费为:8+〔10﹣3〕×小明坐出租车到14千米外的少年宫去,他所付的车费是元.三.解答题〔共5小题〕16.如图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y〔千米〕与经过的时间x〔小时〕之间的函数关系.根据这个行驶过程中的图象填空:〔1〕汽车出发小时与电动自行车相遇;〔2〕当时间x时,甲在乙的前面;当时间x〔3〕电动自行车的速度为千米/小时;汽车的速度为电动自行车早小时到达B地.时,甲在乙的后面;千米/小时;汽车比17.一列快车、一列慢车同时从相距300km的两地出发,相向而行.如图,分别表示两车到目的地的距离s〔km〕与行驶时间t〔h〕的关系.〔1〕快车的速度为km/h,慢车的速度为km/h;2〕经过多久两车第一次相遇?3〕当快车到达目的地时,慢车距离目的地多远?(18.司机小王开车从A地出发去B地送信,其行驶路s与行驶时间t之间的关系如下列图,(当汽车行驶假设干小时到达C地时,汽车发生了故障,需停车检修,修理了几小时后,为了按时赶到B地,汽车加快了速度,结果正好按时赶到,根据题意结合图答复以下问题:(1〕上述问题中反映的是哪两个变量之间的关系?指出自变量和因变量.(2〕汽车从A地到C地用了几小时?平均每小时行驶多少千米?3〕汽车停车检修了多长时间?车修好后每小时走多少千米?19.某市电力公司采用分段计费的方法计算电费.每月用电不超过100度时,按每度元计算费用,每月用电超过100度时,超过局部按每度元计算.1〕设每月用电x度时,应交电费y元,写出y与x之间的函数关系式,并写出自变量的取值范围;2〕小王家一月份用了125度电,应交电费多少元?3〕小王家三月份交纳电费45元6角,求小王家三月份用了多少度电?20.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两局部组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a〔单位:千册〕1≤a<55≤a<10彩色〔单位:元/张〕黑白〔单位:元 /张〕〔1〕印制一本纪念册的制版费为元;〔2〕假设印制2千册,那么共需多少费用?参考答案一.选择题〔共10小题〕1.C.2.C.3.C.4.C.5.C.6.C.7.C.8..9.B.10.A.二.填空题〔共5小题〕11.y=23x+2.12.x≥﹣1.13.6.14.①②③.15..三.解答题〔共5小题〕16.解:〔1〕汽车出发小时与电动自行车相遇;〔2〕当时间x<时,甲在乙的前面;当时间x>时,甲在乙的后面;〔3〕V自行车==9km/h,V汽车==45km/h.汽车3时到,电动自行车5时到,汽车比电动自行车早2小时到达B地.故答案为:;<,>;9,45,2.17.解:〔1〕快车的速度为300÷=45km/h,慢车的速度为300÷10=30km/h,故答案为:45,30;〔2〕=4h答:经过4h两车第一次相遇;3〕〔10﹣〕×30=100km,答:当快车到达目的地时,慢车距离目的地多100km.18.解:〔1〕路程与时间之间的关系.自变量是时间,因变量是路程;〔2〕3小时,50千米/小时;〔3〕检修了1小时,修后的速度为75千米/小时.19.解:〔1〕由题意得,当0≤x≤100时,y=;当x>100时,y=100×0.57+〔x﹣100〕×=﹣3;那么y关于x的函数关系式y=;2〕由x=125代入y=﹣3,可得y=72元.答:小王家一月份用了125度电,应交电费72元;〔3〕设小王家三月份用了x度电,由题意得=,解得x=80.答:小王家三月份用了80度电.(20.解:〔1〕4×300+6×50=1500〔元〕;2〕假设印制2千册,那么印刷费为:〔××6〕×2000=26000〔元〕,∴总费用为:26000+1500=27500〔元〕.。
北师大新版七年级数学下学期 第3章 变量之间的关系 单元测试卷 包含答案
第3章变量之间的关系一.选择题(共8小题,满分32分,每小题4分)1.下列各图能表示y是x的函数是()A.B.C.D.2.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.13.小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用图中的哪一幅来近似地刻画()A.B.C.D.4.在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r 5.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点6.弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:所挂物体的质星m/kg012345弹簧的长度y/cm1012.51517.52022.5下列说法错误的是()A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度y(cm)与所挂物体的质童m(kg)之间的关系可用关系式y=2.5m+10来表示C.弹簧的长度随所挂物体的质星的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm7.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二.填空题(共4小题,满分20分,每小题5分)9.函数y=中,自变量x的取值范围是.10.根据图中的程序,当输入x=3时,输出的结果y=.11.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.12.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)三.解答题(共7小题,满分48分)13.(7分)用一根长是20cm的细绳围成一个长方形,这个长方形的一边的长为xcm,它的面积为ycm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x从1变到9时(每次增加1),y的相应值;边长x(cm)123456789面积y(cm2)(3)根据表格中的数据,请你猜想一下,怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下,当围成的长方形的面积是22cm2时,x的值应在哪两个相邻整数之间?14.(8分)如图,甲、乙两地打电话需付的电话费y(元)是随时间t(分钟)的变化而变化的,试根据下表列出的几组数据回答下列问题:通话时间t(分钟)123456…电话费y(元)0.150.300.450.60.750.9…(1)自变量是,因变量是;(2)写出电话费y(元)与通话时间t(分钟)之间的关系式;(3)若小明通话10分钟,则需付话费多少元;(4)若小明某次通话后,需付话费4.8元,则小明通话多少分钟.15.(6分)随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.16.(6分)王师傅非常喜欢自驾游,为了解他新买轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:行驶的路程s(km)0100200300400…油箱剩余油量Q(L)5042342618…(1)在这个问题中,自变量是,因变量是;(2)该轿车油箱的容量为L,行驶150km时,估计油箱中的剩余油量为L;(3)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请直接写出A,B两地之间的距离是km.17.(6分)某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小王从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小王吃早餐用了分钟;(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?18.(6分)已知函数.(1)求自变量x的取值范围;(2)当x=1时的函数值.19.(9分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?参考答案一.选择题(共8小题,满分32分,每小题4分)1.D.2.D.3.C.4.B.5.C.6.C.7.C.8.C.二.填空题(共4小题,满分20分,每小题5分)9.x≠1.10.2.11.①②④12.①③④.三.解答题(共7小题,满分48分)13.解:(1)y=(20÷2﹣x)x=(10﹣x)x=10x﹣x2;x是自变量,0<x<10;(2)当x从1变到9时(每次增加1),y的相应值列表如下:x123456789y 9 1621242524 21 16 9故答案为:9,16,21,24,25,24,21,16,9;(3)当长方形的长与宽相等即x为5时,y的值最大,最大值为25cm2;(4)由表格可知,当围成的长方形的面积是22cm2时,x的值应在3~4之间或6~7之间.14.解:(1)自变量是通话时间,因变量是电话费.故答案为:通话时间;电话费;(2)y=0.15t;(3)当t=10时,y=0.15t=0.15×10=1.5.所以小明通话10分钟,则需付话费1.5元;(4)把y=4.8代入y=0.15t中得:4.8=0.15t,∴t=32.所以当付话费为4.8元,小明通话32分钟.15.解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.30﹣22=8,30﹣18=12.∵小军骑车速度为每分钟0.2千米,0.2×2=0.4千米,∴第三种情况:爸爸已经到B地,孩子离B地还有0.4千米,(6﹣0.4)÷0.2=28(分钟),28﹣10=18(分钟)故答案为8或12或18.16.解:(1)上表反映了轿车行驶的路程s(km)和油箱剩余油量Q(L)之间的关系,其中轿车行驶的路程s(km)是自变量,油箱剩余油量Q(L)是因变量;故答案是:行驶的路程;油箱剩余油量;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q 与s的关系式为Q=50﹣0.08s,当s=150时,Q=50﹣0.08×150=38(L);故答案是:50,38;(3)由(2)得Q=50﹣0.08s,当Q=22时,22=50﹣0.08s解得s=350.答:A,B两地之间的距离为350km.故答案是:350.17.解:(1)从图象看,小王从家到学校的路程共1000米,从家出发到学校,小明共用了25分钟;故答案为1000,25;(2)小王吃早餐时,s的值为常数,故从10分钟到20分钟,共10分钟,故答案为:10;(3)小王吃早餐以前的平均速度为:500÷10=50米/分钟;小王吃早餐后的平均速度为:(1000﹣500)÷5=100米/分钟.18.解:(1)根据题意得:,解得x<5;(2)把x=1代入解析式可得:y=+=2﹣1=1;答:自变量x的取值范围是x<5,当x=1时的函数值是1.19.解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.。
北师大版七年级数学下册第三章《变量之间的关系》单元测试卷(带答案)
七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共15小题,共45.0分)1.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A. x与y都是变量,且x是自变量,y是x的函数B. 所挂物体质量为4 kg时,弹簧长度为12 cmC. 弹簧不挂重物时的长度为0 cmD. 物体质量每增加1 kg,弹簧长度y增加0.5cm2.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A. 兄弟俩的家离学校1000米B. 他们同时到家,用时30分钟C. 小明的速度为50米/分D. 小亮中间停留了一段时间后,再以80米/分的速度骑回家3.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d5080100150b25405075D. b=d+25A. b=d²B. b=2dC. b=d24.在关系式y=2x+5中,当自变量x=6时,因变量y的值为()A. 7B. 14C. 17D. 215.我国是水资源比较贫乏的国家,所以各省市都采取了各项措施加强公民的节水意识.某市规定了如下的用水收费标准:每户每月的用水不超过10立方米时,水费按每立方米2.5元收费,超过10立方米时,不超过的部分仍按每立方米2.5元收费,超出部分按每立方米3元收费.设该市某户7月份用水量为x(立方米),应交水费为y(元).用水不超过10立方米时与超过10立方米时,y与x之间的关系式是()A. 当x≤10时,y=3x;当x>10时,y=2.5x−5B. 当x≤10时,y=3x;当x>10时,y=3x−5C. 当x≤10时,y=2.5x−5;当x>10时,y=3x−5D. 当x≤10时,y=2.5x;当x>10时,y=3x−56.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系()A. B.C. D.7.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A. B.C. D.8.小王计划用100元钱买乒乓球,所购买的个数W(单位:个)与单价n(单位:元/个)的关系式W=100中()nA. 100是常量,W,n是变量B. 100,W是常量,n是变量C. 100,n是常量,W是变量D. 无法确定9.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则坐标轴上a、b、c的值为()A. a=8,b=40,c=48B. a=6,b=40,c=50C. a=8,b=32,c=48D. a=6,b=32,c=5010.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为()A. y=−x2+20xB. y=x2−20xC. y=−x2+10xD. y=x2−10x11.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个12.小红帮弟弟荡秋千(如图1),秋千离地面的高度ℎ(m)与摆动时间t(s)之间的关系如图2所示.结合图象可以看出,秋千摆动第一个来回需要的时间是().A. 0.7sB. 1.4sC. 2.1sD. 2.8s13.弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:所挂物体的质量m/kg012345弹簧的长度y/cm1012.51517.52022.5下列说法错误的是()A. 在没挂物体时,弹簧的长度为10cmB. 弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C. 弹簧的长度y(cm)与所挂物休的质量m(kg)之间的关系可用关系式y=2.5m+10来表示D. 在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm14.小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是A. 小苏前15s跑过的路程小于小林前15s跑过的路程B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 两人从起跑线同时出发,同时到达终点D. 小林在跑最后100的过程中,与小苏相遇3次15.x…−3−2−1123…y…1 1.53−3−1.5−1…则它们之间的数量关系可以近似地表示为()A. y=3x B. y=−3xC. y=x3D. y=−x3二、填空题(本大题共5小题,共25.0分)16.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y(元)与买签字笔的支数x(支)之间的关系式为______.17.小明从家跑步到学校,接着马上原路步行回家.下图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行米.18.如图,一轮船从离A港10千米的P地出发向B港匀速行驶,30分钟后离A港26千米(未到达B港).设x小时后,轮船离A港y千米(未到达B港),则y与x之间的关系式为________.19.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地正好用了2ℎ.已知摩托车行驶的路程s(km)与行驶的时间t(ℎ)之间的关系如图所示.若这辆摩托车平均每行驶100km的耗油量为2L,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油_______L.20.宝鸡和延安两地相距400千米,若汽车以平均80千米/时的速度从宝鸡开往延安,则汽车距延安的距离y(千米)与行驶的时间x(小时)之间的关系式是_______________.三、解答题(本大题共7小题,共80.0分)21.(8分)“距离地面越高,温度越低”,下表反映了距离地面高度与温度之间的变化关系:距离地面高度千米012345温度201482−4−10(1)上表反映的变化关系中,__________是自变量,__________是因变量;(2)如果用h表示距离地面的高度,用t表示温度,那么用h表示t的关系式是__________.22.(8分)如图的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示,根据图中的信息,回答问题:图1 图2(1)根据图2补全表格:(2)如表反映的两个变量中,自变量是________,________是________的函数.(3)根据图象,摩天轮的直径为________m,它旋转一周需要的时间为________min.23.(10分)某药业集团研究了一种新药,在试验药效时发现,如果儿童按规定剂量服用,那么服用后2时时血液中的含药量最高,接着逐步衰减,每毫升血液中的含药量y(微克)随时间x(时)的变化情况如图所示,当儿童按规定剂量服药后.(1)血液中的含药量最高是多少微克⋅(2)A点表示什么意义⋅(3)如果每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时间有多长⋅πR3.24.(12分)球的体积V与半径R之间的关系式是V=43(1)在这个式子中,常量、变量分别是什么?(2)利用这个式子分别求出当球的半径为2cm,3cm,4cm时球的体积;(3)若R>1,当球的半径增大时,球的体积如何变化?25.(12分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间是几分钟时,学生对概念的接受能力最强?(4)从表中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?26.(14分)小明同学骑自行车去郊游,如图所示表示他离家的距离y(千米)与所用时间x(时)之间关系的图象.(1)根据图象回答,小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发2.5小时时离家多远?(3)求小明出发多长时间离家12千米?27.(16分)甲早8:00骑摩托车从A地向B地出发,14时到达B地,乙开汽车同时从乙地出发,甲、乙二人出发后与甲地相距的距离与出发时间的关系如图所示:(1)请直接写出:A地与B地相距________千米,13时甲与A相距________千米;(2)小明说,从11时到12时甲骑摩托车的速度与13到14时的速度相同,你认为小明说法正确吗?请通过计算说明;(3)试求甲、乙二人几时相遇?答案1.C2.C3.C4.C5.D6.A7.A8.A9.C10.C11.B12.D13.B14.A15.B16.y=15−1.5x17.8018.y=10+32x19.0.920.y=−80x+40021.解:(1)距离地面的高度,温度;(2)设t=kℎ+b,{b=20k+b=14.解得:k=−6,b=20,即h与t关系是:t=−6ℎ+20.22.解:(1)70,54;(2)旋转时间x,高度y,x;(3)65,623.解:(1)2时时血液中的含药量最高,为4微克.(2)A 点表示体内的含药量衰减到0微克.(3)服药后每毫升血液中含药量达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效时间是6−1=5时.24.解:(1)在这个式子中,常量是43π,变量是球的体积V 和半径R .(2)当球的半径为2 cm 时,球的体积是;当球的半径为3 cm 时,球的体积是; 当球的半径为4 cm 时,球的体积是. (3)若R >1,当球的半径增大时,球的体积也增大.25.解:(1)反映了提出概念所用时间x 和学生对概念的接受能力y 两个变量之间的关系. (2)学生的接受能力是59.(3)提出概念所用时间是13分钟时,学生对概念的接受能力最强.(4)由表中数据可知:当2≤x ≤13时,y 值逐渐增大,学生的接受能力逐步增强;当13<x ≤20时,y 值逐渐减小,学生的接受能力逐步降低. 26.解:(1)由图象可知小明到达离家最远的地方需3小时; 此时他离家30千米;(2)设直线CD 的解析式为y =k 1x +b 1,由C(2,15)、D(3,30), 代入得:{2k 1+b 1=153k 1+b 1=30,解得:{k 1=15b 1=−15,故直线CD 的解析式为:y =15x −15,(2≤x ≤3) 当x =2.5时,y =22.5.答:出发两个半小时,小明离家22.5千米; (3)设过E 、F 两点的直线解析式为y =k 2x +b 2, 由E(4,30)、F(6,0),代入得 {4k 2+b 2=306k 2+b 2=0, 解得:{k 2=−15b 2=90,故直线EF 的解析式为:y =−15x +90,(4≤x ≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x(0≤x≤1)分别令y=12,则12=−15x+90,12=15x,解得:x=5.8,x=0.8,答:小明出发0.8小时或5.8小时距家12千米.27.解:(1)100;60;(2)甲从11时到12时的的速度为(60−40)÷1=20千米/时,甲从13时到14时的的速度为(100−60)÷1=40千米/时,∴小明说法不正确;(3)甲,乙二人相遇时所用时间为:100÷(1002+402)=137,故二人相遇时间为:8+137=937.答:甲,乙二人在937时相遇.。
北师大版数学七年级下册第三章单元测试(三) 变量之间的关系
单元测试(三) 变量之间的关系一、选择题(每小题3分,共24分) 1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是(C)A .沙漠B .骆驼C .时间D .体温2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表,下面能表示日销售量y(件)与销售价x(元)的关系式是(C)A.y =x +40 B .y =-x +15 C .y =-x +40 D .y =x +153.根据生物学研究结果,青春期男女生身高增长速度呈现如图规律,由图可以判断,下列说法错误的是(D)A .男生在13岁时身高增长速度最快B .女生在10岁以后身高增长速度放慢C .11岁时男女生身高增长速度基本相同D .女生身高增长的速度总比男生慢4.三角形ABC 的底边BC 上的高为8 cm ,当它的底边BC 从16 cm 变化到5 cm 时,三角形ABC 的面积(B)A .从20 cm 2变化到64 cm 2B .从64 cm 2变化到20 cm 2C .从128 cm 2变化到40 cm 2D .从40 cm 2变化到128 cm 25.如图所示,三角形ABC 的底边BC =x ,顶点A 沿BC 边上高AD 向D 点移动,当移动到E 点,且DE =13AD 时,三角形ABC 的面积将变为原来的(B)A.12B.13C.14D.166.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是(D)7.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x 表示时间,y 表示壶底到水面的高度,则y 与x 的变量关系式的图象是(C)8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,三角形APD 的面积是y ,则下列图象能大致反映变量y 与变量x 的关系图象的是 (B)二、填空题(每小题4分,共16分)9.在一定高度,一个物体自由下落的距离s(m)与下落时间t(s)之间变化关系式是s =12gt 2(g 为重力加速度,g =9.8m/s 2),在这个变化过程中,时间t 是自变量,距离s 是因变量.10.汽车开始行驶时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行驶时间t(小时)的关系式为y =-7t +55.11.如图所示的图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中横轴表示时间,纵轴表示小明离家的距离,则小明从学校回家的平均速度为6km/h.12.如图所示是关于变量x ,y 的程序计算,若开始输入的x 值为6,则最后输出因变量y 的值为42.三、解答题(共60分)13.(6分)根据下表回答问题.(1)(2)这个表格反映出因变量的变化趋势是怎样的?解:(1)时间与小学五年级女同学的平均身高之间的关系.时间是自变量,小学五年级女同学的平均身高是因变量.(2)小学五年级女同学的平均身高随时间的增加而增高.14.(8分)温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.(1)这一天的最高温度是多少?是在几时到达的?最低温度呢? (2)这一天的温差是多少?从最低温度到最高温度经过多长时间? (3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?。
北师大版七年级数学下册---第三章-变量之间的关系---单元综合测试卷
人教版七年级数学下册 第3章 变量之间的关系单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表,下面能表示日销售量y(件)与销售价x(元)的关系式是 ( )A .y =x +40B .y =-x +15C .y =-x +40D .y =x +152.如果用总长为60 m 的篱笆围成一个长方形场地,设长方形的面积为S(m 2),周长为p(m),一边长为a(m),那么S ,p ,a 中,常量是( ) A .a B .S C .p D .p ,a 3.对关系式的描述,不正确的是( ) A .x 看作自变量时,y 就是因变量 B .x ,y 之间的关系也可以用表格表示 C .x 在非负数范围内,y 的最大值为2 D .当y =0时,x 的值为-24.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:有下列结论:①排数x 是自变量,座位数y 是因变量;②排数x 是因变量,座位数y 是自变量;③y =50+3x ;④y =47+3x.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是( ) A .这一天中最高气温是24 ℃B .这一天中最高气温与最低气温的差为16 ℃C .这一天中2时至14时之间的气温在逐渐升高 D .这一天中只有14时至24时之间的气温在逐渐降低6. 一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为() A.y=x2B.y=(12-x)2C.y=x(12-x) D.y=2(12-x)7.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x 表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米8.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s(千米)与行驶时间t(小时)的关系如图所示,则下列结论中错误的是( )A.相遇时快车行驶了150千米B.慢车行驶速度为60千米/小时C.甲、乙两地的路程是400千米D.快车出发后4小时到达乙地9.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是( )A.①②③B.①②④C.①③⑤D.①②⑤10.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则变量S与t的大致图象为( )二.填空题(共8小题,3*8=24)11.某人以每小时4.5 km的速度步行,他走过的路程s(km)与所花时间t(h)之间的关系式为s=4.5 t,其中,t是自变量,s是因变量,当t=4 h时,s=________.12. 小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为______________.13.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.14.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为___________.15.如图是小明从学校到家里行进的路程s(米)与时间t(分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).16.某烤鸡店在确定烤鸡的烤制时间时,主要依据的是下面表格的数据:若鸡的质量为4.5 kg,则估计烤制时间分钟.17.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.18.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放 5 s后才听到响声,则此人与燃放的烟花所在地相距__________.三.解答题(共7小题,66分)19.(8分) 根据下表回答问题.(1)这个表格反映哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)这个表格反映出因变量的变化趋势是怎样的?20.(8分如图是某地某天温度变化的情况,根据图象回答问题:(1)上午3时的气温是多少?(2)这一天的最高温度和最低温度分别是多少?(3)这一天的温差是多少?图中A点表示的是什么?21.(8分) 如图表示某市2019年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?22.(10分) 青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.(1)上图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?17岁时呢?(4)比较小军和小蕊青春期的身高情况有何相同与不同.23.(10分)某人沿一条直路行走,此人离出发地的距离s(km)与行走时间t(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)此人在这次行走过程中,停留的时间为__________;(2)求此人在0~40 min这段时间内行走的速度是多少千米/时;(3)此人在这次行走过程中共走了多少千米?24.(10分)某机动车出发前油箱内有油42 L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)如果加油站离目的地还有230 km,车速为40 km/h,要到达目的地,油箱中的油是否够用?请说明理由.25.(12分) 汽车在山区行驶过程中,要经过上坡、下坡、平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快乐,平路上保持匀速行驶,如图表示了一辆汽车在山区行驶过程中,速度随时间变化的情况.(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上所花时间最长?(3)大致描述这辆汽车的行驶情况,包括遇到的山路,在山路上的速度变化情况等.参考答案1-5CCDBD 6-10CAADA 11. 18km 12.y =x 2+6x 13.y =6-0.8x ;7 14. y =20(x +1)2 15. ①②④; 16. 200 17.37.2 min18.(1)340 m/s (2)1 721 m19. 解:(1)时间与小学五年级女同学的平均身高之间的关系.时间是自变量,小学五年级女同学的平均身高是因变量.(2)小学五年级女同学的平均身高随时间的增加而增高. 20. 解:(1)上午3时的气温为23 ℃(2)这一天最高温度和最低温度分别是37 ℃,23 ℃ (3)37-23=14(℃),A 点表示21时的温度为31 ℃ 21.解:(1)37 ℃. (2)9 h.(3)3时至15时.(4)25 ℃(答案不唯一,合理即可).22. 解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高.(2)A 点表示小军和小蕊在11岁时身高都是140厘米,B 点表示小军和小蕊在14岁时身高都是155厘米.(3)小蕊10岁时身高130厘米,17岁时身高160厘米.(4)相同点:进入青春期,两人随年龄的增长而快速长高,并且在11岁和14岁时两人的身高相同; 不同点:11岁至14岁间小蕊的身高变化比小军的快些,14岁后小军的身高变化比小蕊的快些. 23.解:(1)20 min (2)3÷4060=4.5(km/h).答:此人在0~40 min 这段时间内行走的速度是4.5 km/h. (3)4×2=8(km).答:此人在这次行走过程中共走了8 km.24. 解:(1)由横坐标看出,5小时后加油,由纵坐标看出,加了36-12=24(L)油.(2)够用,理由如下:单位耗油量为366=6,6×40-230=240-230=10>0,还可以再行驶10千米,故油够用.25.解:(1)汽车在0.2~0.4h,0.6~0.7h,0.9~1h三个时间段保持匀速行驶,速度分别是70km/h,80km/h和70km/h;(2)汽车遇到CD、FG两个上坡路段,AB、DE、GH三个下坡路段,在AB下坡路段上所花时间最长;(3)汽车下坡行驶0.2h后转入平路行驶至0.4h,转入上坡行驶至0.5h,接着转入下坡行驶至0.6h,转入平路行驶至0.7h后又上坡行驶至0.8h,紧接着转入下坡行驶至0.9h,最后平路行驶至1h结束.。
北师大版七年级数学下册第3章变量之间的关系单元检测试卷及参考答案含有详细解析
北师大版七年级数学下册第3章变量之间的关系单元检测一、选择题1、教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y (米)表示,时间用x (秒)表示。
下图表示两组教师比赛过程中y 与x 的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜;②乙组教师往返用时相差2秒;③甲组教师去时速度为0.5米/秒;④返回时甲组教师与乙组教师的速度比是2:3。
其中合理的是( ) A .①② B .①③ C .②④ D .①④2、如图,将一个高度为12cm 的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10cm ,则水槽中的水面高度y (cm )随注水时间x (s )的变化图象大致是( )A .B .C .D .3、一名老师带领x 名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y 元,则y 与x 的函数关系为( )A .y=10x+30B .y=40xC .y=10+30xD .y=20x 4、笔记本每本a 元,买3本笔记本共支出y 元,在这个问题中:①a 是常量时,y 是变量;②a 是变量时,y 是常量;③a 是变量时,y 也是变量;④a ,y 可以都是常量或都是变量;上述判断正确的有()A .1个B .2个C .3个D .4个 5、均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示,则这个瓶子的形状是下列的( )…○………○……A.B.C.D.6、函数y=中,自变量x的取值范围为()A.x>5 B.x≠5 C.x≠0 D.x≠0或x≠57、在圆面积公式中,变量是()A.S B.S与πC.S与R2D.S与R8、五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s与时间t的关系的大致图象是()A.B.C.D.9、如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A.B.C.D.三、填空题气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟。
北师大版七年级数学下册 第三章 变量之间的关系 单元综合测试卷(含答案)
人教版七年级数学下册 第3章 变量之间的关系单元综合测试卷(时间90分钟,满分120分)一. 选择题(共10小题,3*10=30)1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t(小时)的增大而增大,则下列说法正确的是( )A .8和s ,t 都是变量B .8和t 都是变量C .s 和t 都是变量D .8和s 都是变量2.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是 ( )B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm3.一辆汽车以平均速度60 km/h 的速度在公路上行驶,则它所走的路程s(km)与所用的时间t(h)之间的关系式为( )A .s =60 tB .s =60tC .s =t60D .s =60t4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s 关于时间t 的图象,那么符合小明行驶情况的图象大致是( )5.乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会儿后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水,在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x,瓶中水位的高度为y,下列图象中最符合故事情景的是()6. 某商场为了促销一种饮料,实行大降价,为了提高服务质量,服务员制作了售价y(元)与数量x(个)之间的关系表,下面能表示这种关系式的式子是()A.x=1.8y B.y=1.8xC.y=1.8+x D.y=18 x7.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是( )A. ①②⑤B. ①②④C. ①③⑤D. ①④⑤8.如图,射线l甲. l乙分别表示甲. 乙两名运动员在自行车比赛中所行路程与时间的关系,则比较他们的速度为( )A. 甲比乙快B.乙比甲快C. 甲. 乙速度相同D.无法比较快慢9.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )10.端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲. 乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25 min到达终点B.当乙队划行110 m时,此时落后甲队15 mC.0.5 min后,乙队比甲队每分钟快40 mD.自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255 m/min二.填空题(共8小题,3*8=24)11.梯形的上底长是2,下底长是8,则梯形的面积y与高x之间的关系式是______,自变量是______,因变量是______.12. 如图是某地某天的温度随时间变化的图象,通过观察可知这天15点时温度最高,9点时的温度是______ ℃.,13.汽车开始行驶时,油箱中有油150升,如果每小时耗油7升,则油箱内剩余油量y(升)与行驶时间t(小时)的关系式为;在这个变化过程中,是自变量,是因变量;14.经研究发现,高度每升高1 km,温度会下降6 ℃.若某火山喷出的岩浆温度高达2 010 ℃,那么距离火山口200 km的高空温度将达到________℃.15.一棵树高h(m)与年数n(年)之间的关系如下表:写出用n表示h的关系式:___________.16.假定甲. 乙两人在一次赛跑中,路程s与时间t的关系如图所示,那么可以知道:(1)甲. 乙两人中先到达终点的是____;(2)乙在这次赛跑中的速度为____ m/s.17.如图①,在长方形ABCD 中,动点E 从点B 出发,沿B→A→D→C 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图②所示,则当x =7时,点E 应运动到点___________.18. 声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y =35x +331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放 5 s 后才听到响声,则此人与燃放的烟花所在地相距__________.三.解答题(7小题,共66分)19.(8分) 某校办工厂现在年产值是15万元,计划以后每年增加2万元. (1)写出年产值y(万元)与年数x 之间的关系式;(2)用表格表示当x 从0变化到6(每次增加1)时,y 的值由15变化到27.20.(8分) 张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,下图是据此情景画出的图象,s(m)表示张爷爷离开家的距离,t(min)表示外出散步的时间.请你回答下面的问题:(1)张爷爷是在什么地方碰到老邻居的?交谈了多长时间? (2)读报栏大约离家多少路程?(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?21.(8分) 某人沿一条直路行走,此人离出发地的距离s(km)与行走时间t(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)此人在这次行走过程中,停留的时间为__________;(2)求此人在0~40 min这段时间内行走的速度是多少千米/时;(3)此人在这次行走过程中共走了多少千米?22.(10分) 如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C 移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.23.(10分) 如图表示甲骑电动自行车和乙驾驶汽车沿相同路线由A地到B地两人行驶的路程y(千米)与时间x(小时)的关系,请你根据这个图象回答下面的问题:(1)谁出发较早?早多长时间?谁到达B地较早?早多长时间?(2)请你求出表示电动自行车行驶的路程y(千米)与时间x(小时)的关系式.24.(10分) 文具店出售书包和文具盒,书包每个定价为30元,文具盒每个定价为5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折(总价的90%)付款.某班学生需购买8个书包. 若干个文具盒(不少于8个),如果设文具盒个数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买多少个文具盒时,两种方案付款相同?25.(12分) 老师告诉小红:“离地面越高,温度越低”.并给小红出示了下面的表格:根据上表,老师还给小红出了下面几个问题,请你和小红一起来回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,请你用关于h的式子表示t;(3)请你利用(2)的结论,求:①距离地面5千米的高空温度是多少?②当高空某处温度为-40度时,求该处的高度.参考答案1-5CBDDD 6-10BAADD11. y=5x;x;y12.28 13.y=-7t+55;时间t;剩余油量y;14.810 15. h=2+0.3n 16. 甲;8 17.7 18.(1)340 m/s(2)1 721 m19.解:(1)根据题意,得y与x之间的关系式为:y=2x+15.(2)用表格表示略.20.解:由图象可知:(1)张爷爷是在距家600 的地方碰到老邻居的,交谈了25-15=10(min);(2)读报栏离家300 ;(3)反映了离开家的距离与外出散步的时间之间的关系,时间t是自变量,离开家的距离是因变量.21.解:(1)20 min(2)3÷4060=4.5(km/h).答:此人在0~40 min这段时间内行走的速度是4.5 km/h.(3)4×2=8(km).答:此人在这次行走过程中共走了8 km.22. 解:(1)由速度与时间的关系知点E从B向C运动的过程中是匀速的,其速度为3 cm/s,所以运动x秒后BE=3x cm.由题意得y=9x(0≤x≤2).(2)由图②知其运动了2秒,所以当x=2时,y=9×2=18(cm2).23. 解:(1)甲早出发2小时,乙早到B地2小时.(2)y=18x.24. 解:(1)y1=5x+200;y2=4.5x+216(2)当5x+200=4.5x+216时,解得x=32,即当购买32个文具盒时,两种方案付款相同25. 解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升一千米,温度降低6摄氏度,可得关系式为t=20-6h.(3)①由表可知,距地面5千米时,温度为零下10摄氏度;②将t=-40代入t=20-6h可得,-40=20-6h,解得h=10(千米).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章《变量之间的关系》水平测试(满分:120分 时间:90分钟)一、选择题(每题3分,共30分)1.如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=23x (D )y=32x 2.已知△ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,△ABC 的面积( )(A )从20cm 2变化到64cm 2(B )从64c m 2变化到20cm 2(C )从128cm 2变化到40cm 2(D )从40cm 2变化到128cm 23.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据8时,输出的数据是( ) (A )861(B )863(C )865(D )867 4.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系, 下面能表示这种关系的式子是( ) d 50 80 100 150 b25405075(A )2b d =(B )2b d =(C )2db =(D )25b d =+ 6.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )第7题图7.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是( ) A 、①③ B 、②③ C 、③ D 、①②8.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A 、保持不变B 、越来越慢C 、越来越快D 、快慢交替变化9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( )(1) 他们都行驶了18千米; (2) 甲在途中停留了0.5小时;(3) 乙比甲晚出发了0.5小时;(4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。
其中,符合图象描述的说法有 A.2个 B.4个 C.3个 D.5个10.是饮水机的图片。
饮水桶中的水由图4的位置下降到图5的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )A B C D图 2 水池蓄水量时间6418542111进水量时间进水量时间图1 水池蓄水量时间6418542111进水量时间进水量时间出水量进水量S (千米)18t (小时) 甲 乙 O 第9题图 0.5 1 2 2.5二、填空题(每题3分,共30分) 11.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为 12.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元, 则所用水为 度.月用水量 不超过12度的部分 超过12度不超过18度的部分超过18度的部分收费标准(元/度)2.002.503.0013.如图,是甲、乙两家商店销售同一种产品的销售价y (元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是14.如图,某计算装置有一数据输入口A 和一运算结果的输出口B ,B 2 5 10 17 26 输入x 值2y x =+(-2≤x ≤-1)2y x =(-1<x ≤1)2y x =-+(1<x ≤2)输出y 值xy 4 3211 2 (2,4甲 乙 第13题y y y yO O O O x x x xABC DA B 输入输出(第14题)(1) (2) (3) (4)下表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:15.下表是某报纸公布的我国“九五”期间国内生产总值(GDP)的统计表,那么这几年间我国国内生产总值平均每年比上一年增长万亿元.年份1996 1997 1998 1999 2000GDP(万亿元) 6.6 7.3 7.9 8.2 8.916.如图,都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位,。
依此规律。
则第(5)个图形的表面积个平方单位.17.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用枚棋子;(2)第n个“上”字需用枚棋子.18.已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿AB C E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=13时,x的值等于___________________.19.右图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为20.某种树木的分枝生长规律如图所示,则预计到第6年时,树木的分枝数为.第一个“上”字第二个“上”字第三个“上”字第17题图第19题图年份分枝数第1年 1第2年 1第3年 2第4年 3三、解答题(共60分)21.(本题5分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:月用水量(吨)10 13 14 17 18户数 2 2 3 2 1(1) 计算这家庭的平均月用水量;(2) 如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?22.(本题5分)初三(2)班同学为了探索泥茶壶盛水喝起来凉的原因,对泥茶壶和塑料茶壶盛水散热情况进行对比试验.在同等的情况下,把稍高于室温(25.5℃)的随访如两户中,每个一小时同时测出两壶水温,所得数据如下表:室温25.5℃时两壶水温的变化时间刚装入时 1 2 3 4 5 6 7名称泥茶壶34 27 25 23.5 23.0 22.5 22.5 22.5 塑料壶34 30 27 26.0 25.5 25.5 25.5 25.5 ⑴塑料壶水温变化曲线如图,请在同一坐标系中,画出泥茶壶水温的变化曲线;⑵比较泥茶壶和塑料壶中水温变化情况的不同点.23. (本题10分)某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确都可以)24.(本题10分)某公司有2位股东,20名工人. 从2000年至2002年,公司每年股东的总利润和每年工人的工资总额如下图所示.(Ⅰ)填写下表:(Ⅱ)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍? 25.(本题10分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答: ⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少?26.(本题10分)下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户. (1)该用户5月份通话的总次数为 次.(2)已知该用户手机的通话均按0.6元/分钟计费,求该用户5月份的话费(通话时间不满1分钟按1分钟计算。
例如,某次实际通话时间为1分23秒,按通话时间2分钟计费,话费为1.2元);(3)当地中国移动公司推出了名为“越打越便宜”的优惠业务,优惠方式为:若与其它中国移动用户通话,第1分钟为0.4元,第2分钟为0.3元。
第3分钟起就降为每分钟0.2年 份 2000年 2001年2002年工人的平均工资(元) 5000 股东的平均利润(元)250002000 2001 年份 2002 5152.512.5 10 7.5 万元 ·· · · · 工人工资总额 股东总利润 · 第25题元,每月另收取基本费10元,其余通话计费方式不变。
如果使用了该业务,则该用户5月份的话费会是多少?27.(本题10分)某中学为筹备校庆活动,准备印制一批校庆纪念册。
该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页。
印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a (单位:千册) 1≤a <5 5≤a <10 彩色 (单位:元/张) 2.2 2.0 黑白(单位:元/张)0.70.6(1)印制这批纪念册的制版费为 元; (2)若印制2千册,则共需多少费用?联通移动市话121254715914264321通话时间(分钟)通话次数第26题图参考答案一、选择题 DBCDC CCCBC 二、填空题11.12;12.0;13①②③④;1421n +;15.0.575; 16.90;17.22,41n +;18.53;19.38.2;20.8三、解答题21.(1)14吨(2)7000吨 22.解:⑴ (2)略23.(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升; (5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同; 24.解:(I)年份2000年 2001年 2002年 工人的平均工资 5000 6250 7500 股东的平均利润250003750050000(II )设经过x 年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元 ,所以 (5000+1250x )×8=25000+12500x . 解得 x =6 . 答:到2006年每位股东年平均利润是每位工人年平均工资的8倍. 25.⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时 ⑵第三天12时这头骆驼的体温是39℃ 26.解:(1)86(次) (2)通话时间为:(26+14+9)+(15+7+4)×2+(5+2+1)×3+(2+1)×4 =137(分钟) 话费为:137×0.6=82.2(元)(2) 使用新业务后, 中国移动费用:(14+7+2+1)×0.4+(7+2+1)×0.3+(2+1)× 0.2+1×0.2=13.4(元) . 市话费:(26×1+15×2+5×3+2×4)×0.6=47.4(元) 中国联通费用:(9×1+4×2+1×3)×0.6=12(元) 合计话费为:10+13.4+47.4+12=82.8(元) 答:使用了新业务,则该用户5月份的话费会是82.8(元) 27.解:(1)1 500(元) (2)若印制2千册,则印刷费为:(2.2×4+0.7×6)×2 000=26 000 (元)∴总费用为:26 000+1 500=27 500 (元)。