棱柱棱锥和棱台教学设计

合集下载

教学设计1:8.1 第1课时 棱柱、棱锥、棱台

教学设计1:8.1 第1课时 棱柱、棱锥、棱台

8.1第1课时棱柱、棱锥、棱台教材分析本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课是第1课时,本节课主要学习棱柱、棱锥、棱台的概念及结构特征.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.空间几何体是新课程立体几何部分的起始课程,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用,新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这种安排降低了立体几何学习入门难的门槛,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣.教学目标与核心素养A.能根据几何结构特征对空间物体进行分类;B.从实物中概括出棱柱、棱锥、棱台的几何结构特征;C.会用语言概述棱柱、棱锥、棱台的结构特征;D.会表示有关几何体以及棱柱、棱锥、棱台的分类.教学重难点1.教学重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征;2.教学难点:棱柱、棱锥、棱台的结构特征的概括.课前准备多媒体.教学过程一、复习回顾,温故知新1.通过生活中的图片引入,初步感受空间几何体.二、探索新知观察1:观察生活的具体实物,你能抽象出它们的空间图形吗?空间几何体的定义:如果我们只考虑这些物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.思考1:如图,下面这些图片中的物体具有怎样的形状?在日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?【答案】纸箱、金字塔、茶叶盒、水晶萤石、储物箱等物体围成它们的面都是平面图形,并且都是平面多边形;纸杯、腰鼓、奶粉罐、篮球和足球、铅锤围成它们的面不全是平面图形,有些面是曲面.1.多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.面ABE,面BAF,棱AE,棱EC,顶点E,顶点C2.旋转体:由一条平面曲线(包括直线)绕它所在的平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定直线叫做旋转体的轴.思考2:观察下面的长方体,它的每个面是什么样多边形?不同的面之间有什么位置关系?【答案】它的每个面是平行四边形,不同的面之间位置关系有平行、相交,相对面平行.(一)棱柱1.棱柱定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱.为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,它们是全等的多边形;其余各面叫做棱柱的侧面,它们都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出下面棱柱的底面、侧面、侧棱、顶点吗?2棱柱的表示法:用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDE-A1B1C1D1E13.(1)棱柱的分类1:棱柱的底面可以是三角形、四边形、五边形、…… 我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……(2)棱柱的分类2:一般地,把侧棱垂直于底面的棱柱叫做直棱柱,侧棱不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱也叫平行六面体.练习:说出下列那些图是直棱柱、斜棱柱、正棱柱、平行六面体?解:直棱柱:(1)、(3);斜棱柱:(2)、(4);正棱柱:(2); 平行六面体(4).4.棱柱的性质:(1)侧棱都互相平行且相等,各侧面都是平行四边形;直棱柱的每条侧棱及每个侧面都垂直于底面.(2)两个底面及平行于底面的截面是全等的多边形,且对应边互相平行;(3)过不相邻的两条侧棱的截面(即对角面)是平行四边形.练习:下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个侧面是矩形的棱柱是直棱柱D.有两个相邻侧面垂直与底面的棱柱是直棱柱【答案】D(二)棱锥思考3:上图中的物体具有什么样的共同的结构特征?【答案】一个面是多边形,其余各面是有一个公共顶点的三角形.1.棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面;有公共顶点的各个三角形面叫做棱锥的侧面;相邻侧面的公共边叫做棱锥的侧棱;各侧面的公共顶点叫做棱锥的顶点.2.棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥S-ABCD.通过练习题进一步巩固棱柱的定义,提高学生解决问题的能力.通过思考,观察图形的特征,概括出棱锥的定义,提高学生分析问题的能力、概括能力.3.棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、……其中三棱锥又叫四面体,底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.练习:下面几何体是棱锥吗?【答案】不是,各侧面没有公共点.(三)棱台1.棱台的概念:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间那部分多面体叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面.思考4:请你仿照棱锥中侧面、侧棱、顶点的定义,给出棱台侧面、侧棱、顶点的定义,并在棱台中标出.2.棱台的表示法:棱台用表示上、下底面各顶点的字母来表示:如棱台ABCDE-A1B1C1D1E1.3.棱台的分类:由三棱锥、四棱锥、五棱锥…截得的棱台,分别叫做三棱台,四棱台,五棱台…练习:判断:下列几何体是不是棱台,为什么?【答案】(1)不是,侧棱不交于一点;(2)不是,没有两面平行.思考5.棱台的结构特征是什么?【答案】①各侧棱的延长线相交于一点;②截面平行于原棱锥的底面.例1.将下列各类几何体之间的关系用Venn图表示出来:多面体,长方体,棱柱,棱锥,棱台,直棱柱,四面体,平行六面体.解:如图所示三、达标检测1.判断正误(1)棱柱的侧面都是平行四边形.()(2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥.()(3)用一平面去截棱锥底面和截面之间的部分叫棱台.()【答案】(1)√(2)×(3)×2.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】D【解析】根据棱锥的定义可知该几何体是三棱锥.故选D.3.下列图形经过折叠可以围成一个棱柱的是()A. B. C. D.【答案】D【解析】A,B,C中底面多边形的边数与侧面数不相等.故选D. 4.一个棱柱至少有个面,顶点最少的一个棱台有条侧棱.【答案】53【解析】面最少的棱柱是三棱柱,它有5个面;顶点最少的一个棱台是三棱台,它有3条侧棱.5.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体;(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′­AB″C″,另一个多面体是B′C′CBB″C″.(2)如图②所示,三个三棱锥分别是A′­ABC,B′­A′BC,C′­A′B′C.教学反思通过本节授课有一些心得.如在引导学生进行归纳总结的时候,教师应该不着急于给出正确的答案.学生初始的回答可能只是其中的一两点,而且不完整,甚至有错误的见解.教师应该对于正确的及时给予肯定和鼓励.通过教师的鼓励,能大幅度地调动其他学生的积极性和增加其他学生回答问题的勇气.这样其他学生就能自主地给予修正补充.充分发挥协作学习,达到事半功倍的效果.。

《棱柱、棱锥和棱台》示范课教案【高中数学】

《棱柱、棱锥和棱台》示范课教案【高中数学】

《棱柱、棱锥和棱台》教学设计1.理解棱柱的定义,知道棱柱的结构特征,并能识别和作图.2.理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别和作图.重点:棱锥、棱台的结构特征.难点:识别和作图.一、新课导入温故知新:在初中阶段,我们已经遇到长方体、正方体、圆柱、圆锥、球等简单的空间图形.许多复杂的空间图形都是由一些简单的空间图形组合而成的.而简单的空间图形又是怎样构成的呢?答案:考察一下长方体,可以将长方体看作是由水平放置的矩形沿着竖直的方向平移而得到的.设计意图:简单的空间图形具有怎么样的结构特征,怎样在平面上的表示空间图形,是认识简单几何体的起点,用运动的观点去认识几何特征,有助于学生发展抽象概括的数学核心素养.二、新知探究问题1:在我们的周围存在各种物体,如果我们只考虑这些物体的形状和大小,那么抽象出来的就是空间图形.仔细观察下面的空间图形,你能发现它们可以怎样形成?答案:图(1)和图(3)中的空间图形分别由平行四边形和五边形沿某一方向平移而得.◆教学目标◆教学重难点◆教学过程◆追问1:图(2)和图(4)中的空间图形分别由怎么样的图形沿什么方向平移而得?答案:图(2)和图(4)中的空间图形分别由三角形和六边形平移而得.总结:一般地,由一个平面多边形沿某一方向平移形成的空间图形叫作棱柱(prism).平移起止位置的两个面叫作棱柱的底面,多边形的边平移所形成的面叫作棱柱的侧面.(1)(2)追问2:该怎么命名棱柱呢?答:底面为三角形、四边形、五边形……的棱柱分别称为三棱柱、四棱柱、五棱柱……例如,图(1)为三棱柱,图(2)为六棱柱,并分别记作棱柱ABC−A′B′C′、棱柱ABCDEF−A′B′C′D′E′F′.追问3:根据棱柱形成的过程,我们可以看出棱柱具有什么特点?答:(1)两个底面是全等的多边形,且对应边互相平行;(2)侧面都是平行四边形.设计意图:将一个图形上所有的点按某一确定的方向及相同距离移动就是平移,用运动的观点看静态的几何,发展学生的抽象概括的学科核心素养.问题2:与图对比,下面的空间图形是由上图发生什么样变化得到的?答:通过观察对比发现,当上图中各棱柱的一个底面收缩为一个点时,就可得到下图.当棱柱的一个底面收缩为一个点时,得到的空间图形叫作棱锥注意:棱锥中常见名称的含义追问1:该怎么命名棱锥呢?答:底面为三角形、四边形、五边形……的棱锥分别称为三棱锥、四棱柱、五棱锥……上图中的四棱柱可记作棱锥S−ABCD.追问2:根据棱锥形成的过程,我们可以看出棱锥具有什么特点?答:(1)底面是多边形;(2)侧面是有公共点的三角形.追问3:用一个平行于棱锥底面的平面去截棱锥,会形成什么空间图形呢?答:如图,用一个平行于棱锥底面的平面去截棱锥,截面和底面间形成的部分叫做棱台.设计意图:面动成体,用运动的观点看几何体,发展学生的空间想象能力.三、应用举例例1:画一个四棱柱.解:如图,画四棱柱可分三步完成:第一步画上底面——画一个四边形;第二步画侧棱——从四边形的每一个顶点画平行且相等的线段;第三步画下底面——顺次连接这些线段的另一个端点.例2:画一个三棱台.解:首先画一个三棱锥,在它的一条侧棱上取一点,然后从这点开始,顺次在各个侧面内画出与底面对应边平行的线段,最后将多余的线段擦去.四、课堂练习1.下面的几何体中是棱柱的有________.(填序号)2.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.参考答案:1.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是平行四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤都符合.2.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.五、课堂小结在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来六、布置作业教材第144页练习第1、3、4题.。

人教版高中必修2(B版)1.1.2棱柱、棱锥和棱台的结构特征教学设计

人教版高中必修2(B版)1.1.2棱柱、棱锥和棱台的结构特征教学设计

人教版高中必修2(B版)1.1.2棱柱、棱锥和棱台的结构特征教学设计一、教学目标1.了解棱柱、棱锥和棱台的概念和基本结构特征。

2.掌握棱柱、棱锥和棱台的表面积和体积计算方法。

3.培养学生的观察能力、创新意识和团队协作精神。

二、教学内容本课程主要涉及以下内容:1.棱柱、棱锥和棱台的概念和基本结构特征。

2.棱柱、棱锥和棱台的表面积和体积计算方法。

3.棱柱、棱锥和棱台的应用实例。

三、教学方法和过程设计1. 活动设计(1)引入新知识通过运用具有启发性的实例,引导学生探究棱柱、棱锥和棱台的基本结构特征和应用场景。

(2)合作探究以小组讨论的形式,让学生深入理解棱柱、棱锥和棱台的基本结构特征和表面积、体积计算方法,并创造性地应用所学知识解决实际问题。

(3)课堂辅助辅助材料如书籍、视频和PPT等工具,将帮助学生更好地理解所学知识。

(4)课堂展现通过分组展示、写作和口头报告等形式,让学生展示所掌握的知识和技能,同时不断提高自己的表达和沟通能力。

2. 教学过程(1)引入新知识教师运用生动具体引入实例,让学生了解棱柱、棱锥和棱台的结构和特征,钩起学生的兴趣。

(2)合作探究教师将学生分组,让每组成员进行讨论,合作解决棱柱、棱锥和棱台的表面积、体积等计算问题。

每个小组在选择问题的同时,应该拥有一个不同的角度和思路。

(3)课堂辅助教师通过向学生讲解PPT、播放视频等多种方式,来尽可能清晰众多的知识点和数据内容,为学生更好地掌握知识奠定基础。

(4)课堂展现教师组织学生进行分组展示和口头汇报,以审核和巩固所学知识为目的。

四、教学评价圆桌会议在最后一节课上,将以评价圆桌会议的方式梳理课程进展,评价学生所学内容、方法以及兴趣,同时也可以聆听到学生对教学的反馈。

通过这种方式,我们有机会回顾整个学习过程,探索如何在未来对知识进行拓展。

五、拓展思考棱柱、棱锥和棱台在多种不同领域有着广泛的应用,例如,建筑、制造、地质、科学和艺术等领域。

请从学生的知识点出发,与学生一起考虑这些应用领域,并将这些信息与他们的实际研究目标联系起来。

教学设计2:1.1.2 棱柱、棱锥和棱台的结构特征

教学设计2:1.1.2 棱柱、棱锥和棱台的结构特征

1.1.2 棱柱、棱锥和棱台的结构特征【教学目标】1.掌握棱柱、棱锥和棱台的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.【重点难点】教学重点:理解棱柱、棱锥和棱台的结构特征.教学难点:归纳棱柱、棱锥和棱台的结构特征.【课时安排】1课时【教学过程】导入新课设计1.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大厦的旋转酒吧、旋转餐厅,还有上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?引出课题.设计2.在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑物的几何结构特征如何?引导学生回忆、举例和相互交流,教师对学生的活动及时给予评价,引出课题.推进新课新知探究提出问题(1)观察下图所示的几何体,这些几何体都是多面体.多面体集合具有什么性质?多面体的结构特征是什么?(2)阅读教材,给出多面体的面、棱、顶点、对角线的定义.(3)阅读教材,多面体如何分类?(4)什么叫几何体的截面?讨论结果:(1)多面体的每个面都是多边形(围成多面体的多边形都包含它内部的平面部分),而圆柱、圆锥、球等其他几何体就不具有这种性质.由此得出多面体的结构特征:多面体是由若干个平面多边形所围成的几何体.(2)如下图所示,围成多面体的各个多边形叫做多面体的面,如面ABCD 、面BCC ′B ′;相邻的两个面的公共边叫做多面体的棱,如棱AB 、棱AA ′;棱和棱的公共点叫做多面体的顶点,如顶点A 、顶点A ′;连结不在同一个面上的两个顶点的线段叫做多面体的对角线,如对角线BD ′.(3)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.如上图中的(1)(2)(3)都是凸多面体,而(4)不是.本书中说到多面体,如果没有特别说明,指的都是凸多面体.多面体至少有4个面.多面体按照围成它的面的个数分别叫做四面体、五面体、六面体…… 多面体的分类:多面体⎩⎪⎨⎪⎧ 非凸多面体凸多面体⎩⎪⎨⎪⎧ 四面体五面体六面体……(4)一个几何体和一个平面相交所得到的平面图形(包含它的内部),叫做这个几何体的截面,在上图中画出了多面体的一个截面EAC .提出问题(1)观察如下图所示的多面体,根据小学和初中学过的几何知识,这些多面体是棱柱,棱柱集合具有什么性质,其特征性质是什么?(1)(2)(3)(2)阅读教材,给出棱柱的底面、侧面、侧棱、高的定义.(3)阅读教材,棱柱如何分类?(4)阅读教材,说一说特殊的四棱柱.讨论结果:(1)如果我们以运动的观点来观察,棱柱可以看成一个多边形(包括图形围成的平面部分)上各点都沿着同一个方向移动相同的距离所形成的几何体.观察这个移动过程,我们可以得到棱柱的主要特征性质:棱柱有两个相互平行的面,而且夹在这两个平行平面间的每相邻两个面的交线都互相平行(如上图).(2)棱柱的这两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两侧面的公共边叫做棱柱的侧棱.棱柱两底面之间的距离,叫做棱柱的高.(3)棱柱按底面是三角形、四边形、五边形……分别叫做三棱柱、四棱柱、五棱柱……棱柱用表示两底面的对应顶点的字母或者用一条对角线端点的两个字母来表示.例如,上图(3)中的五棱柱可表示为棱柱ABCDEA′B′C′D′E′或棱柱AC′.棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱(上图(1)).侧棱与底面垂直的棱柱叫做直棱柱(上图(2)(3)).底面是正多边形的直棱柱叫做正棱柱(上图(3)).(4)下面研究一些特殊的四棱柱.底面是平行四边形的棱柱叫做平行六面体(下图).侧棱与底面垂直的平行六面体叫做直平行六面体(下图(2)(3)(4)).底面是矩形的直平行六面体是长方体(下图(3)(4).棱长都相等的长方体是正方体(下图(4)).提出问题1.观察如下图所示的多面体,可能会判定是一些棱锥,棱锥集合具有什么性质?棱锥有什么特征性质?(2)阅读教材,给出棱锥的侧面、顶点、侧棱、底面、高的定义,如何表示棱锥?(3)阅读教材,棱锥如何分类?讨论结果:(1)棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形.(2)棱锥中有公共顶点的各三角形,叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻两侧面的公共边叫做棱锥的侧棱;多边形叫做棱锥的底面;顶点到底面的距离,叫做棱锥的高.(3)棱锥用表示顶点和底面各顶点的字母或者用表示顶点和底面的一条对角线端点的字母来表示.例如,下图中棱锥可表示为棱锥S—ABCDE或者棱锥S—AC.棱锥按底面是三角形、四边形、五边形……分别叫做三棱锥、四棱锥、五棱锥……如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥(下图).容易验证:正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高(下图).提出问题阅读教材,给出棱台的有关概念.讨论结果:如左下图所示,棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面、上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面间的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.棱台可用表示上下底面的字母来命名.如右上图中的棱台,记作棱台ABCD—A′B′C′D′,或记作棱台AC′.棱台的下底面为ABCD、上底面为A′B′C′D′、高为OO′.应用示例思路1例1设计一个平面图形,使它能够折成一个侧面与底面都是等边三角形的正三棱锥.解:因为要制作的正三棱锥的侧面与底面都是等边三角形,所以它的棱长都相等(下图).于是作一个等边三角形及其三条中位线,如下图所示,沿图中的实线剪下这个三角形,再以虚线(中位线)为折痕就可折成符合题意的几何体.点评:本题揭示了平面图形与立体图形的关系,即可以相互转化,因此将空间问题转化为平面问题.变式训练1.一个无盖的正方体盒子展开后的平面图,如左下图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=__________.【解析】如右上图所示,折成正方体,很明显点A、B、C是上底面正方形的三个顶点,则∠ABC=90°.【答案】90°例2已知正四棱锥V—ABCD(下图),底面面积为16,一条侧棱长为211,计算它的高和斜高.解:设VO为正四棱锥V—ABCD的高,作OM⊥BC于点M,则M为BC中点.连结OM、OB,则VO⊥OM,VO⊥OB.因为底面正方形ABCD的面积为16,所以BC=4,BM=OM=2,OB=BM2+OM2=22+22=2 2.又因为VB=211,在Rt△VOB中,由勾股定理,得VO=VB2-OB2=(211)2-(2202=6.在Rt△VOM(或Rt△VBM中,由勾股定理,得VM=62+22=210(或VM=(211)2-22=210).即正四棱锥的高为6,斜高为210.点评:解决本题的关键是构造直角三角形.正棱锥中,高、斜高和底面正多边形的边心距构成直角三角形;高、侧棱和底面正多边形的半径构成直角三角形.思路2例3下列几何体是棱柱的有()A.5个B.4个C.3个D.2个【解析】判断一个几何体是哪种几何体,一定要紧扣柱、锥、台、球的结构特征,注意定义中的特殊字眼,切不可马虎大意.棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.【答案】D点评:本题主要考查棱柱的结构特征.本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图,看到图形就想到文字叙述.变式训练1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.其中正确的个数是()A.1 B.2C.3 D.0【解析】①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.【答案】A2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点【答案】D例4长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为() A.1+ 3 B.2+10 C.3 2 D.23活动:解决空间几何体表面上两点间最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间线段长,这体现了数学中的转化思想.【解析】如左下图,在长方体ABCD—A1B1C1D1中,AB=3,BC=2,BB1=1.如右上图所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=52+12=26,即经过侧面ABB1A1和侧面BCC1B1时的最短距离是26;如左下图所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1=32+32=32,即经过侧面ABB1A1和底面A1B1C1D1时的最短距离是32;如右上图所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1=42+22=25,即经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2 5.由于32<25,32<26,所以由A到C1在正方体表面上的最短距离为3 2.【答案】C点评:本题主要考查空间几何体的简单运算及转化思想.求表面上最短距离可把立体图形展成平面图形.变式训练1.左下图是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描述蜘蛛爬行的最短路线.分析:制作实物模型(略).通过正方体的展开右上图可以发现,AB间的最短距离为A、B两点间的线段的长22+12= 5.由展开图可以发现,C点为其中一条棱的中点.具体爬行路线如下图中的粗线所示,我们要注意的是爬行路线并不唯一.解:爬行路线如下图(1)~(6)所示:2.如下图所示,已知正三棱柱ABC—A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长为__________.【解析】将正三棱柱ABC—A1B1C1沿侧棱AA1展开,其侧面展开图如左下图所示,则沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长就是左下图中AD+DA1.延长A1F至M,使得A1F=FM,连结DM,则A1D=DM,如右下图所示.则沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长就是如右上图中线段AM的长.在右上图中,△AA1M是直角三角形,则AM=AA21+A1M2=82+(1+1+1+1+1+1)2=10.【答案】10知能训练1.如下图,观察四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是棱台C.(3)是棱锥D.(4)不是棱柱【解析】图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上下两个面不平行,所以(2)不是棱台;图(4)前后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱;很明显(3)是棱锥.【答案】C2.正方体的截平面不可能...是:①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是()A.①②⑤B.①②④C.②③④D.③④⑤【解析】正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形(证明略);对五边形来讲,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形).【答案】B拓展提升1.有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?剖析:如下图所示,此几何体有两个面互相平行,其余各面是平行四边形,很明显这个几何体不是棱柱,因此说有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱.由此看,判断一个几何体是否是棱柱,关键是紧扣棱柱的3个本质特征:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行.这3个特征缺一不可,下图所示的几何体不具备特征③.2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?剖析:如左下图所示,将正方体ABCD—A1B1C1D1截去两个三棱锥A—A1B1D1和C—B1C1D1,得如右下图所示的几何体.右上图所示的几何体有一个面ABCD是四边形,其余各面都是三角形的几何体,很明显这个几何体不是棱锥,因此说有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥.由此看,判断一个几何体是否是棱锥,关键是紧扣棱锥的3个本质特征:①有一个面是多边形;②其余各面都是三角形;③这些三角形面有一个公共顶点.这3个特征缺一不可,右上图所示的几何体不具备特征③.课堂小结本节课学习了棱柱、棱锥和棱台的结构特征.作业1.如下图,甲所示为一几何体的展开图.(1)沿图中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图.(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙棱长为6cm的正方体ABCD—A1B1C1D1中指出这几个几何体的名称.【答案】(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,如下图甲所示.(2)需要3个这样的几何体,如上图乙所示.分别为四棱锥:A1—CDD1C1,A1—ABCD,A1—BCC1B1.2.如下图,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N,求P点的位置.分析:把三棱锥展开后放在平面上,通过列方程解应用题来求出P到C点的距离,即确定了P点的位置.解:如下图所示,把正三棱锥展开后,设CP=x,根据已知可得方程22+(3+x)2=29,解得x=2(x>0).所以P点的位置在离C点距离为2的地方.3.正四棱锥的侧棱长为23,侧棱与底面所成的角为60 °,则该棱锥的体积为() A.3 B.6C.9 D.18【解析】作下图,依题可知SO=23sin60°=23·32=3,CO=23·cos60°=23·12=3,∴底面边长为 6.从而V S—ABCD=13S ABCD·SO=13×(6)2×3=6.【答案】B设计感想本节教学设计,充分体现了新课标的精神,按课程标准的要求:降低逻辑推理,通过直观感受和操作确认来设计.在使用时,建议使用信息技术来处理图片和例题,否则会造成课时不足的矛盾.。

棱柱棱锥和棱台教学设计

棱柱棱锥和棱台教学设计

棱柱、棱锥与棱台教学设计江苏省羊尖高级中学邓国华214107(江苏省中小学数学教研室新课改成果评比二等奖)一、设计思想:立体几何就是高中数学得重要部分,也就是一些学生觉得困难得地方。

我们经常对学生说,知识来源于实践。

对于中学数学而言,如果把所有得知识都还原到实践中,再让学生从实践中获得,显然办不到,也没有必要。

但对于《立体几何》得教学而言,这种做法却就是非常必要得。

虽说高一得新生已拥有了初中得平面几何知识,但这些知识中得大多数对学生学习立体几何来说就是一种无效铺垫。

人们对客观世界得感知首先就是体,而不就是面,更不就是点、上课时,设计为学生拿出早已准备好得细棍、硬纸板等,按照一定得步骤做数学实验,用自己构造得模型证明自己结论得正确,同时也为其她同学得错误结论构造反例。

讨论、争辩、快乐、喜悦,每个同学都在自己得亲身体验中培养创新意识、创新思维与创新能力,同时拓展着她们对空间世界得认知能力。

作为立体几何得起始阶段,尽量利用线、面、体等实物模型以及对直观图得多角度得观察、比较、对照与想象、识别,直至学生能正确迅速地瞧得懂图,想得出形(体),发展学生得空间想象能力。

在本节课得设计过程中运用了多媒体课件。

计算机技术得广泛应用,使得数学能够在某些方面直接为社会创造价值,新得课程标准把信息技术与数学课程内容整合作为基本理念之一。

实现信息技术与课程内容得有机整合。

几何画板得运用很好得将原本及具抽象性得棱、柱、锥三者间动态得变化形象生动得展示在学生面前,同时也激发了学生得学习兴趣。

二、教学内容分析:立体几何就是研究三维空间中物体得形状、大小、位置关系得一门数学学科,而三维空间就是人们生存发展得现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与发展具有重要意义。

在立体几何初步部分,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识与理解空间点、线、面得位置关系。

本节内容既就是义务教育阶段“空间与图形”课程得延续与提高,也就是后续研究空间点、线、面位置关系得基础,既巩固了前面所学得内容,又为后面内容得学习做了知识上与方法上得准备,在教材中起着承前启后得作用、本节内容使学生在运动变化过程中认识柱、锥、台、球得几何特点,进而引导学生运用这些特征描述现实生活中得简单物体得结构,符合学生得认识发展规律,培养了学生对几何学习得兴趣,增进了学生对几何本质得了解,倡导学生积极主动、勇于探索得学习方法,同时,使学生进一步体会、比较、化归、分析等一般科学方法得运用、在本节教学中,从整体到局部、从具体到抽象,要充分借助实物模型,从整体观察入手,运用运动变化得观点,通过直观感知、操作确认,引导学生认识柱、锥、台、球等简单几何体得结构特征,多角度、多层次地揭示空间图形得本质,突出几何体得本质特征,注意适度地形式化,促进学生主动探索得学习方式得形成,帮助学生完善思维结构,发展空间想象能力。

《棱柱、棱锥、棱台的表面积和体积》教案、导学案、课后作业

《棱柱、棱锥、棱台的表面积和体积》教案、导学案、课后作业

《8.3.1棱柱、棱锥、棱台的表面积和体积》教案【教材分析】本节是在学生已从棱柱、棱锥、棱台的结构特征和直观图两个方面认识了多面体的基础上,进一步从度量的角度认识棱柱、棱锥、棱台,主要包括表面积和体积.【教学目标与核心素养】课程目标1.通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积和体积计算公式.2.能运用棱柱、棱锥、棱台的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:棱柱、棱锥、棱台的体积公式;2.数学运算:求多面体或多面体组合体的表面积和体积;3.数学建模:数形结合,运用棱柱、棱锥、棱台的表面积和体积公式进行计算和解决有关实际问题.【教学重点和难点】重点:掌握棱柱、棱锥、棱台的表面积和体积计算公式和应用;难点:棱台的体积公式的理解.【教学过程】一、情景导入在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本114-115页,思考并完成以下问题1.怎么求柱体、锥体、棱台的表面积?2.柱体、锥体、棱台体的体积公式是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究(一) 棱柱、棱锥、棱台的表面积 1.棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台都是由多个平面图形围成的多面体,因此它们的表面积等于各个面的面积之和,也就是展开图的面积.(二) 棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S ,高为h ,则V =Sh . 2.棱锥:锥体的底面面积为S ,高为h ,则V =13Sh .3.棱台:台体的上、下底面面积分别为S′、S ,高为h ,则V =13(S ′+S ′S+S )h .四、典例分析、举一反三题型一 棱柱、棱锥、棱台的表面积例1 已知如图,四面体的棱长均为,求它的表面积.【解析】因为四面体S -ABC 的四个面是全等的等边三角形, 所以四面体的表面积等于其中任何一个面面积的4倍.不妨求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D ,如图所示.S ABC a 2因为BC =SB =a ,SD,所以S △SBC =BC ·SD =a ×a =a 2. 故四面体S -ABC 的表面积S =4×a 22. 解题技巧(求多面体表面积注意事项) 1.多面体的表面积转化为各面面积之和.2.解决有关棱台的问题时,常用两种解题思路:一是把基本量转化到梯形中去解决;二是把棱台还原成棱锥,利用棱锥的有关知识来解决.跟踪训练一1、如图所示,有一滚筒是正六棱柱形(底面是正六边形,每个侧面都是矩形),两端是封闭的,筒高1.6 m ,底面外接圆的半径是0.46 m ,问:制造这个滚筒需要________m 2铁板(精确到0.1 m 2).【答案】5.6【解析】因为此正六棱柱底面外接圆的半径为0.46 m , 所以底面正六边形的边长是0.46 m. 所以S 侧=ch =6×0.46×1.6=4.416 (m 2). 所以S 表=S 侧+S 上底+S 下底=4.416+2×34×0.462×6≈5.6 (m 2). 故制造这个滚筒约需要5.6 m 2铁板. 题型二 棱柱、棱锥、棱台的体积例2如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.==1212244【答案】16.【解析】 V 三棱锥A -DED 1=V 三棱锥E -DD 1A =13×12×1×1×1=16.例3 如图,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥,两部分的高都是0.5m ,公共面是边长为1m 的正方形,那么这个漏斗的容积是多少立方米(精确到)?【答案】【解析】由题意知长方体的体积,棱锥的体积, 所以这个漏斗的容积. 解题技巧(求棱柱、棱锥、棱台体积的注意事项) 1.常见的求几何体体积的方法①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.③分割法:将几何体分割成易求解的几部分,分别求体积.2.求几何体体积时需注意的问题ABCD 30.01m 30.67m ''''ABCD A B C D -110.5V =⨯⨯()30.5m =''''P A B C D -1110.53V =⨯⨯⨯()316m =112263V =+=()30.67m ≈柱、锥、台的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.跟踪训练二1、在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若△BC1D是面积为6的直角三角形,则此三棱柱的体积为________;【答案】8 3.【解析】由题意,设AC=a(a>0),CC1=b(b>0),则BD=C1D=a2+b2 4,BC1=a2+b2,由△BC1D是面积为6的直角三角形,得⎝⎛⎭⎪⎫a2+14b2×2=a2+b2,得b2=2a2,又12×32a2=6,∴a2=8,∴b2=16,即b=4.∵S△ABC=34a2,∴V=34×8×4=8 3.2、如图,在多面体ABCDEF中,已知面ABCD是边长为4的正方形,EF∥AB,EF=2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.【答案】见解析【解析】如图,连接EB,EC.四棱锥E-ABCD的体积V四棱锥E-ABCD=13×42×3=16.∵AB=2EF,EF∥AB,∴S△EAB=2S△BEF.∴V三棱锥F-EBC=V三棱锥C-EFB=12V三棱锥C-ABE=12V三棱锥E-ABC=12×12V四棱锥E-ABCD=4.∴多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本116页练习,119页习题8.3的1、6题.【教学反思】本节课的重点是掌握棱柱、棱锥、棱台的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.而本节课的难点可以通过三组体积公式对比,寻找其联系(棱台上底面和下底面面积一样时,图形变成棱柱,对应的公式,经推导也就变成棱柱的体积公式了; 棱台上底面无限缩小至点时,图形变成棱锥,对应的公式,经推导也就变成棱锥的体积公式了.)使学生对其更加理解.再有解决实际问题时可先抽象出几何图形,再利用相关公式解决.《8.3.1棱柱、棱锥、棱台的表面积和体积》导学案【学习目标】知识目标1.通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积和体积计算公式.2.能运用棱柱、棱锥、棱台的表面积和体积公式进行计算和解决有关实际问题.核心素养1.数学抽象:棱柱、棱锥、棱台的体积公式;2.数学运算:求多面体或多面体组合体的表面积和体积;3.数学建模:数形结合,运用棱柱、棱锥、棱台的表面积和体积公式进行计算和解决有关实际问题.【学习重点】:掌握棱柱、棱锥、棱台的表面积和体积计算公式和应用;【学习难点】:棱台的体积公式的理解.【学习过程】一、预习导入阅读课本114-115页,填写。

高中数学1.1.1棱柱、棱锥、棱台教学设计

高中数学1.1.1棱柱、棱锥、棱台教学设计

⾼中数学1.1.1棱柱、棱锥、棱台教学设计课题:1.1.1棱柱、棱台、棱锥教材:⾼⼀第⼆册,第⼀章,第⼀节,第⼀课时教学⽬标:认识棱柱、棱锥、棱台结构特征;让学⽣初步地⾃主探索棱柱、棱锥、棱台的性质;掌握棱柱、棱锥、棱台的概念.教学重点:棱柱、棱锥、棱台的概念教学难点:棱柱、棱锥、棱台的性质电教⼿段:多媒体实验教具:棱柱、棱锥、棱台的⼏何模型教学过程:⼀开场:感谢各位专家和同⾏光临指导,更感谢各位能给我机会相互交流学习.⾸先送给⼤家⼀句话:当任何改变需要⾃⼰去做时,就应该⽴即着⼿进⾏.今天我们将⼀起学习⼀门新的学科:⽴体⼏何,这是我们⾼中学习⼜⼀个重要转折点,希望⼤家⽴即⾏动起来,我们⼀起加油!⼆创设情境:请看投影“神六”的发射现场的图画:发射架稳重的建造,⽕箭、神六流畅的外形设计.再到温馨的卧室的图⾯:清新的室⾥的构造,雅致的家具,精巧的装饰.从科技重地到温馨的⽣活场所到处充斥空间⼏何体,建造这些就必须了解、掌握这些必要的空间⼏何知识.⽽我们作为未来的建设者则更要学好空间⼏何知识,今天我们就从简单的⼏何体:棱柱、棱台、棱锥开始学习它的的定义和性质特征.(明确课题并板书)三新课讲授问题1、请你根据你的⽣活经验指出下列那些可能属于我们今天所要研究的⼏何体?提问要求:教师板书出棱柱、棱台、棱锥按学⽣的回答把序号填⼊相应的位置,暂不评其对与错,留⾄学习过棱柱、棱锥、棱台的概念再作判断.问题2:仔细观察下⾯的⼏何体,它们有什么共同特点?要求:1)学⽣可以从区别出发也可以共同点出发说出上图的特点,正确的加以肯定. 2)教师出⽰上图的⼏何模型,并⽤电脑动画“⾯动得体” 3)让学⽣描述动画过程,然后学⽣或教师加以补充:图⑴和⑶中的⼏何体分别由平⾏四边形和五边形沿某⼀⽅向平移⽽得.4) 图(1)平移的⽅向唯⼀吗?图⑵和⑷中的⼏何体分别由怎样的平⾯图形,按什么⽅向平移⽽得? 1棱柱(1)定义:由⼀个平⾯多边形沿某⼀⽅向平移形成的空间⼏何体叫做棱柱.(强调学⽣空间感)4 ( )3 ( )2 ( )1 ( )(1)⑵底⾯(2)⾯:(3)棱:要求:1)让学⽣独⽴观察,讨论,对⽐2)对于定义描述只要科学的都加以肯定(如:侧棱可以看成多边形顶点平移的轨迹,它的的长度等于平移距离)(4)棱柱的分类和记法:1)棱柱的分类(按底⾯多边形来分):三棱柱、四棱柱、五棱柱…2)记法:图(1)棱柱ABCD-A ’B ’C ’D ’图(2)棱柱ABC-A ’B ’C ’……2、棱锥:(⽤⼏何画板演⽰棱柱转化成棱锥)4 ( )3 ( )2( ) 1 ( )ABC D A’B’C’AB C A’B’ C ’ D’AB底⾯问题3:下⾯的⼏何体有什么公共特点?(并出⽰模型)注:类⽐棱柱的研究过程给出棱锥的定义、⾯棱、及其性质(强调四个⽅⾯).3、棱台:(⽤⼏何画板演⽰棱锥转化成棱台:⾯截棱锥得棱台和⼩棱锥)⑴⑵⑶⑷注:类⽐棱柱的研究过程给出棱台的定义、⾯、棱及其性质(强调四个⽅⾯).如何判断台就是棱台呢?1)定义;2)棱的特点四、应⽤与反思:1、请你根据你刚才掌握的棱柱、棱锥、棱台的定义和性质,把左图的序号填在表格中要求:把刚开始学⽣答案作改动,正确的保留,错误的删除,遗漏的补充.并且让学⽣说出棱柱、棱锥、棱台相互转化的关系及各⾃的特征.ACBC 1A 1B 1SACBC 1A 1B 12、例1.画⼀个四棱柱和⼀个三棱台.⽬的:让学⽣理解棱柱、棱锥、棱台的相互转化关系及各⾃的⼏何特点,了解棱柱、棱锥、棱台的基本作图⽅法在画图要强调构图的顺序和要求(看不见的线条⽤虚线表⽰,增加图形空间⽴体感),对于棱锥强调三棱锥的特殊性:锥顶的相对性;点、棱、⾯的数⽬;不同的视⾓对⼏何图形的影响.注:时间允许的情况下让学⽣⾃⼰画图.3练习:1).如图,四棱柱的六个⾯都是平⾏四边形,这个四棱柱可以由哪个平⾯图形按怎样的⽅向平移得到?2).右图中的⼏何体是不是棱台?为什么?4、多⾯体的定义由若⼲个平⾯多边形围成的⼏何体叫做多⾯体.。

棱台棱柱和棱锥教案

棱台棱柱和棱锥教案

棱台棱柱和棱锥教案教案标题:探索棱台、棱柱和棱锥的特性与关系教学目标:1. 了解棱台、棱柱和棱锥的基本概念和特性。

2. 掌握识别和区分棱台、棱柱和棱锥的方法。

3. 探索棱台、棱柱和棱锥在日常生活中的应用。

教学准备:1. 幻灯片或黑板、白板等教学辅助工具。

2. 三维几何模型,如棱台、棱柱和棱锥的模型或图片。

3. 学生练习册或工作纸。

教学过程:1. 导入(5分钟)- 引入本课的主题,提问学生是否了解什么是棱台、棱柱和棱锥。

- 引发学生的兴趣,例如提出一个与棱台、棱柱和棱锥相关的问题,如“在我们的生活中有哪些常见的棱台、棱柱和棱锥的例子?”- 让学生分享他们的观点和经验。

2. 概念讲解(15分钟)- 使用幻灯片或黑板、白板等教学辅助工具,向学生介绍棱台、棱柱和棱锥的定义和特性。

- 强调棱台、棱柱和棱锥的共同特点和区别,例如底面形状、侧面数量等。

- 通过示意图或实物模型,展示不同种类的棱台、棱柱和棱锥,帮助学生更好地理解概念。

3. 辨认与分类(20分钟)- 给学生展示一系列图片或模型,要求他们辨认并分类为棱台、棱柱或棱锥。

- 引导学生观察每个几何体的底面形状、侧面数量等特征,帮助他们作出正确的分类。

- 鼓励学生积极参与讨论,解释他们的分类依据,并与同学分享自己的观点。

4. 探索应用(15分钟)- 引导学生思考棱台、棱柱和棱锥在日常生活中的应用。

- 提供一些具体的例子,如建筑物、食品包装等,让学生分析其中的几何形状,并确定是棱台、棱柱还是棱锥。

- 鼓励学生自由发挥,提出更多的例子,并解释其中的几何特征。

5. 总结与拓展(5分钟)- 小结本节课的要点,强调棱台、棱柱和棱锥的定义和特性。

- 提醒学生在日常生活中继续观察和发现棱台、棱柱和棱锥的应用。

- 鼓励学生拓展思维,尝试解决更复杂的几何问题。

6. 作业布置(5分钟)- 分发学生练习册或工作纸,布置相关的练习题,要求学生识别和绘制棱台、棱柱和棱锥。

- 鼓励学生在作业中运用所学的知识,思考几何形状的特征和应用。

棱柱、棱锥、棱台的结构特征说课稿 教案 教学设计

棱柱、棱锥、棱台的结构特征说课稿 教案 教学设计

棱柱、棱锥、棱台的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)会用语言概述棱柱、棱锥、棱台的结构特征。

(3)会表示有关于几何体以及棱柱、棱锥、棱台的分类。

2.过程与方法(1)让学生通过直观感受,从实物中概括出棱柱、棱锥、棱台的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征。

难点:棱柱、棱锥、棱台的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程(一)复习巩固:回顾几个概念①、如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体。

②、由若干个平面多边形围成的空间几何体叫做多面体;围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

(二)E`D`C`B`A`A B CDE 、探究新知 D'C'B'CA B D A`棱柱:1、观察这些图形有什么共同特征?(学生观察思考后,师生共同完成)①有两个面互相平行;②其余各面都是四边形;③相邻两个四边形的公共边互相平行;小结:满足这三个特征的多面体叫做棱柱。

(哪位同学能给棱柱下个定义)六、棱柱的结构特征棱柱:一般地,有两个面相互平行,期于各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面组成的多面体;棱柱的面:棱柱中两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;C'棱柱的侧棱:相邻侧面的公共边;棱柱的顶点:侧面与地面的公共顶点.七、棱柱的性质(1)有两个面互相平行且全等;(2)其余各面都是四边形;(3)每相邻两个四边形的公共边都互相平行;(4)侧面是平行四边形;3、理解棱柱的定义问2:可不可以把棱柱的定义改为:有两个面互相平行,其余各面都是平行四边形。

教学设计5:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

教学设计5:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

§1. 1 空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征三维目标1.知识与技能(1)能根据几何结构特征对空间物体进行分类.(2)通过观察实例,认识棱柱、棱锥、棱台的结构特征.(3)能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台的几何结构特征.(2)让学生在观察、讨论、归纳、概括中获取知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.重点难点重点:让学生感受大量空间实物及模型,概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.重难点突破:以学生熟知的现实世界中几何体为切入点,教师通过提供丰富的实物模型引导学生对观察到的实物进行分类,考虑到棱柱、棱锥、棱台的结构特征的概括既是本节教学的重点又是本节教学的难点,教师可采用多媒体辅助教学法,利用多媒体演示,让学生通过观察比较,从而发现规律,概括出几何体的结构特征,突破难点.教学建议本节内容是立体几何的入门教学,是义务教育阶段“空间与图形”课程的延续与提高,通过本节内容的学习可帮助学生逐步形成空间想象能力.由于本节知识具有概念多、感知性强等特点,教学时建议采用启导法和多媒体辅助教学法.引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,多角度、多层次地揭示空间图形的本质.按照从整体到局部、由具体到抽象的原则,让学生认识棱柱、棱锥、棱台的几何结构特征,进而通过空间图形,培养和发展学生的空间想象能力.课标解读1.通过观察实例,认识棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构.知识1空间几何体的定义、分类及相关概念【问题导思】观察下面两组物体,你能说出各组物体的共同点吗?(1)(2)【提示】(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.多面体与旋转体类别多面体旋转体定义由若干个平面多边形围成的几何体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体图形相关概念面:围成多面体的各个多边形棱:相邻两个面的公共边顶点:棱与棱的公共点轴:形成旋转体所绕的定直线知识2棱柱的结构特征【问题导思】观察下列多面体,有什么共同特点?【提示】(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都相互平行.棱柱的定义、分类、图示及其表示棱柱图形及表示定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图棱柱可记作:棱柱ABCDEF—A′B′C′D′E′F′相关概念:底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点分类:①依据:底面多边形的边数②举例:三棱柱(底面是三角形)、四棱柱(底面是四边形)……知识3棱锥的结构特征【问题导思】观察下列多面体,有什么共同特点?【提示】(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.棱锥的定义、分类、图形及表示棱锥图形及表示定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥相关概念:底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点分类:①依据:底面多边形的边数②举例:三棱锥(底面是三角形)、四棱锥(底面是四边形)……如图棱锥可记作:棱锥S-ABCD知识4棱台的结构特征【问题导思】观察下列多面体,分析其与棱锥有何区别联系?【提示】(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.棱台的定义、分类、图形及表示棱台图形及表示定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台相关概念:上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点分类:①依据:由几棱锥截得②举例:三棱台(由三棱锥截得)、四棱台(由四棱锥截得)……如图棱台可记作:棱台ABCD-A′B′C′D′类型1 棱柱、棱锥、棱台的概念例1下列说法正确的是()A.有两个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有三个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形【思路探究】已知条件→联想空间图形→紧扣定义→得出结论【解析】选项A错,反例如图a;选项C也错,反例如图b,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;一个多面体至少有四个面,如三棱锥有四个面,不存在有三个面的多面体,所以选项B错;根据棱柱的定义,知选项D正确.【答案】D规律方法判断一个几何体是何种几何体,一定要紧扣棱柱、棱锥、棱台的结构特征,注意概念中的特殊字眼,切不可马虎大意,如棱柱的概念中的“相邻”,棱锥的概念中的“公共顶点”,棱台的概念中的“棱锥”等.变式训练下列说法中正确的是()①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④【解析】因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.【答案】A类型2对多面体的识别和判断例2如图1-1-1长方体ABCD—A1B1C1D1.图1-1-1(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分的几何体还是棱柱吗?若是棱柱指出它们的底面与侧棱.【思路探究】观察图形→紧扣概念→得出结论→回答问题【自主解答】(1)这个长方体是棱柱,是四棱柱,因为它满足棱柱的定义.(2)截面BCFE右侧部分是三棱柱,它的底面是△BEB1与△CFC1,侧棱是EF,B1C1,BC.截面左侧部分是四棱柱.它的底面是四边形ABEA1与四边形DCFD1,侧棱是AD,BC,EF,A1D1.规律方法1.解答本题的关键是正确掌握棱柱的几何特征,本题易出现认为所分两部分的几何体一个是棱柱,一个是棱台的错误.2.在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置,如此题,底面也可放在前后位置.变式训练下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).图1-1-2【解析】结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.【答案】①③④⑥⑤易错易误辨析对棱柱、棱锥、棱台的概念理解不到位致误典例如图1-1-3,甲、乙、丙是不是棱柱、棱锥、棱台?为什么?甲乙丙图1-1-3【错解】图甲有两个面ABC和A2B2C2平行,其余各面都是平行四边形,所以甲图的几何体是棱柱;图乙因一面ABCD是四边形,其余各面都是三角形,所以乙图的几何体是棱锥;图丙是棱台.【错因分析】上述错误答案都是根据相应概念的某一个结论去判断几何体,判断的依据不充分,应该按照几何体的定义去判断,或按照与定义等价的条件去判断.【防范措施】切实理解棱柱、棱锥和棱台的定义是解答此类问题的关键.【正解】图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这个几何体不是一个棱柱;图乙中的六个三角形没有一个公共点,故不是棱锥,只是一个多面体;图丙也不是棱台,因为侧棱的延长线不能相交于同一点.课堂小结1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.当堂检测1.如图1-1-4所示的几何体是()图1-1-4A.五棱锥B.五棱台C.五棱柱D.五面体【解析】结合棱柱的概念及分类可知,该几何体是五棱柱.【答案】C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错【解析】结合棱锥的特征知B符合题意.【答案】B3.下列说法正确的有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.【解析】棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而正确的有①②④⑤.【答案】①②④⑤4.下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?(1)(2)(3)(4)图1-1-5【解】(1)是棱柱,可记为五棱柱ABCDE-A1B1C1D1E1;(2)不是棱柱,不满足棱柱的结构特征;(3)是棱柱,可记为三棱柱ABC-A1B1C1;(4)是棱柱,可记为四棱柱ABCD-A1B1C1D1.。

棱柱、棱锥和棱台教学设计

棱柱、棱锥和棱台教学设计

棱柱、棱锥和棱台教学设计江苏省羊尖高级中学邓国华 214107(江苏省中小学数学教研室新课改成果评比二等奖)一、设计思想:立体几何是高中数学的重要部分,也是一些学生觉得困难的地方。

我们经常对学生说,知识来源于实践。

对于中学数学而言,如果把所有的知识都还原到实践中,再让学生从实践中获得,显然办不到,也没有必要。

但对于《立体几何》的教学而言,这种做法却是非常必要的。

虽说高一的新生已拥有了初中的平面几何知识,但这些知识中的大多数对学生学习立体几何来说是一种无效铺垫。

人们对客观世界的感知首先是体,而不是面,更不是点。

上课时,设计为学生拿出早已准备好的细棍、硬纸板等,按照一定的步骤做数学实验,用自己构造的模型证明自己结论的正确,同时也为其他同学的错误结论构造反例。

讨论、争辩、快乐、喜悦,每个同学都在自己的亲身体验中培养创新意识、创新思维和创新能力,同时拓展着他们对空间世界的认知能力。

作为立体几何的起始阶段,尽量利用线、面、体等实物模型以及对直观图的多角度的观察、比较、对照和想象、识别,直至学生能正确迅速地看得懂图,想得出形(体),发展学生的空间想象能力。

在本节课的设计过程中运用了多媒体课件。

计算机技术的广泛应用,使得数学能够在某些方面直接为社会创造价值,新的课程标准把信息技术与数学课程内容整合作为基本理念之一。

实现信息技术与课程内容的有机整合。

几何画板的运用很好的将原本及具抽象性的棱、柱、锥三者间动态的变化形象生动的展示在学生面前,同时也激发了学生的学习兴趣。

二、教学内容分析:立体几何是研究三维空间中物体的形状、大小、位置关系的一门数学学科,而三维空间是人们生存发展的现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与发展具有重要意义。

在立体几何初步部分,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系。

本节内容既是义务教育阶段“空间与图形”课程的延续和提高,也是后续研究空间点、线、面位置关系的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

棱柱,棱锥,棱台的表面积和体积教学设计

棱柱,棱锥,棱台的表面积和体积教学设计

棱柱,棱锥,棱台的表面积和体积教学设计教学设计:棱柱、棱锥、棱台的表面积和体积一、教学目标:1.了解棱柱、棱锥、棱台的定义和特点。

2.掌握计算棱柱、棱锥、棱台的表面积和体积的方法。

3.能够解决与实际生活相关的问题,灵活运用所学知识。

二、教学内容:1.棱柱的表面积和体积-定义:棱柱是底面为多边形,且侧面都是平行于底面的平面多边形的立体图形。

-表面积:底面的面积加上所有侧面的面积。

-体积:底面的面积乘以高度。

2.棱锥的表面积和体积-定义:棱锥是底面为多边形,且侧面都是从一个顶点到底面各边的连线的立体图形。

-表面积:底面的面积加上侧面的面积。

-体积:底面的面积乘以高度再除以3。

3.棱台的表面积和体积-定义:棱台是上下底面相等且平行,侧面为梯形的立体图形。

-表面积:上下底面的面积加上四个侧面的面积。

-体积:上下底面的面积乘以高度再除以2。

三、教学过程:1.导入(5分钟)引入新内容,通过展示不同形状的棱柱、棱锥、棱台的图示,让学生通过观察和思考,激发他们对这些几何体的好奇心和兴趣。

2.重点讲解(20分钟)a)针对棱柱,让学生了解定义和基本特点,并通过示例计算棱柱的表面积和体积,帮助学生掌握计算方法。

b)类似地,让学生了解棱锥和棱台的定义和特点,并计算其表面积和体积。

c)强调计算表面积和体积的公式,让学生明确计算的步骤和方法。

3.练习与巩固(25分钟)a)分发练习题,让学生自主完成计算棱柱、棱锥、棱台的表面积和体积题目。

b)鼓励学生在解答问题时灵活运用所学知识,将几何形状和实际生活中的问题相结合,增强学生的综合运用能力。

4.拓展与应用(25分钟)a)给出一些实际问题,让学生运用所学知识解决,例如:-饮料瓶的形状是棱柱体,求它的表面积和体积。

-蜡烛的形状是棱锥体,求它的表面积和体积。

-塔楼的形状是棱台体,求它的表面积和体积。

b)让学生在小组中合作,分享和比较解决方案,培养他们的思考和合作能力。

5.总结与评价(5分钟)回顾本节课所学内容,让学生总结计算棱柱、棱锥、棱台表面积和体积的公式和方法,并进行简单的评价,了解学生对本节课的掌握情况。

人教版高中数学高一数学《111棱柱、棱锥和棱台》教案

人教版高中数学高一数学《111棱柱、棱锥和棱台》教案

教学目标:1.认识棱柱、棱锥和棱台的结构特征;2.了解棱柱、棱锥和棱台的概念;教学重点:棱柱、棱锥和棱台的概念和结构特征;教学难点:棱柱的结构特征;教学过程:一、棱柱的概念1.问题情境:(1)初中我们已经知道了“点动成线,线动成面”,那么面动成什么?(2)请观察下列平面在运动过程中构成了什么几何体?2.数学理论:(1)一般的,由一个平面多边形沿某个方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面.(2)请观察下列棱柱的实例,谈谈棱柱的共同特征.归纳:(1)两个底面是(2)侧面都是3.数学运用:(1)探究一:棱柱中互相平行的面是不是只有这一对?例1 下图分别判断(1)中的三棱镜,(2)中的方砖,(3)中的螺杆头部模型,分别有多少对互相平行的平面,其中能作为棱柱底面的分别有几对?(1)(2)(3)例2 如图,用过BC的一个平面截去长方体的一个角,剩下的几何体是什么?截去的几何体是什么?请说出各部分的名称。

{2}探究二:有两个面平行,且其它面都是平行四边形的几何体是否一定是棱柱?解:说明:由于棱柱是由一平面多边形沿某一方向平移形成的,因此棱柱的概念有两个本质的属性:①有两个面(底面)互相平行;②其余每相邻两个面的交线互相平行.(也可以通过这个性质来定义棱柱)。

本题的说法忽视了棱柱每相邻两个面的交线互相平行的属性.(3)探究三:各种各样的棱柱,主要有什么不同?你认为棱柱的分类标准是什么?二、棱锥的概念1.问题情境:棱锥的概念我们初中也学习过了,你能设法让棱柱变为棱锥吗?2.数学理论:(1)当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.与棱柱相仿,棱锥中也有一些常用名称:(2)观察几个棱锥的实例,概括棱锥的本质特征:归纳:(1)底面是(2)侧面是.3.数学运用:{1}探究三:各面都是三角形的多面体一定是三棱锥?结论:(2)探究四:用一个平行于棱柱底面的平面去截棱柱,截面和底面什么关系?截开后的两部分分别是什么几何体?用一个平行于棱锥底面的平面去截棱柱,截面和底面什么关系?截开后的两部分分别是什么几何体?三、棱台的概念1.数学理论用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台.棱台中的有关概念:2.数学运用探究五:你认为下面的图形是否是棱台,为什么?说明:由于棱台是从棱锥截得的,因此棱台可以还原成棱锥,因此其侧棱所在直线必交于一点。

教学设计8:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

教学设计8:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

§1.1第1课时棱柱、棱锥、棱台的结构特征【课标要求】1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征.2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算.【核心扫描】1.在观察认知棱柱、棱锥、棱台的结构特征过程中培养抽象概括能力和空间想象能力.(重点)2.通过棱柱、棱锥、棱台结构特征的应用提高分析解决问题的能力,增强应用意识.(难点)新知导学1.空间几何体、多面体的概念(1)空间几何体如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)多面体一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.温馨提示:(1)按多面体是否在任一面的同侧关系分,可分为凸多面体(把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧)和凹多面体.我们所研究的多面体若不特别说明,都是指凸多面体.(2)多面体按围成它的面的个数分,可分为四面体、五面体、六面体……2.简单的多面体——棱柱、棱锥、棱台多面体结构特征图形表示法棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻的侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱柱,可记为棱柱ABCD-A′B′C′D′做棱柱的顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱如图所示,该棱锥可表示为棱锥S-ABCD棱台用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱台,可记为棱台ABCD-A′B′C′D′温馨提示:棱柱、棱锥、棱台的形状虽然不同,但它们可以互相转化:当台体的上、下底全等时,棱台转化为棱柱,当棱台的上底面收缩为一点时,棱台转化为棱锥,即:因此,棱柱与棱锥都是棱台的特例.互动探究探究点1 面数最少的多面体有几个面?提示面数最少的多面体是四面体(三棱锥),有4个面.探究点2 (1)有一个面是多边形,其余各面都是平行四边形的几何体一定是棱柱吗?(2)有一个面是多边形,其余各面都是三角形的几何体一定是棱锥吗?提示(1)不一定.如图所示(1)的几何体就不是棱柱.图(1)图(2)(2)不一定.如图(2)所示的几何体就不是棱锥.探究点3 (1)棱台的上下底面一定平行且相似吗?棱台的一个侧面可为平行四边形吗?(2)有两个面平行且相似,其余各面都是梯形的几何体一定是棱台吗?提示(1)棱台的上下底面一定平行且相似;棱台的一个侧面不能为平行四边形,否则侧棱延长后不能相交于一点.(2)不一定.当两个面平行且相似,对应边成比例;其余各面都是梯形才是棱台如图(1);当两个面平行且相似,对应边不成比例,其余各面都是梯形,也不是棱台如图(2).类型一棱柱、棱锥、棱台的结构特征【例1】下列三个命题中,正确的有().①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④五棱台的各侧棱的延长线可能无法交于一点.A.0个B.1个C.2个D.3个[思路探索]根据棱柱、棱锥、棱台的结构特征判断.【解析】①错误.底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误.如图所示的几何体各面均为三角形,但不是棱锥.③错误.因为不能保证侧棱相交于同一点(如探究3中的图形).④错误.棱台的侧棱延长后一定相交于同一点.【答案】A[规律方法]解决这类问题,关键在于准确把握简单多面体的结构特征,也就是以概念的本质内涵为依据,以具体实物和图形为模型来进行判定.【活学活用1】判断下列说法是否正确.(1)三棱柱有6个顶点,(2)三棱锥有4个顶点;(3)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.解(1)正确.符合棱柱顶点的定义.(2)不正确.对于一个三棱锥,只能一个顶点,一个底面.(3)不正确.因为截面不一定与底面平行.(4)不正确.如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.类型二空间几何体的平面展开图【例2】如图是三个几何体的侧面展开图,请问各是什么几何体?[思路探索] 可动手做一模型解决问题.解①五棱柱;②五棱锥;③三棱台.如图所示.[规律方法]立体图形的展开或平面图形的折叠是培养空间想象能力的好方法,解此类问题可以结合常见几何体的定义与结构特征,进行空间想象,或亲自动手制作平面展开图进行实践.【活学活用2】如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是().A.①③B.②④C.③④D.①②【解析】可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.【答案】C类型三多面体的有关计算【例3】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高(过顶点向底面作垂线,顶点与垂足的距离).[思路探索] 求出底面正三角形的中心到三角形顶点的距离,再利用它与棱锥的高、侧棱构成的直角三角形解决.解底面正三角形中,边长为3,高为3×sin 60°=332,中心到顶点距离为332×23=3,则棱锥的高为22-(3)2=1.[规律方法](1)要把侧面的高与几何体的高分开,不能混为一谈.(2)注意结合条件,构造直角三角形来解决问题.而对于棱台的有关计算常恢复到棱锥并借助相似比来解决.【活学活用3】 一个棱台的上、下底面积之比为4∶9,若棱台的高是4 cm ,求截得这个棱台的棱锥的高.解 如图所示,将棱台还原为棱锥,设PO 是原棱锥的高,O 1O 是棱台的高,∵棱台的上、下底面积之比为4∶9,∴它们的底面对应边之比A 1B 1∶AB =2∶3,∴P A 1∶P A =2∶3.由于A 1O 1∥AO ,∴P A 1P A =PO 1PO, 即PO -O 1O PO =PO -4PO =23. ∴PO =12 (cm),即原棱锥的高是12 cm.方法技巧 多面体表面距离最短问题表面距离最短问题,一般方法是展成平面图形,利用两点间距离最短来解决.【示例】 如图(1)所示,在侧棱长为23的正棱锥V ­ABC 中(底面为正三角形,过顶点与底面垂直的直线过底面的中心),∠AVB =∠BVC =∠CVA =40°,过A 作截面△AEF ,求截面△AEF 周长的最小值.[思路分析] 把正三棱锥的侧面展开成平面图形,当△AEF 的各边在同一直线上时,其周长最小.解 将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图(2)所示, 线段 AA 1的长为所求△AEF 周长的最小值,取AA 1的中点D ,则VD ⊥AA 1,∠AVD =60°,可求AD =3,则AA 1=6.[题后反思] 有关几何体的距离的最值问题有两类基本方法:(1)函数思想:设出变量,把所求距离写出关于变量的函数表达式,再利用函数方法求最值.(2)转化思想:通过表面 展开,转化为平面问题变曲为直,利用几何性质求解.课堂小结1.在理解的基础上,要牢记棱柱、棱锥、棱台的含义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.课堂达标1.三棱锥的四个面中可以作为底面的有().A.1个B.2个C.3个D.4个【解析】由于三棱锥的每一个面均可作为底面,应选D.【答案】D2.棱台不具备的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点【解析】用棱台的定义去判断.【答案】C3.不在棱柱同一个平面上的两个顶点的连线叫做棱柱的体对角线,则长方体共有________条体对角线.【解析】通过观察实物(如粉笔盒)可知长方体有4条对角线.【答案】44.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图的平面图形,则标“△”的面的方位是________.【解析】如图所示的正方体ABCD­A1B1C1D1,沿棱DD1,D1C1,C1C剪开,使正方形DCC1D1向北方向展开;沿棱AA1,A1B1,B1D剪开,使正方形ABB1A1向南方向展开,然后将正方体沿BC剪开并展开,则标“△”的面的方位是北.【答案】北5.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点(3)每个面的三角形面积为多少?解(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE 和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=3 2a2.。

棱柱、棱锥、棱台结构特征最完整教案

棱柱、棱锥、棱台结构特征最完整教案

旋转体
定义
由若干个 _平__面__多__边__形__ 围成的几何 体.
由一个平面图形绕它所在平 面内的一条__定__直__线__旋转所 形成的_封__闭__几__何__体___.
棱柱、棱锥、棱台结构特征最完整 教案
图形
面:围成多面体的各
个__多__边__形___.
相 关 棱:相邻两个面的 轴:形成旋转体所绕
概念 __公__共__边____.
的__定__直__线____.
顶点:__棱__与__棱___的公
共点.
棱柱、棱锥、棱台结构特征最完整 教案
一 棱柱的结构特征及特殊棱柱
棱柱、棱锥、棱台结构特征最完整 教案
1.棱柱的结构特征: (1)有两个面互相平行. (2)各侧面都是平行四边形。 (2)各侧棱都平行。
棱柱、棱锥、棱台结构特征最完整 教案
有一个面是
_多__边__形___,
其余各面都
棱 锥
是有一个公 共顶点的 _三__角__形____,
由这些面所 如图可记作:棱
围成的多面 锥:
体叫做棱锥 _S_-__A__B_C_D___
底面(底): _多__边__形___面. 侧面:有公共 顶点的各个 _三__角__形__面____. 侧棱:相邻侧 面的_公__共__边__. 顶点:各侧面
互相_平__行__, _A_B_C__D_E__F_-___ _边___.
由这些面所 _A_′__B__′__C_′____ 顶点:侧面
围成的多面 _D__′__E_′__F_′____ 与底面的_公__
体叫做棱柱.
_共__顶__点____.
棱柱、棱锥、棱台结构特Байду номын сангаас最完整 教案

棱柱、棱锥、棱台学习教案

棱柱、棱锥、棱台学习教案

棱柱、棱锥、棱台学习教案。

引入教导棱柱、棱锥、棱台时,我们要以多样的引入方式使学生进入主题,在学生的思维安排中启发对于这些几何形体的认知。

例如,当引入棱柱的时候,我们可以给学生展示一个装有不同颜色饼干的长方体(棱柱),让学生用立体图像帮助他们描述长方体。

我们可以要求学生想象自己是小农民,在采摘苹果的时候发现了一个长方形的饮料瓶,他们怎么描述它的形状和特征。

展示在展示棱柱、棱锥、棱台的时候,我们需要提供给学生充足的时间来观察这些几何形体。

例如,当展示棱锥的形状时,我们可以用类比的方法来让学生理解这种形状。

“蒲公英”其实也是一种棱锥形状,学生们可以用“蒲公英”的形状来帮助他们描述棱锥。

我们可以要求学生拿出一些不同形状的模型块,用这些模型块造出不同形状的棱锥,并让他们能够用具体实际的操作来理解这种形状。

探究在探讨几何形体的性质时,我们可以利用多种方式来帮助学生看到形状的不同侧面。

例如,在展示棱柱的时候,我们可以给学生们一份棱柱表,带他们了解这些棱柱相互之间的不同点。

我们也可以让学生在实际生活中寻找具有棱柱形状的物品,如蜡烛、笔筒、水杯等,并让他们发现这些物体的共同特征。

评估我们需要评估学生是否实现彻底的理解和熟练的技能,这可以通过多种方式达到。

例如,我们可以通过布置棱柱、棱锥、棱台的习题,来检验学生的掌握情况,也可以通过让学生用棱柱、棱锥、棱台作为材料制作一些实用的东西,来考察他们的实践能力。

总结在教学中,我们需要引导学生理解几何形体的本质,并寻找与学生的生活和经验相关的例子。

当学生理解了这些几何形体的概念和性质时,我们需要让他们在实际中将所掌握的知识转化成技能。

在这个过程中,我们需要提供充足的练习和评估,以确保学生能够顺利掌握这些知识和技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

棱柱、棱锥和棱台教学设计江苏省羊尖高级中学邓国华 214107(江苏省中小学数学教研室新课改成果评比二等奖)一、设计思想:立体几何是高中数学的重要部分,也是一些学生觉得困难的地方。

我们经常对学生说,知识来源于实践。

对于中学数学而言,如果把所有的知识都还原到实践中,再让学生从实践中获得,显然办不到,也没有必要。

但对于《立体几何》的教学而言,这种做法却是非常必要的。

虽说高一的新生已拥有了初中的平面几何知识,但这些知识中的大多数对学生学习立体几何来说是一种无效铺垫。

人们对客观世界的感知首先是体,而不是面,更不是点。

上课时,设计为学生拿出早已准备好的细棍、硬纸板等,按照一定的步骤做数学实验,用自己构造的模型证明自己结论的正确,同时也为其他同学的错误结论构造反例。

讨论、争辩、快乐、喜悦,每个同学都在自己的亲身体验中培养创新意识、创新思维和创新能力,同时拓展着他们对空间世界的认知能力。

作为立体几何的起始阶段,尽量利用线、面、体等实物模型以及对直观图的多角度的观察、比较、对照和想象、识别,直至学生能正确迅速地看得懂图,想得出形(体),发展学生的空间想象能力。

在本节课的设计过程中运用了多媒体课件。

计算机技术的广泛应用,使得数学能够在某些方面直接为社会创造价值,新的课程标准把信息技术与数学课程内容整合作为基本理念之一。

实现信息技术与课程内容的有机整合。

几何画板的运用很好的将原本及具抽象性的棱、柱、锥三者间动态的变化形象生动的展示在学生面前,同时也激发了学生的学习兴趣。

二、教学内容分析:立体几何是研究三维空间中物体的形状、大小、位置关系的一门数学学科,而三维空间是人们生存发展的现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与发展具有重要意义。

在立体几何初步部分,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系。

本节内容既是义务教育阶段“空间与图形”课程的延续和提高,也是后续研究空间点、线、面位置关系的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

本节内容使学生在运动变化过程中认识柱、锥、台、球的几何特点,进而引导学生运用这些特征描述现实生活中的简单物体的结构,符合学生的认识发展规律,培养了学生对几何学习的兴趣,增进了学生对几何本质的了解,倡导学生积极主动、勇于探索的学习方法,同时,使学生进一步体会、比较、化归、分析等一般科学方法的运用。

在本节教学中,从整体到局部、从具体到抽象,要充分借助实物模型,从整体观察入手,运用运动变化的观点,通过直观感知、操作确认,引导学生认识柱、锥、台、球等简单几何体的结构特征,多角度、多层次地揭示空间图形的本质,突出几何体的本质特征,注意适度地形式化,促进学生主动探索的学习方式的形成,帮助学生完善思维结构,发展空间想象能力。

三、教学目标分析三维目标(一、)知识与技能1.认识棱柱、棱锥、棱台及多面体的几何特征2.了解棱柱、棱锥、棱台及多面体的概念3.会画出棱柱、棱锥、棱台的图形4.了解简单几何体的组合与分割(二、)过程与方法1.通过组织学生观察棱柱的生成特点,用图形平移的方法引出棱柱的概念,有利于学生空间观念的形成。

2.教学中用收缩的方法引出棱锥的概念,再用棱锥的概念去定义棱台的概念,培养学生因运动变化的观点认识棱柱、棱锥、棱台的辩证关系,感受自然界的辩证法。

3.通过本课的学习,使学生进一步体会观察、比较、归纳、分析等一般科学方法的运用。

4.教学过程中渗透类比、转化、割补等数学思想方法。

(三、)情感态度与价值观三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像力,学会用运动变化的观点观察问题,从而更深刻地认识空间图形间的内在联系。

教学重点1.棱柱、棱锥、棱台以及多面体的概念以及各个概念之间的辩证关系。

2.画棱柱、棱锥、棱台的图形。

教学难点1.对图形平移以及对棱台概念的理解2.平面几何图形与空间几何图形的区别四、教学准备:短片与图片下载;课件制作;实物模型收集;正三角形剪纸;等长木棒或笔。

五、教学过程教学流程:创设情境——观察实践——想象推理——实践应用具体模型、实物课前分发给学生,让学生搭建模型、观察模型,播放建筑物短片,让学生感受空间物体的造型,认识几何体。

多媒体展现学校“三人”雕塑,浦东建筑,金字塔等图片让学生感受身边的几何体。

Q1 生活中的建筑和物体一般都是由有哪些基本图形构成的?空间几何体 柱 锥 台 球――研究对象今天,我们首先来研究其中的棱柱、棱锥和棱台――揭示课题Q2 我们都知道点的运动可以形成线,线的运动可形成面,那么由面的运动又可形成什么呢?(学生猜测,教师用多媒体动画演示――五边形平移成一几何体,即由面的运动可形成几何体,并旋转让学生从不同角度观察)展示组图Q3 通过观察,你能发现以下几何体,可以分别由怎样的平面图形按何方向平移而得。

F'F A B C D E A'B'C'D'E'E E'B'A'D'C'C BD A A'B'C'A B C D'C'B'A'DC B A(4)(3)(2)(1)⑴平行四边形ABCE 按AA ,方向平移形成答案不唯一,可提醒学生从多角度思考发现,⑴说完后,可让学生仿⑴说法说出后几个。

Q4 你能发现它们有什么共同点吗?(都是由一个平面多边形按某一方向平移而成)揭示棱柱定义一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫棱柱。

底面:平行起止的两个平面叫做棱柱的底面。

(图上标上底面)Q:位置关系如何?两底面平行且全等侧面:多边形边平移所形成的面叫棱柱的侧面。

(图上标上侧面)Q:侧面为何图形?平行四边形侧棱:两侧面的公共边叫做棱柱的侧棱。

顶点:交点为顶点你能给(1)起个名字吗?底面为四边形的棱柱叫四棱柱,记做棱柱ABCD-A'B'C'D'其余的图形让学生说说一说。

练习:观察下列几何体是否是棱柱?(1)(2)(3)⑴是:由一个梯形由内而外平移而得变:将此几何体竖立,是否是棱柱?仍是⑵不是:不能由一个五边形按某一方向平移而得拿出两个相同的斜四棱柱拼起来让学生判断是否是棱柱?引导学生要对几何体从不同的角度观察和分析,然后作出判断。

⑶是:可由一个五边形由内向外平移而得小结:当我们判断一几何体是否为棱柱,一定要从多角度来观察、合理分析,从而作出正确判断。

设计意图:让学生通过动手做,亲身体验几何体的结构特征,帮助学生初步学生形成空间想象能力;通过三维动画的演示、观察图形、读图,使学生正确的识别图形——棱柱,加深对棱柱特征的认识,从而掌握棱柱的概念,提高空间想象能力。

Q5 观察下列几何体有何共同点?与下图比有何变化?(4)(3)(2)(1)(1)(2)(3)(4)由学生观察并得出结论:下组图上的一个面收缩到一点时即可成上组图。

教师动画演示,棱柱收缩成锥。

师生共同归纳棱锥定义:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥。

C'B'A'P'DC B AP(2)(1)类比棱柱:标出底面 Q :底面是何图形?平面多边形标出顶点:由棱柱的一个底面收缩而成标出侧面:Q :侧面是何图形?三角形标出侧棱:相邻侧面的公共边(1)名称符号:棱锥P -ABCD ,说出(2)的顶点和底面Q6 如果用一个平行底面的平面截棱锥,则可得到一个怎样的几何体?-棱台(动画演示) 请用符号说出棱台的底面,侧棱、侧面 j D'C'B'A'DC B A练习:下面的几何体是棱台吗?为什么?H GEFD CAB不是,四棱延长后不交于一点。

设计意图:通过类比的方法,进一步的直观感知、操作确认,让学生用脑去想、去推,得出棱锥、棱台的结构特征。

研究策略:从运动角度看,点运动成线,线运动成面,面运动成空间,立体图形反之也可。

Q:由棱台如何变成锥?若也由上底面收缩到一点,仍是原先的锥吗?例1:画一个四棱柱和一个三棱台四棱柱第一步:画上底面――画一个四边形第二步:从四边形的每一个顶点画平行且相等的线段第三步:画下底面――顺次连结这些线段的另一个端点三棱台:第一步:画一个三棱锥,在它一条侧棱上取一点第二步:从这个点开始,顺次在各个侧面内画出与底面对应边平行的线段。

第三步:将多余的线段擦去设计意图:让学生自己动手画,加深对三种简单几何体的理解和运用,进一步的培养学生空间想象能力。

练习:下面几何体是何几何体?先出现(3)然后依次出现。

你能说出下列几何体是什么几何体吗?明矾晶体石膏晶体食盐晶体想一想:今天我们所学的空间几何体有什么共同特点?定义:由若干个平面多边形围成的几何体叫做多面体。

设计意图:让学生用眼观察几何体的结构特征,用脑去想、去归纳几何体的一般结构特征,逐步渗透立体几何的数学思想。

问题练习:1.多面体至少有几个面?这个多面体是怎样的几何体?2.六根长度相等的棒(首尾相连)可以最多搭成几个正三角形?3.一个等边三角形如何折成问题1中的几何体?设计意图:再次让学生动手实践,培养和提高数学思维能力与空间想象能力小结回顾:1.通过今天的学习,你掌握了什么?给你印象最深的是什么?2.通过今天的学习,你能否初步归纳一下学习空间几何的方法。

3.通过今天的学习,你感悟到了哪些数学思想和方法?课后研究:1.剪出什么形状的纸可以折成正方体?2.相同或不同的简单几何体组合后还会是简单几何体吗?3.保龄球的空间图形可以通过什么图形怎样运动形成?板书设计§1.1.1棱柱棱锥棱台点线面空间几何图形从运动的角度定义:(棱柱棱锥棱台)学习方法:观察、比较、归纳、分析数学思想:类比、转化、割补六、素材推荐课件(自作)七、教后反思(一)观察想象,实践探究,是学习立体几何的基本思想和方法。

借助大量的实物和模型,体验生活,动手实践,建立空间几何体模型,促使学生通过多种视角观察、认识空间图形,加强几何的直观教学。

培养和发展学生空间想象、推理论证等能力应贯穿于立体几何教学过程的始终。

首先,播放了一段关于风景建筑和商品的介绍短片。

其次,让学生观察熟悉的、不熟悉的实物和模型。

再让学生用事先准备好的等长的棒,相互合作,搭正三角形,看谁搭的最多。

最后,再让学生用准备好的正三角形的纸折叠三棱锥。

如此创设情境有三个目的:一是缓解学生紧张的情绪,为课堂营造轻松活跃的氛围;二是导入新课,为让学生用数学的眼光观察生活中的建筑和物体,通过想象并说出简单、基本的空间几何体图形创设情景;三是逐步实现平面概念向空间概念的转化,促使学生初步形成空间概念,初步培养学生空间想象能力和合情推理能力,进一步体会观察、比较、归纳、分析等一般科学方法的应用。

相关文档
最新文档