课标版数学中考第二轮专题复习总结-5代数综合题(含答案)(
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
2022年中考复习《代数综合》专项练习附答案
代数综合1、〔2021•德州〕以下函数中,当x>0时,y随x的增大而增大的是〔〕A.y=﹣x+1 B.y=x2﹣1C.1yxD.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1〔x>0〕,故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧〔x<0〕,y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1〔x>0〕,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧〔x<0〕,y随着x的增大而增大,错误;应选B.点评:此题综合考查二次函数、一次函数、反比例函数的增减性〔单调性〕,是一道难度中等的题目.2、〔2021•攀枝花〕如图,抛物线y=ax2+bx+c经过点A〔﹣3,0〕,B〔1.0〕,C〔0,﹣3〕.〔1〕求抛物线的解析式;〔2〕假设点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;〔3〕设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?假设存在,请直接写出点M的坐标;假设不存在,请说明理由.考点:二次函数综合题.分析:〔1〕抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;〔2〕过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为〔x,x2+2x﹣3〕,根据AC的解析式表示出点N的坐标,再根据S△PAC=S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;〔3〕分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为〔0,t〕,根据勾股定理列出方程,求出t的值即可.解答:解:〔1〕由于抛物线y=ax2+bx+c经过A〔﹣3,0〕,B〔1,0〕,可设抛物线的解析式为:y=a〔x+3〕〔x﹣1〕,将C点坐标〔0,﹣3〕代入,得:a〔0+3〕〔0﹣1〕=5,解得 a=1,那么y=〔x+3〕〔x﹣1〕=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;〔2〕过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为〔x,x2+2x﹣3〕,那么点N的坐标为〔x,﹣x﹣3〕,∴PN=PE﹣NE=﹣〔x2+2x﹣3〕+〔﹣x﹣3〕=﹣x2﹣3x.∵S△PAC=S△PAN+S△PCN,∴S=PN•OA=×3〔﹣x2﹣3x〕=﹣〔x+〕2+,∴当x=﹣时,S有最大值,此时点P的坐标为〔﹣,﹣〕;〔3〕在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=〔x+1〕2﹣4,∴顶点D的坐标为〔﹣1,﹣4〕,∵A〔﹣3,0〕,∴AD2=〔﹣1+3〕2+〔﹣4﹣0〕2=20.设点M的坐标为〔0,t〕,分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即〔0+3〕2+〔t﹣0〕2+20=〔0+1〕2+〔t+4〕2,解得t=,所以点M的坐标为〔0,〕;②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即〔0+1〕2+〔t+4〕2+20=〔0+3〕2+〔t﹣0〕2,解得t=﹣,所以点M的坐标为〔0,﹣〕;③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即〔0+3〕2+〔t﹣0〕2+〔0+1〕2+〔t+4〕2=20,解得t=﹣1或﹣3,所以点M的坐标为〔0,﹣1〕或〔0,﹣3〕;综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为〔0,〕或〔0,﹣〕或〔0,﹣1〕或〔0,﹣3〕.点评: 此题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.3、〔2021达州压轴题〕如图,在直角体系中,直线AB 交x 轴于点A 〔5,0〕,交y 轴于点B ,AO 是⊙M 的直径,其半圆交AB 于点C ,且AC=3。
2011年中考数学二轮复习--代数几何综合题(附答案)
2010年中考数学二轮复习--代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题. Ⅱ、典型例题剖析【例1】(温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。
⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。
解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是BDC 中点,∴HC=HB =12 BC ,∵∠CAE=900,∴AC 2=CH·CE=12 BC·CE⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.【例2】(自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。
过C 作CD ⊥x 轴,D 为垂足.(1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。
中考试题初三二模代数综合题汇总含答案.docx
2016北京市各区初三数学二模 代数综合题汇总西城27.在平面直角坐标系xOy 中,抛物线1C :2144y ax ax =--的顶点在x 轴上,直线l :25y x =-+与x 轴交于点A .(1)求抛物线1C :2144y ax ax =--的表达式及其顶点坐标;(2)点B 是线段OA 上的一个动点,且点B 的坐标为(t ,0).过点B 作直线BD ⊥x 轴交直线l 于点D ,交抛物线2C :2344y ax ax t =--+于点E .设点D 的纵坐标为m ,点E 的纵坐标为n ,求证:m n ≥; (3)在(2)的条件下,若抛物线2C :2344y ax ax t =--+与线段BD 有公共点,结合函数的图象,求t 的取值范围.西城27.(1)解:∵抛物线1C :2144y ax ax =--, ∴它的对称轴为直线422ax a-=-=. ∵抛物线1C 的顶点在x 轴上,∴它的顶点为(2,0).……………………………………………………1分 ∴当2x =时,440y a =--=.∴1a =-.∴抛物线1C 的表达式为2144y x x =-+-.………………………………2分(2)证明:∵点B 的坐标为(t ,0),且直线BD ⊥x 轴交直线l :25y x =-+于点D ,∴点D 的坐标为(t ,5t -+).……………………………………………3分∵直线BD 交抛物线2C :2344y x x t =-+-+于点E ,∴点E 的坐标为(t ,254t t -+-).……………………………………4分∵m n -=(5)t -+2(54)t t --+-269t t =-+2(3)0t =-≥,∴m n ≥.……………………………………………………………………5分(3)解:∵抛物线2C :2344y x x t =-+-+与线段BD 有公共点,∴点E 应在线段BD 上.∵由(2)可知,点D 要么与点E 重合,要么在点E 的上方, ∴只需0n ≥, 即2540t t -+-≥.∵当2540t t -+-=时, 解得1t =或4t =.∴结合函数254y t t =-+-的图象可知,符合题意的t 的取值范围是14t ≤≤.海淀27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由; (2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式. 西城 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4),∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分房山27.如图,在平面直角坐标系xoy 中,已知点P (-1,0),C()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标. (3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.房山27.解:(1)∵1=∆CAP S ,C()1,12-,∴1121=⨯AP ,xy12345–1–2–3–4–512345–2–3–4–5oxy 12345–112345–2–3–4–5o∴AP =2,∵P 为AB 中点,P (-1,0), ∴A (-3,0),B (1,0); -----------1分∴过A 、B 、D 三点的抛物线的表达式为:322-+=x x y ----------------------2分 (2)抛物线322-+=x x y 沿x 轴翻折所得的新抛物线关系式为322+--=x x y ,∵1==∆∆APC APQ S S ,∴点Q 到x 轴的距离为1,且Q 点在图象G 上(27题图1)∴点Q 的纵坐标为1 ∴1322=+--x x 或1322=-+x x .----------------------------------3分解得:311+-=x ,312--=x ,513+-=x ,514--=x -----4分∴所求Q 点的坐标为:)1,31(1+-Q ,)1,31(2--Q ,)1,51(3+-Q ,)1,51(4--Q ----5分27题图227题图1 (3)如图(27题图2)∵N (0,-1),∴点N 关于x 轴对称点N ′(0,1), ∵点D (0,-3),∴点D 关于对称轴的对称点D ′(-2,-3),∴直线N ′D ′的关系式为y =2x +1, -----------------------------------6分∴E (-0,21)当x =-1时,y =-1,∴F (-1,-1) ----------------------------------7分直线与抛物线交点:朝阳27.在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛xyQ 1Q 3Q 2Q 412345–1–2–3–4–512345–1–2–3–4–5CPA oxyN'D'12345–1–2–3–4–512345–1–2–3–4–5EFDN o物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C )记为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.朝阳27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. (1)分 ∴抛物线的表达式为2286y x x =-+-.…………………………………2分∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分(2)由题意得,平移后抛物线表达式为()2232y x =--+……………………4分∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤.……………………………7分丰台27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于A ,B 两点,且点A 的坐标为(3,0).(1)求点B 的坐标及m 的值;(2)当23x -<<时,结合函数图象直接写出y 的取值范围;(3)将抛物线在x 轴上方的部分沿x 轴翻折,抛物线的其余部分保持不变,得到一个新图象M .若)0(1≠+=k kx y 直线与图象M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.丰台27.(1)将()3,0A 代入,得1m =.-------1分∴抛物线的表达式为223y x x =--. ∴B 点的坐标()1,0-.-------2分 (2)y 的取值范围是45y -≤<.-------5分(3)当x =21时,y =415-. 代入1y kx =+得219-=k .当x =-1时,y =0,代入1y kx =+得k =1. 结合图象可得,k 的取值范围是1=k 或192k <-. -------7分怀柔27.已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点. (1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k≠0)经过 A , C 两点,当y 1 >y 2时,求自变量x 的取值范围; (3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.xyO–5–4–3–2–112345–4–3–2–11234567怀柔27.解:(1)把A (-1,0)、B (0,-3)两点带入y 1 得: y 1=x 2-2x-3………………………………1分 顶点坐标(1,-4) ………………………………………2分 (2)把C (4,m )代入y 1, m=5,所以C (4,5), ……………………………………3分把A 、C 两点代入y 2 得:y 2 =x+1.………………………………………………4分如图所示:x 的取值范围:x<-1或x>4 . …………………………………………………5分 (3)设直线AC 平移后的表达式为y=x+k得: x 2-2x-3=x+k ………………………………………6分 令Δ=0,k=-421 所以平移后直线的表达式:y=x-421. ………………………7分顺义27.已知关于x 的一元二次方程2(21)20x m x m -++=. (1)求证:不论m 为任何实数时,该方程总有两个实数根; (2)若抛物线2(21)2y x m x m =-++与x 轴交于A 、B 两点(点A 与点B 在y 轴异侧),且4AB =,求此抛物线的表达式;(3)在(2)的条件下,若抛物线2(21)2y x m x m =-++向上平移b 个单位长度后,所得到的图象与直线y x =没有交点,请直接写出b 的取值范围.顺义 27. 解:(1)[]22224(21)42441(21)b ac m m m m m ∆=-=-+-⨯=-+=- -----1分∵不论m 为任何实数时 ,总有2(21)0m ∆=-≥,∴该方程总有两个实数根 . --------------------------------------------------2分(2)24(21)(21)22b b ac m m x a -±-+±-==∴12x m =, 21x = ………………………………………………….… 4分 不妨设点(1,0)B ,依题意则点(3,0)A -∴ 32m =-∴ 抛物线的表达式为223y x x =+- …………….…………………5分 (3)134b >……………………………………………...………………….…7分 抛物线与抛物线交点东城27.二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB 上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m=-+++与G 有且只有一个交点时,直接写出m 满足的条件.东城27.解:(1)∵21:C y x bx c =++的图象过点A (-1,2),B (4,7),∴217164.b c b c =-+⎧⎨=++⎩,∴21.b c =-⎧⎨=-⎩,∴221y x x =--. …………2分(2)∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++.∴2C 的顶点为(1,2). ∵A (-1,2),B (4,7),∴过A 、B 两点的直线的解析式:3y x =+. 令x =1,则y =4.∴2C 的顶点不在直线AB 上. …………4分 (3)414m <≤或4m =-. …………7分抛物线与双曲线交点平谷27.反比例函数()0ky k x=≠过A (3,4),点B 与点A 关于直线y =2对称,抛物线2y x bx c =-++过点B 和C (0,3).(1)求反比例函数的表达式; (2)求抛物线的表达式;k y x=(3)若抛物线2y x bx m =-++在22x -≤<的部分与无公共点,求m 的取值范围.平谷27.(1)∵反比例函数ky x=过A (3,4), ∴12k =. ∴12y x=.…………………………………………………………………………1 (2)∵点B 与点A 关于直线y =2对称,∴B (3,0). (2)∵抛物线2y x bx c =-++过点B 和C (0,3)∴9303b c c ⎧-++=⎨=⎩.∴23b c ⎧=⎨=⎩.……………………………………………………………………………3 ∴223y x x =-++. (4)(3)12y x=,令2x =-时,6y =-,即()26,--令2x =时,6y =,即()26, (5)当2y x bx m =-++过()26,--时,2m =.当2y xbx m =-++过()26,时,6m=. (6)∴26m <≤ (7)两个直接写出结果的问题:昌平27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A . (1)求直线y=kx +b 的表达式;Oy x-6-5-4-3-2-1654321-11-2-3-4-5234512Ox-2-3-4-1-1443132y(2)将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点.若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E 两点,当3252DE ≤≤时,结合函数的图象,直接写出m 的取值范围.昌平27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点,∴0,2 3.k b k b +=⎧⎨-+=⎩………………………………………………………………1分解得:1,1.k b =-⎧⎨=⎩∴直线y=kx +b 的表达式为: 1.y x =-+…………………………………………2分 (2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =.…………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤<……………5分②40.m -≤≤………………………………………………………………………………7分石景山27.已知关于x 的方程()021222=-+-+m m x m x .(1)求证:无论m 取何值时,方程总有两个不相等的实数根;(2)抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3)在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值. 石景山27.解:(1)∵1=a ,()12-=m b ,m m c 22-= ∴()()0424144222>=---=-=∆m m m ac b∴无论m 取任何实数时,方程总有两个不相等的实数根.……2分 (2)令,则()021222=-+-+m m x m x()()02=-++m x m x∴m x -=或2+-=m x ∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y ∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3)0=b 或3-=b .……………………………………………………..7分如何找对称点:通州27. 已知:二次函数c bx -x y ++=2的图象过点A (-1,0)和C (0,2). (1)求二次函数的表达式及对称轴;(2)将二次函数c bx -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M (m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。
中考数学代数式复习专题(附答案)
中考数学代数式复习专题(附答案)一、单选题(共12题;共24分)1.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A. 5%aB. 5%×1000aC. 1000a(1+5%)D. 502.已知,则代数式的值是()A. -1B. 2C. 1D. -73.对于任意两个有理数a、b,规定a⊗b=3a﹣b,若(2x+3)⊗(3x﹣1)=4,则x的值为()A. 1B. ﹣1C. 2D. ﹣24.某厂去年产值为m万元,今年产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是( )A. ×100%B. ×100%C. ×100%D. ×100%5.若x1和x2为一元二次方程x2+2x-1=0的两个根。
则x12x2+x1x22值为()A. 4B. 2C. 4D. 36.买一个笔盒需要m元,买一支铅笔需要n元,则买4个笔盒、7支铅笔共需要()元A. 4m+7nB. 28mC. 7m+4nD. 11m7.一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A. 12+10b+aB. 12000+10b+aC. 100(12-a-b)+10b+aD. 112+10b+a8.用火柴棒按如图中的方式搭图形,则搭第7个图形所需火柴棒的根数为()A. 28B. 29C. 34D. 359.若m+n=7,2n﹣p=4,则2m+4n﹣p的值为()A. ﹣11B. ﹣3C. 3D. 1810.若a为方程x²-x-5=0的解,则-a²+a+11的值为( )A. 16B. 12C. 9D. 611.观察下列等式:,,,,,,…,根据这个规律…+的末位数字是()A. 0B. 2C. 4D. 612.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共6分)13.若x﹣y﹣1=0,则代数式(y﹣x)2﹣2x+2y+1的值是________.14.若a,b互为相反数,c,d互为倒数,m的平方等于25,则的值是________.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为________.16.如图,下列图形都是由同样大小的小圆圈按一定规律所组成的,则第n个图形中小圆圈的个数为________.17.如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中间小三角形三边中点得到图(3),按上面的方法继续下去,第n个图形中有________个三角形?18.任意写出一个3的倍数例如:,首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M,它会掉入一个数字“黑洞” 那么最终掉入“黑洞”的那个数M是________.三、计算题(共3题;共30分)19. (1)已知=5,=4,且m,n异号,求m2-mn+n2的值.(2)已知,m和n互为相反数,p和q互为倒数,a是绝对值最小的有理数,求的值. 20.阅读材料:规定一种新的运算:=ad-bc。
中考二轮复习专题提升《代数部分》附练习答案
初三数学二轮复习专题提升(一) 数形结合与实数的运算1.如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 2.5B. 22C. 3D. 5 2.计算8×12+(2)0的结果为( ) A. 2+ 2 B. 2+1 C. 3 D. 53.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( ) A. m >0 B. n <0 C. mn <0 D. m -n >0(第1题图) (第3题图) (第5题图)4.定义一种运算☆,其规则为a ☆b =1a +1b ,根据这个规则,计算2☆3的值是( )A. 56B. 15C. 5D. 6 5.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是( ) A. 点A B. 点B C. 点C D. 点D 6.实数a ,b 在数轴上对应点的位置如图所示,则|a | |b |(填“>”“<”或“=”).(第6题图)7.计算:|3-23|+(π-2016)0+⎝⎛⎭⎫12-18.已知a -1+|a +b +1|=0,则a b =____ .9.按下面程序计算:输入x =3,则输出的答案是____.10.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0.其中正确结论的序号是____ (在横线上填上你认为所有正确结论的序号).11.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S = (用含n 的代数式表示,其中n 为正整数).12.下面两个多位数1248624……,6248624……都是按照如下方法得到的:将第一位数字乘2,若积为一位数,将其写在第2位上;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是 .13.有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4……则第2015次输出的结果是__ .(第13题图)14.计算:(π-5)0+38+(-1)2015-3tan60°.15.计算:(3-2)0+⎝⎛⎭⎫13-1+4cos 30°-|3-27|.16.若()22m -,则有( ) A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-2专题提升(二) 代数式的化简与求值1.下列计算正确的是( )A. -3x 2y ·5x 2y =2x 2yB. -2x 2y 3·2x 3y =-2x 5y 4C. 35x 3y 2÷(5x 2y )=7xyD. (-2x -y )(2x +y )=4x 2-y 2 2.下列各式的变形中,正确的是( )A. (-x -y )(-x +y )=x 2-y 2B. 1x -x =1-x xC. x 2-4x +3=(x -2)2+1D. x ÷(x 2+x )=1x +13.已知1a -1b =13,则2aba -b 的值是( )A. 16B. -16 C. 6 D. -64.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( )(第4题图)A. 7B. -7C. 2a -15D. 无法确定 5.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A. 9 B. ±3 C. 3 D. 56.化简⎝⎛⎭⎫2x x +2-x x -2÷xx 2-4的结果为 .7.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2016+y 2016=____ .8.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =____,b =____;计算:m =11×3+13×5+15×7+…+119×21=____. 9.已知|6-3m |+(n -5)2=3m -6-(m -3)n 2,则m -n = .10.观察下列等式:第一个等式:a 1=31×2×22=11×2-12×22;第二个等式:a 2=42×3×23=12×22-13×23; 第三个等式:a 3=53×4×24=13×23-14×24;第四个等式:a 4=64×5×25=14×24-15×25.按上述规律,回答以下问题:(1)用含n 的代数式表示第n 个等式: (2)计算:a 1+a 2+a 3+…+a 20.11.先化简,再求值:(a +b )(a -b )+b (a +2b )-b 2,其中a =1,b =-2.12.先化简,再求值:m 2-2m +1m 2-1÷⎝ ⎛⎭⎪⎫m -1-m -1m +1,其中m = 3.13.先化简,再求值:⎝⎛⎭⎫1x -1-1x +1÷x +2x 2-1,其中x 满足2x -6=0.14.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A .(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0且x 为整数时,求A 的值.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab ,其中a ,b 满足a +1+|b -3|=0.16.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k ≤n ),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.专题提升(三)列方程(组)解应用题一、一元一次方程的应用1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( )A. 100元B. 90元C. 810元D. 819元2.某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问:一月份每辆电动车的售价是多少元?3.现有甲、乙两种金属的合金10 kg,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?二、二元一次方程(组)的应用4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A. 7,6,1,4B. 6,4,1,7C. 4,6,1,7D. 1,6,4,75某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?6.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.三、一元二次方程的应用7.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A. (1+x )2=1110B. (1+x )2=109C. 1+2x =1110D. 1+2x =1098.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?(第8题图)9.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.四、分式方程的应用10.现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3∶5,则桶的容积为 升.11.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树多少棵?12.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600 m 道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10 h 完成任务.(1)按原计划完成总任务的13时,已抢修道路_________________m.(2)问:原计划每小时抢修道路多少米?专题提升(四) 一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是( ),(第2题图)(第3题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 ( )A. 94B. 3C. 4D. 5 4.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是( )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为 .,(第6题图)) (第9题图)7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=____ .8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第___ 象限. 9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__ .10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图)水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =kx 的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD .(1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.12.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h,并且甲车途中休息了0.5 h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值.(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围.(3)当乙车行驶多长时间时,两车恰好相距50 km?(第12题图)13.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y的最大值.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%y元.(1)直接写出x≤50000时,y关于x的函数表达式,并注明自变量x的取值范围.(2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元?15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的变化趋势如图①,每个无人售票窗口售出的车票数y2(张)与售票时间x(h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)专题提升(五) 反比例函数图象与性质的综合应用1.反比例函数y =m x的图象如图所示,有以下结论: ①常数m <-1;②在每个象限内,y 随x 的增大而增大;③若点A (-1,h ),B (2,k )在图象上,则h <k ;④若点P (x ,y )在图象上,则点P ′(-x ,-y )也在图象上.其中正确的是( )A. ①②B. ②③C. ③④D. ①④2.下列函数中,当x >0时,y 随x 的增大而增大的是( )A. y =-x +1B. y =x 2-1C. y =1xD. y =-x 2+1 3.已知圆柱的侧面积是20π cm 2,若圆柱底面半径为r (cm),高为h (cm),则h 关于r 的函数图象大致是( )(第1题图)(第4题图) (第5题图)4.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B 在反比例函数y =k x的图象上,则k 的值为( ) A. -4 B. 4 C. -2 D. 25.如图,在反比例函数y =-6x(x <0)的图象上任取一点P ,过点P 分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为____ .6.反比例函数y =2a -1x的图象有一支位于第一象限,则常数a 的取值范围是__ _ . 7.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数y =k x(x >0)的图象经过该菱形对角线的交点A ,且与边BC 交于点F .若点D 的坐标为(6,8),则点F 的坐标是 .(第7题图)(第8题图) (第9题图)8.如图,反比例函数y =k x的图象经过点(-1,-22),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .(1)k 的值为 .(2)在点A 运动过程中,当BP 平分∠ABC 时,点C 的坐标是 .9.如图,在直角坐标系xOy 中,一次函数y =k 1x +b 的图象与反比例函数y =k 2x的图象交于A (1,4),B (3,m )两点.(1)求一次函数的表达式.(2)求△AOB 的面积.10.人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50 km/h 时,视野为80度.如果视野f (度)是车速v (km/h)的反比例函数,求f ,v 之间的关系式,并计算当车速为100 km/h 时视野的度数.11.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万m 3.(1)写出运输公司完成任务所需的时间y (天)与平均每天的工作量x (万m 3)之间的函数表达式,并给出自变量x 的取值范围.(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000 m 3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?12.工匠制作某种金属工具需要进行材料煅烧和锻造两道工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min 时,材料温度降为600 ℃.煅烧时温度y (℃)与时间x (min)成一次函数关系;锻造时,温度y (℃)与时间x (min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y 关于x 的函数表达式,并且写出自变量x 的取值范围.(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?(第12题图)13.如图,已知点A ,P 在反比例函数y =k x (k <0)的图象上,点B ,Q 在直线y =x -3上,点B 的纵坐标为-1,AB ⊥x 轴(点A 在点B 下方),且S △OAB =4.若P ,Q 两点关于y 轴对称,设点P 的坐标为(m ,n ).(1)求点A 的坐标和k 的值.(2)求n m +m n的值. (第13题图)14.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (时)变化的函数图象,其中BC 段是反比例函数y =k x图象的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18 ℃的时间有多少小时?(2)求k 的值.(3)当x =16时,大棚内的温度约为多少度?(第14题图)15.已知双曲线y =1x(x >0),直线l 1:y -2=k (x -2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y =-x + 2. (1)若k =-1,求△OAB 的面积S .(2)若AB =522,求k 的值. (3)设N (0,22),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM +PN 最小值,并求PM +PN 取得最小值时点P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB =(x 1-x 2)2+(y 1-y 2)2.(第15题图)专题提升(六) 二次函数图象与性质的综合应用1.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①二次三项式ax 2+bx +c 的最大值为4;②4a +2b +c <0;③一元二次方程ax 2+bx +c =1的两根之和为-1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个(第1题图)(第2题图)2.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②b 2-4ac 4a >0;③ac -b +1=0;④OA ·OB =-c a.其中正确结论的个数是( ) A. 4 B. 3 C. 2 D. 13.对于抛物线y =-12(x +1)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x >1时,y 随x 的增大而减小.其中正确结论的个数为( )A. 1B. 2C. 3D. 4(第4题图) (第7题图)(第8题图)4.二次函数y =-x 2+bx +c 的图象如图所示,若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A. y 1 ≤y 2B. y 1 <y 2C. y 1 ≥y 2D. y 1 >y 25.已知A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y =-(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A. y 1>y 2>y 3B. y 1>y 3>y 2C. y 3>y 2>y 1D. y 3>y 1>y 26.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( )A. y 1>y 2>y 3B. y 1<y 2<y 3C. y 2>y 3>y 1D. y 2<y 3<y 17.如图,二次函数y =ax 2+bx +c 的图象开口向上,对称轴为直线x =1,图象经过点(3,0),下列结论中,正确的一项是( )A. abc <0B. 2a +b <0C. a -b +c <0D. 4ac -b 2<08.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,且关于x 的一元二次方程ax 2+bx +c -m =0没有实数根,有下列结论:①b 2-4ac >0;②abc <0;③m >2.其中,正确结论的个数是( )A. 0B. 1C. 2D. 39.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的表达式.(2)求抛物线的顶点坐标.10.已知关于x的一元二次方程:x2-(m-3)x-m=0.(1)试判断原方程根的情况.(2)若抛物线y=x2-(m-3)x-m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x1-x2|)11.根据下列要求,解答相关问题:(1)请补全以下求不等式-2x2-4x≥0的解集的过程:①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2-4x;并在下面的坐标系中(见图①)画出二次函数y=-2x2-4x的图象(只画出图象即可);②求得界点,标示所需:当y=0时,求得方程-2x2-4x=0的解为x1=0,x2=-2;并用粗线标示出函数y=-2x2-4x图象中y≥0的部分;③借助图象,写出解集:由所标示图象,可得不等式-2x2-4x≥0的解集为-2≤x≤0.(2)利用(1)中求不等式解集的步骤,求不等式x2-2x+1<4的解集:①构造函数,画出图象;②求得界点,标示所需;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c>0(a>0)的解集.(第11题图)12.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4 cm,DC=5 cm,AB=8 cm.点P由点B出发沿BC方向向点C匀速运动,同时点Q由点A出发沿AB方向向点B匀速运动,它们的速度均为1 cm/s,当点P到达点C时,两点同时停止运动,连结PQ,设运动时间为t(s),解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值.(3)当△PQB为等腰三角形时,求t的值.(第12题图)13.如图①,关于x的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D 为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的表达式.(2)DE上是否存在点P到AD的距离与到x轴的距离相等,若存在,求出点P;若不存在,请说明理由.(3)如图②,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC,若存在,求出点F 的坐标;若不存在,请说明理由.(第13题图)14.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点之间的距离为3,x1·x2<0,|x1|+|x2|=4,点A,C在直线y2=-3x+t上.(1)求点C的坐标.(2)当y1随着x的增大而增大时,求自变量x的取值范围.(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2-5n的最小值.专题提升(七)统计与概率的综合运用1.为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图,该调查的方式和图中的a的值分别是( )(第1题图)A. 抽样调查,24B. 全面调查,24C. 抽样调查,26D. 全面调查,262排队人数01234≥5概率0.10.160.30.30.10.04A. 0.3B. 0.44C. 0.56D. 0.743.在某学校组织的一次数学模拟考试成绩统计中,工作人员采用简单随机抽样的方法,抽取一个容量为50的样本进行统计,若每个学生的成绩被抽到的概率为0.1,则可知这个学校参加这次数学考试的人( )A. 100B. 225C. 500D. 6004.为了提高学生书写汉字的能力,增强保护汉字的意识,某市举办了首届“汉字听写大赛”,经选拔后有50名学生进入决赛,这50名学生同时听写50个汉字,每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表:组别成绩x(分)频数(人数)第1组25≤x<30 4第2组30≤x<358第3组35≤x<4016第4组40≤x<45a第5组45≤x<5010若测试成绩不低于40分为优秀,则本次测试的优秀率是( )A. 20%B. 44%C. 64%D. 76%5.在一次向“希望工程”捐款的活动中,若已知小明的捐款数比他所在的学习小组中13人捐款的平均数多2元,则下列判断中,正确的是( )A. 小明在小组的捐款中不可能是最多的B. 小明在小组的捐款中可能排在第12位C. 小明在小组的捐款中可能是最少的D. 小明在小组的捐款中不可能比捐款数排在第7位的同学少6.下面两幅统计图(如图①、图②),反映了广州市甲、乙两所中学学生参加课外活动的情况.通过图中信息可知,2015年甲、乙两所中学参加科技活动的学生人数共有( )(第6题图)A. 110B. 240C. 350D. 7207.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n 21001000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是( )A. 715 B.25 C.1115 D.13158.如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:(第8题图)甲:如果指针前三次都停在3号扇形,下次就一定不会停在3号扇形了.乙:只要指针连续转六次,一定会有一次停在6号扇形.丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等.丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中你认为正确的见解有( )A. 1个B. 2个C. 3个D. 4个9.5个整数从小到大排列,其中位数是4,如果这组数据唯一的众数是6,则这5个整数可能的最大和是( )A. 21B. 22C. 23D. 2410.如图所示,在矩形ABCD中,AB=2a,AD=a,图中阴影部分是以AB为直径的半圆,现在向矩形ABCD内随机撒4000粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是( )A. 1000B. 2000C. 3000D. 400011.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为____ .(第10题图)(第11题图) 12.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是__ .(第12题图)13.七(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):月均用水量x(m3)0<x≤55<x≤1010<x≤1515<x≤20x>20 频数(户)1220 3频率0.120.07若该小区有800户家庭,据此估计该小区月均用水量不超过10 m3的家庭约有____户.14.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目做了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为910,那么该台每小时约有____分钟的广告.15.从某区一次期末考试中随机抽取了100个学生的数学成绩,用这100个数据来估计该区的总体数学成绩,各分数段的人数统计如图所示.从该区随机抽取一名学生,则这名学生的数学成绩及格(≥60)的概率为.(第15题图) (第16题图)16.某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵,B类5棵,C类6棵,D类7棵,将各类的人数绘制成如图所示的条形统计图,根据统计图,估计这240名学生共植树____ 棵.17.某中学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图.(2)求扇形统计图中扇形D的圆心角的度数.(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?。
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
备考2024年中考数学二轮复习-数与式_代数式_定义新运算-综合题专训及答案
备考2024年中考数学二轮复习-数与式_代数式_定义新运算-综合题专训及答案定义新运算综合题专训1、(2019北京.中考真卷) 在△ABC中,,分别是两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,下图中是△ABC的一条中内弧.(1)如图,在Rt△ABC中,分别是的中点.画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点,在△ABC中,分别是的中点.①若,求△ABC的中内弧所在圆的圆心的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2、(2017北京.中考模拟) 在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)已知点A(1,2),B(﹣3,1),P(0,t).①若A,B,P三点的“矩面积”为12,求点P的坐标;②直接写出A,B,P三点的“矩面积”的最小值.(2)已知点E(4,0),F(0,2),M(m,4m),N(n,),其中m>0,n>0.①若E,F,M三点的“矩面积”为8,求m的取值范围;②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.3、(2019景.中考模拟) 我们规定运算符号的意义是:当a>b时,a b=a-b,当a<b时,a b=a+b(1)计算:6 1=;(-3) 2=(2)根据运算符号 x 的意义且其他运算符号意义不变的条件下①计第:-14+15x[(- ) (- )]-(32 23)÷(-7)②若x,y在数轴上的位置如图所示,化简:[(x2-y) (x2+y)]+[(x+y) (x-y)]4、(2019石家庄.中考模拟) 规定一种特殊运算※为:a※b=(1)(-2)※1=(2)解不等式m※2≥1,并将解集表示在数轴上:(3)解方程12※m=15、(2017灌南.中考模拟) 若两条抛物线的顶点相同,则称它们为“友好抛物线”,已知抛物线C1:y1=﹣x2+ax+b与抛物线C2:y2=2x2+4x+6为“友好抛物线”,抛物线C1与x轴交于点A、C,与y轴交于点B.(1)求抛物线C1的表达式.(2)若F(t,0)(﹣3<t<0)是x轴上的一点,过点F作x轴的垂线交抛物线与点P,交直线AB于点E,过点P作PD⊥AB于点D.①是否存在点F,使PE+PD的值最大,若存在,请求出t的值;若不存在,请说明理由.②连接PA,以AP为边作图示一侧的正方形APMN,随着点F的运动,正方形的大小、位置也随之改变.当正方形APMN中的边MN与y轴有且仅有一个交点时,求t的取值范围.6、(2019秀洲.中考模拟) 若一个正整数能表示为两个连续自然数的平方差,则称这个正整数为“和谐数”。
最新中考数学专项训练:代数综合问题(基础)(含答案解析)
中考冲刺:代数综合问题(基础)一、选择题1. 如图所示,已知函数和y=kx(k≠0)的图象交于点P,则根据图象可得,关于的二元一次方程组的解是( )A. B. C. D.2.(2016•河北模拟)如图,点A是x轴正半轴上的任意一点,过点A作EF∥y轴,分别交反比例函数和的图象于点E、F,且,连接OE、OF,有下列结论:①这两个函数的图象关于x轴对称;②△EOF的面积为(k1﹣k2);③;④当∠EOF=90°时,,其中正确的是()A.①③ B.②④ C.①④ D.②③3.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确的命题有()A. 1 个B. 2 个C. 3 个D. 4 个二、填空题4.如图所示,是二次函数(a≠0)和一次函数(n≠0)的图象,观察图象写出y2≥y1时,x的取值范围______________.5.已知二次函数若此函数图象的顶点在直线y=-4上,则此函数解析式为______.6. (2016•历下区二模)已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:①abc<0;②4a+2b+c>0;③b2﹣4ac<0;④b>a+c;⑤a+2b+c>0,其中正确的结论有______.三、解答题7.(北京校级期中)已知关于x的一元二次方程mx2﹣(m+1)x+1=0(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m的整数值;(3)在(2)中开口向上的抛物线y=mx2﹣(m+1)x+1与x轴交于点A,与y轴交于点B,直线y=﹣x上有一个动点P.求使PA+PB取得最小值时的点P的坐标,并求PA+PB的最小值.8. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?9. 已知P()和Q(1,)是抛物线上的两点.(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.10. 已知:关于x的一元二次方程,其中.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式;(3)已知点E(a,)、F(2a,y)、G(3a,y)都在(2)中的抛物线上,是否存在含有、y、y,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.答案与解析【答案与解析】一、选择题1.【答案】C;【解析】本题考查方程组的解(数)与直线交点(形)坐标之间的关系.2.【答案】B;【解析】①∵点E在反比例函数的图象上,点F在反比例函数的图象上,且,∴k1=OA•EA,k2=﹣OA•FA,∴,∴这两个函数的图象不关于x轴对称,即①错误;②∵点E在反比例函数y1=的图象上,点F在反比例函数y2=的图象上,∴S△OAE=k1,S△OAF=﹣k2,∴S△OEF=S△OAE+S△OAF=(k1﹣k2),即②正确;③由①可知,∴③错误;④设EA=5a,OA=b,则FA=3a,由勾股定理可知:OE=,OF=.∵∠EOF=90°,∴OE2+OF2=EF2,即25a2+b2+9a2+b2=64a2,∴b2=15a2,∴=,④正确.综上可知:正确的结论有②④.3.【答案】B;【解析】若式子有意义,则x≥1,①错误;由∠α=27°得∠α的补角是=180°-27=153°,②正确.把x=2 代入方程x2-6x+c=0得4-6×2+c=0,解得c=8,③正确;反比例函数中,若x>0 时,y 随x 的增大而增大,得:k-2<0,∴k<2,④错误.故选B.二、填空题4.【答案】-2≤x≤1;【解析】本题考查不等式与比较函数值的大小之间的关系.5.【答案】,;【解析】∵顶点在直线y=-4上,∴.,m=±1.∴此函数解析式为:,.6.【答案】①②④⑤;【解析】∵抛物线开口朝下,∴a<0,∵对称轴x=﹣=1,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;根据图象知道当x=2时,y=4a+2b+c>0,故②正确;根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;根据图象知道当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④正确;∵对称轴x=﹣=1,∴b=﹣2a,∴a+2b+c=﹣3a+c,∵a<0,c>0,∴a+2b+c=﹣3a+c>0,故⑤正确.故答案为:①②④⑤.三、解答题7.【答案与解析】(1)证明:由题意得m≠0,∵△=(m+1)2﹣4m×1=(m﹣1)2≥0,∴此方程总有两个实数根;(2)解:方程的两个实数根为x=,∴x1=1,x2=,∵方程的两个实数根都是整数,且m为整数,∴m=±1;(3)由(2)知,m=±1.∵抛物线y=mx2﹣(m+1)x+1的开口向上,∴m=1,则该抛物线的解析式为:y=x2﹣2x+1=(x﹣1)2.易求得A(1,0),B(0,1).如图,点B关于直线y=﹣x的对称点C的坐标为(﹣1,0),连接AC,与直线y=﹣x的交点即为符合条件的点P.此时点P与原点重合,则P(0,0).所以PA+PB=AC=2.8.【答案与解析】(1)设y=kx,当x=1时,y=2,解得k=2,∴y=2x(0≤x≤20).(2)当0≤x<4时,设y=a(x-4)2+16.由题意,∴a=-1,∴y=-(x-4)2+16,即当0≤x<4时,.当4≤x≤10时,y=16.(3)设小迪用于回顾反思的时间为x(0≤x≤10)分钟,学习收益总量为y,则她用于解题的时间为(20-x)分钟.当0≤x<4时,.当x =3时,.当4≤x≤10时,y=16+2(20-x)=56-2x.y随x的增大而减小,因此当x=4时,,综上,当x=3时,,此时20-x=17.答:小迪用于回顾反思的时间为3分钟,用于解题的时间为17分钟时,学习收益总量最大.9.【答案与解析】解:(1)因为点P、Q在抛物线上且纵坐标相同,所以P、Q关于抛物线对称轴对称并且到对称轴距离相等.所以抛物线对称轴,所以.(2)由(1)可知,关于的一元二次方程为=0.因为,=16-8=80.所以,方程有两个不同的实数根,分别是,.(3)由(1)可知,抛物线的图象向上平移(是正整数)个单位后的解析式为.若使抛物线的图象与轴无交点,只需无实数解即可.由==<0,得又是正整数,所以的最小值为2.10.【答案与解析】解:(1)将原方程整理,得,△=>0∴.∴或.(2)由(1)知,抛物线与轴的交点分别为(m,0)、(4,0),∵A在B的左侧,.∴A(m,0),B(4,0).则,.∵AD·BD=10,∴AD2·BD2=100.∴.解得.∵,∴.∴,.∴抛物线的解析式为.(3)答:存在含有、y、y,且与a无关的等式,如:(答案不唯一).证明:由题意可得,,.∵左边=.右边=--4=.∴左边=右边.∴成立.。
代数综合问题(含答案)
代数综合问题1、二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3、如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C (0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE 面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.4、如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交B,与二次函数的图象交另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx 经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.7、如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.8、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?参考答案1、方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).2、解:(1)依题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).3、解:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.∴OA=OC=3,∴A(﹣3,0),∵点A,B,C在抛物线上,∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,(2)设点P(x,0),则PB=1﹣x,∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,3),∴OC=3,∴S△ABC=AB×OC=6,∵PE∥AC,∴△BPE∽△BAC,∴,∴S△PBE=(1﹣x)2,∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x+1)2+,当x=﹣1时,S△PCE的最大值为.(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标(﹣1,4),∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,∴=,∴8x2+18x=7=0,∴x=,∴y=或y=,∴Q(,),或(,).4、方法一:解:(1)如图,过点C作CM∥OA交y轴于M.∵AC:BC=3:1,∴=.∵CM∥OA,∴△BCM∽△BAO,∴===,∴OA=4CM=4,∴点A的坐标为(﹣4,0);(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),∴16a﹣4b=0,∴b=4a,∴y=ax2+4ax,对称轴为直线x=﹣2,∴F点坐标为(﹣2,﹣4a).设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k,∴直线AB的解析式为y=kx+4k,∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.∵△AED中,∠AED=90°,∴若△FCD与△AED相似,则△FCD是直角三角形,∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°,∴△FCD∽△AED.∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,∴FC=CD,∴△FCD是等腰直角三角形,∴△AED是等腰直角三角形,∴∠DAE=45°,∴∠OBA=45°,∴OB=OA=4,∴4k=4,∴k=1,∴a=﹣1,∴此二次函数的关系式为y=﹣x2﹣4x.方法二:(1)略.(2)∵A(﹣4,0),x=﹣=﹣2,∴b=4a,∴抛物线:y=ax2+4ax,∴C(﹣1,﹣3a),F(﹣2,﹣4a),∵△FCD∽△AED,∠AED=90°,∴AC⊥FC,则K AC×K FC=﹣1,∵A(﹣4,0),C(﹣1,﹣3a),F(﹣2,﹣4a),∴=﹣1,∴a2=1,∴a1=1(舍),a2=﹣1,∴此时抛物线的解析式为:y=﹣x2﹣4x.5、解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点P(a,﹣2a2+6a),则OG=a,PG=﹣2a2+6a.∵S梯形DOGP=(OD+PG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGP=AG•PG=﹣a3+4a2﹣3a,∴S△PDA=S梯形DOGP﹣S△ODA﹣S△AGP=﹣a2+a﹣.∴当a=时,S△PDA的最大值为.∴点P的坐标为(,).6、解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).7、解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).8、解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17.∴P1(19,0),P2(﹣17,0).9、解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅰ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.。
代数综合中考数学题汇总
代数综合中考数学题汇总想要学好数学就要落实到学好每一个知识点,下面店铺为大家带来一份代数的综合数学题汇总,欢迎大家阅读参考,更多内容请关注应届毕业生网!考点:二次函数综合题分析: (1)利用待定系数法求出二次函数解析式即可;(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出 (1﹣t)× =3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3, ),C(1, )三点坐标代入得:,解得:,即所求抛物线解析式为:y=﹣ x2+ x+ ;(2)如图1,依据题意得出:OC=CB=2,∠COA=60°,∴当动点Q运动到OC边时,OQ=4﹣t,∴△OPQ的高为:OQ×sin60°=(4﹣t)× ,又∵OP=2t,∴S= ×2t×(4﹣t)× =﹣ (t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ= ,PQ= = ,∵∠POQ<∠POC=60°,∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t﹣3)2=3+(3﹣t)2,解得:t1=1,t2=0(舍去),若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3﹣t)2+6+(3t﹣3)2=4t2,解得:t=2,当24,∠POQ=∠COP=60°,OQ故△OPQ不可能为直角三角形,综上所述,当t=1或t=2时,△OPQ为直角三角形;(4)由(1)可知,抛物线y=﹣ x2+ x+ =﹣ (x﹣2)2+ ,其对称轴为x=2,又∵OB的直线方程为y= x,∴抛物线对称轴与OB交点为M(2, ),又∵P(2t,0)设过P,M的直线解析式为:y=kx+b,∴ ,解得:,即直线PM的解析式为:y= x﹣,即 (1﹣t)y=x﹣2t,又0≤t≤2时,Q(3﹣t, ),代入上式,得:(1﹣t)× =3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2∴Q( , ),代入上式得:× (1﹣t)= ﹣2t,解得:t=2或t= (均不合题意,舍去).∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ 能够交于一点,此时0≤t≤2.点评:此题主要考查了二次函数的综合应用以及待定系数法求二次函数解析式和待定系数法求一次函数解析式等知识,利用分类讨论思想得出t的值是解题关键.13、(2013•荆门压轴题)已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.(平面内两点间的距离公式 ).考点:二次函数综合题.分析:(1)先将k=1,m=0分别代入,得出二次函数的解析式为y=x2,直线的解析式为y=x+1,联立,得x2﹣x﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=1,x1•x2=﹣1,过点A、B分别作x轴、y轴的平行线,两线交于点C,证明△ABC是等腰直角三角形,根据勾股定理得出AB= AC,根据两点间距离公式及完全平方公式求出AB= ;同理,当k=1,m=1时,AB= ;(2)当k=1,m为任何值时,联立,得x2﹣(2m+1)x+m2+m﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=2m+1,x1•x2=m2+m﹣1,同(1)可求出AB= ;(3)当m=0,k为任意常数时,分三种情况讨论:①当k=0时,由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当k=1时,联立,得x2﹣x﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=1,x1•x2=﹣1,同(1)求出AB= ,则AB2=10,运用两点间的距离公式及完全平方公式求出OA2+OB2=10,由勾股定理的逆定理判定△AOB为直角三角形;③当k为任意实数时,联立,得x2﹣kx﹣1=0,根据一元二次方程根与系数的关系得到x1+x2=k,x1•x2=﹣1,根据两点间距离公式及完全平方公式求出AB2=k4+5k2+4,OA2+OB2═k4+5k2+4,由勾股定理的逆定理判定△AOB为直角三角形.解答:解:(1)当k=1,m=0时,如图.由得x2﹣x﹣1=0,∴x1+x2=1,x1•x2=﹣1,过点A、B分别作x轴、y轴的平行线,两线交于点C.∵直线AB的解析式为y=x+1,∴∠BAC=45°,△ABC是等腰直角三角形,∴AB= AC= |x2﹣x1|= = ;同理,当k=1,m=1时,AB= ;(2)猜想:当k=1,m为任何值时,AB的长不变,即AB= .理由如下:由,得x2﹣(2m+1)x+m2+m﹣1=0,∴x1+x2=2m+1,x1•x2=m2+m﹣1,∴AB= AC= |x2﹣x1|= = ;(3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下:①当k=0时,则函数的图象为直线y=1,由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当k=1时,则一次函数为直线y=x+1,由,得x2﹣x﹣1=0,∴x1+x2=1,x1•x2=﹣1,∴AB= AC= |x2﹣x1|= = ,∴AB2=10,∵OA2+OB2=x12+y12+x22+y22=x12+x22+y12+y22=x12+x22+(x1+1)2+(x2+1)2=x12+x22+(x12+2x1+1)+(x22+2x2+1)=2(x12+x22)+2(x1+x2)+2=2(1+2)+2×1+2=10,∴AB2=OA2+OB2,∴△AOB是直角三角形;③当k为任意实数,△AOB仍为直角三角形.由,得x2﹣kx﹣1=0,∴x1+x2=k,x1•x2=﹣1,∴AB2=(x1﹣x2)2+(y1﹣y2)2=(x1﹣x2)2+(kx1﹣kx2)2=(1+k2)(x1﹣x2)2=(1+k2)[(x1+x2)2﹣4x1•x2]=(1+k2)(4+k2)=k4+5k2+4,∵OA2+OB2=x12+y12+x22+y22=x12+x22+y12+y22=x12+x22+(kx1+1)2+(kx2+1)2=x12+x22+(k2x12+2kx1+1)+(k2x22+2kx2+1)=(1+k2)(x12+x22)+2k(x1+x2)+2=(1+k2)(k2+2)+2k •k+2=k4+5k2+4,∴AB2=OA2+OB2,∴△AOB为直角三角形.点评:本题考查了二次函数的综合题型,其中涉及到的知识点有一元二次方程根与系数的关系,平面内两点间的距离公式,完全平方公式,勾股定理的逆定理,有一定难度.本题对式子的变形能力要求较高,体现了由特殊到一般的思想.。
中考代数几何-综合题
中考代数几何综合题代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.方法点拨方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x 轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.类型一、方程与几何综合的问题1.如图,在梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3.问:线段AB上是否存在点P,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似?若存在,这样的总共有几个?并求出AP的长;若不存在,请说明理由.【思路点拨】由于以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似时的对应点不能确定,故应分两种情况讨论.【答案与解析】解:存在.∵AD∥BC,∠A=90°,∴∠B=90°,当△PAD∽△PBC时,∵AD=2,BC=3,设AP=x,PB=7-x,则∴.①当△ADP∽△BPC时,AD=2,BC=3,设设AP=x,PB=7-x,则∴AP=1或AP=6.②由①②可知,P点距离A点有三个位置:,AP=1,AP=6.【总结升华】本题考查的是相似三角形的判定,解答此题时要注意分类讨论,不要漏解.【变式】有一张矩形纸片ABCD,已知AB=2,AD=5.把这张纸片折叠,使点A落在边BC上的点E处,折痕为MN,MN交AB于M,交AD于N.(1)若BE=,试画出折痕MN的位置,并求这时AM的长;(2)点E在BC上运动时,设BE=x,AN=y,试求y关于x的函数解析式,并写出x 的取值范围;(3)连接DE,是否存在这样的点E,使得△AME与△DNE相似?若存在,请求出这时BE的长;若不存在,请说明理由.【答案】(1)画出正确的图形.(折痕MN必须与AB、AD相交).设AM=t,则ME=t,MB=2-t,由BM2+BE2=ME2,得t=,即AM=.(2)如图(a),∵BE=x,设BM=a,则a2+x2=(2-a)2,a2+x2=4-4a+a2,∴a=,AM=2-BM=2-=.由△AMN∽△BEA,得,∴y=,∵0<x≤2,0<y≤5,x的取值范围为:,故x=1.(3)如图(b),若△AME与△DNE相似,不难得∠DNE=∠AME.又∵AM=ME,∴DN=NE=NA=,∴=解得:x=1或x=4.又∵,故x=1.或者由∠DEN=∠AEM,得∠AED=90°,推出△ABE∽△ECD,从而得BE=1类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A (1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.答案与解析【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t,∴AP=t-1,∴AM=AP,∵∠PAM=90°,∴∠AMP=45°;(3)<t<.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;②左边3个好点在抛物线上方,右边3个好点在抛物线下方:则有 -4<y2<-3,-2<y3<-1,即-4<4-2t<-3,-2<9-3t<-1,∴<t<4且<t<,解得<t<;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;综上所述, t的取值范围是:<t<.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用类型三、动态几何中的函数问题3. 如图,在平面直角坐标系中,已知二次函数的图像与轴交于,与轴交于A、B两点,点B的坐标为(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△的面积最大?最大面积是多少?并求出此时点P的坐标.答案与解析举一反三【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B、C的坐标代入其中求解即可.(2)先画出相关图示,连接OD后发现:S△OBD:S四边形ACDB=2:3,因此直线OM必须经过线段BD才有可能符合题干的要求;设直线OM与线段BD的交点为E,根据题干可知:△OBE、多边形OEDCA的面积比应该是1:2或2:1,即△OBE的面积是四边形ACDB面积的,所以先求出四边形ABDC的面积,进而得到△OBE的面积后,可确定点E的坐标,首先求出直线OE(即直线OM)的解析式,联立抛物线的解析式后即可确定点M的坐标(注意点M的位置).(3)此题必须先得到关于△CPB面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P坐标;通过图示可发现,△CPB的面积可由四边形OCPB的面积减去△OCB的面积求得,首先设出点P的坐标,四边形OCPB的面积可由△OCP、△OPB的面积和得出.【答案与解析】解:(1)由题意,得:解得:所以,二次函数的解析式为:,顶点D的坐标为(-1,4).(2)画图由A、B、C、D四点的坐标,易求四边形ACDB的面积为9.直线BD的解析式为y=2x+6.设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.①当时,如图,易得E点坐标(-2,-2),直线OE的解析式为y=-x.设M 点坐标(x,-x),∴②当时,同理可得M点坐标.∴ M 点坐标为(-1,4).(3)如图,连接,设P点的坐标为,∵点P在抛物线上,∴,∴∵,∴当时,. △的面积有最大值∴当点P的坐标为时,△的面积有最大值,且最大值为【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M的位置,以免出现漏解的情况.【变式】如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB 于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.【答案】(1)由题意得B(3,1).若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1.①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时点E(2b,0).∴S=OE·CO=×2b×1=b.②若直线与折线OAB的交点在BA上时,即<b<,如图2,此时点E(3,),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[(2b-1)×1+×(5-2b)•()+×3()](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形,根据轴对称知,∠MED=∠NED,又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:,∴a=.∴S四边形DNEM=NE·DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.答案与解析【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F、P为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E、F、P为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解.【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF,在Rt△EBF中,∠B=90°,∴EF=.设点P的坐标为(0,n),n>0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a≠0).①如图1,当EF=PF时,EF2=PF2,∴12+(n-2)2=5,解得n1=0(舍去),n2=4.∴P(0,4),∴4=a(0-1)2+2,解得a=2,∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP时,EP2=FP2,∴(2-n)2+1=(1-n)2+9,解得n=-(舍去)③当EF=EP时,EP=<3,这种情况不存在.综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M、N,使得四边形MNFE的周长最小.如图3,作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,连结E′F′,分别与x轴、y轴交于点M、N,则点M、N就是所求. 连结NF、ME.∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3.∴FN+NM+ME=F′N+NM+ME′=F′E′==5.又∵EF=,∴FN+MN+ME+EF=5+,此时四边形MNFE的周长最小值为5+.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA,再以等腰直角三角形ABA的斜边为直角边向外作第3个等腰直角三角形A BB,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S= ________(n为正整数).答案与解析举一反三【思路点拨】本题要先根据已知的条件求出S1、S2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n的表达式.【答案与解析】根据直角三角形的面积公式,得S1=;根据勾股定理,得:AB=,则S2=1=20;A1B=2,则S3=21,依此类推,发现:=.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.【变式】阅读下面的文字,回答后面的问题.求 3+32+33+…+3100的值.解:令 S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3∴S=∴3+32+33+ (3100)问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).答案与解析【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3).一、选择题1. 如图,正方形ABCD的边长为2, 将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止那么在这个过程中线段QF的中点M所经过的路线围成的图形的面积为()A. 2B. 4-C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()二、填空题3. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4. 如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S2=______________;S n=__________________(用含的式子表示).三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?7. 条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P 点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. 如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.(1)求此抛物线的解析式;(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;(3)作点A关于抛物线对称轴的对称点A′,直线HG与对称轴交于点K,当t为何值时,以A、A′、G、K为顶点的四边形为平行四边形?请直接写出符合条件的t值.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【答案与解析】一、选择题1.【答案】B.2.【答案】A.三、填空题3.【答案】(0,0),(0,10),(0,2),(0,8)4.【答案】;;【解析】由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3∵△AB1C1是等边三角形,∴AD1=AC1.sin60°=2×=,∵△B1C1B2也是等边三角形,∴C1B1是∠AC1B2的角平分线,∴AD1=B2D1=,故S1=S△B2C1A﹣S△AC1D1=×2×﹣×2×=;S2=S△B3C2A﹣S△AC2D2=×4×﹣×4×=;作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…B n在一条直线上.∵B n C n∥AB,∴==,∴B n D n=.AD=,则D n C n=2﹣B n D n=2﹣=.△B n C n B n+1是边长是2的等边三角形,因而面积是:.△B n+1D n C n面积为S n=.=.=.即第n个图形的面积S n=.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=1.25,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD=5-1.25-3=0.75,∵PE∥BC,解得PE=0.75,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,∴∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=1.25t-2,∴解得t=2.5(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在Rt△ACD中,∵AC=4,CD=3,∴AD=,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴t=3.1(秒).综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当时,,,.∵,,∴,即(秒).(2)过点作轴于点,交的延长线于点,∵,∴,.即,.,.,∴.即().由,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则,解得,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)∵抛物线y=ax2+bx+3经过点B(﹣1,0)、C(3,0),∴,解得a=﹣1,b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)在直角梯形EFGH运动的过程中:①四边形MOHE构成矩形的情形,如图1所示:此时边GH落在x轴上时,点G与点D重合.由题意可知,EH,MO均与x轴垂直,且EH=MO=1,则此时四边形MOHE构成矩形.此时直角梯形EFGH平移的距离即为线段DF的长度.过点F作FN⊥x轴于点N,则有FN=EH=1,FN∥y轴,∴,即,解得DN=.在Rt△DFN中,由勾股定理得:DF===,∴t=;②四边形MOHE构成正方形的情形.由图1可知,OH=OD﹣DN﹣HN=4﹣﹣1=,即OH≠MO,所以此种情形不存在;③四边形MOHE构成菱形的情形,如图2所示:过点F作FN⊥x轴于点N,交GH于点T,过点H作HR⊥x轴于点R.易知FN ∥y轴,RN=EF=FT=1,HR=TN.设HR=x,则FN=FT+TN=FT+HR=1+x;∵FN∥y轴,∴,即,解得DN=(1+x).∴OR=OD﹣RN﹣DN=4﹣1﹣(1+x)=﹣x.若四边形MOHE构成菱形,则OH=EH=1,在Rt△ORH中,由勾股定理得:OR2+HR2=OH2,即:(﹣x)2+x2=12,解得x=,∴FN=1+x=,DN=(1+x)=.在Rt△DFN中,由勾股定理得:DF===3.由此可见,四边形MOHE构成菱形的情形存在,此时直角梯形EFGH平移的距离即为线段DF的长度,∴t=3.综上所述,当t=s时,四边形MOHE构成矩形;当t=3s时,四边形MOHE构成菱形.(3)当t=s或t=s时,以A、A′、G、K为顶点的四边形为平行四边形.简答如下:(注:本题并无要求写出解题过程,以下仅作参考)由题意可知,AA′=2.以A、A′、G、K为顶点的四边形为平行四边形,则GK ∥AA′,且GK=AA′=2.①当直角梯形位于△OAD内部时,如图3所示:过点H作HS⊥y轴于点S,由对称轴为x=1可得KS=1,∴SG=KS+GK=3.由SG∥x轴,得,求得AS=,∴OS=OA﹣AS=,∴FN=FT+TN=FT+OS=,易知DN=FN=,在Rt△FND中,由勾股定理求得DF=;②当直角梯形位于△OAD外部时,如图4所示:设GK与y轴交于点S,则GS=SK=1,AS=,OS=OA+AS=.过点F作FN⊥x轴,交GH于点T,则FN=FT+NT=FT+OS=.在Rt△FGT中,FT=1,则TG=,FG=.由TG∥x轴,∴,解得DF=.由于在以上两种情形中,直角梯形EFGH平移的距离均为线段DF的长度,则综上所述,当t=s或t=s时以A、A′、G、K为顶点的四边形为平行四边形.11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。
初三中考数学总复习 代数综合题复习(文字稿 答案)
中考总复习——代数综合题复习(答案版)一、2014年考试说明中与代数综合题有关的C 级要求:数与代数式:运用恰当的知识和方法对代数式进行变形,解决有关问题;方程与不等式:运用方程与不等式的有关内容解决有关问题;一次函数:运用一次函数、方程、不等式的有关内容解决有关问题;二次函数:运用二次函数的有关内容解决有关问题。
及与几何图形有关的很多C 级要求。
这些考试说明的C 级要求意味着代数综合题有很多的题型可以选择!面对今年难度很可能会降低的背景下,我们备课组对综合题的复习策略大致是:先是针对近几年的北京中考的代数综合题有针对性的重点复习,再分析2013、2014年的一模、二模的代数综合题涉及到的各种问题进行复习,最后借鉴外地中考中出现的与代数综合题有关的问题。
因为难度的降低,我们认为:复习中让学生多了解一些处理问题的方式方法,重在常见方法的落实和计算的准确!因为代数综合题中涉及到的基本问题的求解在各章节复习中已经涉及到了,所以我对综合题的分类是以每题的核心问题为主的,但在学生练习时还是要带着前面的基本问题。
二、复习中需要注意的细节:1、审题:前“二”后“两”、关于“y 轴”翻折、将x 轴“下方”的部分如何如何、A点在B 点的左侧、正.整数解、不与C 、D 两端点重合、不包括边界、点A 停止时点B 亦停止、给定区间……(13分高媛老师)2、注意隐含条件或前提:一次函数、反比例函数、二次函数(抛物线)的定义中隐含不为0的式子,用△的前提,简单综合条件得到的范围等等;3、积累基本问题的解法:如:(1)求线段长——纵坐标“上减下”或横坐标“右减左”,不用带绝对值(2)动点坐标化,根据象限,字母隐含取值范围(3)几何元素(面积、线段长)转到坐标时,带绝对值可弥补因作图不全而丢失的解(4)求某点坐标,除了动点坐标化,寻找几何条件列方程外,还有“由点及线”,两函数联立求交点的方法(5)三定一动定平四;两定两动定平四——定边、定距离(6)草图尽量准确,平移(转动)尺子,动态模拟运动变化的过程(13分高媛老师)另外,整数根问题、根的分布问题、距离最短问题、恒成立问题、单调性问题等等4、点题:做完每一问或每一题后,要养成点题的习惯,回头看一下自己所求的是否是题目所求,特别是求字母的值或范围时,要重点注意题目所给的范围或隐含范围及前提范围,千万别忘了综合。
2020人教版 初中数学中考二轮复习讲练---代数综合题(含解析)
代数综合题知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点. (1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。
2019年中考数学 二轮专题复习 代数部分(含答案)
2019年中考数学二轮专题复习代数部分一、选择题:1、地球上海洋的面积约为361 000 000平方千米,用科学记数法表示为 ( )平方千米A.361×106B.36.1×107C.3.61×108D.3.61×1092、-2的绝对值的倒数是( )A. B. C.2 D.3、如果多项式A加上﹣2x2﹣1得4x2+1,那么多项式A是( )A.6x2+2B.2x2C.6x4+2D.﹣2x2+24、用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A.5B.4C.3D.25、的平方根是( )A.81B.±3C.﹣3D.36、下列计算的结果正确的是( )A.a3·a3=a9B.a2+a3=a5C.(-3x2)3=27x5D.(a2b)n=a2n b n7、下列运用平方差公式计算,错误的是( )A.(a+b)(a﹣b)=a2﹣b2B.(x+1)(x﹣1)=x2﹣1C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣a+b)(﹣a﹣b)=a2﹣b28、化简:(a+)(1﹣)的结果等于( )A.a﹣2B.a+2C.D.9、已知,则代数式的值是( )A. B. C. D.10、已知关于x的一元二次方程(a+c)x2+2bx+a﹣c=0,其中a、b、c分别为△ABC三边的长.下列关于这个方程的解和△ABC形状判断的结论错误的是( )A. 如果x=﹣1是方程的根,则△ABC是等腰三角形B. 如果方程有两个相等的实数根,则△ABC是直角三角形C. 如果△ABC是等边三角形,方程的解是x=0或x=﹣1D. 如果方程无实数解,则△ABC是锐角三角形11、规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣2,3)]等于( )A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)12、若关于x的不等式组只有5个整数解,则a的取值范围( )A. B. C. D.二、填空题:13、某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是__________.14、如果实数x、y满足方程组,那么x2– y2= .15、若关于x的不等式(a+1)x>a+1的解集为x>1,则a的取值范围是.16、若x2+2(m﹣3)x+16是一个完全平方式,那么m应为.17、已知,则代数式的值为18、根据图所示的程序计算,若输入x的值为64,则输出结果为.三、解答题:19、计算:. 20、解方程:21、解方程:4(x+1)2-(2x+5)(2x-5) 22、计算:23、计算:. 24、解方程:3x2﹣1=4x(公式法)25、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费,已知某用户10月份的煤气费为66元,求该用户10月份使用煤气多少立方米?26、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1 100元,请问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并指出获利最大的购货方案.27、某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你写出y与x的函数表达式.28、在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.29、某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)30、某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?31、小颖妈妈的网店加盟了“小神龙”童装销售,有一款童装的进价为60元/件,售价为100元/件,因为刚加盟,为了增加销量,准备对大客户制定如下促销优惠方案:若一次购买数量超过10件,则每增加一件,所有这一款童装的售价降低1元/件.例如:一次购买11件时,这11件的售价都为99元/件.请解答下列问题:(1)一次购买20件这款童装的售价为元/件,所获利润为元;(2)促销优惠方案中,一次购买多少件这款童装,所获利润为625元?参考答案1、C2、A3、A4、A.5、B.6、D7、C.8、B.9、C.10、D11、D12、A13、答案为:x+20=0.8×15014、答案为:2;15、答案为:a>﹣1.16、答案为:m=﹣1或m=7.17、答案为:4;18、答案为:﹣.19、原式=4﹣1=3;20、原式=x=21原式=8x+2922、原式=;23、原式=24、x1= ,x2=25、解:设该用户10月份使用煤气x立方米,根据题意列方程,得60×0.8+1.2(x﹣60)=66,解这个方程,得x=75. 答:该用户10月份使用煤气75立方米.26、:(1)设甲种商品应购进x件,乙种商品应购进y件,根据题意,得解得:答:甲种商品购进100件,乙种商品购进60件;(2)设甲种商品购进a件,则乙种商品购进(160-a)件,根据题意,得解得65<a<68,∵a为非负整数,∴a取66,67,∴160-a相应取94,93,答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件,其中获利最大的是方案一.27、解:(1)设每件甲种玩具的进价是m元,每件乙种玩具的进价是n元.由题意得解得m=30,n=27.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x-20)×30×0.7=21x+180.28、解:设道路的宽为xm,根据题意得:(32﹣x)(20﹣x)=540,解得:x1=2,x2=50(不合题意,舍去),答:道路的宽是2m.29、解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.30、解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.31、解:(1)售价为90;利润为600.(2)设一次购买x件这款童装,所获利润为625元.根据题意,得=x2=25.=625.解得x答:一次购买25件这款童装,所获利润为625元.。
中考数学代数综合型问题试题整理汇集(带答案)
中考数学代数综合型问题试题整理汇集(带答案)以下是查字典数学网为您推荐的中考数学代数综合型问题试题整理汇集(带答案),希望本篇文章对您学习有所帮助。
中考数学代数综合型问题试题整理汇集(带答案)11. (2019山东莱芜, 11,3分)以下说法正确的有:①正八边形的每个内角都是135② 与是同类二次根式③长度等于半径的弦所对的圆周角为30④反比例函数,当x0时,y随的x增大而增大A. 1个B. 2个C. 3个D.4个【解析】正八边形的每个内角度数:180 ,①正确= , = ,与是同类二次根式,②正确一条非直径的弦对两个圆周角,分别是一个锐角和一个钝角,长度等于半径的弦所对的圆周角为30错误反比例函数,当x0时,y随的x增大而增大,④正确【答案】C.【点评】掌握基础知识,记住当用的结论如正多边形的各个内角的计算、同类二次根式的识别判断、反比例函数的图象的性质。
对于一些多解问题,要做到思考问题全面.7. (2019山东日照,7,3分)下列命题错误的是 ( )A.若 a1,则(a-1) =-B. 若 =a-3 ,则a3C.依次连接菱形各边中点得到的四边形是矩形D. 的算术平方根是9解析:因为a1,所以1-a0,所以(a-1) = (a-1) = =- ,故A 正确;B中有a-30,a3,故B正确;因为菱形的对角线互相垂直,所以连接其各边中点得到的四边形是矩形,C也正确. =9,9的算术平方根是3,所以D错误.8、(2019深圳市 8 ,3分)下列命题:① 方程的解是② 4的平方根是2③ 有两边和一角相等的两个三角形全等④ 连接任意四边形各边中点的四边形是平行四边形其中是真命题的有( )个A. 4个B. 3个 C 2个 D. 1个【解析】:考查方程的解,平方根的意义,三角形全等的判定,中点四边形的性质【解答】:①漏了一个解;4的平方根是,不能用作三角形全等的判定由中点四边形的性质知,中点四边形一定是平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数综合题
Ⅰ、综合问题精讲:
代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法、配方法等.解代数综合题要注意归纳整理教材中的基础知识、基本技能、基本方法,要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.注意知识间的横向联系,从而达到解决问题的目的.
Ⅱ、典型例题剖析
【例1】(2005,丽水,8分)已知关于x 的一元二次方程x 2
-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.
解:设方程的另一根为x 1,由韦达定理:2 x 1=-6, ∴ x 1=-3.由韦达定理:-3+2= k +1,∴k=-2.
【例2】(2005,嘉峪关,7分)已知关于x 的一元二次方程(k+4)x 2+3x+k 2
-3k -4=0的一 个根为0,求k 的值.
解:把x=0代入这个方程,得k 2
-3k -4=0,解得k 1=l ,k 2=-4.因为k+4≠0.所以k ≠-4,所以k =l 。
点拨:既然我们已经知道方程的一个根了,那么我们就可以将它代入原方程,这样就可以将解关于x 的方程转化为解关于k 的方程.从而求出b 的解.但应注意需满足k+4的系数不能为0,即k ≠-4。
【例3】(2005,自贡,5分)已对方程 2x 2
+3x -l =0.求作一个二次方程,使它的两根分别是已知方程两根的倒数.
解:设2 x 2
+3x -l =0的两根为x 1、x 2
则新方程的两根为12
11, x x 得121232
12
x x x x ⎧
+=-⎪⎪⎨⎪=-⎪⎩
所以
12
1212
11==3 x x x x x x ++所以新方程为y 2-3y -2=0· 点拨:熟记一元二次方程根与系数的关系是非常必要的
【例4】(2005,内江,8分)某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y (件)之间的关系如下表:
⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多
少元?
解:⑴经观察发现各点分布在一条直线上, ∴设b kx y += (k≠0)
用待定系数法求得40+-=x y ,
⑵设日销售利润为z 则y xy z 10-= =400502-+-x x 当x=25时,z 最大为225, 每件产品的销售价定为25元时,日销售利润最大为225元。
点拨:只有正确地建立了平面直角坐标系,才能准确地得出函数的图象,从而由图象得出函数关系.而日销售利润与销售定价又存在二次函数关系,所以可以利用二次函数的极值来解决此类问题.
【例5】(2005,海淀模拟,8分)一次函数y=kx+b 和反比例函数y=
2
k x
的图象相交于点P(n -l ,n +l ),点Q(0,a )在函数y=k 1x+b 的图象上,且m 、n 是关于x 的方程
2(31)2(1)0ax a x a -+++=的两个不相等的整数根.其中a 为整数,求一次函数和反
比例函数的解析式.
解:2
(31)2(1)0ax a x a -+++=得x 1=2,x 2=1+1a
因为方程有两个不相等的整数根,且a 为整数, 所以a=-1,x 2 =0,(a=1、x 1=2不合题意,舍去) 所以m=0,n=2,或m=2,n=0.
所以点P 的坐标为(-1,3)或(1,1) 又因为点Q(0,a )在y=kx+b 的图象上, 所以b=a=-1。
当点P 为(-1,3)时,根据题意,得12
1331
k k --=⎧⎪
⎨=⎪⎩- 解得1243,y=-4x-1,y=-3
x
k k =-⎧⎨
=-⎩所以 当点P 为(1,1)时,根据题意,得
1211
11
k k --=⎧⎪⎨=⎪⎩- 解得 1221,y=2x-1,y=1x k k =⎧⎨=⎩所以 所以一次函数的解析式为y=-4x-1或y=2x-1,对应的反比例函数的解析式为
31y y x x
=-=或,
点拨:解答本题的关键是求出一元二次方程的整数根.另外,求出整数根之后,
不要忽略m=2,n=0的情况。
Ⅲ、综合巩固练习:
1、(9分)某市近年来经济发展速度很快,根据统计,该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币,经论证,上述数据适合一个二次函数关系.请你根据这个函数关系预测2005年该市国内生产总 值将达到多少?
2.(10分)二次函数2y ax bx c =++的图象的一部分如图2-3-1所示。
已知它的顶点M 在第二象限,且经过点A (1,0)和点B (0,l ). (1)请判断实数a 的取值范围,并说明理由; (2)设此二次函数的图象与x 轴的另一个交点为
C ,当ΔAMC 面积为△ABC 面积的5
4
倍时,求a 的值.
3.图2-3-2所示,已知一次函数y=kx+b(k ≠0)的图象与x 轴、y 轴分别交于A 、B 两
点,且与反比例函数y= m
x (m ≠0)的图象在第二象限交于C 点,CD 垂直于x 轴,垂足
为D ,若 OA =OB=OD=1。
(1)求点A 、B 的坐标;
(2)求一次函数和反比例函数的解析式.
4.(10分)已知:如图2-3-3所示,一条直线经过点A (0,4),点B (2,0)将这条
直线向左平移与x 轴负半轴,y 轴负半轴分别交于点C 、点D ,使DB=DC .求以直线CD 为图象的函数解析式.
5.(10分)已知A (8,0),B (0,6),C (0,-2)连接A D ,过点C 的直线l 与AB 交于点P .
(1)如图2-3-4⑴所示,当PB=PC 时,求点P 的坐标;
(2)如图2-3-4⑵所示,设直线l 与x 轴所夹的锐角为α且tan α= 5
4 ,连接AC ,求
直线l 与x 轴的交点E 的坐标及△PAC 的面积.
6.已知关于x 、y 的方程组3
25x y a x y a -=+⎧⎨+=⎩
的解满足x >y >0.化简:|a|+|3-a|.
7.如图2-3-5所示,抛物线2y ax bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x=0和x=2时y 的值相等,直线y=3x —7与这条抛物线相交于两点.其中一点的横坐标是4,另一点是这条抛物线的顶点M 。
(1)求这条抛物线的解析式;
(2)P 为线段BM 上一点,过点P 向x 轴引垂线,垂足为Q ,若点P 在线段BM 上运动,设OQ 的长为t ,四边形P QAC 的面积为S (当P 与B 重合时,S 为△ACB 的面积).求S 与t 之间的函数关系式及自变量t 的取值范围;
(3)S 有无最大、最小值,若有,请分别求出t 为何值时S 取最大、最小值?最大、最小值各是多少;若没有,请说明理由.
8.(16分)已知反比例函数(0)k y k x
=≠和一次函数6y x =--。
⑴ 若一次函数和反比例函数的图象交于点(-3,m )求m 和k 的值. ⑵ 当k 满足什么条件时.这两个函数的图象有两个不同的交点?
⑶ 当k=-2时,设(2)中的两个函数图象的交点分别为 A 、B ,试判断A 、B 两点分别在第几象限,∠AOB 是锐角还是钝角(只要求直接写出结论). 9.(16分)在直角坐标系xoy 中,O 为坐标原点,A 、B 、C 三点的坐标分另为A ( 5,0),B (0,4),C (-1,0).点M 和点N 在x 轴上,(点M 在点N 的左边),点N 在原点的右边,作MP ⊥B N ,垂足为P(点P 在线段BN 上,且点P 与点B 不重合),直线MP 与y 轴交于点G ,MG=BN .
⑴ 求经过八、BJ 三点的抛物线的解析式; ⑵ 求点M 的坐标; ⑶ 设ON=t ,△MOG 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围; ⑷ 过点B 作直线BK 平行于x 轴,在直线BK 上是否存在点R ,使△ORA 为等艘二角形?若存在,请直接写出R 的坐标;若不存在,请说明理由.
课标版数学中考第二轮专题复习总结-5代数综合题(含答案)(
11 / 11。