数学一模拟试题(一)

合集下载

数学一考研模拟试题及答案

数学一考研模拟试题及答案

数学一考研模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,满足f(-x) = f(x)的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 设函数f(x)在点x=a处连续,且lim (x→a) [f(x) - f(a)]/(x-a) = L,那么f'(a) = ()A. LB. 0C. 不存在D. 13. 曲线y = x^2 在点(1,1)处的切线斜率为()A. 1B. 2C. 4D. 04. 设随机变量X服从参数为λ的泊松分布,P(X=k) = e^(-λ) *λ^k / k!,k=0,1,2,...,则E(X)等于()A. λB. λ^2C. kD. e^λ5. 以下哪个数列是发散的?()A. 1, 1/2, 1/3, ...B. 1, 2, 4, 8, ...C. 1, 0, 1, 0, ...D. -1, 1, -1, 1, ...6. 设A和B是两个n阶方阵,|A| = 2,|B| = 3,则|AB| = ()A. 6B. 5C. 1D. 无法确定7. 以下哪个选项是正确的?()A. ∫(0 to 1) x^2 dx = 1/3B. ∫(0 to 1) x^2 dx = 1/2C. ∫(0 to 1) x^2 dx = 2/3D. ∫(0 to 1) x^2 dx = 3/28. 设函数f(x)在区间[a,b]上可积,且f(x) ≥ 0,则()A. ∫(a to b) f(x) dx ≥ 0B. ∫(a to b) f(x) dx > 0C. ∫(a to b) f(x) dx = 0D. 无法确定9. 以下哪个级数是收敛的?()A. 1 + 1/2 + 1/3 + ...B. 1 - 1/2 + 1/2 - 1/3 + ...C. 1 + 1/4 + 1/9 + ...D. 1 - 1/2 + 1/4 - 1/8 + ...10. 设函数f(x)在点x=a处可导,且f'(a) = 2,则曲线y = f(x)在点(x=a, y=f(a))处的切线方程为()A. y = 2x - aB. y = 2x - 2aC. y = 2x + f(a)D. y = 2x - f(a)/2二、填空题(每题4分,共20分)11. 若函数f(x) = 2x^3 - 3x^2 + 5在点x=1处取得极小值,则f'(1) = ____。

广东省2024年普通高中合格性学业水平考试数学模拟数学试题一

广东省2024年普通高中合格性学业水平考试数学模拟数学试题一

一、单选题1. 在棱长为2的正方体中,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值为( )A .2B.C.D.2. 若集合,则集合可能为( )A.B.C.D.3.设是定义域为的奇函数,且,当时,,.将函数的正零点从小到大排序,则的第4个正零点为( )A.B.C.D.4.已知变量关于的回归方程为,若对两边取自然对数,可以发现与线性相关.现有一组数据如下表所示:12345则当时,预测的值为( )A.B.C.D.5. 函数在区间(,)内的图象是( )A.B.C.D.6. 若,且a 为整数,则“b 能被5整除”是“a 能被5整除”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知,则( )A.B.C.D.8.已知函数满足函数恰有5个零点,则实数的取值范围为( )A.B.C.D.9. 已知P为所在平面内一点,且满足,,则A.B.C.D.10. 已知数列的首项,且,,则满足条件的最大整数( )A .2022B .2023C .2024D .202511.在区间与内各随机取1个整数,设两数之和为,则成立的概率为( )广东省2024年普通高中合格性学业水平考试数学模拟数学试题一二、多选题A.B.C.D.12.如图,在正四棱柱中,是线段上的动点,有下列结论:①;②,使;③三棱锥体积为定值;④三棱锥在平面上的正投影的面积为常数.其中正确的是( )A .①②③B .①③C .②③④D .①④13. 已知,分别为随机事件A ,B 的对立事件,,,则( )A.B.C .若A ,B独立,则D .若A ,B互斥,则14.已知非常数函数及其导函数的定义域均为R ,若为奇函数,为偶函数,则( ).A.B.C.D.15. 我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.年年某市城镇居民、农村居民年人均可支配收入比上年增长率如图所示.根据下面图表,下列说法正确的是()A .对于该市居民年人均可支配收入比上年增长率的中位数,城镇比农村的大B .对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C .年该市农村居民年人均可支配收入比年有所下降D .年该市农村居民年人均可支配收入比年有所上升16. 若直线与两曲线、分别交于、两点,且曲线在点处的切线为,曲线在点处的切线为,则下列结论正确的有( )A .存在,使B .当时,取得最小值三、填空题四、填空题五、解答题C.没有最小值D.17. 蜚英塔俗称宝塔,地处江西省南昌市,建于明朝天启元年(1621年),为中国传统的楼阁式建筑.蜚英塔坐北朝南,砖石结构,平面呈六边形,是江西省省级重点保护文物,已被列为革命传统教育基地.某学生为测量蜚英塔的高度,如图,选取了与蜚英塔底部D 在同一水平面上的A ,B两点,测得米,,,,则蜚英塔的高度是_______米.18. 在复平面内,复数所对应的点的坐标为,则_____________.19.已知、分别为椭圆的左、右焦点,为椭圆上的动点,点关于直线的对称点为,点关于直线的对称点为,则当最大时,的面积为__________.20. 如图,在棱长为2的正方体中,点是侧面内的一个动点.若点满足,则的最大值为__________,最小值为__________.21.椭圆的左、右焦点分别为,,过焦点的直线交椭圆于,两点,则的周长为______;若,两点的坐标分别为和,且,则的内切圆半径为______.22. 计算求值:(1);(2)已知,均为锐角,,,求的值.23. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.六、解答题七、解答题八、解答题九、解答题24. 1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组,,…,,并整理得到如图频率分布直方图:(1)求其中阅读量小于60本的人数;(2)已知阅读量在,,内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在内的学生中随机选取3人进行调查座谈,用表示所选学生阅读量在内的人数,求的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).25. 已知.(1)求不等式的解集;(2)令的最小值为,若正数满足,证明:.26. 如图,在四棱锥P A BCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE .27. 在一次猜灯速的活动中,共有20道灯谜,甲同学知晓其中16道灯谜的谜底,乙同学知晓其中12道灯谜的谜底,两名同学之间独立竞猜,假设猜对每道灯谜都是等可能的.(1)任选一道灯谜,求甲和乙各自猜对的概率;(2)任选一道灯谜,求甲和乙至少一人猜对的概率.28.已知等比数列的前n 项和为,,.(1)求;(2)若数列的前n项和为,,且,试写出满足上述条件的数列的一个通项公式,并说明理由.。

高考数学模拟试题(一)

高考数学模拟试题(一)

一、选择题1.已知集合A ={}x |x 2-3x -10<0,集合B ={x |-1≤x <6},则A ⋂B 等于().A.{}x |-1<x <5B.{}x |-1≤x <5C.{}x |-2<x <6 D.{}x |-2<x <52.已知复数z =2-1+i,则().A.||z =2B.z 的实部为1C.z 的虚部为-1D.z 的共轭复数为1+i3.已知a =(1,3),b =(2,2),c =(n ,-1),若(a -c )⊥b ,则n 等于().A.3B.4C.5D.64.设tan α=12,cos(π+β)=-45,β∈(0,π),则tan(2α-β)的值为().A.-724B.-524C.524D.7245.某程序框图如图1所示,若该程序运行后输出的值是95,则a =().图1A.7B.6C.5D.46.连接双曲线C 1:x 2a2-y 2b 2=1及C 2:y 2b 2-x 2a2=1的4个顶点的四边形面积为S 1,连接4个焦点的四边形的面积为S 2,则当S 1S 2取得最大值时,双曲线C 1的离心率为().A.B. C.3 D.27.在区间[]-3,3上随机取一个数x ,使得3-x x -1≥0成立的概率为等差数列{}a n 的公差,且a 2+a 6=-4,若a n >0,则n 的最小值为().A.8B.9C.10D.118.已知函数f ()x =ìíî()a -1x +4,x ≤7,a x -6,x >7,是R 上的减函数,当a 最小时,若函数y =f (x )-kx -4恰有两个零点,则实数k 的取值范围是().A.(-12,0)B.(-2,12)C.(-1,1)D.(12,1)9.某几何体的三视图如图2所示,则该几何体的体积是().图2A.5π3B.4π3C.2+2π3D.4+2π310.函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的部分图象如图3所示,若AB =5,点A 的坐标为(-1,2),若将函数f (x )向右平移m (m >0)个单位后函数图象关于y 轴对称,则m 的最小值为().图357高考链接A.12 B.1 C.π3 D.π211.在等腰直角三角形BCD 与等边三角形ABD中,∠C =90°,BD =6,现将△ABD 沿BD 折起,则当直线AD 与平面BCD 所成角为45°时,直线AC 与平面ABD().A.B.C.D.12.已知函数f (x )=13ax 3+x 2(a >0).若存在实数x 0∈(-1,0),且x 0≠-12,使得f (x 0)=f (-12),则实数a 的取值范围为().A.(23,5)B.(23,3)⋃(3,5)C.(187,6)D.(187,4)⋃(4,6)二、填空题13.已知C 4n =C 6n ,设(3x -4)n =a 0+a 1(x -1)+a 2(x -1)2+⋯+a n ()x -1n,则a 1+a 2+⋯+a n =_____.14.已知数列{a n }的各项均为正数,满足a 1=1,a k +1-a k =a i .(i ≤k ,k =1,2,3,⋯,n -1),若{a n }是等比数列,数列{a n }的通项公式a n =_______.15.实数x ,y 满足ìíîïïy ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-2,则yx的最小值为_______.16.已知M 是抛物线y 2=2x 上一点,N 是圆x 2+(y -2)2=1关于直线x -y =0对称的曲线C 上任意一点,则||MN 的最小值为_______.三、解答题17.已知在△ABC 中,a 、b 、c 分别为角A ,B ,C 的对边,且b =a sin A -c sin Csin B -sin C.(1)求角A 的值;(2)若a =3,设角B =θ,△ABC 周长为y ,求y =f (θ)的最大值.18.如图4,已知三棱柱ABC -A 1B 1C 1中,△ABC 与△B 1BC 是全等的等边三角形.(1)求证:BC ⊥AB 1;(2)若cos ∠BB 1A =14,求二面角B -B 1C -A 的余弦值.图419.移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到2×2列联表如下:使用移动支付不使用移动支付合计35岁以下(含35岁)4035岁以上40合计50100(1)将上2×2列联表补充完整,并请说明在犯错误的概率不超过0.10的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为X ,求X 的分布列及期望.(参考公式:K 2=n ()ad -bc 2()a +b ()c +d ()a +c ()b +d (其中n =a +b +c +d )20.已知椭圆x2a 2+y 2b2=1()a >b >0右焦点F ()1,0,离心率为,过F 作两条互相垂直的弦AB ,CD ,设AB ,CD 中点分别为M ,N .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.21.已知函数f (x )=bx 2-2ax +2ln x .(1)若曲线y =f (x )在(1,f (1))处的切线为y =2x +4,试求实数a ,b 的值;(2)当b =1时,若y =f (x )有两个极值点x 1,x 2,且x 1<x 2,a ≥52,若不等式f (x 1)≥mx 2恒成立,试求实数m 的取值范围.四、选做题22.过点P ()-1,0作倾斜角为α的直线与曲线C :ìíîx =3cos θ,y =2sin θ,(θ为参数)相交于M 、N 两点.(1)写出曲线C 的一般方程;(2)求||PM ∙||PN 的最小值.23.已知函数f (x )=16-||2x -1.(1)解不等式f (x )≤||x +2;(2)若函数y =f (x )-a 存在零点,求a 的求值范围.58参考答案以及解析一、选择题1-12BCCDD DDAAB AD二、填空题13.1023;14.2n-1;15.17;16.3-1.三、解答题17.解:(1)由已知b=a sin A-c sin Csin B-sin C可得b sin B-b sin c=a sin A-c sin C,由正弦定理可得b2+c2=a2+bc,∴cos A=b2+c2-a22bc=12,又A∈()0,π,∴A=π3.(2)由a=3,A=π3及正弦定理得bsin B=c sin C=a sin A=2,∴b=2sin B=2sinθ,c=2sin C=2sinæèöø2π3-B=2sinæèöø2π3-θ,∴y=a+b+c=3+2sinθ+2sinæèöø2π3-θ,即y=23sinæèöøθ+π6+3,由0<θ<2π3得π6<θ+π6<5π6,∴当θ+π6=π2,即θ=π3时,y max=33.18.解:(1)取BC的中点O,连接AO,B1O,由于△ABC与△B1BC是等边三角形,所以有AO⊥BC,B1O⊥BC,且AO⋂B1O=O,所以BC⊥平面B1AO,AB1⊂平面B1AO,所以BC⊥AB1.(2)设AB=a,△ABC与△B1BC是全等的等边三角形,所以BB1=AB=BC=AC=B1C=a,又cos∠BB1A=14,由余弦定理可得AB21=a2+a2-2a∙a×14=32a2,在△AB1C中,有AB21=AO2+B1O2,所以以OA,OB,OB1分别为x,y,z轴建立空间直角坐标系,如图5所示,则Aèöø÷,0,0,Bæèöø0,a2,0,B1æèçø,设平面ABB1的一个法向量为n =()x,y,z,则ìíîn ∙ AB=0,n ∙ AB1=0,即ìíîïïïï+12ay=0,2+=0,令x=1,则n =()1,3,1,又平面BCB1的一个法向量为m =()1,0,0,所以二面角B-B1C-A的余弦值为cosθ=n ∙m ||n ∙||m=.图519.解:(1)根据题意及2×2列联表可得完整的2×2列联表如下:使用移动支付不使用移动支付合计35岁以下(含35岁)40105035岁以上104050合计5050100根据公式可得K2=100()40×40-10×10250×50×50×50=36>6.635,所以在犯错误的概率不超过0.10的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为X,则X的可能为1,2,3,P()X=1=C18C22C310=8120,P()X=2=C28C12C310=5610,P()X=3=C38C310=56120,其分布列为XP1812025612035612059高考链接EX =1×8120+2×56120+3×56120=125.20.解:(1)由题意得c =1,c a 则a =2,b =c =1,所以椭圆的方程为x 22+y 2=1.(2)①当两直线一条斜率不存在一条斜率为0时,S =12||AB ·||CD =12×22×2=2,②当两直线斜率存在且都不为0时,设直线AB 方程为y =k ()x -1,A ()x 1,y 1,B ()x 2,y 2,将其代入椭圆方程整理得:()1+2k 2x2-4k 2x +2k 2-2=0,x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2,||AB =1+k 2||x 1-x 2=22()k 2+11+2k 2,同理可得||CD =22()k 2+1k 2+2,S =12||AB ·||CD =2-22æèöøk +1k 2+1∈éëöø169,2,当k =±1时,S =169,综上所述四边形面积范围是éëùû169,2.21.解:(1)由题可知f ()1=2×1+4=6=b -2a ,f ′()x =2bx -2a +2x,∴f ′()1=2b -2a +2=2,联立可得a =b =-6.(2)当b =1时,f ()x =x 2-2ax +2ln x ,∴f ′()x =2x -2a +2x =2()x 2-ax +1x,∵f ()x 有两个极值点x 1,x 2,且x 1<x 2,∴x 1,x 2是方程x 2-ax +1=0的两个正根,∴x 1+x 2=a ≥52,x 1∙x 2=1,不等式f ()x 1≥mx 2恒成立,即m ≤f ()x 1x 2恒成立,∴f (x 1)x 2=x 21-2ax 1+2ln x 1x 2=-x 31-2x 1+2x 1ln x 1,由∴x 1+x 2=a ≥52,x 1∙x 2=1,得x 1+1x 1≥52,∴0<x 1≤12,令h ()x =-x 312,h ′()x =-3x 2+2ln x <0,∴h ()x 在æèùû0,12上是减函数,∴h ()x ≥h æèöø12=-98-ln 2,故m ≤-98-ln 2.四、选做题22.解:(1)由曲线C 的参数方程ìíîx =3cos θ,y =2sin θ,(θ是参数),可得x 23+y 22=cos 2θ+sin 2θ=1,即曲线C 的一般方程为x 23+y 22=1.(2)直线MN 的参数方程为{x =-1+t cos α,y =t sin α,(t 为参数),将直线MN 的参数方程代入曲线x 23+y 22=1,得()3-cos 2α∙t 2-4cos α∙t -4=0,设M ,N 对应的对数分别为t 1,t 2,则||PM ∙||PN =||t 1∙t 2=43-cos 2α,当cos α=0时,||PM ∙||PN 取得最小值为43.23.解:(1)不等式可化为||x +2+||2x -1≥16,当x ≤-2时,原不等式可化为-x -2-2x +1≥16,解得x ≤-173;当-2<x ≤12时,原不等式可化为x +2-2x +1≥16,解得x ≤-13,不满足,舍去;当x >12时,原不等式可化为x +2+2x -1≥16,解得x ≥5,所以不等式的解集为{}x |x ≤-173或x ≥5.(2)因为f ()x =ìíîïï17-2x ,x ≥12,15+2x ,x <12,所以若函数y =f ()x -a 存在零点则可转化为函数y =f ()x 与y =a 的图象存在交点,函数f (x )在(-∞,12]上单调增,在[12,+∞)上单调递减,且f (12)=16.数形结合可知a ≤16.60。

专业科目考试:2022数学1真题模拟及答案(1)

专业科目考试:2022数学1真题模拟及答案(1)

专业科目考试:2022数学1真题模拟及答案(1)共670道题1、微分方程y ″-y =e x+1的一个特解应具有形式( )。

(单选题) A. ae x+b B. axe x +b C. ae x +bx D. axe x +bx 试题答案:B2、设(a →×b →)·c →=2,则[(a →+b →)×(b →+c →)]·(c →+a →)=( )。

(单选题)A. 2B. 4C. 1D. 0 试题答案:B3、平行于平面5x -14y +2z +36=0且与此平面距离为3的平面方程为( )。

(单选题)A. 5x -14y +2z +36=0或5x -14y +2z -18=0B. 5x -14y +2z +36=0或5x -14y +2z -9=0C. 5x -14y +2z +81=0或5x -14y +2z -9=0D. 5x -14y +2z +81=0或5x -14y +2z -18=0 试题答案:C4、设0<x n<1,n=1,2,…,且有x n+1=-x n2+2x n,则()。

(单选题)A.B. 不存在C.D.试题答案:C5、设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()。

(单选题)A.B.C.D.试题答案:D6、下列结论正确的是()。

(单选题)A. z=f(x,y)在点(x0,y0)处两个偏导数存在,则z=f(x,y)在点(x0,y0)处连续B. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数存在C. z=f(x,y)在点(x0,y0)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x0,y0)处连续D. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数有界试题答案:C7、设函数f(x)在x=0处连续,下列命题错误的是()。

小升初数学模拟试题一(北师大)(含答案和解析)

小升初数学模拟试题一(北师大)(含答案和解析)

小升初数学模拟试题一(北师大)一、选择题。

1.商场搞促销活动,原价80元的商品,现在八折出售,可以便宜()元.A.100B.64C.162.下面各数中,最接近1000的数是()A.899B.987C.10023.与数对(3,5)在同一行的是()A.(5,3)B.(3,4)C.(4,5)D.(5,6)4.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。

A.1B.2C.3D.45.把一个圆柱削成一个与它等底等高的圆锥,削去的体积是90立方厘米,这个圆柱的体积是多少立方厘米?列式正确的是()A.90÷3=30B.90÷2×3=135C.90×3=270D.90÷2=456.一辆客车从甲地到乙地,第一天行驶了全程的 ,第二天行驶了450千米,这时已行路程和剩下路程的比是3:7.甲乙两地相距()千米.A.750B.900C.2250D.45007.小明看一本书,已经看的与没看的比是3:7,那么已看的占全书的()A. B. C. D.8.数学书厚7()A.毫米B.厘米C.分米9.小明在桌子上用小正方体摆了一个几何体,从上面看到的图形是,从左面看到的图形是,小明最多用了个小正方体,最少用了个小正方体.10.在下面各比中,和 : 比值相等的是()A.5:2B.1.5:0.6C. : D. :211.六年级某班男生人数与女生人数的比是3:2,男生比女生多()A.60%B.50%C.40%D.66.6%二、判断题12.真分数就是最简分数。

()13.两个完全一样的梯形一定能拼成一个长方形.()14.一种商品先涨价10%,再降价10%,原价不变.()15.36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.()16.圆锥的体积等于圆柱体积的 ,圆柱与圆锥一定等底等高。

()三、填空题17.在笔直的公路两旁栽树(两端都栽),每隔5米栽一棵,一共栽了36棵树.这条公路长米.18.小于60的数中,7的所有倍数有.19.以下四个说法中正确的是(填序号).①两位小朋友独立操作,共编了7个中国结,有一个小朋友至少编了4个;②若一个圆锥的底面半径扩大到原来的3倍,则底面周长扩大到原来的3倍,体积扩大到原来的27倍;③在美术本上画一栋50米高的房子,比较合适的比例尺是1:50;④正方形的周长与边长成正比例关系.20.将2016颗黑子,201颗白子排成一条直线,至少会有颗黑子连在一起.21.一个外表涂色的正方体木块,切成8个一样大的小正方体,只有一个面涂色的正方体有块;如果切成一样大的27块,那么只有一面涂色的正方体有块.22.五(1)班教室在4楼,每层楼有20级台阶,从一楼回到教室需要走级台阶.23.计算:(2.25÷0.375﹣0.3×2)÷(2.3×0.25+0.27×2.5)=.24.一个圆柱的底面周长是12.56厘米,高是5厘米,它的侧面积是平方厘米,表面积是平方厘米,体积是立方厘米.四、计算题25.下面各题,怎样简便就怎样算.(1) ÷9+ × (2)2﹣ ÷ ﹣ (3)87× (4) - + -26.解比例(1)3:5=x:15(2) = (3) : = :x五、应用题27.学校新进150本《童话故事》,《科技书》比《童话故事》的 少15本,新进《科技书》多少本?28.如图,一个棱长8厘米的正方体,在它的前面的正中间画一个边长2厘米的正方形,再由正方形向对面挖一个长方体洞,剩下物体的表面积是多少平方厘米?29.有A,B,C,D,E五个朋友相聚在一起,互相握手致意.B握了4次手,A握了3次手,C握了2次手,D握了1次手,那么E握了几次手?30.餐厅买了面粉和大米各12袋,面粉每袋83元,大米每袋62元,一共需要多少元?31.甲乙两辆汽车同时从相距630千米的两地相对开出,经过4.2小时两车相遇.已知乙车每小时行70千米,甲车每小时行多少千米?小升初数学模拟试题一(北师大)答案和解析一、选择题。

辽宁省沈阳市东北育才双语学校2023届高三上学期数学学科第一次模拟测试题

辽宁省沈阳市东北育才双语学校2023届高三上学期数学学科第一次模拟测试题

东北育才双语学校2022—2023学年度上学期高三年级数学学科第一次模拟测试题一、单选题(共8小题,每题5分)1.设复数 z 满足()12i z i +=(其中 i 为虚数单位),则下列结论正确的是A.2z =B.z 的虚部为i C.22z = D.z 的共轭复数为1i-【答案】D 【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.【详解】由()12i z i +=,得()22(1)111(1)i i i z i i i i -===+++-,∴z =,z 的虚部为1,()2212z i i =+=, z 的共轭复数为1i -,故选D.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.已知平面向量a ,b 满足2= a ,()1,1b = ,a b +=r r ,则a 在b上的投影向量的坐标为()A.22,22⎛⎫ ⎪ ⎪⎝⎭B.()1,1C.()1,1-- D.,22⎛⎫-⎪ ⎪⎝⎭【答案】B 【解析】【分析】根据a b + 及相关公式可得a b ⋅ ,再根据投影向量的计算公式求解.【详解】a b += b = ,所以2a b ×= 所以a 在b上的投影向量为()1,1a b b b bb⋅⋅==,故选:B.3.已知3cos 16παα⎛⎫--= ⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭()A.13-B.13C.223-D.223【答案】B 【解析】【分析】利用两角和(差)的余弦公式化简可得3cos 33πα⎛⎫+= ⎪⎝⎭,再由诱导公式及二倍角公式计算可得;【详解】解:因为3cos 16παα⎛⎫--= ⎪⎝⎭,即3cos cossin sin 166ππααα⎛⎫-+= ⎪⎝⎭,即313cos sin 122ααα⎛⎫-+= ⎪ ⎪⎝⎭即33cos sin 122αα-=13cos sin 1223πααα⎫⎛⎫-=+=⎪ ⎪⎪⎝⎭⎭,所以cos 33πα⎛⎫+= ⎪⎝⎭,所以sin 2cos 2662πππαα⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭2cos 22cos 133ππαα⎡⎤⎛⎫⎛⎫=-+=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦212133⎡⎤⎛⎫⎢⎥=--= ⎪ ⎪⎢⎥⎝⎭⎣⎦.故选:B 4.函数()2sin 1cos 22x x f x ωω-=+,且102ω<<,若()f x 在()3,4x ππ∈内无零点,则ω的取值范围为()A.15,416⎡⎤⎢⎥⎣⎦ B.1570,,41616⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦C.37,1616⎡⎤⎢⎥⎣⎦ D.3170,16416⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦,【答案】D 【解析】【分析】先通过降幂公式及辅助角公式得到2()sin 24f x x πω⎛⎫=+ ⎪⎝⎭,再求出4443,4x πππωωπωπ⎪+∈+⎛⎫ ⎝⎭+,由2342,44k k k πππωπωπππ≤+<+≤+∈Z 或23422,44k k k ππππωπωπππ+≤+<+≤+∈Z 结合102ω<<即可求解.【详解】2sin 1111cos 11()cos sin sin cos 2222222x x x f x x x x ωωωωωω-+=+=-+=+24x πω⎛⎫=+ ⎪⎝⎭,当()3,4x ππ∈时,4443,4x πππωωπωπ⎪+∈+⎛⎫⎝⎭+,则2342,44k k k πππωπωπππ≤+<+≤+∈Z 或23422,44k k k ππππωπωπππ+≤+<+≤+∈Z ,解得213,312162k k k ω-≤≤+∈Z 或217,34162k k k ω+≤≤+∈Z ,又102ω<<,当213,312162k kk ω-≤≤+∈Z ,令0k =,得131216ω-≤≤,故3016ω<≤;当217,34162k kk ω+≤≤+∈Z ,令0k =,得17416ω≤≤;综上ω∈3170,16416⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦,.故选:D.5.a ,b ,c 是ABC 的内角A ,B ,C 所对的边,若2222022a b c +=,则2tan tan tan (tan tan )A BC A B =+()A.1011B.2022C.2020D.2021【答案】D 【解析】【分析】由余弦定理得22021cos 2c C ab =,再由三角恒等变换及正弦定理得22tan tan 2cos tan (tan tan )A B ab CC A B c =+即可求解.【详解】因为2222022a b c +=,由余弦定理得22222021cos 22a b c c C ab ab+-==,2sin sin 2sin sin 2tan tan cos cos cos cos sin sin cos cos sin sin sin sin tan (tan tan )cos cos cos cos cos cos A B A BA B A B A B C A B A BC A B C A B C A B C A B ==++⎛⎫⋅+ ⎪⎝⎭()()22sin sin cos 2sin sin cos 2sin sin cos sin sin sin sin sin A B C A B C A B CC A B C C Cπ==⋅+⋅-=,由正弦定理可得22212tan tan 2cos 2tan (ta 20212n 02n ta )2A B ab C ab C A B c c c ab==⋅+=.故选:D.6.已知直线l 是曲线ln y x =与曲线2y x x =+的一条公切线,直线l 与曲线2y x x =+相切于点()2,a a a +,则a 满足的关系式为()A.()21ln 210a a +-+= B.()21ln 210a a +++=C.()21ln 210a a --+= D.()21ln 210a a -++=【答案】C 【解析】【分析】求导,根据切点处的导数值为切线的斜率,以及由两切点的坐标,根据两点间斜率公式,即可列出方程求解.【详解】记()ln y f x x ==得1()f x x'=,记2()g x x x =+得()21g x x '=+,设直线l 与曲线()ln f x x =相切于点(),ln b b ,由于l 是公切线,故可得()()()()()f b g a g a f b g a a b⎧=⎪⎨-''=-'⎪⎩,即2121ln ()21a b a a b g a a a b ⎧=+⎪⎪⎨+-⎪==+'⎪-⎩化简得()21ln 210a a --+=,故选:C7.已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x m f x ++=有6个不同的实数根,则m的取值范围是()A.13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭ B.13,43⎡⎫--⎪⎢⎣⎭C.134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦D.134,3⎛⎤⎥⎝⎦【答案】A 【解析】【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点.当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.①当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意;②当12,0t t >时:1.若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2.若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<;综上可得101t <<或1423t ≤<.又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.8.已知定义在()3,3-上的函数()f x 满足42()e ()0,(1)e ,()x f x f x f f x '+-==为()f x 的导函数,当[0,3)x ∈时,()2()f x f x '>,则不等式24e (2)e x f x -<的解集为()A.(2,1)-B.(1,5)C.(1,)+∞ D.(0,1)【答案】B 【解析】【分析】构造函数()()2exf xg x =,由条件判断其奇偶性,单调性,利用单调性解不等式即可.【详解】令()()2exf xg x =,所以()()2e xf xg x =,因为()()4e0xf x f x +-=,所以()()242e e e 0x x x g x g x -⋅+⋅-=,化简得()()0g x g x +-=,所以()g x 是()3,3-上的奇函数;()()()()()2242e 2e 2e ex x x xf x f x f x f xg x ''--'==,因为当03x ≤<时,()()2f x f x '>,所以当[)0,3x ∈时,()0g x '>,从而()g x 在[)0,3上单调递增,又()g x 是()3,3-上的奇函数,所以()g x 在()3,3-上单调递增;考虑到()()2221e 11e ef g ===,由()24e 2e x f x -<,得()()2224e e2e x x g x --<,即()()211g x g -<=,由()g x 在()3,3-上单调递增,得323,21,x x -<-<⎧⎨-<⎩解得15x <<,所以不等式()24e 2e xf x -<的解集为()1,5,故选:B.二、多选题(共4小题,每题5分,全部选对得5分,选错0分,部分选对2分)9.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,下列说法正确的是()A.若cos sin a b A B=,则4A π=B.若sin 2sin 2A B =,则此三角形为等腰三角形C.若1a =,2b =,30A =︒,则解此三角形必有两解D.若ABC 是锐角三角形,则sin sin cos cos A B A B +>+【答案】AD 【解析】【分析】由正弦定理可求A ,然后可判断A ;根据角的范围直接求解可判断B ;正弦定理直接求解可判断C ;利用诱导公式和正弦函数单调性可判断D.【详解】由正弦定理可知sin sin a bA B =,又cos sin a b A B =,所以cos sin a a A A=,可得tan 1A =,因为(0,)A π∈,所以4A π=,A 正确;因为2(0,2),2(0,2)A B ππ∈∈,且角2A ,2B 最多有一个大于π,所以由sin 2sin 2A B =可知,22A B =或22A B π+=,即A B =或2A B π+=,所以ABC 为等腰三角形或直角三角形,故B 错误;由正弦定理可得12sin 2sin 11b AB a⨯===,因为(0,)B π∈,所以2B π=,故此三角形有唯一解,C 错误;因为ABC 是锐角三角形,所以2A B π+>,即022A B ππ>>->,又sin y x =在(0,2π上单调递增,所以sin sin()cos 2A B B π>-=,同理sin sin()cos 2B A A π>-=,所以sin sin cos cos A B A B +>+,D 正确.故选:AD10.下列选项中正确的是()A.若平面向量a ,b满足||2||2b a == ,则|2|a b - 的最大值是5;B.在ABC 中,3AC=,1AB =,O 是ABC 的外心,则BC AO ⋅的值为4;C.函数()tan 23f x x π⎛⎫=-⎪⎝⎭的图象的对称中心坐标为,062k ππ⎛⎫+⎪⎝⎭Z k ∈D.已知P 为ABC 内任意一点,若PA PB PB PC PA PC ⋅=⋅=⋅,则点P 为ABC 的垂心;【答案】ABD 【解析】【分析】利用数量积的运算律及性质计算判断A ;利用三角形外心及数量积计算判断B ;求出函数()f x 的对称中心判断C ;利用数量积运算律及垂直的向量表示判断D 作答.【详解】对于A ,因||2||2b a == ,则|2|5a b -==,当且仅当2b a =-时取等号,A 正确;对于B ,令边AB 的中点为D ,因O 是ABC 的外心,则⊥OD AB ,则211()22AO AB AD DO AB AB ⋅=+⋅== ,同理有21922AO AC AC ⋅== ,所以()4BC AO AC AB AO AC AO AB AO ⋅=-⋅=⋅-⋅=,B 正确;对于C ,由232k x ππ-=,Z k ∈得46k x ππ=+,Z k ∈,因此函数()f x 图象的对称中心为(,0)64k ππ+,Z k ∈,C 不正确;对于D ,点P 在ABC 内,由PA PB PB PC ⋅=⋅ 得:()0PA PC PB -⋅= ,即0CA PB ⋅=,有PB CA ⊥,由PB PC PA PC ⋅=⋅,同理有PC AB ⊥,因此点P 为ABC 的垂心,D 正确.故选:ABD11.已知函数()11ln x f x x x -=-+,下列结论成立的是()A.函数()f x 在定义域内无极值B.函数()f x 在点()()2,2A f 处的切线方程为5ln 282y x =+-C.函数()f x 在定义域内有且仅有一个零点D.函数()f x 在定义域内有两个零点1x ,2x ,且121x x ⋅=【答案】ABD 【解析】【分析】求出定义域与导函数可判断A ;利用导数的几何意义可判断B ;利用函数单调性以及零点存在性定理可判断C ;根据选项C 可判断D.【详解】A ,函数()11ln x f x x x -=-+定义域为()()0,11,+∞ ,()()()()2211112011x x f x x x x x --+'=-=+>--,()f x ∴在()0,1和()1,+∞上单调递增,则函数()f x 在定义域内无极值,故A 正确;B ,由()()2121f x x x '=+-,则()()212522221f '=+=-,又()212ln 23ln 221f +=-=-+-,∴函数()f x 在点()()2,2A f 处的切线方程为()53ln 222y x +-=-即5ln 282y x =+-,故B 正确;C ,()f x 在()1,+∞上单调递增,又()112ln 10111e ef e e e e e ++-=-=-=<---,()22222222113ln 20111e ef e e e e e +-=-=-=>---,所以函数()f x 在()2,e e 存在0x ,使()00001ln 01x f x x x +=-=-,又20111e x e <<,即0101x <<,且()0000000011111ln ln 0111x x f x f x x x x x +⎛⎫⎛⎫+=-=--=-= ⎪ ⎪-⎝⎭⎝⎭-,即1x 为函数()f x 的一个零点,所以函数()f x 在定义域内有两个零点,故C 错误.D ,由选项C 可得10201,x x x x ==,所以121x x ⋅=,故D 正确.故选:ABD12.已知函数()2sin sin 2f x x x =,则()A.函数()f x 在0,3π⎛⎫⎪⎝⎭上单调递增B.()max338f x =C.函数()f x 的最小正周期为2πD.对22223sin sin 2sin 4sin 24nnnn N x x x x +∈⋅⋅⋅≤,【答案】ABD 【解析】【分析】根据二倍角正弦公式化简3()2sin cos f x x x =,求导,判断函数单调区间即可判断A,验证函数周期为π可判断C ,由单调性及周期可判断B ,利用三角函数的最值及有界性可判断D.【详解】()23sin sin 22sin cos f x x x x x == ,()()(22422222()23sin cos sin 2sin 3cos sin 2sin 4cos 1)f x x x x x x x x x ∴=-=-=-',22sin (2cos 1)(2cos 1)x x x =+-()0f x '=在(0,)x π∈上的根为22,33x x ππ==,当(0,(,)33x π2π∈π 时,()0f x '>,当(,)33x π2π∈时,()0f x '<,所以函数()f x 在0,3π⎛⎫⎪⎝⎭和2(,)3ππ上单调递增,在(,)33π2π上单调递减,故A 正确;又[]22()sin ()sin 2()sin sin 2()f x x x x x f x πππ+=++==,故函数是周期为π的函数,故C 错误;所以23333(0)()0,()()3228f f f ππ===⨯=,223333())()3228f π=⨯-=-,故()max8f x =,故B 正确;()3233233222sin sin 2sin 4sin sin sin 2sin 4s 2in 2nnx x x xx x x x ⋅⋅⋅= ()()()2222123[sin sin sin 2sin 2sin 4sin 2sin 2sin 2]n n n x x x x x x x x -=⋅⋅32223i sin324883s88n4n n nnnx x⎡⎤⎛⎫⎛⎛⎫⎢⎥≤⨯≤==⎪ ⎪ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎦⨯⨯⨯⎣,故D正确.故选:ABD三、填空题(共4道题,每题5分,双填第一空2分,第二空3分)13.若00223a b ab a b>>++=,,,则2+a b的最小值是___________.【答案】2【解析】【分析】根据()2224a bab+≤,结合已知解不等式即可得出答案.【详解】解:因为0,0a b>>,所以()2224a bab+≤,则()222224a bab a b a b+++≤++,所以()22234a ba b+++≥,解得22a b+≥或26a b+≤-,当且仅当2a b=,即11,2a b==时,取等号,所以2+a b的最小值是2.故答案为:2.14.已知函数(1)y f x=+的图象关于直线3x=-对称,且对Rx∀∈都有()()2f x f x+-=,当2(]0,x∈时,()2f x x=+.则(2022)f=___________.【答案】2-【解析】【分析】根据给定条件,推理论证出函数()f x的周期,再利用周期性计算作答.【详解】因函数(1)y f x=+的图象关于直线3x=-对称,而函数(1)y f x=+的图象右移1个单位得()y f x=的图象,则函数()y f x=的图象关于直线2x=-对称,即(4)()f x f x--=,而对Rx∀∈都有()()2f x f x+-=,则(4)()2f x f x --+-=,即R x ∀∈,(4)()2f x f x +=-+,有(8)(4)2f x f x +=-++[()2]2()f x f x =--++=,因此函数()y f x =是周期函数,周期为8,又当2(]0,x ∈时,()2f x x =+,所以(2022)(25382)(2)2(2)242f f f f =⨯-=-=-=-=-.故答案为:2-15.已知函数3()6ln h x x x x =-+图象上任意不同的两点的连线的斜率都大于m ,则实数m 的取值范围为__________.【答案】8m ≤【解析】【分析】由()()2121h x h x m x x ->-将问题转化为()y h x mx =-在()0,∞+上是增函数,求导后参变分离得2631m x x≤-+,构造函数求出最值即可求解.【详解】假设存在实数m ,使得函数()h x 的图象上任意不同的两点()()()()1122,,,A x h x B x h x 连线的斜率都大于m ,即()()2121h x h x m x x ->-,不妨设210x x >>,则问题可以转化为()()2211h x mx h x mx ->-,∴()y h x mx =-在()0,∞+上是增函数,∴26310y x m x '=-+-≥,即2631m x x ≤-+在()0,∞+上恒成立,设()()26310H x x x x =-+>,由()2660H x x x=->',得1x >,()0H x '<,得01x <<.可知()H x 在()0,1上是减函数,在()1,+∞上是增函数.∴()H x 的最小值为()18H =.∴存在m ,且8m ≤.故答案为:8m ≤.16.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222222a b a b c c ab-+-=,若4C π=,则A =___________;若ABC 为锐角三角形,则2cos ab B的取值范围是___________.【答案】①.58π②.82,3⎛⎫ ⎪⎝⎭【解析】【分析】由正弦定理、余弦定理结合两角和与差的正弦公式化简已知等式,即可求出()sin 1A B -=,结合34A B π+=,即可得出答案;进而可知()sin 2sin C A B =-,分别讨论2C A B =-或2C A B π+-=,结合题意即可求出64B ππ<<,由正弦定理将2cos a b B化简为22sin 33tan sin cos B B B B =-,代入即可求出答案.【详解】因为2222222cos a b a b c C c ab-+-==,所以222sin sin 2sin cos A B C C -=,()()sin sin sin sin sin 2sin A B A B C C -+=,2sin cos 2sin cos sin 2sin 2222A B A B A B A B C C +--+⎛⎫⎛⎫⎛⎫⎛⎫⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()sin sin sin 2sin A B A B C C +-=,由A B C π++=,则()sin sin sin 2sin C A B C C -=,即()sin sin 2A B C -=,代入4C π=,可得()sin sin 12A B π-==,则2A B π-=,且34A B π+=,解得58A π=.由()sin sin 2A B C -=,①当2C A B =-时,且A B C π++=,若ABC 是锐角三角形,则2A π<,所以2A C ππ=+<,不成立;②当2C A B π+-=时,且A B C π++=,所以2C B =,代入上式,可得3A B π+=,若ABC 是锐角三角形,则2A π<,所以32B π>,即6B π>,且2222sin sin 3sin cos 2cos sin 2cos sin cos sin cos sin cos a A B B B B Bb B B B B B B B +===()222222sin 2cos 1cos 2sin cos 2cos 12cos 14sin cos cos cos B B B B BB B B BB B-+⋅-+==-22222sin cos 44tan 13tan cos B B B B B +=-=--=-,又3tan ,13B ⎛⎫∈ ⎪ ⎪⎝⎭,所以282,cos 3a b B ⎛⎫∈ ⎪⎝⎭.故答案为:58π;82,3⎛⎫ ⎪⎝⎭.四、解答题(共6道题,17题10分,其余每题12分)17.在ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且tan 21tan A cB b+=.(1)求A ;(2)若D 为BC 的中点,且ABC 的面积为332,AB =2,求AD 的长.【答案】(1)π3A =;(2)2.【解析】【分析】(1)利用正弦定理边化角,再切化弦并结合和角的正弦公式化简,即可计算作答.(2)由(1)的结论结合三角形面积定理求出AC ,再借助平面向量求解作答.【小问1详解】在ABC 中,由正弦定理得sin sin c C b B=,因tan 21tan A c B b +=,则sin cos 2sin 1sin cos sin A B CB A B +=,即有2sin cos sin cos cos sin sin()sin C A A B A B A B C =+=+=,而0πC <<,sin 0C >,因此,1cos 2A =,而0πA <<,解得π3A =,所以π3A =.【小问2详解】由(1)知,π3A =,而AB =2,则1sin 222ABC S AB AC A AC =⋅== ,解得3AC =,因D 为BC 的中点,则2AB ACAD += ,于是得2222211π19(2)(23223cos )4434AD AB AC AB AC =++⋅=++⨯⨯= ,解得19||2AD = ,所以AD 的长为2.18.已知数列{}n a 是等差数列,23a =,56a =,数列{}n b 的前n 项和为n S ,且22n n b S -=.(1)求数列{}n a 、{}n b 的通项公式;(2)记21n n n n n a c a a b ++=⋅⋅,若数列{}n c 的前n 项和为n T ,证明:12n T <.【答案】(1)1n a n =+,2nn b =(2)证明见解析【解析】【分析】(1)建立方程组求首项和公差,求出数列{}n a 通项公式;退位相减求出数列{}n b 的通项公式;(2)对数列{}n c 进行裂项化简,进而通过裂项相消进行求和,即可得证.【小问1详解】由已知得11346a d a d +=⎧⎨+=⎩,解得12,1a d ==,所以1n a n =+,当1n =时,1122b b -=,12b ∴=①,当2n ≥时,112222n n n n b S b S ---=⎧⎨-=⎩,12n n b b -=②,由①②得2nn b =.【小问2详解】由(1)知,所以32(1)(2)n n n c n n +=⋅+⋅+1112(1)2(2)n n n c n n -⇒=-⋅+⋅+011223111111111()()()()2223232424252(1)2(2)1122(2)n n n n nT n n T n -⇒=-+-+-+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅+⋅+⇒=-⋅+12n T ⇒<.19.已知函数2()2cos cos f x x x x a ωωω=++(0>ω,a ∈R ).再从条件①、条件②、条件③这三个条件中选择能确定函数()f x 解析式的两个合理条件作为已知,条件①:()f x 的最大值为1;条件②:()f x 的一条对称轴是直线π12x ω=-;条件③:()f x 的相邻两条对称轴之间的距离为π2.求:(1)求函数()f x 的解析式;并求()f x 的单调递增区间、对称中心坐标;(2)若将函数()f x 图象上的点纵坐标不变,横坐标变为原来的12,再向右平移π12单位,得到函数()g x 的图象,若()g x 在区间[0,]m 上的最小值为(0)g ,求m 的最大值.【答案】(1)π()2sin(2)16f x x =+-;ππ[π,π]36k k -++(Z k ∈);ππ(,1)122k -+-(Z k ∈)(2)π3【解析】【分析】(1)利用二倍角公式、辅助角将()f x 化为π()2sin(2)16f x x a ω=+++,然后根据函数性质选择条件求出ω和a ,进而得到π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭,再利用整体思想和正弦函数的单调性、对称性进行求解;(2)利用函数平移变换得()π2sin 416g x x ⎛⎫=-- ⎪⎝⎭,利用函数的性质得到π7π4660m m ⎧-≤⎪⎨⎪>⎩进行求解.【小问1详解】()22cos cos f x x x x aωωω=++πcos212sin 216x x a x a ωωω⎛⎫=+++=+++ ⎪⎝⎭,当选条件①时,31a +=,解得2a =-;当选条件②时,πππ20π,Z 1262k k ωω⎛⎫⋅-+=≠+∈ ⎪⎝⎭,显然条件②不合理;当选条件③时,π22T =,即2ππ2T ω==,解得1ω=;综上所述,条件①③能确定函数()f x 解析式,且π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭;令πππ2π22π262k x k -+≤+≤+,得ππππ36k x k -+≤≤+,Zk ∈所以函数()f x 的单调递增区间为ππ[π,π]36k k -++(Z k ∈);令π2π6x k +=,得ππ122k x =-+,Z k ∈,所以函数()f x 的对称中心坐标为π(π,1)12k -+-,Z k ∈;【小问2详解】将函数()f x 图象上的点纵坐标不变,横坐标变为原来的12,得到π2sin(416y x =+-的图象,再向右平移π12单位,得到函数πππ2sin[4(12sin(411266y x x =-+-=--的图象,即()2sin 416g x x π⎛⎫=-- ⎪⎝⎭;因为[]0,x m ∈,所以πππ4,4666x m ⎡⎤-∈--⎢⎣⎦,因为()g x 在区间[]0,m 上的最小值为()0g ,所以π7π4660m m ⎧-≤⎪⎨⎪>⎩,解得π03m <≤.所以m 的最大值为π3.20.已知函数()2ln x f x e x λ=-.(1)当2λ=时,求()f x 的图象在点1x =处的切线方程;(2)当1λ=时,判断()f x 的零点个数并说明理由;(3)若2()f x x x λ- 恒成立,求λ的取值范围.【答案】(1)222(1)20e x y e ---+=;(2)()f x 无零点,理由见解析;(3)2eλ≥.【解析】【分析】(1)利用导数的几何意义,直接求切线方程;(2)首先求导()2xf x e x'=-,并判断导数的单调性,以及利用零点存在性定理说明存在0x 使()00f x '=,并利用导数判断函数的单调性,证明函数的最小值的正负,说明零点个数;(2)不等式等价于2ln 2ln x x e x e x λλ+≥+,构造函数x y e x =+,利用函数的单调性可知2ln x x λ≥,利用参变分离的方法,求λ的取值范围.【详解】(1)当2λ=时,2()2ln x f x e x =-,2(1)f e =,222()2,(1)22x f x e f e x'='=-∴-,∴切线方程为22(22)(1)y e e x -=--,即222(1)20e x y e ---+=(2)当1λ=时,2()2ln ,()x xf x e x f x e x-='=-,易知'()f x 在()0,∞+单调递增,且()1()40,1202f f e ''=-<=->,'()f x ∴存在唯一零点01,12x ⎛⎫∈ ⎪⎝⎭,002x e x =满足且当()00,x x ∈时,'()0,()f x f x <单调递减,当()0x x ∈+∞,时,'()0,()f x f x >单调递增.对02x e x =两边取对数,得:00ln 2ln x x =-0min 00002()()2ln 22ln 22ln 242ln 20x f x f x e x x x ∴==-=+->=->()f x ∴无零点.(3)由题意得,22ln x e x x x λλ-≥-,即22ln x e x x x λλ+≥+,即2ln 2ln x x e x e x λλ+≥+,易知函数x y e x =+单调递增,2ln x x λ∴≥,x()0,e e(),e +∞'()h x +0-()h x 单调递增极大值单调递减2ln x x λ∴≥,令2ln ()xh x x=,则222ln ()x h x x -'=,令'()0h x =得x e =,列表得,max 22()(),h x h e e eλ∴==∴≥.【点睛】关键点点睛:本题第三问考查不等式恒成立求参数的取值范围,关键利用不等式22ln x e x x x λλ+≥+等价于2ln 2ln x x e x e x λλ+≥+,并且通过观察不等号两边的形式,构造函数x y e x =+,并判断单调性,根据单调性解不等式,这样问题迎刃而解.21.如图,设ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,21cos 7BAD ∠=.(1)求b 边的长度;(2)求ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点(含端点),线段EF 交AD 于G ,且AEF 的面积为ABC 面积的16,求AG EF 的取值范围.【答案】(1)4(2(3)502⎡⎤⎢⎥⎣⎦,【解析】【分析】(1)根据正弦定理的“角化边”把已知条件中的等式进行转化,再运用余弦定理得出b 和c 的关系式,进而求出b 的长度即可;(2)根据向量的运算性质和两向量的夹角公式求出cos BAC ∠,进而求出sin BAC ∠,再根据三角形面积公式求出面积即可;(3)首先设k A A D G = ,AB AE λ= ,AC AF μ=([)1λμ∈+∞,,),根据三点共线公式得到2k λμ+=,再根据面积的倍数关系求出6λμ=,因此求出AG EF的表达式后,可以根据函数值域的求解方法解决取值范围即可.【小问1详解】由已知条件可知:12sin cos sin sin sin 4c A B a A b B b C ⋅=⋅-⋅+⋅在ABC 中,由正弦定理2sin sin sin a b cR A B C===得2212cos 4ac B a b bc ⋅=-+在ABC 中,由余弦定理222cos 2a c b B ac+-=得2222214a cb a b bc +-=-+4b c ∴=,又14c b =∴= ,【小问2详解】设BAC θ∠= AD为BC 边上中线1122AD AB AC∴=+ 则()21111cos 2cos 2222AB AD AB AB AC AB AB AC θθ=+=+=+178cos 2AD ===7co s AB AB AD BAD AD=∠== ①228cos 8cos 110θθ∴+-=()()12cos 114cos 1102θθθ∴-+=∴=或1114-由①,得1134cos 10cos cos sin 422θθθθ+>∴>-∴=∴=1sin 2ABCS AB AC θ∴=⋅⋅=uuur uuu r △【小问3详解】设AD k AG = ,AB AE λ=,AC AF μ= ([)1λμ∈+∞,,)1AE λ∴= ,4AF μ=1122222AB AC k AG AE AF AG AE D AFk kA λμλμ=+⇒=+⇒=+ 根据三点共线公式,得2kλμ+=()1AG E AD AF AEkF =-()1112AB AC AC AB k μλ⎛⎫=+- ⎪⎝⎭ 2211111cos 2AC AB AB AC k θμλμλ⎛⎫⎛⎫=⋅⋅-⋅+-⋅⋅ ⎪ ⎪⎝⎭⎝⎭(1cos 2θ=,θ为∠BAC )1161222k μλμλ⎛⎫=⋅-+- ⎪⎝⎭36λμλμλμ-=⋅+1sin 2661sin 2ABC AEF AB AC AE AF S S θλμθ⋅⋅==∴=⋅ △△66162AG EF λλλλ-∴⋅=⋅+ 22136λλ-=⋅+27316λ⎛⎫=⋅- ⎪+⎝⎭[][]2616166742μλλλ=≥⇒≤⇒∈⇒+∈,,217510662AG EF λ⎡⎤⇒≤≤⇒∈⎢⎥+⎣⎦,【点睛】本题考查了正弦定理,余弦定理的应用,考查向量的运算性质以及求函数值域问题,需要一定的分析和解决问题的能力.22.已知函数()()ln 1f x x ax a R =-+∈.(1)函数()0f x ≤在定义域内恒成立,求实数a 的取值范围:(2)求证:当2n N n *∈≥,时,222111111323n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)若()f x 有两个不同的零点12,x x ,求证:1221x x a <.【答案】(1)[)1,+∞(2)证明见解析(3)证明见解析【解析】【分析】(1)()0f x ≤在定义域内恒成立只需要()0f x ≤在定义域内满足()()max 0f x ≤,对a 进行分类讨论;(2)取1a =时,ln 1≤-x x ,然后将待证不等式的左边取对数,让左边的式子结构能和ln 1≤-x x 产生联系;(3)由题知12()()0f x f x ==,联立该两个方程,由于待求证表达式不含有a ,故想办法消去参数,只保留12,x x 的关系,然后构造函数进行解决.【小问1详解】函数定义域为()0,∞+,()11ax f x a x x-'=-=,当0a ≤时,()110f a =->,不满足题设;当0a >时,()0f x '=,1x a =,在10,a ⎛⎫ ⎪⎝⎭上,()0f x '>,()f x 单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上,()0f x '<,()f x 单调递减,所以()max 11ln 0f x f a a ⎛⎫==≤⎪⎝⎭,解得1a ≥.综上:a 的取值范围是[)1,+∞.【小问2详解】证明:由(1)得,当1a =时ln 1≤-x x ,当且仅当1x =时等号成立,所以2211ln 1n n⎛⎫+< ⎪⎝⎭,结合对数的运算法则可得222222222111111111ln 111ln 1ln 1ln 1232323n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+++++⋅⋅⋅++<++⋅⋅⋅+< ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()111111111111122312231n n n n n++⋅⋅⋅+=-+-+⋅⋅⋅+=-⨯⨯--,所以222111111323e n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.所以222111111323n ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问3详解】由题意11ln 10x ax -+=,22ln 10x ax -+=,两式相减得()2211ln 0x a x x x --=,即2121ln x x a x x =-,故要证明1221x x a <,即证明()22112221ln x x x x x x -<,即证明()222122111212ln 2x x x x x x x x x x -<=-+,不妨设120x a x <<<,令()()21ln 21g t t t t t =--+>,()22ln 11112ln t g t t t t t t t ⎛⎫'=-+=-+ ⎪⎝⎭,令()()12ln 1h t t t t t =-+>,()()2210t h t t -'=-<,所以()h t 在()1,+∞上单调递减,()()10h t h <=,所以()g t 在()1,+∞上单调递减,()()10g t g <=,21ln 20t t t--+<在()1,+∞上成立,令21x t x =,得()222122111212ln 2x x x x x x x x x x -<=-+,所以1221x x a <.第24页/共24页。

2025年新高考数学模拟试题一带解析

2025年新高考数学模拟试题一带解析

2025年新高考数学模拟试题(卷一)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.某车间有两条生产线分别生产5号和7号两种型号的电池,总产量为8000个.质检人员采用分层抽样的方法随机抽取了一个样本容量为60的样本进行质量检测,已知样本中5号电池有45个,则估计7号电池的产量为()A .6000个B .5000个C .3000个D .2000个2.如图所示,四边形ABCD 是正方形,,M N 分别BC ,DC 的中点,若,,AB AM AN λμλμ=+∈R,则2λμ-的值为()A .43B .52C .23-D .1033.已知n S 为等差数列{}n a 的前n 项和,4920224a a a ++=,则20S =()A .60B .120C .180D .2404.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题为假命题的是()A .若,m m n α⊥⊥,则n α或n ⊂αB .若,,⊥⊥⊥m n αβαβ,则m n ⊥C .若,,m l n αββγαγ⋂=⋂=⋂=,且n β,则//l mD .若,,m n m n αβ⊥⊂⊂,则αβ⊥5.第19届亚运会于2023年9月28日至10月8日在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”“莲莲”和“宸宸”,分别代表世界遗产良渚古城遗址、西湖和京杭大运河.某同学买了6个不同的吉祥物,其中“琮琮”“莲莲”和“宸宸”各2个,现将这6个吉祥物排成一排,且名称相同的两个吉祥物相邻,则排法种数共为()A .48B .24C .12D .66.已知函数1()e 2x f x x a x ⎛⎫=-+ ⎪⎝⎭恰有2个不同的零点,则实数a 的取值范围为()A .1,ee ⎛⎫⎪⎝⎭B .(4e,)⎛∞ ⎝U C .2e ⎫⎪⎭D .(2e,)⎛∞ ⎝U7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点()3,4A -的直线l 的一个法向量为()1,2-,则直线l 的点法式方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上做法,在空间直角坐标系中,经过点()1,2,3M 的平面的一个法向量为()1,4,2m =-,则该平面的方程为()A .4210x y z -++=B .4210x y z --+=C .4210x y z +-+=D .4210x y z +--=8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为12,F F ,过1F 的直线与双曲线C 分别在第一、二象限交于,A B 两点,2ABF △内切圆的半径为r ,若1||2BF a =,r =,则双曲线C 的离心率为()AB.2CD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()A .()f x 的最小正周期为πB .当π0,2⎡⎤∈⎢⎥⎣⎦x 时,()f x 的值域为11,22⎡⎤-⎢⎥⎣⎦C .将函数()f x 的图象向右平移π6个单位长度可得函数()sin 2g x x =的图象D .将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点5π,06⎛⎫⎪⎝⎭对称10.已知12,z z 是两个虚数,则下列结论中正确的是()A .若12z z =,则12z z +与12z z 均为实数B .若12z z +与12z z 均为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数11.已知函数()y f x =在R 上可导且(0)2f =-,其导函数()f x '满足:22()21()exf x f x x -=-',则下列结论正确的是()A .函数()f x 有且仅有两个零点B .函数2()()2e g x f x =+有且仅有三个零点C .当02x ≤≤时,不等式4()3e (2)f x x ≥-恒成立D .()f x 在[1,2]上的值域为22e ,0⎡⎤-⎣⎦第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为.13.已知M ,N 是抛物线()2:20C x py p =>上两点,焦点为F ,抛物线上一点(),1P t 到焦点F 的距离为32,下列说法正确的是.(把所有正确结论的编号都填上)①1p =;②若OM ON ⊥,则直线MN 恒过定点()0,1;③若MOF △的外接圆与抛物线C 的准线相切,则该圆的半径为12;④若2MF FN = ,则直线MN 的斜率为4.14.如图,在正方体1111ABCD A B C D -,中,M ,N 分别为线段11A D ,1BC 上的动点.给出下列四个结论:①存在点M ,存在点N ,满足MN ∥平面11ABB A ;②任意点M ,存在点N ,满足MN ∥平面11ABB A ;③任意点M ,存在点N ,满足1MN BC ⊥;④任意点N ,存在点M ,满足1MN BC ⊥.其中所有正确结论的序号是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数31()ln 222f x ax x x x=--+.(1)当1a =时,求()f x 的单调区间;(2)对[1,)x ∀∈+∞,()0f x ≥恒成立,求a 的取值范围.16.(15分)我国老龄化时代已经到来,老龄人口比例越来越大,出现很多社会问题.2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线总计愿生40y60不愿生x2240总计5842100(1)求x和y的值.(2)分析调查数据,是否有95%以上的把握认为“生育意愿与城市级别有关”?(3)在以上二孩生育意愿中按分层抽样的方法,抽取6名育龄妇女,再选取两名参加育儿知识讲座,求至少有一名来自一线城市的概率.参考公式:22()()()()()n ad bca b c d a c b dχ-=++++,()2P kχ≥0.0500.0100.001k 3.841 6.63510.82817.(15分)在直角梯形ABCD 中,//AD BC ,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BNBC的值;若不存在,说明理由.18.(17分)已知椭圆22:143x y C +=的左右焦点分别为12,F F ,点()00,P x y 为椭圆C 上异于顶点的一动点,12F PF ∠的角平分线分别交x 轴、y 轴于点M N 、.(1)若012x =,求1PF ;(2)求证:PM PN为定值;(3)当1F N P 面积取到最大值时,求点P 的横坐标0x .19.(17分)已知数列12:,,,n A a a a L 为有穷正整数数列.若数列A 满足如下两个性质,则称数列A 为m 的k 减数列:①12n a a a m +++= ;②对于1i j n ≤<≤,使得i j a a >的正整数对(,)i j 有k 个.(1)写出所有4的1减数列;(2)若存在m 的6减数列,证明:6m >;(3)若存在2024的k 减数列,求k 的最大值.2025年新高考数学模拟试题(卷一)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

考研数学一模拟试题

考研数学一模拟试题

考研数学一模拟试题一、选择题(每题4分,共40分)1. 设函数f(x)在区间(a, b)内连续,且f(a) < 0,f(b) > 0,则根据零点定理可知:- A. 函数f(x)在(a, b)内必有零点- B. 函数f(x)在(a, b)内必有唯一的零点- C. 函数f(x)在(a, b)内可能没有零点- D. 函数f(x)在(a, b)内可能有一个或多个零点2. 已知函数g(x) = 3x^2 + 2x - 5,求其在x=1处的导数值:- A. 4- B. 6- C. 8- D. 103. 以下哪个选项是微分方程dy/dx + 3y = 6e^(3x)的通解?- A. y = 2e^(3x) - e^x + C- B. y = e^(-3x) + C- C. y = 2e^(3x) - 3e^x + C- D. y = e^(3x) + C二、填空题(每题5分,共20分)1. 若极限lim(x→∞) (x^2 - 1)/(x^3 + 2x) = L,则L的值为______。

2. 设随机变量X服从正态分布N(μ, σ^2),若P(X ≤ μ + σ) =0.8413,求P(X ≤ μ)的值。

3. 已知曲线y = x^3 - 3x^2 + 2x在点(1, 0)处的切线方程为______。

三、解答题(共40分)1. (10分)证明:若函数f(x)在闭区间[a, b]上连续,在开区间(a,b)内可导,且f(a) = f(b) = 0,则至少存在一点c∈(a, b),使得f'(c) = 0。

2. (15分)解微分方程:(x^2 - 1)y'' - 2xy' + 2y = 0。

3. (15分)设随机变量X和Y的联合密度函数为f(x, y) =(1/2)e^(-x - y),其中x > 0,y > 0。

求:- (a) X和Y的边缘密度函数;- (b) X和Y的协方差。

2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)

2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)

一、单选题二、多选题1. 已知,都是的充分条件,是的必要条件,是的必要条件,则( )A .是的既不充分也不必要条件B .是的必要条件C.是的必要不充分条件D.是的充要条件2. 在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是()A.成绩在分的考生人数最多B .不及格的考生人数为1000C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分3. 过抛物线的焦点作直线交抛物线于,两点(点在第一象限).若,则( )A .2B .3C .4D .54. 为庆祝广益中学建校130周年,高二年级派出甲、乙、丙、丁、戊5名老师参加“130周年办学成果展”活动,活动结束后5名老师排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则排法共有( )种.A .40B .24C .20D .125. 已知椭圆的左,右焦点分别为,,上顶点为A ,直线与椭圆E 的另一个交点为B ,若,则椭圆E 的离心率为( )A.B.C.D.6. 已知是边长为3的正三角形,点是的中点,点在边上,且,则( ).A.B.C.D.7. 已知,则的值为( )A .10B.C .30D.8.已知函数满足,则( )A .10000B .10082C .10100D .103029. 已知棱长为的正方体中,是的中点,点在正方体的表面上运动,且总满足,则下列结论中正确的是( )A .点的轨迹中包含的中点B.点的轨迹与侧面的交线长为C.的最大值为2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)三、填空题四、解答题D .直线与直线所成角的余弦值的最大值为10. 已知正数a ,b满足,则( )A .的最小值为2B .的最小值为4C.的最小值为8D .的最小值为811. “中国最具幸福感城市调查推选活动”由新华社《瞭望东方周刊》、瞭望智库共同主办,至今已连续举办15年,累计推选出80余座幸福城市,现某城市随机选取30个人进行调查,得到他们的收入、生活成本及幸福感分数(幸福感分数为0~10分),并整理得到散点图(如图),其中x 是收入与生活成本的比值,y是幸福感分数,经计算得回归方程为.根据回归方程可知( )A .y 与x 成正相关B .样本点中残差的绝对值最大是2.044C .只要增加民众的收入就可以提高民众的幸福感D .当收入是生活成本3倍时,预报得幸福感分数为6.04412. 在棱长为的正方体中,点P 在正方形内含边界运动,则下列结论正确的是( ).A .若点P 在上运动,则B.若平面,则点P 在上运动C .存在点P ,使得平面PBD 截该正方体的截面是五边形D.若,则四棱锥的体积最大值为113.已知当时,不等式恒成立,则正实数a 的最小值为___________.14. 已知集合,集合,则________.15. 如图,在三棱锥中,,,且,点E ,F分别为,的中点,则异面直线与所成角的大小为__________,与所成角的余弦值为__________.16. 某校为了解校园安全教育系列活动的成效,对全校3000名学生进行一次安全意识测试,根据测试成绩评定“优秀”、“良好”、“及格”、“不及格”四个等级,现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.等级不及格及格良好优秀得分频数624(1)求的值;(2)试估计该校安全意识测试评定为“优秀”的学生人数;(3)已知已采用分层抽样的方法,从评定等级为“优秀”和“良好”的学生中任选6人进行强化培训;现再从这6人中任选2人参加市级校园安全知识竞赛,求选取的2人中有1人为“优秀”的概率;17. 有个型号和形状完全相同的纳米芯片,已知其中有两件是次品,现对产品随机地逐一检测.(1)求检测过程中两件次品不相邻的概率;(2)设检测完后两件次品中间相隔正品的个数为,求的分布列和数学期望.18. 如图,在四棱锥中,已知底面是边长为4的菱形,平面平面,且,点E在线段上,.(1)求证:;(2)求点E到平面的距离.19. 已知函数.(1)设曲线与轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(2)若函数的图象上有、两点,横坐标分别为,且满足.求证:.20. 已知的内角的对边分别为,,,若,(1)求;(2)请指出不满足下面的哪一个条件并说明理由,根据另外两个条件,求的面积.①;②;③的周长为9.21. 已知圆过椭圆的左右焦点,且与椭圆在第一象限交于点.已知三点共线.(1)求椭圆的标准方程;(2)设是椭圆上不同于左顶点的两个动点,且,过作,垂足为.则是否存在定点,使得的长度为定值?若存在,求出点的坐标;若不存在,请说明理由.。

2021届新高考全国100所名校高考模拟示范卷(一)数学试题(word版,含解析)

2021届新高考全国100所名校高考模拟示范卷(一)数学试题(word版,含解析)

2021年普通高等学校招生全国统一考试数学模拟测试一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,2z i i =-+则z= A.2-iB.1-2iC.-1+2iD.-2+i 2.已知集合2{|30},{2,2}A x x x a B =-+==-,若A∩B={2},则A ∪B=A.{-2,1,2}B.{-2,-1,2}C.{-2,3,2}D.{-2,2}3.62()x x-的展开式的常数项为 A.-120 B.-60 C.120 D.604.某实验室针对某种新型病毒研发了一种疫苗,并在500名志愿者身上进行了人体注射实验,发现注射疫苗的志愿者均产生了稳定的免疫应答。若这些志愿者的某免疫反应蛋白M 的数值X(单位:mg/L)近似服从正态分布2(15,),N σ且X 在区间(10,20)内的人数占总人数的19,25则这些志愿者中免疫反应蛋白M 的数值X 不低于20的人数大约为A.30B.60C.70D.140 5.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念。星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗。到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念。天体的明暗程度可以用星等或亮度来描述。两颗星的星等与亮度满足12212.5(lg lg )m m E E -=-,其中星等为i m 的星星的亮度为(1,2).i E i =已知"角宿一"的星等是0.97,"水委一"的星等是0.47.“水委一”的亮度是"角宿一"亮度的r 倍,则与r 最接近的是(当|x|较小时,2101 2.3 2.7x x x ≈++)A.1.56B.1.57C.1.58D.1.596.已知圆C:22(3)(3)9x y -++=,直线l:(m+1)x+(2-m)y-3m=0,则当圆心C 到直线l 的距离最大时,直线l 被圆C 所截得的弦长为A.4 .25B .23C .27D7.如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD,底面ABCD 是梯形,2//,,43AB CD BCD AB π∠==,PD=BC=CD=2,则四棱锥P-ABCD 的外接球的表面积为A.16πB.18πC.20πD.24π8.已知抛物线2:2(0)C y px p =>的焦点为F(1,0),准线为l,过焦点F 的直线交抛物线C 于点A 、B(A 在x 轴上方),且点A 的横坐标为3,D 是y 轴正半轴上一点,O 为坐标原点,∠ODA 的角平分线过AF 的中点,则点D 的坐标为A.(0,2) 53.(0,)2B C.(0,3) .(0,33)D二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9.已知曲线C:221.x y a b+= A.若C 是双曲线,则ab<0B.若a>0,C 是离心率为2的双曲线,则3b a =- C.若ab>0,则C 是椭圆D.若C 是离心率为12的椭圆,则34b a = 10.已知()cos()(0,0,0)f x A x B A ωϕωϕπ=++>><<,其部分图象如图所示,M 、N 分别为最高点、最低点,则A.A=7B.B=29 .4C πϕ= D.f(11)=32.511.如图,平面α∩平面β=直线l,点A,C ∈α,点B,D ∈β,且A 、B 、C 、D ∉l,点M 、N 分别是线段AB 、CD 的中点。A.当直线AC 与BD 相交时,交点一定在直线l 上B.当直线AB 与CD 异面时,MN 可能与l 平行C.当A 、B 、C 、D 四点共面且AC//l 时,BD//lD.当M 、N 两点重合时,直线AC 与l 不可能相交12.已知数列{}n a 的通项公式是2,n n a =1a 和2a 之间插入1个数11,x 使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n n n x x x ,使121,,,,,n nn n n n a x x x a +成等差数列。这样得到新数列{}:n b 1112212233132334,,,,,,,,,a x a x x a x x x a …,记数列{}n b 的前n 项和为,n S 则836.A a b =B.112132n n n n n n n a x x x a n -++++++=⋅ 38.320C b = 45.6401D S =三、填空题:本题共4小题,每小题5分,共20分。把答案填在答题卡中的横线上。13.若向量a =(1,2),b -a =(-2,1),则a ·b =____.14.若函数21()7ln 2f x x x a x =-++在x=2处取极值,则a=____ ,f(x)的极大值为____.15.已知正实数a,b,c 满足22243,a b c +=则2c c a b +的最小值为____. 16.如图,在△ABC 中,,3BAC A π∠=B=3,AC=2,点D 为边BC 上一个动点,将△ABD 沿AD 翻折,使得点B到达B '的位置,且平面AB D '⊥平面ACD.当CD=_____时,B C '到最小值。四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)在3210,9,3a S b ==<-①②③这三个条件中任选一个,补充在下面问题中。设n S 为各项均为正数的数列{}n a 的前n 项和,满足____2,36nn n a a S b +=+是否存在实数b,使得数列{}n a 成为等差数列?若存在,求出b 和数列{}n a 的通项公式;若不存在,请说明理由。(注:如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)第七次全国人口普查是指中国在2020年开展的全国人口普查,普查标准时点是2020年11月1日零时,将彻查人口出生变动情况以及房屋情况。普查对象是普查标准时点在中华人民共和国境内的自然人以及在中华人民共和国境外但未定居的中国公民,不包括在中华人民共和国境内短期停留的境外人员。普查主要调查人口和住户的基本情况,内容包括:姓名、公民身份证号码、性别、年龄、民族、受教育程度、行业、职业、迁移流动、婚姻生育、死亡、住房情况等。普查登记方式全程电子化方式普查,由普查员使用手机上门入户登记或由普查对象通过互联网自主填报。某机构调查了100位居名的普查登记方式,数据统计如下表,部分数据缺失 普查员使用手机上门入户登记 通过互联网自主填报 年龄不超过40岁10 a 年龄超过40岁b 15已知从调查的居民中任取一人,其年龄不超过40岁的概率比其年龄超过40岁的概率大110. (1)求a,b 的值;(2)是否有99%的把握认为年龄与普查登记方式有关?附:22()()()()()n ad bc a b c K d a c b d -=++++其中n=a+b+c+d.P(K 2≥k 0) 0.050 0.010 0.001K 0 3.841 6.635 10.82819.(本小题满分12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知28sin 72cos2.2B C A -+-=(1)求A;(2)若7,a =b+c=5,求BC 边上的高.20.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,∠ACB=90°,1,.AC BC AB AA ==D 、E 分别是1CC 、1BB 的中点.(1)证明:1C E ⊥平面ACB 1;(2)求二面角1C AB D --的余弦值.21.(本小题满分12分)已知12F F 、分别为椭圆C:22184x y +=的左、右焦点,点M 是椭圆C 上异于左、右顶点的一点,过点1F 作12F MF ∠的外角平分线的垂线交2F M 的延长线于P 点.(1)当M 点在椭圆C.上运动时,求P 点的轨迹方程E.(2)设点N(t,0)(t≠0),过点N 作一条斜率存在且不为0的直线l 交椭圆C 于A,B 两点,点B 关于x 轴的对称点为B '直线AB '交x 轴于点T,O 是坐标原点,求证:|ON|·|OT|为定值.22.(本小题满分12分)已知函数2()ln 1.f x x x =-+(1)求曲线y= f(x)在点(1,f(1))处的切线方程;(2)若方程f(x)=b 有两个实数根12,,x x 且12,x x <证明:2112.x x b -<-。

成人高考专升本高等数学(一)全真模拟试题及答案解析⑤

成人高考专升本高等数学(一)全真模拟试题及答案解析⑤

成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析⑤1(单选题)函数在x=0处()(本题4分)A 连续且可导B 连续且不可导C 不连续D 不仅可导,导数也连续标准答案: B解析:【考情点拨】本题考查了函数在一点处的连续性和可导性的知识点。

【应试指导】因为所以函数在x=0处连续;又因不存在,所以函数在x=0处不可导。

2(单选题)曲线()(本题4分)A 没有渐近线B 仅有水平渐近线C 仅有铅直渐近线D 既有水平渐近线,又有铅直渐近线标准答案: D解析:【考情点拨】本题考查了曲线的渐近线的知识点。

【应试指导】所以y=1为水平渐近线。

又因所以x=0为铅直渐近线。

3(单选题)则α的值为()(本题4分)A -1B 1C -1/2D 0标准答案: B解析:【考情点拨】本题考查了洛必达法则的知识点。

【应试指导】因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故解得a=-1,所以4(单选题)设()(本题4分)A 等价无穷小B f(x)是比g(x)高阶无穷小C f(x)是比gCc)低阶无穷小D f(x)与g(x)是同阶但非等价无穷小标准答案: D解析:【考情点拨】本题考查了两个无穷小量阶的比较的知识点。

【应试指导】故f(x)与g(x)是同价但非等价无穷小。

5(单选题)已知=()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了已知积分函数求原函数的知识点。

【应试指导】因为所以6(单选题)曲线y=e^x与其过原点的切线及y轴所围面积为()(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了曲线围成的面积的知识点。

【应试指导】设(x0,y0)为切点,则切线方程为联立得x0=1,y0=e,所以切线方程为y=ex。

故所求面积为7(单选题)设函数()(本题4分)A 1B 0C -1/2D -1标准答案: D解析:【考情点拨】本题考查了一元函数在一点处的一阶导数的知识点。

2021届广东省普通高等学校招生全国统一考试模拟测试数学试题(一)(word版,含官方答案)

2021届广东省普通高等学校招生全国统一考试模拟测试数学试题(一)(word版,含官方答案)

★启用前注意保密2021年普通高等学校招生全国统一考试模拟测试(一)数学本试卷共5页,22小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的市(县、区)、学校、班级、姓名、考场号、座位号和考生号填写在答题卡上。

将条形码横贴在每张答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写 上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合M={x|-7<3x-1<2},N={x|x+1>0},则M ∪N=A.(-2,+∞)B. (-1,1)C.(-∞,1)D.(-1,+∞) 2.若复数z 满足(z-1)(1+i)=2-2i,则|z|=3.已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则f(2e)= A. 2e 2 B. 2e C. 1+ln2 D. 21n 24.函数f(x)=cos 2x+6cos(2π-x)(x ∈[0, 2π])的最大值为 A.4 B.5 C.6 D.75.已知数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前10项和等于 A. 1023 B.55 C.45 D.356.已知a,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是A. ab 的最小值是1B.ab 的最大值是1C. 11a b +的最小值是92D. 11a b +的最大值是927.《算数书》是我国现存最早的系统性数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V 的近似公式V≈2136L h .用该术可求得圆率π的近似值。

高考数学全真模拟试卷一及答案

高考数学全真模拟试卷一及答案

(第5题)高考数学全真模拟试卷一试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}0A x x =≥,{}1B x x =<,则A B = ▲ .【答案】R2. 某公司生产三种型号A ,B ,C 的轿车,产量分别为1200辆,6000辆,2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A 的轿车应抽取 ▲ 辆. 【答案】63. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>的焦点坐标为(0 1),,则实数p 的值为 ▲ . 【答案】24. 已知集合{}0 A ππππ2π3π5π=π6432346,,,,,,,,.现从集合A 中随机选取一个元素,则该元素的 余弦值为正数的概率为 ▲ . 【答案】495. 如图,是一个算法的程序框图,当输出的y 值为2时,若将输入的x 的所有可能值按从小到大的顺序排列得到一个数列{}n a ,则该数列的通项公式为n a = ▲ . 【答案】34n a n =-6. 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 的基因遗传是等可能的(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显示矮茎),则第二子代为高茎的概率为 ▲ . 【答案】347. 在平面直角坐标系xOy 中,已知向量(1 2)=,a ,1(2 1)5-=-,a b ,则⋅=a b ▲ . 【答案】25ABCO (第13题)BACD 1B1A1C1D (第9题)E F8. 已知x y ,为正实数,满足26x y xy +=+,则xy 的最小值为 ▲ .【答案】189. 如图,已知正四棱柱1111ABCD A B C D -的体积为36,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四 棱锥1A AEFD -的体积为 ▲ . 【答案】1210. 设定义在区间[] -11,的函数()sin()f x x ϕ=π+(其中0ϕ<<π)是偶函数,则函数()f x 的单调 减区间为 ▲ . 【答案】(0 1),【解析】依题意,ϕπ=2,则()cos f x x =π的减区间为(0 1),.11.在平面直角坐标系xOy 中,已知圆C :22()(21)2x a y a -++-=(11)a -≤≤,直线l :y x b =+()b ∈R .若动圆C 总在直线l 的下方且它们至多有1个交点,则实数b 的最小值是 ▲ .【答案】2【解析】依题意,圆心( 12)C a a -,(11)a -≤≤的轨迹为线段12y x=-(11)x -≤≤, 当且仅当1a =-时,实数b 的最小,此时2b =.12.如图,三次函数32y ax bxcx d =+++的零点为112-, , ,则该函数的单调减区间为 ▲ . 【答案】【解析】设()(1)(1)(2)f x a x x x=+--,其中0a >,令 ()0f x '<x <<所以该函数的单调减区间为;13.如图,点O 为△ABC 的重心,且OA OB ⊥,6AB =,则AC BC ⋅的值为 ▲ . 【答案】72【解析】以AB 的中点M 为坐标原点,AB 为x 轴建立 平面直角坐标系,则()30A -,,()30B ,,设()C x y ,,则O ()33yx ,,(第12题)因为OA ⊥OB ,所以0AO BO ⋅=, 从而()()()2330333yx x +⋅-+=,化简得,2281x y +=,所以222(3)(3)972AC BC x x y x y ⋅=+-+=+-=14.设k b ,均为非零常数,给出如下三个条件:①{}n a 与{}n ka b +均为等比数列; ②{}n a 为等差数列,{}n ka b +为等比数列; ③{}n a 为等比数列,{}n ka b +为等差数列,其中一定能推导出数列{}n a 为常数列的是 ▲ .(填上所有满足要求的条件的序号) 【答案】①②③【解析】①易得()()()211n n n k x b k x b k x b -+⋅+=⋅+⋅+,即2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++, 因为211n n n x x x -+=,且0kb ≠,所以112n n n x x x -+=+,即证; ②由①知2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++,因为112n n n x x x -+=+,所以211n n n x x x -+=,即证; ③易得()()()112n n n k x b k x b k x b -+⋅+=⋅++⋅+,且0k ≠,故112n n n x x x -+=+,又211n n n x x x -+=,即证.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证 明过程或演算步骤. 15.(本题满分14分)已知()π02α∈,,()ππ2β∈,,1cos 3β=-,()7sin 9αβ+=. (1)求tan2β的值;(2)求sin α的值.解:(1)因为22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222βββββββββ--=-==++,且1cos 3β=-,所以221tan 1231tan2ββ-=-+,解得2tan 22β=,(4分)因为()ππ2β∈,,所以()ππ242β∈,,从而tan 02β>,所以tan2β=(6分)(2)因为()ππ2β∈,,1cos 3β=-,所以sin β=,(8分) 又()π02α∈,,故()π3π22αβ+∈,,从而()cos αβ+===,(10分)所以[]sin sin ()sin()cos cos()sin ααββαββαββ=+-=+-+()7193=⨯-(13-=.(14分)16.(本题满分14分)如图,在长方体1111ABCD A B C D -中, 已知11AD AA ==,2AB =,点E 是AB 的中点. (1)求三棱锥1C DD E -的体积; (2)求证:11D E A D ⊥.【解】(1)由长方体性质可得,1DD ⊥ 平面DEC ,所以1DD 是三棱锥1D DCE -的高, 又点E 是AB 的中点,11AD AA ==,AB =2,所以DE CE ==222DE EC CD +=,90DEC ∠=, 三棱锥1D DCE -的体积1111323V DD DE CE =⨯⨯=;(7分)(2)连结1AD ,AEBCD1A 1D 1C 1B (第16题)因为11A ADD 是正方形,所以11AD A D ⊥ ,又AE ⊥面11ADD A ,1A D ⊂面11ADD A , 所以1AE A D ⊥, 又1AD AE A =,1AD AE ⊂,平面1AD E ,所以1A D ⊥平面1AD E ,(12分) 而1D E ⊂平面1AD E , 所以11D E A D ⊥.(14分)17.(本题满分14分)请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底 面圆半径为5m 的圆锥,下部是底面圆半径为5m 的圆柱,且该仓库的总高度为5m .经过预算, 制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/2m ,1百元/2m ,设圆锥母线与底 面所成角为θ,且()π0 4θ∈,,问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并 求出此时圆锥的高度.解:设该仓库的侧面总造价为y ,则[]152π55(1tan )12π542cos y θθ⎡⎤=⨯⨯-⨯+⨯⨯⨯⨯⎢⎥⎣⎦()2sin 50π1+cos θθ-=,(6分)由()22sin 1cos 50π0y θθ-'==得1sin 2θ=,()π0 4θ∈,, 所以π6θ=,(10分)列表: π6θ=时,侧面总造价y 最小,此时圆锥所以当(第17题).(14分)18.(本题满分16分)定义:如果一个菱形的四个顶点均在一个椭圆上,那么该菱形叫做这个椭圆的内接菱形,且该菱形的对角线的交点为这个椭圆的中心.如图,在平面直角坐标系xOy 中,设椭圆2214x y +=的所有内接菱形构成的集合为F .(1)求F 中菱形的最小的面积;(2)是否存在定圆与F 中的菱形都相切?若存在, 求出定圆的方程;若不存在,说明理由; (3)当菱形的一边经过椭圆的右焦点时,求这条边所在的直线的方程.解:(1)如图,设11( )A x y ,,22( )B x y ,, 1︒当菱形ABCD 的对角线在坐标轴上时,其面积为142142⨯⨯⨯=;2︒当菱形ABCD 的对角线不在坐标轴上时,设直线AC 的方程为:y kx =,① 则直线BD 的方程为:1y x k=-,又椭圆2214xy +=, ②由①②得,212441x k =+,2212441k y k =+, 从而22221124(1)41k OA x y k +=+=+,同理可得,()()2222222221414(1)4141kk OB x y k k⎡⎤-+⎢⎥+⎣⎦=+==+-+,(3分) 所以菱形ABCD 的面积为2OA OB ⨯⨯====≥165= (当且仅当1k =±时等号成立),综上得,菱形ABCD 的最小面积为165;(6分)(第20题)(2)存在定圆2245x y +=与F 中菱形的都相切,设原点到菱形任一边的距离为d ,下证:d ,证明:由(1)知,当菱形ABCD的对角线在坐标轴上时,d ,当菱形ABCD 的对角线不在坐标轴上时,22222OA OB d OA OB ⨯=+222222224(1)4(1)4144(1)4(1)414k k k k k k k k ++⨯++=+++++ 2222224(1)(1)(4)(1)(41)k k k k k +=+++++22224(1)45(1)(55)k k k +==++,即得d , 综上,存在定圆2245x y +=与F 中的菱形都相切;(12分)(3)设直线AD的方程为(y t x =,即0tx y -=,则点(0 0)O ,到直线AD=解得t =, 所以直线AD的方程为y x =.(16分)19.(本题满分16分)设a ,b ,c 为实数,函数32()f x x ax bx c =--+为R 上的奇函数,且在区间[)1 +∞,上单调.(1)求a ,b ,c 应满足的条件; (2)求函数()f x 的单调区间;(3)设001 ()1x f x ≥,≥,且[]00()f f x x =,求证:00()f x x =. 解:(1)因为32()f x x ax bx c =--+为R 上的奇函数,所以()()f x f x -=-,即32x ax bx c --++=32x ax bx c -++-, 变形得,20ax c +=, 所以0a c ==, (2分)此时3()f x x bx =-在区间[)1 +∞,上单调, 则2()30f x x b '=-≥在区间[)1 +∞,上恒成立,得3b ≤;(5分)(2)2()3f x x b '=-,且3b ≤,当0b ≤时,2()30f x x b '=-≥,所以函数()f x 的单调增区间为( )-∞+∞,;(7分)当0b >时,2()30f x x b '=->得,函数()f x 的单调减区间为(,单调增区间为( -∞,,)+∞;(10分)(3)设0()f x t =,则1t ≥,0()1f t x =≥, 即有300x bx t -=,且30t bt x -=, 两式相减得,()()33000x bx t bt t x ---=-, 即()()2200010x t x x t t b -+++-=,因为1t ≥,01x ≥,3b ≤,所以220011x x t t b ++-+≥, 故0x t =,即00()f x x =.(16分)20.(本题满分16分)若存在非零常数p ,对任意的正整数n ,212n n n a a a p ++=+,则称数列{}n a 是“T 数列”.(1)若数列{}n a 的前n 项和()2n S n n *=∈N ,求证:{}n a 是“T 数列”; (2)设{}n a 是各项均不为0的“T 数列”. ①若0p <,求证:{}n a 不是等差数列;②若0p >,求证:当1a ,2a ,3a 成等差时,{}n a 是等差数列. 解:(1)当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 所以21n a n =-,n *∈N ,(3分)则{}n a 是“T 数列”⇔存在非零常数p ,2(21)(21)(23)n n n p +=-++ 显然4p =满足题意,所以{}n a 是“T 数列”;( 5分) (2)①假设{}n a 是等差数列,设1(1)n a a n d =+-,则由212n n n a a a p ++=+得,()[][]2111(1)(1)a nd a n d a n d p +=+-+++, 解得20p d =≥,这与0p <矛盾,故假设不成立, 从而{}n a 不是等差数列;(10分) ②因为212n n n a a a p ++=+()0p >, ① 所以()211 2n n n a a a p n -+=+≥, ②①-②得,221211n n n n n n a a a a a a ++-+-=-(2)n ≥, 因为{}n a 的各项均不为0, 所以1121n n n n n n a a a a a a +---++=(2)n ≥, 从而11n n n a a a +-+⎧⎫⎨⎬⎩⎭()2n ≥是常数列,因为1a ,2a ,3a 成等差,所以3122a aa +=,从而112n n na a a +-+=()2n ≥,即112n n n a a a +-+=()2n ≥,即证.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)如图,已知凸四边形ABCD 的顶点在一个圆周上, 另一个圆的圆心O 在AB 上,且与四边形ABCD 的其余三边相切.点E 在边AB 上,且AE AD =. 求证: O ,E ,C ,D 四点共圆. 证明:因为AD AE =,所以()11802AED A ∠=-∠,因为四边形ABCD 的顶点在一个圆周上, 所以180A BCD -∠=∠,从而AED DCO ∠=∠,所以O ,E ,C ,D 四点共圆.(10分) B .(矩阵与变换)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ), 求1x y -⎡⎤⎢⎥⎣⎦M .解:依题意,1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102 320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, (4分) 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=-⎢⎥⎣⎦M ,(8分) 所以1x y -⎡⎤⎢⎥⎣⎦M 213122-⎡⎤⎢⎥=-⎢⎥⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦.(10分)C .(极坐标与参数方程) 在极坐标系中,设直线l 过点)Aπ6,,()3 B 0,,且直线l 与曲线C :cos (0)a a ρθ=>有且只有一个公共点,求实数a 的值. 解:依题意,)Aπ6,,()3 B 0,的直角坐标方程为(32A ,()3 B 0,, 从而直线l的普通方程为30x -=,(4分) 曲线C :cos (0)a a ρθ=>的普通方程为()22224aa x y -+=(0)a >,(8分) 因为直线l 与曲线C 有且只有一个公共点,所以3222a a -=(0)a >,解得2a =(负值已舍).(10分)D .(不等式选讲)设正数a ,b ,c 满足3a b c ++≤,求证:11131112a b c +++++≥.证明:由柯西不等式得,PAB CD(第22题)E[]()111(1)(1)(1)111a b c a b c +++++⋅+++++2≥23=,(6分) 所以1119931113332a b c a b c ++=+++++++≥≥.(10分)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,90ABC BAD ∠=∠=,且PA AB BC == 112AD ==,PA ⊥平面ABCD .(1)求PB 与平面PCD 所成角的正弦值; (2)棱PD 上是否存在一点E 满足AEC ∠=90?若存在,求AE 的长;若不存在,说明理由.解:(1)依题意,以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0 0 1)P ,,,(1 0 0)B ,,,(1 1 0)C ,,,(0 2 0)D ,,, 从而(1 0 1)PB =-,,,(1 1 1)PC =-,,,(0 2 1)PD =-,,,(2分)设平面PCD 的法向量为( )a b c =,,n ,则⋅n 0PC =,且⋅n 0PD =, 即0a b c +-=,且20b c -=,不妨取2c =,则1b =,1a =, 所以平面PCD 的一个法向量为(1 1 2)=,,n ,(4分)此时cos PB 〈〉=,n ,所以PB 与平面PCD ;(6分)(2)设(01)PE PD λλ=≤≤,则(0 2 1)E λλ-,,, 则(1 21 1)CE λλ=---,,,(0 2 1)AE λλ=-,,, 由AEC ∠=90得,AE ⋅22(21)+(1)0CE λλλ=--=, 化简得,25410λλ-+=,该方程无解,所以,棱PD 上不存在一点E 满足AEC ∠=90.(10分)23.设整数n ≥3,集合P ={1,2,3,…,n },A ,B 是P 的两个非空子集.记a n 为所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数. (1)求a 3; (2)求a n .解:(1)当n =3时,P ={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 则所有满足题意的集合对(A ,B )为:({1},{2}),({1},{3}),({2},{3}), ({1},{2,3}),({1,2},{3})共5对, 所以a 35=;(3分)(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=,(5分) B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,k 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n kn k n k n k -----++⋅⋅⋅+=-,(7分) 从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---, 所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑.(10分)。

成人高考专升本高等数学(一)全真模拟试题及答案解析①

成人高考专升本高等数学(一)全真模拟试题及答案解析①

成人高考专升本高等数学(一)--------------------------------全真模拟试题①一、单选题,共10题,每题4分,共40分:1(单选题)当x→0时,下列变量中为无穷小的是_________ (本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了无穷小量的知识点.【应试指导】2(单选题)下列等式成立的是__________(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了函数的极限的知识点.【应试指导】3(单选题)设函数则等于_____(本题4分)A eB 1CD ln2标准答案: C解析:【考情点拨】本题考查了函数在一点的导数的知识点.【应试指导】4(单选题)设函数则函数f(X)______(本题4分)A 有极小值B 有极大值C 即有极小值又有极大值D 无极值标准答案: A解析:【考情点拨】本题考查了函数极值的知识点【应试指导】5(单选题)( )(本题4分)A 2/5B 0C -2/5D 1/2标准答案: A解析:【考情点拨】本题考查了定积分的知识点.【应试指导】6(单选题)下列各式中正确的是( )(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了定积分的性质的知识点.【应试指导】7(单选题)下列反常积分收敛的是________(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了反常积分的敛散性的知识点.【应试指导】8(单选题)方程表示的二次曲面是(本题4分)A 球面B 旋转抛物面C 圆柱面D 圆锥面标准答案: D解析:【考情点拨】本题考查了二次曲面(圓锥面)的知识点.【应试指导】由方程可知它表示的是圓锥面.9(单选题)函数在(-3,3)内展开成x的幂级数是()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了函数展开为幂级数的知识点.【应试指导】10(单选题)微分方程________(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了二阶线性微分方程的特解形式的知识点.【应试指导】二、填空题,共10题,每题4分,共40分:11(填空题)函数在x=0连续此时α=________(本题4分)标准答案: 0解析:【考情点拨】本题考查了函数在一点处的连续性的知识点.【应试指导】12(填空题)若则_______(本题4分)标准答案: -1解析:【考情点拨】本题考查了利用导数定义求极限的知识点.【应试指导】13(填空题)设则y'=_______(本题4分)标准答案:解析:【考情点拨】本题考查了函数的一阶导数的知识点.【应试指导】14(填空题)函数上满足罗尔定理,则ε=_________(本题4分)标准答案:π解析:【考情点拨】本题考查了罗尔定理的知识点.【应试指导】15(填空题)_______(本题4分)标准答案:解析:【考情点拨】本题考查了不定积分的知识点.【应试指导】16(填空题)_________(本题4分)标准答案:解析:【考情点拨】本题考查了利用换元法求定积分的知识点.【应试指导】17(填空题)将积分改变积分顺序,则I=__________(本题4分)标准答案:解析:【考情点拨】本题考查了改变积分顺序的知识点.【应试指导】18(填空题)幂级数的收敛半径为______(本题4分)标准答案: 3解析:【考情点拨】本题考查了幂级数的收敛半径的知识点.【应试指导】19(填空题)微分方程的通解是______(本题4分)标准答案:解析:【考情点拨】本题考查了二阶线性微分方程的通解的知识点.【应试指导】微分方程的特征方程是微分方程的特征方程是20(填空题)若则_______(本题4分)标准答案:解析:【考情点拨】本题考查了二元函数的全微分的知识点.【应试指导】一、问答题8题,前5题每题8分,后3题每题10分,共70分:21(问答题)求函数的二阶导数(本题8分)标准答案及解析:22(问答题)求(本题8分)标准答案及解析:23(问答题)求(本题8分)标准答案及解析:24(问答题)求函数的极值. (本题8分)标准答案及解析:25(问答题)设求(本题8分)标准答案及解析:26(问答题)计算其中D是由:y=x,y=2x,x=2与x=4围成(本题10分)标准答案: 9解析:积分区域D如下图所示. 被积函数 H:为二次积分时对哪个变量皆易于积分;但是区域D易于用X —型不等式表示,因此选择先对:y积分,后对x积分的二次积分次序.27(问答题)求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.(本题10分)标准答案及解析:28(问答题)已知证明: (本题10分)标准答案及解析:。

高考数学模拟试题含答案

高考数学模拟试题含答案

高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。

2020年河南省中考数学模拟试题一答案解析

2020年河南省中考数学模拟试题一答案解析

则九年级约有
名女生参加此项目;
(3)分析这 15 名女生从上学期到本学期体质健康变化的总体情况.(从两个方面进行分 析)
第 4页(共 8页)
19.(9 分)为了测量山坡上的电线杆 PQ 的高度,某数学活动小组的同学们带上自制的测 倾器和皮尺来到山脚下,他们在 A 处测得信号塔顶端 P 的仰角是 45°,信号塔底端点 Q 的仰角为 30°,沿水平地面向前走 100 米到 B 处,测得信号塔顶端 P 的仰角是 60°,求 信号塔 PQ 得高度.
第 3页(共 8页)
b.上学期测试成绩在 80≤x<90 的是:
8081 83 84 84 88
c.两个学期测试成绩的平均数、中位数、众数如下:
学期
平均数
中位数
众数
上学期
82.9
n
84
本学期
83
86
86
根据以上信息,回答下列问题:
(1)表中 n 的值是

(2)体育李老师计划根据本学期统计数据安排 80 分以下的同学参加体质加强训练项目,
A.36
B.9
C.6
D.18
10.(3 分)如图,矩形 OABC 的顶点 O(0,0),B(﹣2,2 ),若矩形绕点 O 逆时针旋
转,每秒旋转 60°,则第 2017 秒时,矩形的对角线交点 D 的坐标为( )
A.(﹣1, ) B.(﹣1,﹣3)
C.(﹣2,0)
二.填空题(共 5 小题,满分 15 分,每小题 3 分)
字前面的 0 的个数所决定. 【解答】解:0.00000065=6.5×10﹣7.
故选:D. 【点评】本题考查用科学记数法表示较小的数,一般形式为 a×10﹣n,其中 1≤|a|<10,

全国高中数学联赛一试模拟试题一

全国高中数学联赛一试模拟试题一

全国高中数学联赛一试模拟试题一一、填空题1.已知sin αcos β=1,则cos(α+β)= .2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = .4.已知3x +19x -1=13-31-x,则实数x = .5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 . 6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 二、解答题11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.EBCD ABCDAPQ R2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分)1.已知sin αcos β=1,则cos(α+β)= . 填0.解:由于|sin α|≤1,|cos β|≤1,现sin αcos β=1,故sin α=1,cos β=1或sin α=-1,cos β=-1,∴ α=2kπ+π2,β=2lπ或α=2kπ-π2,β=2lπ+π⇒α+β=2(k +l )π+π2(k ,l ∈Z ).∴ cos(α+β)=0.2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .填11.解:设公差为d ,则得55=-5×11+12×11×10d ⇒55d =110⇒d =2.a k =55-4×10=15=-5+2(k -1)⇒k =11.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = . 填-1+52.解:由(2b )2=2c ×2a ⇒a 2-c 2=ac ⇒e 2+e -1=0⇒e =-1+52.4.已知3x +19x -1=13-31-x ,则实数x = .填1.解:即13x -1=3x3(3x -1)⇒32x -4×3x +3=0⇒3x =1(舍去),3x =3⇒x =1.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =12V APQD =12×13V APCD =12×13×13V ABCD =118V ABCD ;又,S BPQ =S BCD -S BDQ -S CPQ =(1-13-23×13)S BCD =49S BCD ,V RBPQ =49V RBCD =12×49V ABCD =418V ABCD .∴ A 、B 到平面PQR 的距离的比=1∶4.又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点.由Menelaus 定理知,BM MD ·DQ QC ·CP PB =1,而DQ QC =12,CP PB =12,故BMMD =4.在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,BM MD ·DR RA ·AN NB =1,而BM MD =4,DR RA =1,故AN NB =14.∴ A 、B 到平面PQR 的距离的比=1∶4.6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .填[3,4].解:定义域(0,4].在定义域内f (x )单调增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4]. 7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.填78000.解:设净水器的长、高分别为x ,y cm ,则 xy =300,V =30(20+x )(60+y )=30(1200+60x +20y +xy )≥30(1200+260x ×20y +300)=30(1500+1200)=30×2700.∴ 至少可以存水78000cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 填-252.解:设|→AO |=|→BO |=|→OC |=R .则→BC ·→AO =(→BO +→OC )·→AO =→BO ·→AO +→OC ·→AO =R 2cos(π-2C )+R 2cos2B=R 2(2sin 2C -2sin 2B )=12(2R sin B )2-12(2R sin C )2=12(122-132)=-252.9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .填2008+2.解:若a n +1≠0,则a n =2-2a n +1,故a 2008=2-2,a 2007=2-22-2=-2,a 2006=2+2,a 2005=2.一般的,若a n ≠0,1,2,则a n =2-2a n +1,则a n -1=a n +1-2a n +1-1,a n -2=22-a n +1,a n -3=a n +1,故a n -4=a n .于是,Σk =12009a n=502(a 1+a 2+a 3+a 4)+a2009=502(a 2005+a 2006+a 2007+a 2008)+a 2009=2008+2.10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = .BCDAP QR BMNR Q PA DC B填0,3-12,3-1.解:若a 为负整数,则a 2>0,2b (a +b )<0,不可能,故a ≥0.于是a 2=2b (a +b )<2(a +1)⇒a 2-2a -2<0⇒0≤a <1+3⇒a =0,1,2. a =0时,b =0;a =1时,2b 2+2b -1=0⇒b =3-12;a =2时,b 2+2b -2=0⇒b =3-1.说明:本题也可以这样说:求实数x ,使[x ]2=2{x }x . 二、解答题(本大题共4小题,每小题20分,共80分)11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.解:取方程组⎩⎨⎧4x 2+9y 2=36,x =2y -4.代入得,25y 2-64y +28=0.此方程的解为y =2,y =1425.即得B (0,2),A (-7225,1425),又左焦点F 1(-5,0).连OA 把四边形AFOB 分成两个三角形. 得,S =12×2×7225+12×5×1425=125(72+75).也可以这样计算面积:直线与x 轴交于点C (-4,0).所求面积=12×4×2-12×(4-5)×1425=125(72+75).也可以这样计算面积:所求面积=12(0×2-0×0+0×1425-(-7225)×2+(-7225)×0-(-5)×1425+(-5)×0-0×0)=12(14425+14255)=125(72+75). 12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .解:AD AC =ACAB⇒△ACD ∽△ABC ⇒∠ABC =∠ACD =∠BCE .∴ CE =BE =12.AE =AB -BE =16.∴ cos A =AC 2+AE 2-CE 22AC ·AE =142+162-1222·14·16=142+28·42·14·16=1116.∴ BC 2=AC 2+AB 2-2AC ·AB cos A =142+282-2·14·28·1116=72·9⇒BC =21.13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.解法一:显然k >0.(x +y )2≤k 2(2x +y )⇒(2k 2-1)x -2xy +(k 2-1)y ≥0对于x ,y >0恒成立.令t =xy>0,则得f (t )=(2k 2-1)t 2-2t +(k 2-1)≥0对一切t >0恒成立. 当2k 2-1≤0时,不等式不能恒成立,故2k 2-1>0.此时当t =12k 2-1时,f (t )取得最小值12k 2-1-22k 2-1+k 2-1=2k 4-3k 22k 2-1=k 2(2k 2-3)2k 2-1.当2k 2-1>0且2k 2-3≥0,即k ≥62时,不等式恒成立,且当x =4y >0时等号成立. ∴ k ∈[62,+∞). 解法二:显然k >0,故k 2≥(x +y )22x +y =x +2xy +y2x +y .令t =x y >0,则k 2≥t 2+2t +12t 2+1=12(1+4t +12t 2+1). 令u =4t +1>1,则t =u -14.只要求s (u )=8uu 2-2u +9的最大值.s (u )=8u +9u-2≤82u ·9u -2=2,于是,12(1+4t +12t 2+1)≤12(1+2)=32.∴k 2≥32,即k ≥62时,不等式恒成立(当x =4y >0时等号成立).又:令s (t )=4t +12t 2+1,则s '(t )=8t 2+4-4t (4t +1)(2t 2+1)2=-8t 2-4t +4(2t 2+1)2,t >0时有驻点t =12.且在0<t <12时,s '(t )>0,在t >12时,s '(t )<0,即s (t )在t =12时取得最大值2,此时有k 2≥12(1+s (12))=32.解法三:由Cauchy 不等式,(x +y )2≤(12+1)(2x +y ).即(x +y )≤622x +y 对一切正实数x ,y 成立. 当k <62时,取x =14,y =1,有x +y =32,而k 2x +y =k 62<62×62=32.即不等式不能恒成立.而当k ≥62时,由于对一切正实数x ,y ,都有x +y ≤622x +y ≤k 2x +y ,故不等式恒成立.∴ k ∈[62,+∞). 14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.EBCDA解:对于任意n∈N*,n2≡0,1(mod 4).设a,b是两个不同的自然数,①若a≡0(mod 4)或b≡0(mod 4),或a≡b≡2(mod 4),均有ab≡0(mod 4),此时,ab+10≡2(mod 4),故ab+10不是完全平方数;②若a≡b≡1(mod 4),或a≡b≡3(mod 4),则ab≡1(mod 4),此时ab+10≡3(mod 4),故ab+10不是完全平方数.由此知,ab+10是完全平方数的必要不充分条件是a≡/b(mod 4)且a与b均不能被4整除.⑴由上可知,满足要求的三个自然数是可以存在的,例如取a=2,b=3,c=13,则2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是满足题意的一组自然数.⑵由上证可知不存在满足要求的四个不同自然数.这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加10后不是完全平方数.故证.。

【典型题】小学数学小升初第一次模拟试题(附答案)(1)

【典型题】小学数学小升初第一次模拟试题(附答案)(1)

【典型题】小学数学小升初第一次模拟试题(附答案)(1)一、选择题1.把边长4分米的正方形剪成两个同样的长方形,其中一个长方形的周长是()分米.A. 8 B. 12 C. 52.三角形的面积一定,它的底和高()。

A. 成正比例B. 成反比例C. 不成比例D. 无法确定3.当a表示所有的自然数0,1,2,3,…时,2a表示()。

A. 奇数B. 偶数C. 质数D. 合数4.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如下图。

截后剩下的图形的体积是()cm3。

A. 140B. 180C. 220D. 3605.等底等高的一个圆柱和一个圆锥体积相差12.56cm3,它们体积的和是()cm3。

A. 18.84 B. 25.12 C. 31.4 D. 37.68 6.一个零件长4毫米,画在图上长12厘米。

这幅图的比例尺是()。

A. 1:30B. 1:3C. 30:1D. 3:1 7.下面各题中的两种量成反比例关系的是()。

A. 单价一定,总价与数量B. 圆柱的体积一定,圆柱的底面积与高C. 全班人数一定,出勤人数与缺勤人数D. 已知圆的面积=圆周率×半径的平方,圆的面积与半径8.一个三角形三个角的度数的比是1:3:5,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形9.双十一,某件商品降价20%,降价前能买100件该商品的钱,降价后能买该商品()A. 80件 B. 100件 C. 120件 D. 125件10.在3.14,π,31.4%,中,最大的数是()A. 31.4%B.C. 3.14D. π11.五一班有学生50人,其中男生有30人,男生人数占全班人数的几分之几?正确的是()A. B. C. D.12.如图,以大圆的半径为直径画一小圆,大圆的周长是小圆周长的()倍。

A. 2B. 4C. 6D. 8二、填空题13.观察1、3、6、10……的排列规律,第6个数应该填________.14.3:5=9÷________= ________=________%=________(填成数)15.一幅平面图上标有“ ”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学一模拟试题(一)
一、
填空题(本题共6小题,每小题4分,满分24分. 把答案填
在题中横线上) (1)设
⎪⎩
⎪⎨⎧
=≠=00,0,1sin )()(x x x
x x f ϕ, 且0)0()0(='=ϕϕ,则
=⎰→x
dt xt f x 1
)(lim
.
(2)直线L:,0
3⎩⎨
⎧=--=++z y x z y x 与平面01:0=+--z y x π的夹角
θ= .
(3) 无穷级数∑∞
=12
!
n n n = .
(4) 设A 是正负惯性指数均为1的三阶实对称矩阵,且满足
=-=+A E A E , 则行列式
A E 32+= .
(5) 已知随机事件A 、B 、C 满足P(A)=, P(B)=,P(C)=,且A,B 独立,A,C 互不相容,则概率P(A-C )C AB = .
(6) 在总体N(1,4)中抽取一容量为5的简单随机样本
54321,,,,X X X X X ,则概率
=<}1),,,,{m in(54321X X X X X P .
二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
(1)设f(x)、g(x)都是可导函数,且)()(x g x f '<',则当x>a 时,有
(A)
).()()()(a g x g a f x f -<- (B) ).()()()(a g x g a f x f ->-
(C) ).()()()(a g a f x g x f -<- (D) ).()()()(a g a f x g x f ->- [ ]
(2)设正项级数∑∞
=+1
)1ln(n n a 收敛,则级数∑∞
=+-1
1)1(n n n n a a
(A) 条件收敛. (B) 绝对收敛.
(C) 发散. (D) 敛散性不能确定. [ ]
(3) 设L:0,1422≥=+y y x , 0,0,14:221≥≥≤+y x y x L , 则
(A) ⎰⎰+=+L L ds y x ds y x 1
)(2)(. (B) ⎰⎰=L L xyds xyds 1
2.
(C) ⎰
⎰=L
L ds y ds x 1
222. (D)

⎰+=+L
L ds y x ds y x 1
)(2)(222.
[ ]
(4) 已知A 、B 为三阶矩阵,且有相同的特征值0,2,2,则下列命题:①A,B 等价;② A,B 相似;③ 若A,B 为实对称矩阵,则A,B 合同;④ 行列式A E E A -=-22,成立的有
(A) 1个 (B) 2个. (C) 3个. (D) 4个.
[ ]
(5) 设随机变量Y X ,相互独立且均服从正态分布),(2σμN ,若概率2
1)(=<-μbY aX P ,则
(A) 2
1,2
1==b a . (B) 2
1,2
1-==b a .
(C) 21,21=
-=b a . (D) 2
1
,21-=-=b a . [ ]
(6) 设X 为随机变量,若矩阵A=⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡--0102023
2X 的特征值全为实数的概率为,则
(A) X 服从区间[0,2]的均匀分布. (B) X 服从二项分布B(2, .
(C) X 服从参数为1的指数分布. (D) X 服从正态分布
)1,0(N . [ ]
三、(本题满分8分)
设)1(f ''存在,且01
)
(lim
1
=-→x x f x ,记⎰-+'=10])1(1[)(dt t x f x ϕ,求)(x ϕ在x=1某个邻域内的导数,并讨论)(x ϕ'在x=1处的连续性 .
四、(本题满分12分)
设函数u f x y =+(ln ),22
满足 ∂∂∂∂2222223
2
u x u y
x y +=+(), 且极限
1)(lim
1
-=⎰→x
dt xt f x ,试求函数f 的表达式.
.
五、(本题满分12分)




是锥面
22z y x +=
与两球面
1222=++z y x ,2222=++z y x 所围立体表面的外侧,计算曲面积分
dxdy yz f z dzdx yz f y dydz x ))(())((333++++⎰⎰∑
其中f(u)是连续可微的奇函数.
六、(本题满分12分)
设f x x n
x n
n (),.=≤≤=∞
∑2101 证明:∀∈x (,),01 有
(1)
f(x)+f(1-x)+lnx ·ln(1-x)=C (常数) (2) C = f(1)=12
1n
n =∞

七、(本题满分12分)
设微分方程 .0)()(=+'+''y x Q y x P y (1)证明:若 1+P(x)+Q(x)=0 ,则方程有一特解 x e y =;若 P(x)+xQ(x)=0,则方程有一特解 y=x.
(2) 根据上面的结论,求 0)1(=+'-''-y y x y x 的通解和满足初始条件1)0(,2)0(='=y y 的特解.
(3)求1)1(=+'-''-y y x y x 满足初始条件 1]
1)(ln[lim
0-=-→x
x y x 的特解.
八、(本题满分10分)
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且
02
cos
)]
(2ln[lim 1=+→x
x f x π,⎰=21)2()(f dx x f ,求证:)2,0(∈∃ξ,使 .0)()(=''+'ξξf f
九、(本题满分8分)
设1η与2η是非齐次线性方程组Ax=b 的两个不同解(A 是n m ⨯矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:
(1) 向量组211,ηηη-线性无关;
(2)
若秩r(A)=n-1,则向量组21,,ηηξ线性相关.
十(本题满分10分)
已知A 、B 为4阶矩阵,若满足AB+2B=0, r(B)=2,且行列式02=-=+A E A E ,(1)求A 的特征值;(2)证明A 可对角化;(3)计算行列式E A 3+.
十一(本题满分9分)
设二维随机变量(X ,Y )的联合概率密度函数为
其他1
,1,0,4/)1(),(<<⎩
⎨⎧+=y x xy y x f
证明:X 与Y 不独立,但2X 与2Y 独立.
十二(本题满分9分)
设总体X 服从[0,θ]上的均匀分布,θ未知(θ>0),X X X 123,,是取自X 的一个样本
(1) 试证: max θ11343
=≤≤i i X , min θ213
4=≤≤i i X 都是θ的无偏估计 (2)
上述两个估计中哪个方差最小。

相关文档
最新文档