9.1.1 不等式及其解集教案
人教版七年级数学下册 教学设计 9.1.1 第1课时《不等式及其解集》
人教版七年级数学下册教学设计 9.1.1 第1课时《不等式及其解集》一. 教材分析人教版七年级数学下册第9.1.1节《不等式及其解集》是初中数学的基础知识,主要介绍了不等式的概念和如何求解不等式的解集。
通过这一节的学习,学生能够理解不等式的含义,掌握求解不等式解集的方法,并为后续的不等式应用打下基础。
二. 学情分析七年级的学生已经掌握了基本的算术运算和代数知识,具备一定的逻辑思维能力。
但是,对于不等式的概念和解集的求解方法可能较为陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念,理解不等式的含义。
2.学会求解简单的不等式的解集。
3.能够运用不等式解决实际问题。
四. 教学重难点1.不等式的概念和含义。
2.求解不等式解集的方法。
五. 教学方法采用问题驱动法和案例教学法,通过实例和练习来引导学生理解和掌握不等式的概念和解集的求解方法。
同时,利用小组讨论和合作学习,提高学生的参与度和积极性。
六. 教学准备1.PPT课件。
2.练习题和案例。
七. 教学过程1.导入(5分钟)通过PPT展示一些实际问题,如判断两边是否相等,不等式的大小关系等,引导学生思考不等式的概念。
2.呈现(15分钟)介绍不等式的概念和含义,解释不等式的表示方法,如“a < b”表示a 小于b,“a ≥ b”表示a大于等于b。
通过实例和练习,让学生理解和掌握不等式的基本性质。
3.操练(15分钟)让学生分组进行练习,求解一些简单的不等式的解集。
教师巡回指导,解答学生的疑问,并给予反馈和评价。
4.巩固(10分钟)通过PPT展示一些不等式的解集案例,让学生判断和解释其解集的含义。
教师引导学生进行思考和讨论,巩固不等式解集的求解方法。
5.拓展(10分钟)引导学生思考不等式在实际问题中的应用,如判断物体的高度是否超过一定值,计算商品的打折价格等。
学生分组讨论,提出解决方案,并进行分享和交流。
6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,强调不等式和解集的概念和解题方法。
9.1.1不等式及其解集教案
不等式解集含义的理解,用数轴表示不等式解集,列回顾、引出课题
⑴以各组线段为边,能组成三角形的是()
A 1、2、3 B 2、5、8 C 3、4、5 D 4、5、10
⑵用三条绳子结成三角形,(不考虑结头)已知其中两条绳长分别是3和7米,问第三根绳子a的取值范围是。
⑥ ≠6⑦ ﹥0 ⑧ ≦7
A 2 B4 C5 D 6
2、上题中是一元一次不等式的有()个
A 0 B1C2 D 3
3、下列各数:2,0,-1,1,2,5,其中是不等式 ﹤-2的解有()个
A 1 B2 C3 D 4
4、不等式解集 ≧-1.5在数轴上表示正确的是()
B
A
D
C
5用不等式表示下列关系。
(1)x与4的差是负数(2) 的相反数与6差是非负数
《不等式及其解集》教案
教学目标:
1、了解不等式、一元一次不等式及其解集的含义。.毛
2、会检验一组数中哪些是不等式的解,会利用数轴表示不等式解集。
3、会列简单的不等式、一元一次不等式。
教学重点:
1、了解不等式、一元一次不等式及其解、解集的含义。毛
2、会检验一组数中哪些是不等式的解,会利用数轴表示不等式解集。
二、新课预习
(从课本的实际问题入手,认识不等式及其解集的含义)
问题
一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?
分析:设车速是 千米时。
(1)从时间上看,汽车要在12:00之前驶过A地,所需时间应不到 小时,即
﹤ ①
(2)从路程上看,汽车要在12:00之前驶过A地,则以这个速度行使 小时的路程要超过50千米,即
(3)x的4倍小于或等于x的3倍与7的差
人教版数学七年级下册《9.1.1不等式及其解集》教学设计
人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。
本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。
教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。
但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。
此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会求解不等式的解集,并能解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。
2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。
2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。
3.运用实例分析,让学生体会不等式在实际问题中的应用。
4.注重练习,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。
2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。
3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。
通过讨论,引出不等式的概念。
2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。
通过实例演示,让学生直观地感受不等式的性质。
3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。
9.1.1 不等式及其解集 教案.doc.1.1 不等式及其解集 教案
9.1.1导学案教学目标:知识与能力:1、能说出不等式和一元一次不等式的定义。
2、能说出什么是不等式的解、解集、解不等式。
过程与方法:通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上。
情感态度和价值观:探究不等式解与解集的不同意义的过程,渗透数形结合思想。
教学重点:了解不等式和一元一次不等式的定义。
教学难点:能把不等式的解集正确地表示到数轴上。
教学方法:112师生互动模式教具:多媒体教学过程:一、导学质疑:知识链接:1、用式子表示三角形的三边关系2、什么叫方程、一元一次方程?举例说明。
导入明标:1、举一些有关不等式的生活实例。
如:一天,小明和他的爸爸去动物园玩,10:20从鸟的天堂出发赶往距此50千米的熊猫馆,可熊猫馆要在11:00以前才能够进去,否则要等到下午,可下午爸爸有事.问:爸爸的车速应该具备什么条件,才能在11:00以前赶到?若设车速为每小时x千米,能用一个式子表示吗?2.学生再举出一些有关不等式的实例。
如:过马路,跷跷板,太阳温度,限速路标,乌鸦喝水,思考相应问题,体会生活中的不等式。
3.结合实例引入本节课所要学习的内容和本节的学习目标。
(板书课题)学习目标:1、能说出不等式和一元一次不等式的定义。
2、能说出什么是不等式的解、解集、解不等式。
3、会把不等式的解集正确地表示到数轴上。
自觉质疑:(自学10分钟)请阅读课本114页到115页的内容,思考以下问题:1、①什么叫不等式、一元一次不等式?举例说明。
②下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠1(4)x+3>6 (5)2m<n(6)2x-3③不等号有哪几种?④数-2,-1,0,1,2.5适合不等式x+3<4吗?⑤什么叫不等式的解?⑥什么叫不等式的解集?如何在数轴上表示它的解集?⑦什么叫解不等式?2、思考:①判断下列数中哪些是不等式>50的解76,73,79,80,74.9,75.1,90,60 上述不等式还有其它的解吗?并在数轴上表示它所有的解二、合作交流:(10分钟)1.各小组同学之间互相检查一下自学情况。
9.1.1不等式及其解集教案
选做题:P128:3题
发训练案
使学生对本节,课的知识有一个回顾与完整的认识,加深理解,形成知识体系。
4分
板
书
设
计
9.1.1不等式及其解集
不等式:
不等式的解:
不等式的解集:
一元一次不等式:
课
后
反
思
板书课题
9.1.1不等式及其解集
明确学习目标,激发学生学习兴趣。
2分
课
上
展
示
检验学生预习效果
评价主持人与学生的表现。
主持人登场,解答预习案的相关问题
师对生做出准确评价,鼓励学生积极参与。
展示预习成果,培养学生能力。
7分
探
究
精
讲
展示学习目标
阅读教材
重点剖析、解疑
用多媒体课件向材中的内容。
情感态度与价值观:
通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。
重点
不等式相关概念的理解和不等式的解集的表示。
教法
启发引导发现法
难点
不等式解集的理解
学法
自主合作探究
关键
数形结合
教具
三角板,多媒体课件
程序
教学内容
师生活动设计
设计意图
时间
导
入
生活中的不等关
学校
莲花中学二校区七年部
授课教师
代新
班级
7.15
课题
9.1.1不等式及其解集
授课日期
2012.3.18
课型
新授课
教
学
三
维
目
9.1.1不等式及其解集_(教案)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个表达式大小关系的数学语句。它是我们解决实际问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有10元钱,而一支笔的价格是3元,我们如何表示“你足够买笔”这个情况?这就是不等式3x≤10的由来。
实践活动环节,学生分组讨论和实验操作的成果展示让我看到了他们的合作精神和动手能力。但是,我也观察到有些小组在讨论过程中,个别成员参与度不高,这可能是因为他们对问题的理解不够深入,或者是小组内部的沟通协作还需要加强。我计划在接下来的课程中,更加注重学生个体差异,鼓励每个学生都参与到讨论中来。
在学生小组讨论环节,我尝试作为一个引导者,而不是知识的传授者。我发现这种方式能够激发学生的思考,让他们在探索中发现问题、分析问题并解决问题。但是,我也意识到,这种方法对学生的自主学习能力要求较高,对于一些依赖性较强的学生来说,可能还需要更多的引导和鼓励。
最后,我感到课后需要给学生提供更多的练习机会,特别是针对那些在课堂上表现不够自信的学生。通过不断的练习和反馈,我相信他们能够克服难点,掌握不等式的核心知识。此外,我也会在课后收集学生的反馈,了解他们在学习过程中的真实感受,以便在后续的教学中进行调整和改进。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教七下数学第九章 9.1.1不等式及其解集教案
9.1.1不等式及其解集一、教学目标1、知识与技能了解不等式的概念;理解不等式的解集;能正确表示不等式的解集。
2、过程与方法经历由具体实例建立不等模型的过程;经历探究不等式解与解集的不同意义的过程,渗透数形结合思想。
3、情感态度与价值观进一步培养学生的数学思维和参与数学活动的自信心、合作交流的意识。
二、教学重难点教学重点:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确的表示到数轴上。
教学难点:正确理解不等式解集的意义。
三、教学方法和课型教学方法:启发诱导法、实例探究法、讲练结合法课型:新授课四、教具准备彩色粉笔、小黑板五、教学过程(一)、创设情境,导入新课设计说明:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣。
问题1:两个体重相同的孩子正在跷跷板上做游戏。
现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了。
这是什么原因呢?讨论结果:两边的重量不同,跷跷板就会发生倾斜。
教师说明:原来的平衡状态被破坏了,产生了一种不等关系。
问题2:一辆匀速行驶的汽车在11:20距离A 地50千米,要在12:00以前驶过A 地,车速应该满足什么条件?若设车速为每小时x 千米,能用一个式子表示吗?分析:从问题中有关信息可知,汽车行驶50千米(驶过A 地)所用时间,必须在11:20~12:00这40分钟之内,即所用时间要小于32小时。
换言之,32小时要行驶超过50千米的路程。
我们知道相等关系可以用等式来表示,那么,不等关系又怎样表示呢?讨论结果:设车速是x 千米/时。
从时间上看,汽车要在12:00之前驶过A 地,则以这个速度行驶50千米所用时间不到32小时,即x50 < 32 ① 从路程上看,汽车要在12:00之前驶过A 地,则以这个速度行驶32小时的路程要超过50千米,即x 32 > 50 ② 像①、②这样的式子,叫做不等式。
这节课我们来研究不等式的相关知识,由此导入新课。
人教版数学七年级下册9.1.1《不等式及其解集》教学设计1
人教版数学七年级下册9.1.1《不等式及其解集》教学设计1一. 教材分析《不等式及其解集》是人教版数学七年级下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对后续不等式变形、解不等式组等内容有重要影响。
教材通过例题和练习题,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
二. 学情分析学生在七年级上册已经学习了有理数的概念,对数轴有了一定的了解。
但他们对不等式的概念和解集的表示方法可能还比较陌生。
因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
三. 教学目标1.了解不等式的概念,理解不等式解集的含义。
2.学会用数轴表示不等式的解集。
3.能够解简单的不等式。
四. 教学重难点1.不等式的概念及其与等式的区别。
2.不等式解集的含义及其表示方法。
3.解简单的不等式。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。
2.利用数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
3.通过练习题和小组讨论,巩固所学知识,提高解题能力。
六. 教学准备1.教学PPT或黑板。
2.练习题和答案。
3.数轴和标记工具。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索不等式的概念。
例如:“在日常生活中,你遇到过哪些不等式?”让学生举例说明,并解释不等式的含义。
2.呈现(15分钟)讲解不等式的概念,介绍不等式与等式的区别。
通过数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
例如,展示数轴,并在数轴上标出不同不等式的解集,让学生观察和理解。
3.操练(15分钟)让学生练习解简单的不等式。
给出一些具体的不等式,要求学生将其解集用数轴表示出来。
例如,解不等式3x > 6,将其解集用数轴表示出来。
4.巩固(10分钟)通过小组讨论和练习题,巩固所学知识。
人教版七年级数学下册9.1.1《不等式及其解集》教学设计
人教版七年级数学下册9.1.1《不等式及其解集》教学设计一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,本节内容是在学生已经掌握了整数、分数、小数的基本运算的基础上,引入不等式的概念,让学生了解不等式的定义、性质和求解方法,为后续学习不等式的应用打下基础。
本节教材主要包括以下几个部分:1.不等式的定义:介绍不等式的概念,让学生了解不等式是由不等号连接的两个表达式构成的数学句子。
2.不等式的性质:讲解不等式的基本性质,包括同向不等式的相加、相减、乘除等运算规律。
3.不等式的解集:介绍不等式的解集的概念,讲解求解不等式解集的方法。
二. 学情分析七年级的学生已经具备了基本的数学运算能力,对于新知识有一定的接受能力,但是对不等式的概念和性质可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。
三. 教学目标1.了解不等式的概念,能够正确书写不等式。
2.掌握不等式的基本性质,能够进行简单的同向不等式运算。
3.了解不等式的解集的概念,能够求解简单的不等式解集。
四. 教学重难点1.不等式的定义和性质。
2.不等式的解集的求解方法。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际操作,引导学生主动探索和发现不等式的性质和求解方法,注重学生的参与和实践,提高学生的学习兴趣和能力。
六. 教学准备1.教学PPT或者黑板。
2.教学素材和例子。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,例如:“小明比小红高,小华比小明高,请问谁最高?”让学生思考并回答,引导学生认识到不等式的概念。
2.呈现(10分钟)呈现不等式的定义和性质,通过具体的例子和实际操作,让学生理解和掌握不等式的概念和性质。
3.操练(10分钟)让学生进行不等式的书写和运算练习,老师进行指导和讲解,帮助学生巩固不等式的概念和性质。
4.巩固(10分钟)通过一些练习题,让学生自己独立解决不等式问题,巩固所学的不等式的概念和性质。
9.1.1不等式及其解集教案
9.1.1不等式及其解集教案9.1.1不等式及其解集教学目标1. 知识与技能:了解不等式概念,理解不等式的解集,能正确的用数轴表示不等式的解集; 2. 过程与方法:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化能力,培养学生的数感,通过用数轴鄙视不等式的解集渗透数形结合的思想; 3.情感、态度与价值观:进一步培养学生的数学思维和参与数学活动的自信心、合作交流意识,教学重难点重点:不等式的解集的表示。
难点:不等式的求解及解集的表示。
教学过程一、课题引入1.看一看,比一比(展示图片)①姚明和李连杰②小孩与冬瓜③公路上的限时标记从上面的图片中让我们感受到生活中的问题:如身高、体重、速度等需要将对象具体数量化,才能进行交流和判断,不但要学习研究等量关系,还需学习和研究不等关系.设计意图:从生活中抽出实例让学生体验到数学是源于生活的。
2.请观察下列式子是等式的有哪些?(1)?2?5(2)x?3?2x(3)4x?2y?0(4)a?2b?0.5(5)x?2x?1?3.5 (6)a?2?a(7)5m?3?8(8)x??4(9)2168x?2(10)?16 7x5设计意图:通过对等式的回忆,让学生在脑海中有个比较,形成初步概念。
二、讲授新课1.什么是不等式观察下面两个式子,他们之间有何区别8x8x?16?1655“ <” 读作小于、“>”读作大于、“≠”读作不等于、“≤”读作小于或等于、“≥”读作大于或等于,都是不等号。
设计意图:通过与等式的比较,加深对不等式的理解。
练习:根据题意,列出关系式,并判断是不是不等式题目关系式判断(1)?3小于2 ?3?2 是不等式(2)用字母y表示一个数,若y有倒数, y?0 是不等式则y需满足什么条件?(3)数a与b的差为1 a?b?1 不是不等式(4)如图,天平左盘放3个小球,右盘放5g砝码,天平倾斜。
设每个小球的质量为x(g), 3x?5 是不等式怎样表示x与5之间的关系?用不等号号连接用等号连接像这样用等号连接表示相等关系的式子叫等式。
9.1.1不等式及其解集教案
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上
难点
正确理解不等式解集的意义
教学方法
教学手段
朗读法、讨论法、引导法
小组合作交流法
教学环节
活动设计
重难点分析、拓展、提高
个性化设计
一.复Βιβλιοθήκη 回顾让两个学生站在一起比身高,得出结论:身高不相等。生活中,类似于这类不等的关系的现象特别多,如何从数学的角度进行表达,就是本节课学习的任务。
2.下列各式①2x-1<0,
②3x-y>-2,③>-3,④x<-1,⑤2x2≠0中,是一元一次不等式的有. (填序号)
3. x>75表示能使不等式 >50成立的x的范围,叫做不等式 >50的,简称.求不等式的解集的过程叫做。
4.表示不等式 >50的解集.
设计意图:让学生充分发表意见,并通过计算、动手验证、动脑思考,初步体会不等式解的意义以及不等式解与方程解的不同之处.处理不等式的解与解集的关系时可以通过一些通俗的事例使学生认识到不等式的解集包括了不等式的全体的解,解集中任何一个数都是不等式的一个解
4.直接想出不等式的解集,并在数轴上表示出来:
(1) x+3>6 ; (2) 2x<4.
5.用a, b, c表示三种不同的物体,放在天平上比较两次,如图所示,a, b, c三种物体按质量
从小到大的顺序排列应该为( )
(A) a<b<c. (B) b<a<c.
(C) a<c<b. (D) c<b<a.
二.
导入新课
学生自读课本,学习相关内容。
1.下列式子有什么共同特点?
-3<0 , 4x+3y<0 ,<, x≠5 ,
x+2>3 , x²<2.
总结:用“>”或“<”表示大小关系的式子叫做不等式.用≠表示不等关系的式子也是不等式.
9.1.1不等式及其解集教学设计
第九章不等式与不等式组9.1不等式9.1.1不等式及其解集教学设计【知识与技能】i•掌握不等式的概念;2. 理解不等式的解、解集;会在数轴上表示不等式的解集;3. 掌握一元一次不等式的概念;4. 会列出简单实际问题中的不等式.【过程与方法】从实例出发,引出不等式的概念,类比于方程的解理解不等式的解•进而理解不等式的解集,并学会在数轴上表示不等式的解集,类比于一元一次方程的概念理解一元一次不等式的概念.【情感态度】不等式是现实世界中普遍存在的关系,体验数学来源于实际生活又反过来服务于实际生活,提高同学们学习兴趣•【教学重点】不等式的概念,不等式的解、解集的概念,在数轴上表示不等式的解集【教学难点】理解不等式的解集及在数轴上表示不等式的解集•一、情境导入,初步认识看一看:你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就不等关系:在古代,我们的祖先就懂得了翘翘板的工作原理,并且根据这一原理设计出了一些简单机械,并把它们用到了生活实践当中•由此可见, 不相等”处处可见。
你能举出身边的不等关系的例子吗?从今天起,我们开始学习一类新的数学知识:不等式.问题:一辆匀速行驶的汽车在11:20距离A 地50km,要在12:00之前驶过A 地, 车速满足什么条件?解:设车速是x 千米/时,本题可从两个方面来表示这个关系:(1) 从时间上看,汽车要在12: 00之前驶过A 地,则以这个速度行驶5050 2一 < —x 312: 00之前驶过A 地,则以这个速度行驶2/3 2x 503、思考探究,获取新知思考1什么叫不等式?什么叫不等式的解、 解集?什么叫解不等式?什么 叫一元一次不等式?思考2怎样在数轴上表示不等式的解集? 【归纳结论】1.定义:用“V”或“〉”或“工”表示大小关系的式子,叫做不等式•不等式的解集:一般地,一个含有未知数的不等式的所有的解, 组成这个不 等式的解集•解不等式:求不等式的解集的过程叫做解不等式•一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元 一次不等式•2. 在数轴上表示不等式的解集有下列四种情形:千米所用的时间不到2/3小时,即: (2)从路程上看,汽车要在小时的路程要超过50千米,即: (3 J.Y < a注意:不含等号的用空心的小圆圈,含等号的用实心小圆点,切记三、运用新知,深化理解1. 用不等式表示:(1)x与1的和是正数;(2)a的1/2与b的1/3的差是负数;(3)y的2倍与1的和大于3;(4)x的一半与8的差小于x.2. 下列说法错误的是( )A. x v 2的负整数解有无数个B. x v 2的整数解有无数个C. x< 2的正整数解是1和2D. x v 2的正整数解只有113. 在-2, -1, 0, 1/3 , 1- , 2 中.2(1)x取哪些数值能使不等式X-1V 0成立?(2)满足不等式X-1V 0的x有什么特点?4. 在数轴上表示下列不等式的解集.(1) x>3; (2) x< 3; (3) x v3; (4) x> 3.5. 比较下列各题中两个式子的大小.(1) a4与-a2-2 ;(2) 2a2-2b2+4 与3a2+6b2+8 (提示:若A-B>0,则A> B,若A-B v0,则A v B,若A-B= 0,则A= B).【教学说明】题1、4可让学生自主探究,写出答案,画出解集,教师对出错的同学帮助其分析错误的原因,再加以改正,加深印象.题2、3、5,师生共同探讨,题5教师应事先给予提示,然后引导学生得出正确答案.【答案】1. 解: (1) x+1>0;1 1(2) — a--b v 0;2 3(3) 2y+1> 3;2x-8< x.2. C解析:不等式的解是使不等式成立的未知数的值,它可能有无数个解,可能只有有限个解,也可能无解•本题中,x v2的正整数解不包含2,只有1,故选项C说法错误,选C.3. 解: (1)当x取-2, -1,0,1/3 时,不等式x-1v 0 成立;(2)满足不等式x-1v 0的x的特点为均小于1.r4.解:(1)5. 解:(1)由于a4-(-a2-2)=a4+a2+2 >0,故a2>-a2-2;(2)由于(2a2-2b2+4) -(3a2+6b2+8)=2a2-2b2+4-3a2-6b2-8=-a2-8b2-4=-(a2+8b2+4)v0故2a2-2b2+4v 3a2+6b2+8.四、师生互动,课堂小结1•不等式、不等式的解及解集、解不等式、一元一次不等式的概念•2•常见的基本语言及含义.(1)不大于、不高于、不超过的意义都是“w”.(2)不小于、不低于的意义都是.;汽谍后作业1. 布置作业:从教材“习题9.1”中选取.2. 完成练习册中本课时的练习.数字反展等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.。
人教版数学七年级下册教案9.1.1《 不等式及其解集》
人教版数学七年级下册教案9.1.1《不等式及其解集》一. 教材分析《不等式及其解集》是人教版数学七年级下册的教学内容,这部分内容是学生继学习算术运算后,进一步理解代数表达式的性质,认识不等式的概念及其应用。
通过学习不等式,学生能更好地理解数学中的限制条件,并能运用不等式解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了算术运算的基本规则,对代数表达式有一定的理解。
但他们对不等式的概念和性质可能比较陌生,因此需要通过实例和练习来逐步建立不等式的基本概念,并理解不等式的解集。
三. 教学目标1.了解不等式的概念,理解不等式的基本性质。
2.学会解一元一次不等式,并能求出其解集。
3.能够应用不等式解决实际问题。
四. 教学重难点1.教学重点:不等式的概念,不等式的基本性质,一元一次不等式的解法。
2.教学难点:不等式的解集的表示方法,不等式的应用。
五. 教学方法采用问题驱动法,通过实例引入不等式的概念,引导学生探究不等式的性质,再通过练习和应用来巩固所学知识。
六. 教学准备1.教学PPT,包含不等式的定义,不等式的性质,一元一次不等式的解法等内容。
2.练习题,包括简单的不等式题目和实际应用题目。
七. 教学过程导入(5分钟)通过一个实际问题引入不等式的概念:某班级有40人,男生和女生的人数之和为40,男生比女生多3人,请问男生和女生各有多少人?让学生尝试用数学表达式来表示这个问题,并引入不等式的概念。
呈现(10分钟)通过PPT呈现不等式的定义和基本性质,让学生直观地理解不等式的形式和意义。
同时,通过例题来展示不等式的解法和解集的表示方法。
操练(15分钟)让学生独立完成一些简单的不等式题目,如解一元一次不等式,求解集等。
教师在旁边巡回指导,解答学生的疑问。
巩固(10分钟)通过一些实际应用题目,让学生运用不等式来解决问题。
如购物问题,时间安排问题等,让学生感受不等式在实际生活中的应用。
拓展(10分钟)让学生尝试解决一些复杂的不等式问题,如多变量的不等式,不等式的组合等。
人教版七年级数学下册教学设计:9.1.1不等式及其解集
(2)结合自己的学习体会,谈谈在解决实际问题时,如何将问题转化为不等式模型。
2.不等式的解集
接着,我会详细讲解不等式的解集,以及如何用数轴表示解集。借助图形和数轴,让学生直观地理解解集的内涵。
3.不等式的变形
此外,我还会介绍不等式的简单变形,如加减乘除同一不等式的两边。通过实例和练习,让学生掌握不等式的变形方法。
(三)学生小组讨论
1.设计讨论题目
在此环节,我会给出几个实际问题,让学生分组讨论如何用不等式表示这些问题,并求解。
4.通过合作交流、讨论等形式,培养学生的团队合作意识和交流表达能力,提高学生的问题解决能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情,树立正确的学习态度。
2.引导学生认识到不等式在生活中的重要性,体会数学与现实生活的紧密联系,增强学生的应用意识。
3.通过解决实际问题,培养学生的自信心和成就感,提高学生对数学价值的认识。
2.学生练习
学生在规定时间内完成练习,期间我会巡回指导,解答学生的疑问。
3.评讲练习
在学生完成练习后,我会挑选部分题目进行评讲,分析解题思路,强调注意事项。
(五)总结归纳
1.回顾所学内容
在本节课的最后,我会带领学生回顾本节课所学的不等式概念、性质、解集表示方法等。
2.强调重点和难点
在此过程中,我会强调不等式的定义、性质和求解方法,以及如何将实际问题转化为不等式模型。
3.鼓励学生提问
最后,我会鼓励学生提问,解答他们的疑惑。通过总结归纳,帮助学生巩固所学知识,提高他们的数学素养。
五、作业布置
为了巩固学生对不等式的理解,提高解题能力,特布置以下作业:
9.1.1不等式及其解集教学案.doc
课题名称9. 1. 1不等式及其课时共1课时授课时间45分钟第1课时教学重点不等式、一元一次不等式、不等式的解、解集的概念。
教学难点不等式解集的理解与表示。
课前准备多媒体课件导学案教案学习目标:lo 了解不等式和一元一次不等式的概念。
2。
理解不等式的解和解集,能正确表示不等式的解集。
3。
体会不等式在生活中的应用。
课堂教学:一、情景导入(投影)一辆匀速行驶的汽车在11: 20时距离A地50千米,要在12: 00 以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?那是什么关系呢?教师在学生思考后提问或引导:从时间上看,汽车要在12: 00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。
从路程上看,汽车要在12: 00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50 千米。
这些是不等关系。
二、学习过程1、自主学习。
学生自学课本相关内容。
(投影)若设车速为每小时X千米,你能用一个式子表示上面的关系吗?2、合作、探究、展示(教师适时引导,配合投影):设汽车的速度为X千米/时从时间上看50/x<2/3 (1)从路程上看2x/3>50 (2)式子(1)、(2)从不同角度表示了车速应满足的条件。
用“<”、">”、“尹”、“2”、表示不等关系的式子叫做不等式。
思考1:下列式子中哪些是不等式?(投影)(1) a+b=b+a (2)—3>—5 (3) xNl(4) x 十3>6 (5) 2m< n (6) 2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的目标认定:(1分钟)看学案学习目标部分,有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。
一、情景导入(4分钟)学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分......在此之前,学生己学习了等式基础上,这为过渡到本节的学习起着铺垫作用。
七年级数学下册(人教版)9.1.1不等式及其解集教学设计
-组织学生进行小组讨论和全班交流,分享解题心得和技巧,促进生生互动,共同提高。
-创造一个开放、包容的课堂氛围,鼓励学生提出问题,敢于质疑,培养他们的批判性思维。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将通过一个简单的实际问题来导入新课。例如:“小华的年龄比小刚大3岁,如果小刚的年龄是x岁,那么小华的年龄可以表示为x+3岁。你能用数学符号来表示小华和小刚年龄之间的关系吗?”通过这个问题,引导学生思考并尝试用数学语言表达两个量之间的关系。接着,我会请学生分享他们的答案,从而引出不等式的概念。
5. **变式训练,深化理解**
-通过不同类型的例题和练习,让学生接触各种变式,提高他们的灵活运用能力。
-引导学生总结解题规律,形成解题策略,深化对不等式解法的理解。
6. **反思评价,促进内化**
-鼓励学生在解题后进行反思,总结自己的解题思路和方法,评价解题过程中的得与失。
-教师通过学生的反思,了解学生的学习状况,及时调整教学策略。
4.让学生认识到数学知识在实际生活中的应用价值,增强其学习数学的信心。
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的算术运算和代数知识。在学习本章节之前,学生已经了解了方程的概念和解法,这为不等式的学习奠定了基础。然而,由于不等式的概念和解法与方程存在一定差异,学生在理解上可能存在以下困难:
(三)学生小组讨论
在讲授新知之后,我会安排学生进行小组讨论。每个小组都会得到几个不同的实际问题,需要他们将这些问题转化为不等式,并尝试求解。我会鼓励学生在小组内分享解题思路,讨论遇到的问题。
在讨论过程中,我会巡回指导,观察学生的讨论情况,并及时给予反馈和指导。对于小组内无法解决的问题,我会引导他们思考解决策略,或者在他们讨论的基础上给出提示。
《9.1.1 不等式及其解集》教学设计
《9.1.1 不等式及其解集》教学设计课程名称《 9.1.1 不等式及其解集》授课人甘瑞山学校名称兴业县卖酒镇第二初级中学教学对象七年级科目数学课时安排1课时一、教材分析本节课是学生在学习了一元一次方程和二元一次方程组的概念、解法及其应用后面临的一个新问题,不等式从某种程度上讲是等式的延伸,而在此之后,我们所要学的很多知识,比如,不等式的性质,一元一次不等式组,二次函数及方案设计等问题都要用到本节课的内容。
因此,本节课的内容在整个中学数学起着承前启后的作用,通过本节课的学习可以使学生思维变得更开阔,也为后续数学的学习及其它学科知识有很大的帮助。
二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观)教学目标:知识与技能:(1)理解不等式的意义,不等式解的意义,并能判断出不等式的解。
(2)理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式。
方法和过程:(1)理解不等式的意义,不等式解的意义,并能判断出不等式的解。
(2)理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式。
情感态度与价值观(1)理解不等式的意义,不等式解的意义,并能判断出不等式的解。
(2)理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式。
教学重点:(1)正确理解不等式,不等式的解与解集的意义。
(2)把不等式的解集正确的表示到数轴上。
教学难点:正解理解不等式解集的概念及表示。
三、教学策略选择与设计学情分析与学法:学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解。
学生已经初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能力,也初步具备了探究和比较的能力。
按照新课标的精神,把学习的主动权还给学生,提倡积极主动,勇于探索的学习方式,体现学生在教学活动中的主体地位,在本节课上,学生通过举例,分组交流,归纳出不等式的解和解集的概念,采用了自主探索与合作交流的学习方式。
人教版七年级数学下册9.1.1不等式及其解集教学设计
2.在求解不等式时,对变形步骤和方法掌握不够熟练,容易出错。
3.部分学生对数轴的运用不够灵活,不能很好地借助数轴求解和表示不等式的解集。
4.对实际问题中不等式的建模和求解能力有待提高。
针对以上学情,教师在教学过程中应关注学生的薄弱环节,设计有针对性的教学活动,帮助学生巩固基础知识,提高解题能力。同时,注重培养学生的学习兴趣和自信心,鼓励他们积极参与课堂讨论,勇于提出问题和解决问题。
2.教师总结:强调不等式在生活中的应用,提醒学生注意不等式性质中乘除同一侧的数时,不等号方向的变化规律。
3.布置作业:设计具有挑战性的作业,让学生在课后巩固所学知识,提高解题能力。
五、作业布置
为了巩固本节课所学知识,培养学生的解题能力和数学思维,特布置以下作业:
1.必做题:
(1)求解以下不等式,并利用数轴表示解集:
三、教学重难点和教学设想
(一)教学重难点
1.重点:不等式的概念、性质及其解集的求解方法。
2.难点:
(1)不等式性质中乘除同一侧的数时,不等号方向的变化规律。
(2)利用数轴求解和表示不等式的解集。
(3)将实际问题抽象为一元一次不等式,并进行求解。
(二)教学设想
1.引入环节:
(1)通过生活中的实例,引导学生发现不等关系,激发学生的学习兴趣。
3x - 7 < 11
4 > 2x + 3
(2)小刚现有30元,他打算买一些练习本,每本价格不超过5元。如果他至少要买5本,请问他最多能买几本?
(3)已知一元一次不等式的解集,请写出符合条件的不等式(至少两个)。
2.选做题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1.1 不等式及其解集教案1
【教学目标】:
1、了解不等式概念;理解不等式的解集。
2、能用数轴表示不等式的解集。
【教学重点】:
正确理解不等式及不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
【教学难点】:
正确理解不等式解集的意义.
【教学过程】:
一、情境导入,初步认识
问题1 一辆匀速行驶的汽车在11:20距离A地50km,要在12:00之前驶过A地,车速满足什么条件?
解:设车速是x千米/时,本题可从两个方面来表示这个关系:
(1)汽车行驶50千米的时间<_______.
(2)汽车2/3小时(即40分钟)走过的路程______50.从而得到两个表示大小关系的式子:
①_______________,②_______________.
不等式的定义是:___________________.
问题2 在2
50
3
x>中,当x=76,x=75,x=72,x=70时,不等式是否成立?76,75,72,70哪些是
不等式的解,哪些不是?不等式2
50
3
x>的解有多少?它的所有解组成解的集合,怎样表示它的解集?
【教学说明】
同学们可以分组讨论,然后交流成果.最后解决问题,形成新知.对问题2教师要时时点拨,要参与学生之间去讨论,在用数轴表示x>75时,要使用空心圆圈,务必要强调这一点.
二、思考探究,获取新知
思考1 什么叫不等式?什么叫不等式的解、解集?什么叫解不等式?什么叫一元一次不等式?
思考2 怎样在数轴上表示不等式的解集?
【归纳结论】
1.定义:用“<”或“>”或“≠”表示大小关系的式子,叫做不等式.
不等式的解集:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.
解不等式:求不等式的解集的过程叫做解不等式.
一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
2.在数轴上表示不等式的解集有下列四种情形:
注意:不含等号的用空心的小圆圈,含等号的用实心小圆点,切记.
三、运用新知,深化理解
1.用不等式表示:
(1)x与1的和是正数;
(2)a的1/2与b的1/3的差是负数;
(3)y的2倍与1的和大于3;
(4)x的一半与8的差小于x.
2.下列说法错误的是()
A.x<2的负整数解有无数个
B.x<2的整数解有无数个
C.x<2的正整数解是1和2
D.x<2的正整数解只有1
3.在-2,-1,0,1/3,11
2
,2中.
(1)x取哪些数值能使不等式x-1<0成立?
(2)满足不等式x-1<0的x有什么特点?
4.在数轴上表示下列不等式的解集.
(1)x>3;(2)x≤3;(3)x<3;(4)x≥3.
5.比较下列各题中两个式子的大小.
(1)a4与-a2-2;
(2)2a2-2b2+4与3a2+6b2+8(提示:若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B).
【教学说明】
题1、4可让学生自主探究,写出答案,画出解集,教师对出错的同学帮助其分析错误的原因,再加以改正,加深印象.题2、3、5,师生共同探讨,题5教师应事先给予提示,然后引导学生得出正确答案.
【答案】
1.解:(1)x+1>0;
(2) 1
2
a-
1
3
b<0;
(3)2y+1>3;
(4) 1
2
x-8<x.
2.C解析:不等式的解是使不等式成立的未知数的值,它可能有无数个解,可能只有有限个解,也可能无解.本题中,x<2的正整数解不包含2,只有1,故选项C说法错误,选C.
3.解:(1)当x取-2,-1,0,1/3时,不等式x-1<0成立;
(2)满足不等式x-1<0的x的特点为均小于1.
4.解:(1)(2)
(3)(4)
5.解:(1)由于a4-(-a2-2)=a4+a2+2>0,故a2>-a2-2;
(2)由于(2a2-2b2+4)-(3a2+6b2+8)
=2a2-2b2+4-3a2-6b2-8
=-a2-8b2-4=-(a2+8b2+4)<0
故2a2-2b2+4<3a2+6b2+8.
四、师生互动,课堂小结
1.不等式、不等式的解及解集、解不等式、一元一次不等式的概念.
2.常见的基本语言及含义.
(1)不大于、不高于、不超过的意义都是“≤”.
(2)不小于、不低于的意义都是“≥”.
课后作业
1.布置作业:从教材“习题9.1”中选取.
2.完成练习册中本课时的练习.
教学反思
等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.。