二元二次方程组-解法-例题
二元二次方程练习题及解析
二元二次方程练习题及解析一、练习题1. 解方程组:{(x + y)² = 25(x - y)² = 92. 解方程组:{(x + y)² = 144(x - y)² = 163. 解方程组:{(2x + y)² = 25(4x - y)² = 814. 解方程组:{(3x + 2y)² = 16(2x - y)² = 95. 解方程组:{(2x + y)² = 36(3x - y)² = 49二、解析1. 解方程组:{(x + y)² = 25(x - y)² = 9解:将两个方程展开得到:(x² + 2xy + y²) = 25 (1)(x² - 2xy + y²) = 9 (2)将(2)式两边同时乘以4,并与(1)式相加得到: 5x² = 61解得:x = ±√(61/5)将x的值代入(1)或(2)式中,解得相应的y值。
2. 解方程组:{(x + y)² = 144(x - y)² = 16解:将两个方程展开得到:(x² + 2xy + y²) = 144 (1)(x² - 2xy + y²) = 16 (2)将(2)式两边同时乘以9,并与(1)式相加得到: 10x² = 208解得:x = ±√(208/10)将x的值代入(1)或(2)式中,解得相应的y值。
3. 解方程组:{(2x + y)² = 25(4x - y)² = 81解:将两个方程展开得到:(4x² + 4xy + y²) = 25 (1)(16x² - 8xy + y²) = 81 (2)将(2)式两边同时乘以1/9,并与(1)式相加得到: 5x² = 74/9解得:x = ±√(74/45)将x的值代入(1)或(2)式中,解得相应的y值。
(完整版)二元二次方程解法练习题(四种方法)
(完整版)二元二次方程解法练习题(四种方法)引言二元二次方程是一个常见的数学问题,解决这类问题可以帮助我们进一步理解二次方程的性质和求解方法。
本文将介绍四种不同的方法来解决二元二次方程,并提供相应的练题,以帮助读者巩固所学的知识。
方法一:代入法代入法是一种简单直接的解法,通过将一个方程的解代入到另一个方程中,从而求得未知数的值。
以下是一个代入法的例子:例题:求解方程组\begin{align*}3x^2-4y^2&=5 \\x+y&=3\end{align*}解法:1. 将第二个方程中的 $x$ 替换为 $3-y$,得到新的方程 $3(3-y)^2-4y^2=5$。
2. 将该方程整理并解得 $y=1$。
3. 将 $y=1$ 代入第二个方程,解得 $x=2$。
因此,该方程组的解为 $x=2$,$y=1$。
练题:1. 求解方程组\begin{align*}2x^2-3y^2&=4 \\x+y&=2\end{align*}2. 求解方程组\begin{align*}4x^2-5y^2&=8 \\2x+y&=3\end{align*}方法二:消元法消元法是另一种常用的解法,通过将两个方程相加或相减,并适当选择系数,使得其中一个未知数的系数相同而相消,从而求解另一个未知数。
以下是一个消元法的例子:例题:求解方程组\begin{align*}2x^2-3y^2&=4 \\5x-2y&=1\end{align*}解法:1. 将第二个方程乘以 2,得到 $10x-4y=2$。
2. 将第一个方程乘以 5,得到 $10x^2-15y^2=20$。
3. 将第三步的方程与第二步的方程相减,得到$15y^2-4y=18$。
4. 解方程 $15y^2-4y=18$,得到 $y=2$。
5. 将 $y=2$ 代入第一个方程,解得 $x=1$。
因此,该方程组的解为 $x=1$,$y=2$。
方程与不等式之二元二次方程组技巧及练习题
方程与不等式之二元二次方程组技巧及练习题一、选择题1.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.2.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组:2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.3.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩ 【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩ 解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则4.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩【解析】【分析】把第一个方程化为x=3y,代入第二个方程,即可求解.【详解】由方程①,得x=3y③,将③代入②,得(3y)2+y2=20,整理,得y2=2,解这个方程,得y1,y2④,将④代入③,得x1=,2x=﹣所以,原方程组的解是11xy⎧=⎪⎨=⎪⎩11xy⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.5.解方程组22222()08x y x yx y⎧-++=⎨+=⎩【答案】12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x yx y⎧-++=⎨+=⎩①②,①式左边分解因式得,()20x y x y-++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i)22208x yx y-+=⎧⎨+=⎩或(ii)22+08x yx y=⎧⎨+=⎩解方程组(i)得,12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii)得,3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩,所以,原方程组的解是:12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.6.已知直角三角形周长为48厘米,面积为96平方厘米,求它的各边长.【答案】12cm、16cm、20cm.【解析】【分析】设两直角边为a、b+1=962a bab⎧⎪⎨⎪⎩求解即可.【详解】设该直角三角形的两条直角边为a、b+1=962a bab⎧⎪⎨⎪⎩解得=12=16ab⎧⎨⎩或=16=12ab⎧⎨⎩,经检验,=12=16ab⎧⎨⎩和=16=12ab⎧⎨⎩cm.答:该直角三角形的三边长分别是12cm、16cm、20cm.【点睛】此题运用三角形面积表示出1=962ab7.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.8.解方程组:222570x y x y x +=⎧⎨-++=⎩. 【答案】1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩ 【解析】【分析】用代入法即可解答,把①化为y=-2x+5,代入②得x 2-(-2x+5)2+x+7=0即可.【详解】由①得25y x =-+.③把③代入②,得22(25)70x x x --+++=. 整理后,得2760x x -+=.解得11x =,26x =.由11x =,得1253y =-+=.由26x =,得21257y =-+=-.所以,原方程组的解是1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩.9.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩ 【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】 先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0, x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.10.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.11.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.12.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.13.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --=解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.14.2222340441x xy y x xy y ⎧--=⎨++=⎩【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:2222340441x xy y x xy y ⎧--=⎨++=⎩①②将①因式分解得:(4)()0x y x y -+=,∴40x y -=或0x y +=将②因式分解得:2(2)1x y +=∴21x y +=或21x y +=-∴原方程化为:4021x y x y -=⎧⎨+=⎩,4021x y x y -=⎧⎨+=-⎩,021x y x y +=⎧⎨+=⎩,021x y x y +=⎧⎨+=-⎩解这些方程组得:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ ∴原方程组的解为:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.15.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩ 解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.16.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.17.解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩ 【答案】123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ 【解析】【分析】由第一个等式可得x (x+y )=0,从而讨论可①x=0,②x≠0,(x+y )=0,这两种情况下结合第二个等式(x+2y )2=9可得出x 和y 的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y 1=32 ,y 2 =−32; ②当x≠0,x+y=0时,∵x+2y=±3, 解得:33x y =-=⎧⎨⎩ 或33x y ==-⎧⎨⎩ . 综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.18.解方程22220x y x xy y -=⎧⎨--=⎩①②【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.19.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩解得 2129x y =⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.20.解方程组:22560{21x xy y x y +-=-=①②【答案】11613{113x y ==-,221{1x y ==. 【解析】【分析】先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。
二元二次方程求解方法培优提高例题
二元二次方程求解方法培优提高例题引言二元二次方程是高中数学中的重要内容,解二元二次方程可以帮助我们理解方程的性质和解题方法。
本文将介绍一些优化和提高解二元二次方程的方法,并提供相应的例题。
方法一:代入法代入法是解二元二次方程的基本方法之一。
步骤如下:1. 将一个未知数用另一个未知数的表达式表示。
2. 将代入后的一元二次方程求解。
3. 将得到的解代入原方程中求解另一个未知数。
例题:已知二元二次方程:x^2 + 2xy + y^2 = 10 (1)3x + y = 5 (2)使用代入法解方程组。
解:将 (2) 式改写为 y = 5 - 3x,代入 (1) 式中得:x^2 + 2x(5 - 3x) + (5 - 3x)^2 = 10化简得 5x^2 - 12x + 10 = 0解这个一元二次方程可以得到 x 的值为 1 或 2,代入 (2) 式可求得对应的 y 值:当 x = 1 时,y = 5 - 3x = 2;当 x = 2 时,y = 5 - 3x = -1。
因此,方程组的解为 {(1, 2), (2, -1)}。
方法二:因式分解法因式分解法是另一种解二元二次方程的常用方法。
步骤如下:1. 整理方程组,使方程的系数满足一定条件,例如系数和常数项互质。
2. 将方程进行因式分解。
3. 令因式分解的两个括号中的式子分别等于零,解两个一元二次方程。
4. 求解得到的一元二次方程组解。
例题:已知二元二次方程:x^2 + 3xy + 2y^2 = 0 (1)3x + 2y = -5 (2)使用因式分解法解方程组。
解:将 (1) 式进行因式分解得:(x + 2y)(x + y) = 0令 x + 2y = 0,解得 y = -1/2x令 x + y = 0,解得 y = -x将这两个解代入 (2) 式中,得到 y = -1 和 y = -2因此,方程组的解为 {(-1, 1/2), (-2, 2)}。
结论通过代入法和因式分解法,我们可以解二元二次方程并得到方程组的解。
解二元二次方程组
课题解二元二次方程组一、知识回顾二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.解二元一次方程组的一般方法是代入消元法和加减消元法1、例题例1、解方程组31220x yx y=+⎧⎨-=⎩练习1 解方程组21324x yy x-=-⎧⎨-=⎩例2、解方程组326249x yx y+=⎧⎨+=⎩练习2 解方程组35242x yx y-+=⎧⎨-=⎩例3、解方程组314304239x y zx y zx y z-+-=⎧⎪-+=⎨⎪++=⎩练习3 解方程组2423035x y zx y zx y z-+-=-⎧⎪++=⎨⎪-+=-⎩2、巩固练习1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y - 2.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( ) A .3333 (2422)x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩ 5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .4 二、解方程组(1)⎩⎨⎧=-=+6)3(242y x (2)⎩⎨⎧=-=+1123332y x y x(3)⎩⎨⎧=+=-172305y x y x (4)⎪⎩⎪⎨⎧=-=+3431332n m nm(5)10232523x y x y z x y z +=⎧⎪-+=⎨⎪+-=⎩ (6)04239328a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩二、新知展望二元二次方程:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.关于x 、y 的二元二次方程的一般形式是:220ax bxy cy dx ey f +++++=(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中22,,ax bxy cy 叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,,dx ey 叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.例1、下列方程中,哪些是二元二次方程?是二元二次方程的请指出它的二次项、一次项和常数项.2222(1) 1 ; (2)320;1(3)20 ; (4)3 1.x y y y y x x y xy+=-+=+-=++= 练习1 下列方程中,哪些是二元二次方程?是二元二次方程的请指出它的二次项、一次项和常数项.(1)2350x -= (2)230x x y +-= (3)420x y -=(4)2240x y x +-= (5)22204y x y --= (6)22x y y xy --+ 二元二次方程组:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组. 例2、下列方程组中,哪些是二元二次方程组?223231205(1) (2) (3) (4)1831235y y x xy x x y xy y x y x xy x x y ⎧==-+=+=⎧⎧⎧⎪⎨⎨⎨⎨+=-=-+-=+=⎩⎩⎪⎩⎩练习2 下列方程组中,哪些是二元二次方程组?(1)200x y y ⎧+=⎨=⎩(2)2300x y x y +=⎧⎨-=⎩(3)2222205x y x y ⎧+=⎪⎨-=⎪⎩(4)2222337x y y x⎧+=⎪⎨-=⎪⎩ 例3、已知下列四对数值:3223; ; ; .2332x x x x y y y y =-=-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩(1)哪些是方程2213x y +=的解?(2)哪些是方程组22113y x x y =+⎧⎨+=⎩的解.练习3 已知下列四组数值:(1)11x y =⎧⎨=-⎩(2)11x y =⎧⎨=⎩(3)11x y =-⎧⎨=⎩(4)11x y =-⎧⎨=-⎩哪些是方程组22223x y x y ⎧+=⎪⎨-=⎪⎩的解。
(完整版)二元二次方程解法练习题(四种方法)
(完整版)二元二次方程解法练习题(四种方法)方法一:因式分解法- 示例题:解方程 $2x^2 - 5x - 12 = 0$首先,我们需要将方程进行因式分解,找到两个因式相乘能得到方程左边的表达式。
对于上述方程,我们可以将其因式分解为 $(2x + 3)(x - 4) = 0$然后,我们将这两个因式分别置零,即 $2x + 3 = 0$ 和 $x - 4 = 0$解得 $x = -\frac{3}{2}$ 和 $x = 4$所以,方程 $2x^2 - 5x - 12 = 0$ 的解为 $x = -\frac{3}{2}$ 和 $x = 4$方法二:配方法- 示例题:解方程 $3x^2 - 7x + 2 = 0$首先,我们需要通过配方法,将方程转化为一个完全平方的形式。
对于上述方程,我们需要找到一个常数 $c$,使得 $3x^2 - 7x + 2 + c = (x - p)^2$为了找到这个常数 $c$,我们可以通过计算 $c = (b/2a)^2 =(7/6)^2 = \frac{49}{36}$然后,我们将 $c$ 加到方程两边,即 $3x^2 - 7x + 2 +\frac{49}{36} = (x - p)^2 + \frac{49}{36}$进一步简化,得到 $3x^2 - 7x + \frac{169}{36} = (x - p)^2$然后,我们将方程右边开根号,即得 $3x^2 - 7x +\frac{169}{36} = (x - p)$继续化简,得 $3x^2 - 7x + \frac{169}{36} - (x - p) = 0$化简后,得 $3x^2 - 8x + \frac{169}{36} - p = 0$对比系数,可得 $p = \frac{1}{2}$所以,方程 $3x^2 - 7x + 2 = 0$ 的解为 $x = \frac{1}{2}$方法三:求根公式法- 示例题:解方程 $5x^2 + 2x - 3 = 0$当二次方程的系数已知时,我们可以使用求根公式来求解。
二元二次方程练习题
二元二次方程练习题在代数学中,二元二次方程是指包含两个未知数的二次方程。
它的一般形式如下:aa^2 + aa^2 + aaa + aa + aa + a = 0其中,a、a、a、a、a和a为已知数,并且至少其中一个不为零。
解二元二次方程要求找到使方程等式成立的a和a的值。
本文将提供一些二元二次方程的练习题,以帮助读者熟悉这一概念和解决方法。
练习题一:解方程组:3a^2 + 4a^2 + 5aa + 2a - 3a = 0a^2 - a^2 + aa + 2a + 3a = 0解答:将第一个方程中的a项移到等号右侧,得到:3a^2 + 4a^2 + 5aa - 2a + 3a = 0同时将第二个方程中的a项移到等号右侧,得到:a^2 - a^2 + aa - 2a - 3a = 0将两个方程分别相加和相减,可得:4a^2 + 4a^2 + 10aa = 0-2a^2 + 2aa = 0化简上面两个方程,可以得到:2a^2 + 5aa = 0a(a - a) = 0从第二个方程中解得a = 0 或a = a。
若a = 0,则将a代入第一个方程中,可以得到:3a^2 + 2a = 0a(3a + 2) = 0从上述方程中解得a = 0 或a = -2/3。
若a = a,则将a代入第一个方程中,可以得到:7a^2 + 7a = 0a(7a + 1) = 0从上述方程中解得a = 0 或a = -1/7。
综上所述,方程的解为:(a, a) = (0, 0)、(-2/3, 0)、(0, -2/3)、(-1/7, -1/7)。
练习题二:解方程组:9a^2 - 4a^2 - 12aa + 15a - 3a = 0a^2 + 4a^2 + 6aa - 8a - 10a = 0解答:将第一个方程中的a项移到等号右侧,得到:9a^2 - 4a^2 - 12aa + 15a - 3a = 0同时将第二个方程中的a项移到等号右侧,得到:a^2 + 4a^2 + 6aa - 8a - 10a = 0将两个方程相加和相减,可得:10a^2 - 8a^2 - 6aa + 7a - 13a = 08a^2 + 6aa - 6a + 7a = 0化简上述两个方程,可以得到:5a^2 - 4a^2 - 3aa + 3a - 13/2a = 04a^2 + 3aa - 3a + 7/2a = 0从第二个方程中解得a = 0 或a = -7/2a。
二元二次方程组
1.二元二次方程的概念方程中仅含有两个未知数,并且所含未知数的项的最高次数是2的整式方程,叫做二元二次方程.2.二元二次方程组的概念仅含有两个未知数,且未知数的项的最高次数是2的整式方程组成的方程组叫做二元二次方程组.3.二元二次方程组的解法(1)代入消元法;(2)加减消元法.【例1】下列方程是哪些是二元二次方程方程?(1)4259x y +=; (2)2560x y -+=;(3)1xy =;(4)29780x x+-=; (5)22467x xy y y -+-=.【例2】下列方程中哪些是二元二次方程组?(1)51x y x y +=⎧⎨-=⎩;(2)120618x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩;(3)2211x y x xy y -=⎧⎨++=⎩;(4)312x y xy y x ⎧+=⎨=+⎩.【例3】已知03x y =⎧⎨=⎩与17x y =⎧⎨=⎩是关于x 、y 的二元二次方程2230a x by ++=的两组解,试求 a +b 的值.【例4】当m 为何值时,方程组2251(1)4x my mx m y +=⎧⎨+-=-⎩是关于x 、y 的二元二次方程组?【例5】解方程组:(1)2211x y x xy y -=⎧⎨++=⎩;(2)23()(2)40y x x y x y -=⎧⎨+-+=⎩.【例6】解下列方程组:(1)222220560x yx xy y⎧+=⎨-+=⎩;(2)2269426x xy yx y⎧-+=⎨-=⎩.【例7】解下列方程组:(1)22229()4()3y xy xx y x y⎧++=⎨---=-⎩;(2)2222449440x xy yx y x y⎧++=⎨--+=⎩.【例8】当k为何值时,方程组:229x yx y k⎧+=⎨+=⎩有实数解.【例9】已知a、b、c是△ABC的三边长,若方程组220x ax y b acax y bc⎧--++=⎨-+=⎩,只有一组解,判断△ABC的形状.【例10】解方程3 38 xy xxy y+=⎧⎨+=⎩.【例11】解方程组:222273x xy y x xy y ⎧++=⎨-+=⎩.【例12】当a 取哪些值时,方程组:2222(1)()14x y a x y ⎧+=+⎨+=⎩有两组实数解.【例13】已知关于x 、y 的方程组:2220x y xkx y k ⎧+=⎨--=⎩(1) 求证:不论k 取何值,方程组总有两个不同的实数根;(2) 设方程组的两个不同的实数解为11x x y y =⎧⎨=⎩22x x y y =⎧⎨=⎩,则221212()()x x y y -+-的值是常数.【例14】已知方程组:2102(21)kx x y y k x ⎧--+=⎪⎨⎪=-⎩,(x 、y 为未知数)有两组不同的实数解11x x y y =⎧⎨=⎩,22x x y y =⎧⎨=⎩. (1) 求实数k 的取值范围;(2) 若1212113y y x x ++=恰有两个不同的实数解,求实数k 的取值范围.【例15】小杰和小丽分别从相距27千米的A、B两地同时出发相向而行,3小时后相遇,相遇后两人按照原来的速度继续前进,小杰到达B地比小丽到达A地早1小时21分,小杰和小丽的行进速度分别是多少?【例16】某剧场管理人员为了让观众有更舒适的欣赏环境,对座位进行了调整.已知剧场原有座位500个,每排的座位数一样多;现在每排减少了2个座位,并减少了5排,剧场座位数相应减少为345个,剧场原有座位的排数是多少?每排有多少个座位?【例17】学校原有长方形操场的面积是4000平方米.调整校园布局时,一边增加10米,另一边减少了10米,操场面积增加了200平方米,求原有操场的两边长.【例18】某校初三年级280名师生计划外出考察,乘车往返.客运公司有两种车型可供选择,每辆大客车比每辆中巴车多20个座位,学校计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少租2辆车,而且师生坐完后还多20个座位.问:中巴车和大客车各有多少个座位?【例19】某街道因路面经常严重积水,需改建排水系统,市政公司准备安排甲乙两个工程队承接这项工程.据评估,如果甲乙两队合作施工,那么12天可以完工;如果甲队先做10天后,剩下的工程由乙队单独承担,还需15天才能完工.甲乙两队单独完成此项工 程各需要多少天?【例20】为了缓解甲乙两地的旱情,某水库计划向甲乙两地送水.甲地需水量180万立方米,乙地需要水量120万立方米.现已两次送水,第一次往甲地送水3天,往乙地送水2天,共送水84万立方米;第二次往甲地送水2天,往乙地送水3天,共送水81万立方米.如果向两地送水分别保持每天的送水量相同,那么完成往甲地、乙地送水任务还各 需多少天?【习题1】下列方程是二元二次方程的有()个.①2211y x+=; ②2751y x -=;③250y xy -=;④2751a y y -=.A .1;B .2;C .3;D .4 【习题2】下列方程组中,不是二元二次方程组的是( )A .2235020x y x xy y --=⎧⎨-+=⎩;B .211x y -=⎧⎪= C .83x y xy +=⎧⎨=⎩;D .2222x y ⎧-=⎪【习题3】(1)写出二元二次方程(3)(1)0x y +-=的三个不同的解.(2)由一个二元一次方程和一个二元二次方程组成的方程组的解是93x y =⎧⎨=⎩和93x y =-⎧⎨=-⎩,写出一个符合条件的方程组.【习题4】已知32x y =⎧⎨=⎩是方程组22417bx ay ax by -=⎧⎨+=⎩的解,求23b a -的值.【习题5】(1)把方程22420x y x y -++=化为两个二元一次方程为_________. (2)把方程221212228x y x y xy +--+=化为两个二元一次方程是什么?【习题6】解下列方程组: (1)22103x y y x ⎧+=⎨=⎩;(2)22(1)101x y x y ⎧++=⎨-=⎩.【习题7】解下列方程组:(1)22222148x xy y x y ⎧++=⎨+=⎩(2)22226024x xy y x xy y ⎧--=⎨++=⎩(3)22225() 43 x y x y x xy y ⎧-=+⎪⎨++=⎪⎩【习题8】解下列方程组:(1)2222384x y x xy y ⎧-=⎨++=⎩;(2)2229321598035210x xy y x y xy y y ⎧---+-=⎨+-+=⎩.【习题9】有当k 为何值时,方程组:22312x x y ky x ⎧--=-⎨-=-⎩ (1)有两组不相等的实数解; (2)有两组相等的实数解; (3)没有实数解.【习题10】已知关于x 、y 的方程组22326y mx x y =-⎧⎨-=⎩有两个相等的实数解,求m 的值及这个方 程组的解.【习题11】甲乙两个工程队修建某段公路,如果甲乙合作,24天可以完工;如果甲队单独 做20天后,剩下的工程由乙队独做,还需40天才能完成,甲乙两队单独完成此段公路 的修建各需多少天?【习题12】小丽的叔叔分别用900元和1200元钱从甲乙两地购进数量不等的同一商品,已 知乙地商品比甲地商品每件便宜3元,当他按每件20元销售完时,可赚1100元.小丽 的叔叔从甲乙两地分别购进这种商品多少件?【作业1】 下列方程中,是二元二次方程的是( ).A .23410x x +-=B .211x x += C .223x y +=D3x =-【作业2】 下列方程组中,是二元二次方程组的是().A .32153x y x y +=-⎧⎨+=⎩B .36xy yz =⎧⎨=⎩C .2236x x y =⎧⎨+=⎩D .2221126y y x y ⎧+=⎪⎨⎪+=⎩【作业3】在下面四个解中,方程组2426y x x y ⎧=⎨+=⎩的解为( ).①14x y =⎧⎨=⎩②14x y =-⎧⎨=⎩③329x y ⎧=⎪⎨⎪=⎩④329x y ⎧=-⎪⎨⎪=⎩ A .①②③④ B .①② C .①③ D .①④【作业4】 分别把下列二元二次方程分解为两个二元一次方程:(1)224430x xy y +-=;(2)2()4()50x y x y +-+-=.【作业5】 方程20xy y -+=有多少个解?有没有x 、y 的值互为倒数的解?如果有,求出 这个解.【作业6】 解下列方程组:(1)22168x y x y ⎧-=⎨+=⎩;(2)2223232x xy y x y ⎧+-=⎨+=⎩.【作业7】 解下列方程: (1)⎪⎩⎪⎨⎧=+-=+023102222y xy x y x ;(2)1128 x y xy +=⎧⎨=⎩.【作业8】 解下列方程组:(1)2222+22520x xy y x xy y ⎧+=⎨--=⎩;(2)222244x y x y ⎧-=⎨-=⎩.【作业9】 若方程组22412y mx y x y =+⎧⎨++=⎩没有实数解,求m 的取值范围.【作业10】 当取什么值时,方程组有两个相同的实数解?并求出此时方程组的解.m 224x y mx y -=⎧⎨-=-⎩【作业11】某起重机厂四月份生产A型起重机25台,B型起重机若干台.从五月份起,A 型起重机月增长率相同,B型起重机每月增加3台.已知五月份生产的A型起重机是B 型起重机的2倍,六月份A、B型起重机共生产54台.求四月份生产B型起重机的台数和从五月份起A型起重机的月增长率.【作业12】某商场计划销售一批运动衣,能获得利润12000元.经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利润10元,但可多销售400套,结果总利润比计划多4000元.求实际销售运动衣多少套?每套运动衣实际利润是多少元.【作业13】解下列方程组:222232250 2266100x xy y x yx xy y x y⎧-+++-=⎨-+--+=⎩.【作业14】关于x、y的方程组2100xkx y k⎧⎪⎨---=⎪⎩只有一组解,求k的取值范围.。
二元二次方程组的典型例题
数学 八年级(下) 知识点 2106 二元二次方程组的解法 提高型二元二次方程组的典型例题在八年级代数方程的学习中二元二次方程组是非常重要的一个组成部分, 从某种意义上说是我们解代数方程的一个综合运用,而且它又具自己的典型特征, 下面我们就如何解二元二次方程组以及一些典型运用进行一个具体的分析。
一.解由一个二元一次方程和一个二元二次方程组成的方程组例 1 解下列方程组:2x y 1 (1)10x 2 y 2 x 1 0 (2)分析 对于这一类题目, 我们的主导思想是:“代入消元法”,把二元二次方程组中的二元一次方程通过变形后代入二元二次方程中, 从而达到消元的目的, 把一个二元二次方程转变成一个我们熟悉能解的一元二次方程。
解 由( 1)得 y 2x 1 ( 3)把( 3)代入( 2)得 10 x 2 (2x 1)2 x 1 0 。
整理,得 2x 2x0 ,解这个方程,得 x 1 0 , x 21 。
2分别代入( 3),得 y 11, y 22 。
x 1 01所以,原方程组的解为x 2y 1,2 。
1y 22说明 在这类方程组中利用变形后的一元二次方程求出x 的值后,把 x 是只能代 入方程组中的二元一次方程中求 y 值的,这一点尤其要注意。
正因为在上述这类方程组中我们运用了代入消元的思想, 从而得到一个一元二次方程,利用这一特性,我们才有了下面的这个典型应用:例 2已知方程组y 24x 2 y 1 0 (1)有两个不相等的实数解,求k 的取值y kx 2 (2)范围。
分析由( 2)代入( 1)得到关于 x 的一元二次方程,当△> 0 且二次项系数不为零时,此方程有两个不相等的实数根,从而原方程组有两个不相等的实数解。
解由( 2)代入( 1)并整理得2x 2( 24)x1 0。
k k k 20,(2k 4)24k 216 k160即k 0,k 1∴当 k <1且 k ≠0时,原方程组有两个不相等的实数解。
二元二次方程组解法例说
二元二次方程组解法例说1.消元法:通过将其中一个方程的两边进行相减或相加,消去其中一个未知数,从而得到另一个含有一个未知数的一次方程。
然后带入到另一个方程中,即可求得另一个未知数的值。
最后再将求得的值带回原方程组中,即可求得两个未知数的值。
例如,考虑以下二元二次方程组:{x^2+y^2=25(1){x+y=7(2)首先,我们可以通过将式(2)两边乘以2,得到2x+2y=14然后,将这个式子与式(1)相减,得到:x^2+y^2-(2x+2y)=25-14,即x^2-2x+y^2-2y=11、化简后,得到:x^2-2x+y^2-2y-11=0。
接下来,我们可以将这个方程进行配方法,得到:(x-1)^2-1+(y-1)^2-1-11=0。
化简后,得到:(x-1)^2+(y-1)^2=13于是,我们得到了一个含有未知数x和y的一次方程。
我们可以选择将解析几何的知识来解决这个方程。
或者,我们也可以通过将这个方程与式(2)相减,得到(x-1)^2+(y-1)^2-(x+y)=0。
化简后,得到:(x-1)^2-x-(y-1)^2-y=0。
最后,我们可以将这个方程展开,得到:x^2-2x+1-x-y^2+2y-1-y=0。
化简后,得到:x^2-3x-y^2+y=0。
现在我们得到了一个新的只含有x和y的二次方程,我们可以使用求解一元二次方程的方法,求解这个方程,从而得到x和y的值。
最后,将求得的值带回原方程组中,即可求得方程组的解。
2.代入法:通过将其中一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程中,从而得到一个只含有一个未知数的二次方程。
求解这个二次方程,可以得到一个未知数的值。
然后将这个值带回到原方程组中,可以求得另一个未知数的值。
例如,考虑以下二元二次方程组:{ x^2 - 2xy + y^2 = 4 (1){x+y=4(2)我们可以将式(2)表示为x=4-y,然后将其代入式(1)中,得到:(4-y)^2-2(4-y)y+y^2=4化简后,得到:16-8y+y^2-8y+2y^2+y^2=4、合并同类项,得到:4y^2-16y+12=0。
例谈二元二次方程组的解法
例谈二元二次方程组的解法河南省濮阳市第三中学 冯忠解二元二次方程组时,若能根据方程组的特征,合理选择解决方法,则可以化难为易,化繁为简。
下面举例说明。
一、代入消元法例1.解方程组解 :由②得y=2x —1 ③把③代入①,整理得15x —23x + 8=0,解得11x =,2815x =, 分别代入③得11y =,2115y =,∴ 原方程组的解是注:代入法是解方程组最基本的方法。
二、因式分解法例2.解方程组解:由②得(x —2y )(x —3y )=0,则原方程组化为 或解得注:对于高次方程组成的方程组,若其中的方程可以分解因式,则可先分解因式降次,再转化为低次方程组或二元一次方程组求解。
三、构造方程法例3.解方程组解:由题义知x 、y 是方程t —7t + 12 = 0的两个根,解得 123,4t t ==∴ 原方程组的解是 1134x y =⎧⎨=⎩ ,2243x y =⎧⎨=⎩ 注:对形如的 x y a xy b+=⎧⎨=⎩ 的二元二次方程组,可依据韦达定理,构造方程解之。
北师大九年级四、设元代换法例4.解方程组解:设y = kx ,则原方程组①÷②得=1/2 ,整理得3k + 5k —2=0,解得12k =-,213k =, 当时12k =-,12x =±,122y =±;当213k =时,23x =±,21y =±, ∴原方程组的解是11222x y ⎧=⎪⎨=-⎪⎩,22222x y ⎧=-⎪⎨=⎪⎩, 3331x y =-⎧⎨=⎩, 3331x y =⎧⎨=⎩ 注:换元法是重要的数学方法,合理应用会使解题变得巧妙、简便。
五、消常数项法例5.解方程组解:②×3—①得2x —9xy + 10y= 0 ③由③得(2x —5y )(x —2y )= 0,则原方程组可化为 或解之得 1152x y =-⎧⎨=-⎩ , 2252x y =⎧⎨=⎩ 注:对于不含一次项的二元二次方程组,可以考虑去其常数项。
方程与不等式之二元二次方程组技巧及练习题附解析
方程与不等式之二元二次方程组技巧及练习题附解析一、选择题1.解方程组:223020x y x y -=⎧⎨+=⎩. 【答案】12123232,22x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩. 【解析】【分析】把第一个方程化为x=3y ,代入第二个方程,即可求解.【详解】由方程①,得x =3y③,将③代入②,得(3y )2+y 2=20,整理,得y 2=2,解这个方程,得y 1=2,y 2=﹣2④,将④代入③,得x 1=32,2x =﹣32,所以,原方程组的解是11322x y ⎧=⎪⎨=⎪⎩ 11322x y ⎧=-⎪⎨=-⎪⎩ 【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.2.已知A ,B 两地公路长300km ,甲、乙两车同时从A 地出发沿同一公路驶往B 地,2小时后,甲车接到电话需返回这条公路上与A 地相距105km 的C 处取回货物,于是甲车立即原路返回C 地,取了货物又立即赶往B 地(取货物的时间忽略不计),结果两下车同时到达B 地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A 地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR 和线段OR .(1)求乙车从A 地到B 地所用的时问;(2)求图中线段PQ 的解析式(不要求写自变量的取值范围);(3)在甲车返回到C 地取货的过程中,当x= ,两车相距25千米的路程.【答案】(1)5h (2)90360y x =-+(3)67h 30或77h 30【解析】(1)由图可知,求甲车2小时行驶了180千米的速度,甲车行驶的总路程,再求甲车从A 地到B 地所花时间;即可求出乙车从A 地到B 地所用的时间;(2)由题意可知,求出线段PQ 的解析式;(3)由路程,速度,时间的关系求出x 的值.(1)解:由图知,甲车2小时行驶了180千米,其速度为180290÷=(km/h ) 甲车行驶的总路程为: ()2180105300450⨯-+=(km)甲车从A 地到B 地所花时间为: 450905÷=(h )又∵两车同时到达B 地,∴乙车从A 地到B 地所用用的时间为5h.(2)由题意可知,甲返回的路程为18010575-=(km),所需时间为575906÷=(h ),517266+=.∴Q 点的坐标为(105, 176).设线段PQ 的解析式为: y kx b =+, 把(2,180)和(105, 176)代入得: 1802{171086k b k b =+=+,解得90360k b =-=,, ∴线段PQ 的解析式为90360y x =-+.(3)6730 h 或7730“点睛”本题考查了一次函数的应用,解题关键是明确题意,找出所求问题需要的条件,利用数型结合的思想解答问题.3.解方程组:222321x y x xy y +=⎧⎨-+=⎩【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①② 由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.4.解方程组:222023x xy y x y ⎧--=⎨+=⎩. 【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或 44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩. 【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.7.解方程组:2263100x y x xy y -=⎧⎨+-=⎩【答案】11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩ 【解析】【分析】先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.【详解】解:2263100x y x xy y -=⎧⎨+-=⎩由②得:()()250x y x y -+=原方程组可化为620x y x y -=⎧⎨-=⎩或650x y x y -=⎧⎨+=⎩, 解得:11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.8.k 为何值时,方程组2216x y x y k⎧+=⎨-=⎩只有唯一解? 【答案】k=±.【解析】【分析】将方程组转化为一元二次方程,根据△=0求解即可.【详解】2216(1)(2)x y x y k ⎧+=⎨-=⎩由(2)得, y=x-k (3)将(3)代入(1)得,2222160x kx k -+-=,要使原方程组有唯一解,只需要上式的△=0,即22(2)42(16)0k k --⨯⨯-=,解得,k=±.所以当k=±2216x y x y k ⎧+=⎨-=⎩只有唯一解. 【点睛】本题考查的是高次方程的解法和一元二次方程根的判别式的应用,掌握当判别式为0时,一元二次方程有两个相等的实数根是解题的关键.9.解方程组:()25()230x y x y x y +=⎧⎪⎨----=⎪⎩①②. 【答案】1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩ 【解析】【分析】先将②化为30x y --=或10x y -+=,再分别和①式结合,分别求解即可.【详解】解:由②得()()310x y x y ---+=,得30x y --=或10x y -+=,原方程组可化为53x y x y +=⎧⎨-=⎩,51x y x y +=⎧⎨-=-⎩解得,原方程组的解为1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩∴原方程组的解为1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩. 【点睛】本题考查了二元二次方程组的解,将二次降为一次是解题的关键.10.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.11.解下列方程组:(1)222220560x y x xy y ⎧+=⎨-+=⎩ (2)217,11 1.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩【答案】(1)3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩2)112512x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)把原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩再分别解这两个方程组可得答案. (2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案. 【详解】解:(1)因为222220560x y x xy y ⎧+=⎨-+=⎩ 把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩因为222020x y x y ⎧+=⎨-=⎩把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± , 所以方程组的解是42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩ 同理解222030x y x y ⎧+=⎨-=⎩得方程组的解是x y ⎧=⎪⎨=⎪⎩或x y ⎧=-⎪⎨=⎪⎩所以原方程组的解是:3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩(2)因为217,111.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩①② 所以①+②得:36x y=+,所以12x y +=,把12x y +=代入② 得:13x y -=-,所以1213x y x y ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得:112512x y ⎧=⎪⎪⎨⎪=⎪⎩ 经检验112512x y ⎧=⎪⎪⎨⎪=⎪⎩是原方程组的解,所以原方程的解是112512x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.12.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩ 【答案】1184x y =⎧⎨=⎩或2293x y =⎧⎨=⎩ 【解析】【分析】利用因式分解法求22560x xy y -+=,得到20x y -=或30x y -=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y -=或30x y -=, 2012x y x y -=⎧⎨+=⎩或3012x y x y -=⎧⎨+=⎩, 解方程组得:1184x y =⎧⎨=⎩,2293x y =⎧⎨=⎩ , 则原方程组的解为 1184x y =⎧⎨=⎩和 2293x y =⎧⎨=⎩. 【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.13.解方程组:2225210x y x y xy +=⎧⎨+--=⎩.【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.14.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩. 【答案】1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩. 【解析】【分析】先将第二个方程利用因式分解法得到两个一元一次方程,然后分别与第一个方程联立成二元一次方程组,分别解方程组即可.【详解】由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩; 解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩; 所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩; 【点睛】本题主要考查二元二次方程组的解法,能够将原方程组拆成两个二元一次方程组是解题的关键.15.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩ 【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】 解:222603x y y mx ⎧+-=⎨=+⎩①②把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.16.解方程组:2220{25x xy y x y --=+=①②【答案】5{5x y ==-或21x y =⎧⎨=⎩. 【解析】【分析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.【详解】 2220{25x xy y x y --=+=①②由①得()()20x y x y +-=,即0x y +=或20x y -=,∴原方程组可化为0{25x y x y +=+=或20{25x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21x y =⎧⎨=⎩. ∴原方程组的解为5{5x y ==-或21x y =⎧⎨=⎩.17.(探究证明)(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.,求证:=EF AD GH AB; (结论应用) (2)如图2,在满足(1)的条件下,又AM ⊥BN ,点M ,N 分别在边BC ,CD 上.若11=15EF GH ,求BN AM; (联系拓展)(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DN AM的值.【答案】(1)证明见解析;(2)1115;(3)45.【解析】分析:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,根据矩形的性质证明△PDA∽△QAB;(2)根据(1)的结论可得BNAM;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线与S,SC=x,DS=y,在Rt△CSD,Rt△ARD中,用勾股定理列方程组求出AR,AB,结合(1)的结论求解.详解:(1)如图1,过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP,四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QAT+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB.∴AP ADBQ AB=,∴EF ADGH AB=.(2)如图2,∵GH⊥EF,AM⊥BN,∴由(1)的结论可得EF ADGH AB=,BN ADAM AB=,∴1115 BN EFAM GH==.(2)如图3,过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线与S,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得DN AR AM AB=.设SC =x ,DS =y ,则AR =BS =5+x ,RD =10﹣y ,∴在Rt △CSD 中,x 2+y 2=25①,在Rt △ARD 中,(5+x )2+(10﹣y )2=100②,由②﹣①得x =2y ﹣5③,222525x y x y ⎧⎨-⎩+==,解得34x y ⎧⎨⎩==,50x y -⎧⎨⎩==(舍), 所以AR =5+x =8,则84105DN AR AM AB ===.点睛:这是一个类比题,主要考查了相似三角形的判定与性质,在特殊图形中存在的结论,放在非特殊图形中结论是有可能成立也有可能不成立,但特殊图形中结论的推导过程仍然适用于一般图形.18.解方程22220x y x xy y -=⎧⎨--=⎩①②【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】 先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩.【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.解方程组:22560{21x xy y x y +-=-=①②【答案】11613{113x y ==-,221{1x y ==. 【解析】【分析】先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。
二元二次方程组的解法
二元二次方程组的解法二元二次方程组是由两个二次方程组成的方程组。
解决这种方程组的关键是找到方程组的解。
一、一般形式的二元二次方程组一般情况下,二元二次方程组的一般形式如下:1. 假设方程组为:a₁x² + b₁xy + c₁y² + d₁x + e₁y + f₁ = 0a₂x² + b₂xy + c₂y² + d₂x + e₂y + f₂ = 02. 设变量:X = x², Y = y², XY = xy3. 将方程组转化为四元二次方程组:a₁X + b₁XY + c₁Y + d₁x + e₁y + f₁ = 0a₂X + b₂XY + c₂Y + d₂x + e₂y + f₂ = 04. 用消元法将X、Y消去:例:通过第一个方程将X消去令 A = a₁/a₂则 a₁X + b₁XY + c₁Y + d₁x + e₁y + f₁ = 0变为: Aa₂X + b₁XY + c₁Y + d₁x + e₁y + f₁ = 0再通过第二个方程将X消去,得到一个只包含Y、x、y的方程。
5. 解出Y,并将其代入剩下的方程中,解出x和y,即得到方程组的解。
二、例题解析以一道例题来说明解决二元二次方程组的方法。
例题:解方程组:x² + y² - 4 = 02x² + 3y² - 13 = 0解答:1. 设 X = x², Y = y²则方程组可化为:X + Y - 4 = 02X + 3Y - 13 = 02. 通过第一个方程将 X 消去:2(X + Y - 4) + 3Y - 13 = 0简化后得到:2X + 5Y - 21 = 03. 解得:Y = (21 - 2X)/54. 将 Y 代入第一个方程:X + (21 - 2X)/5 - 4 = 0简化后得到:3X - 19/5 = 05. 解得:X = 19/156. 将 X 代入 Y 的表达式:Y = (21 - 2*(19/15))/5简化后得到:Y = 16/157. 根据 X 和 Y 的值,可以求出 x 和 y 的值:对 X 和 Y 开平方根即可得到 x 和 y。
二元二次方程和方程组及其解法
21.5-21.6二元二次方程和方程组及其解法知识梳理+九大例题分析+经典同步练习知识梳理一、二元二次方程1. 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点:(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.二、二元二次方程组1.概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.2. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.22ax bxy cy dx ey f o +++++=22,,ax bxy cy ,dx ey三、二元二次方程组的解法1.代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得未知数的值; ④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解;⑥写出原方程组的解.要点:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2、因式分解法 (1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解. (2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.典型例题例题1.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C例题2.下列方程组中,属于二元二次方程组的为( )A.2x yx y+=ìí-=îB.123234x yx yì+=ïïíï-=-ïîC.11xx yì+=ïí+=ïîD.324xxy=ìí=î【答案】D【解析】根据一元一次方程组的定义对A进行判断;根据整式方程组的定义对B、C进行判断;根据二元二次方程组的定义对D进行判断.解:A、两个方程都是二元一次方程,所组成的方程组为二元一次方程组,所以A 选项不正确;B、两个方程都是分式方程,所组成的方程组为分式方程组,所以B选项不正确;C、有一个方程是无理方程,所组成的方程组不是二元二次方程组,所以C选项不正确;D、有一个方程是二元二次方程,另一个是一元一次方程,所组成的方程组为二元二次方程组,所以D选项正确.例题3.已知:方程组îíì-==+)2(1)1(122x y y x ,把(2)代入(1),得到正确的方程是( )x 2+2(1﹣x )=1B .x 2+2(x ﹣1)=1C .x 2+(1﹣x )2=0D .x 2+(1﹣x )2=1【答案】D【解析】运用代入消元法解方程组即可.解:把(2)代入(1)得x 2+(1﹣x )2=1四个答案中只有D 合题意.故选D .例题4.二元二次方程组îíì=-=+1522y x y x 的一个解是( )îíì-=-=21y xB .îíì=-=21y xC .îíì-==21y xD .îíì==21y x 【答案】A【解析】用代入法即可解答,把②化为x=1+y ,代入①得(1+y )2+y 2=求解即可.解:把②化为x=1+y ,代入①得(1+y )2+y 2=5,整理得,2y 2+2y ﹣4=0解得y 1=﹣2,y 2=1,分别代入②得当y 1=﹣2时,x 1=﹣1,当,y 2=1时,x 2=2,故原方程组的解为îíì-=-=2111y x ,îíì==1222y x .故选A .例题5.方程组 îíì-=--=-12122x y x y x 的实数解个数为( )A .0B .1C .2D .4【答案】C 【解析】把方程①变形成x=y+1,代入②即可求得y 的值,进而求得方程组的解,从而判断.解:îíì-=--=-)()(2121122x y x y x 由①得:x=y+1代入方程②得:2(y+1)2﹣y 2﹣(y+1)=﹣1即:y 2+3y+2=0解得:y 1=﹣1,y 2=﹣2把y=﹣1代入①得:x=0把y=﹣2代入①得:x=﹣1则方程组的解是:îíì-==10y x ,和îíì-=-=21y x 只两个解.故选C .例题6.方程组îíì==+022xy y x 的解是( )îíì==0011y x ,ïîïíì==12122y x B .îíì==2011y x ,îíì==0122y x C .îíì==2011y x ,îíì=-=0122y x D .îíì-==2011y x ,îíì==0122y x 【答案】B 【解析】由①得出y=2﹣2x ③,把③代入②得出x (2﹣2x )=0,求出x ,把x 的值分别代入③求出y 即可.解:îíì==+)(20)1(22xy y x ,由①得:y=2﹣2x ③,把③代入②得:x (2﹣2x )=0,x=0,2﹣2x=0,解得:x 1=0,x 2=1,把x 1=0,x 2=1分别代入③得:y 1=2,y 2=0,即原方程组的解为:îíì==2011y x ,îíì==0122y x .故选B .例题7.方程ïîïíì+-=-++=+yx a y x y x a y x 2)(2)(22有解但无不同的解时,a=( )A .1 B .0 C .﹣21 D .﹣1【答案】D【解析】由题意知,原方程组有解,并且有相同的解,由一元二次方程根的判别式可以知道△=0,将原方程组转化成一元二次方程就利用△=0就可以求出a=的值.解:ïîïíì+-=-++=+)2(2)()1(2)(22y x a y x y x a y x 由①﹣②,得4xy=2x4xy ﹣2x=02x (2y ﹣1)=0∴x=0或y=21(与条件不符合,∵y=21时方程①、②不相等)∴当x=0时y 2=a+2y∴y 2﹣2y ﹣a=0∴△=(﹣2)2﹣4(﹣a )=0∴4+4a=0∴a=﹣1.故D 答案正确.故选D .例题8.方程组ïîïíì=+-=+-0||||40||||422x y y y x x 在实数范围内( )1.有1组解B .有2组解C .有4组解D .有多于4组的解【答案】D【解析】根据题意,分析分别就a 、当x≥0、y≥0时;b 、当x≥0、y≤0时;c 、当x≤0、y≥0时;当x≤0、y≤0时四种情况,去掉决定值符号,分解因式联立方程,利用根据与系数的关系即是否符号题意,来判断方程组的解.解:a 、当x≥0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=+-=+-)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或 x=y+5 ③当x=﹣y 时,解得x=0,y=0,当x=y+5时,②③联立得y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.b 、当x≥0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=++=--)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或x=y+5 ③当x=﹣y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x 当x=y+5时,②③联立得 y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.c 、当x≤0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=--=++)2(04)1(0422x y y y x x ïîïíì=--=++)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x+y )=0⇒(x+y )(x ﹣y+5)=0,即x=﹣y 或x=y ﹣5 ③当x=﹣y 时,②③联立得 y 2﹣3y=0解得 îíì==00y x 或îíì=-=33y x ,当x=y ﹣5时,②③联立得 y 2﹣5y+5=0∵△=25﹣20=5>0,∴方程有两解.d 、当x≤0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=-+=-+)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x ﹣y )=0⇒(x ﹣y )(x+y ﹣5)=0,即x=y 或x=﹣y+5③当x=y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x (不合题意,舍去)当x=﹣y+5时,②③联立得 y 2+5y ﹣5=0∵△=25+20=45>0,∴方程有两解.综上所述,方程有7个解.故选D .例题9.已知,实数x ,y ,z 满足,则x 4+y 4+z 4=( )A .4B .C .D .以上都不对【答案】C【解析】根据已知条件先求出xy+xz+yz=,再求出xyz=,根据完全平方公式即可求解.解:∵,∴由(1)代入上式得:xy+xz+yz=(4),而x 3+y 3+z 3﹣3xyz=(x+y+z )(x 2+y 2+z 2﹣xy ﹣xz ﹣yz ),把(3)(4)代入上式得:xyz=(5),由(4)平方得:;把(5)代入上式得:,∴.故选C .一、单选题1.下列方程中,判断中错误的是()A .方程20316x x x +-=+是分式方程B .方程3210xy x ++=是二元二次方程C 20+=是无理方程D .方程()()226x x +-=-是一元二次方程【答案】C逐一进行判断即可.A. 方程20316x x x +-=+是分式方程,正确,故该选项不符合题意; B. 方程3210xy x ++=是二元二次方程,正确,故该选项不符合题意;C.20+=是一元二次方程,错误,故该选项符合题意;D. 方程()()226x x +-=-是一元二次方程,正确,故该选项不符合题意;故选:C .【点睛】本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.2.下列方程组中,是二元二次方程组的是( )A .12x y x y +=ìí-=îB .22231310x y x y ì-=ïïíï+=ïîC .21x y xy -=ìí=îD .313x y xy y xì+=í=-î【答案】C【解析】根据二元二次方程组的定义依次判断即可.A 、是二元一次方程组,不是二元二次方程组,故本选项不符合题意;B 、是分式方程组,不是二元二次方程组,故本选项不符合题意;C 、是二元二次方程组,故本选项符合题意;D 、是二元三次方程组,不是二元二次方程组,故本选项不符合题意;故选:C.此题考查二元二次方程组的定义,熟记定义是解题的关键.3.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【答案】C【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C【点睛】本题考查了对二元二次方程的定义的应用,解题的关键是掌握二元二次方程的定义:含有两个未知数,且未知数的最高次数是2的整式方程是二元二次方程.4.解方程组2222129x y x xy y ì-=í++=î①②的可行方法是( )A .将①式分解因式B .将②式分解因式C .将①②式分解因式D .加减消元【答案】C【解析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先因式分解组中的两个二元二次方程,再解答即可.解:∵因式分解①得: ()()1x y x y +-=,因式分解②得:()29x y +=∴3x y +=或3x y +=-,将3x y +=或3x y +=-代入()()1x y x y +-=中得到13x y -=或13x y -=-,得到方程组313x y x y +=ìïí-=ïî或313x y x y +=-ìïí-=-ïî,解得:115343x y ì=ïïíï=ïî,225343x y ì=-ïïíï=-ïî故答案为:C .【点睛】本题考查了二元二次方程组的解法,解题的关键是根据二元二次方程组的特点,进行因式分解.5.方程组2y x y x mì=í=+î有两组不同的实数解,则( )A .m ≥14-B .m >14-C .14-<m <14D .以上答案都不对【答案】B【解析】将y=x²与y=x+m 函数联立,根据解的个数求解即可.方程组2y x y x mì=í=+î有两组不同的实数解,两个方程消去y 得,20x x m --=,需要△>0,即1+4m >0,所以m >14-,故选B.【点睛】本题考查了二元二次方程,用到的知识点是加减消元法解方程组,根的判别式、解一元二次方程等知识,关键是根据根的判别式求出m 的值.6.方程组2211x y ì=í=î的实数解的个数是 ( )A .1B .2C .3D .4【答案】D【解析】根据平方根的性质,正数的平方根有两个,互为相反数即可求解.解:解21x =得1x =±,解21y =得1y =±,∴方程组的解为:11111111x x x x y y y y ===-=-ììììíííí==-==-îîîî,,,,故选D.【点睛】本题考查解二元二次方程组,二元二次方程组通常按照两个方程的组成分为“二•一”型和“二•二”型,又分别成为Ⅰ型和Ⅱ型.“二•一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二•二”型是由两个二元二次方程组成的方程.7.二元二次方程组的解是A.B.C.D.【答案】C本题可将选项中的四组答案代入检验看是否符合二元二次方程组.也可根据第一个式子,得出与的关系,代入第二个式子求解依题意得=3-∴y=(3-)=-10-2+3+10=02-3-10=0(-5)(+2)=0=5,2=-21∴方程的解为:,故选C8.已知下列四对数值不是方程的解是():A.B.C.D.【答案】A【解析】将各选项代入方程进行验证即可.解:A、当x=-5,y=-2时,左边=(-5)²+(-2)² =29≠13,左边≠右边,故A错误;B、当x=-2,y=3时,左边=(-2)²+3² =13,左边=右边,故B正确;C、当x=2,y=3时,左边=2²+3² =13,左边=右边,故C正确;D、当x=-3,y=2时,左边=(-3)²+2² =13,左边=右边,故D正确;【点睛】本题考查了二元二次方程的解的定义,掌握二元二次方程的解得定义是解题的关键.9.方程组20230x y x x y +=ìí++-=î的解的情况是( )A .有两组相同的实数解B .有两组不同的实数解C .没有实数解D .不能确定【答案】B【解析】首先运用代入法,将方程组进行变形,然后利用根的判别式即可判定.20230x y x x y +=ìí++-=î①②将①代入②,得2230x -=240423240b ac =-=+´´=△>故方程有两组不同的实数解,故选:B.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.10.如果14x y =ìí=î 是方程组x y a xy b +=ìí=î的一组解,那么这个方程组的另一组解是( )A .41x y =ìí=îB .14x y =-ìí=-îC .41x y =-ìí=-îD .41x y =ìí=-î【答案】A将14x y =ìí=î代入方程组x y a xy b +=ìí=î求得54a b =ìí=î,再解方程组54x y xy +=ìí=î即可得解.将14x y =ìí=î代入方程组x y a xy b +=ìí=î中得:1414a b +=ìí´=î,解得:54a b =ìí=î,则方程组变形为:54x y xy +=ìí=î,由x+y=5得:x=5-y ,将x=5-y 代入方程xy=4中可得:y 2-5y+4=0,解得y=4或y=1,将y=1代入xy=4中可得:x=4,所以方程的另一组解为:41x y =ìí=î.故选A .【点睛】本题考查了高次方程,二元一次方程组的解法,熟记解二元一次方程的解法是解题的关键.11.方程组2220x y m y x ì-=í-=î有四组不同的实数解,则m 的取值范围是( )A .14m <-B .14m >-C .104m -<>D .14m >-,且0m ¹【答案】D首先运用代入法将方程组变形,然后利用根的判别式即可得解.2220x y m y x ì-=í-=î①②由②,得2x y =③将③代入①,得420y y m --=∵方程组有四组不同的实数解,∴()()224141140b ac m m =-=--´´-=+△>且0m ¹∴14m >-,且0m ¹故选:D.【点睛】此题主要考查根据二元二次方程组的解求参数的取值范围,解题关键的利用根的判别式.12.二元二次方程组22220,4 2.x xy y x y ì+-=í+=-î的解的个数是( )A .1B .2C .3D .4【答案】B【解析】由①得x-y=0或x+2y=0,原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,然后用代入消元法求解即可.2222042x xy y x y ì+-=í+=-î①②,由①得(x-y)(x+2y)=0,∴x-y=0或x+2y=0,∴原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,由③得x=y ,把x=y 代入④得y 2+4y=-2,解得,∴1122x y ì=-ïí=-ïî2222x y ì=-+ïí=-ïî;由⑤得x=-2y ,把x=-2y 代入⑥得4y 2+4y+2=0,即2y 2+2y+1=0,∆=4-8=-4<0,∴此时方程无实数根,综上可知,方程组有两组解:1122x y ì=--ïí=-ïî,2222x y ì=-+ïí=-ïî.故选B .【点睛】本题考查了二元二次方程组的解法,熟练掌握代入消元法是解答本题的关键.二、填空题13.12x y =ìí=-î_______方程组22245x y x y -=ìí-=î的解(填“是”或“不是”).【答案】不是【解析】把12x y =ìí=-î代入原方程组的两个方程即可得到答案.解:把12x y =ìí=-î代入原方程组22245x y x y -=ìí-=î中的225x y -=中,方程左边=221(2)143--=-=-¹右边,所以12x y =ìí=-î不是原方程组的解.故答案为:不是.【点睛】本题考查的是方程组的解的含义,掌握方程组的解满足方程组的每一个方程是解题的关键.14.像22121x y x y ì+=-í+=î这样的二元二次方程组,是由一个________方程和一个_________方程组成,可以用________法解这个方程.【答案】二元二次二元一次 代入 【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,可以用代入法求解.由题意,得该方程组是由一个二元二次方程和一个二元一次方程组成,可以用代入法求解,故答案为:二元二次;二元一次;代入.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.15.已知12x y =ìí=-î是方程组x y m x y n +=ìí×=î的一个解,那么这个方程组的另一个解是__________.【答案】21x y =-ìí=î.【解析】将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,所以原方程组是12x y xy +=-ìí=-î,再解此方程组即可.解:将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,∴原方程组是12x y xy +=-ìí=-î①②,由①,得x=-y-1③,把③代入②式,化简得y 2+y-2=0,解之,得y 1= -2,y 2= 1.把y 1=-2代入x=-y-1,得x 1=1,把y 2=1代入x=-y-1,得x 2=-2.∴原方程组的解为:121212,21x x y y ==-ììíí=-=îî.故答案为:21x y =-ìí=î.【点睛】本题考查了解二元二次方程组,熟练掌握运算法则是解题的关键.16.解方程组24221x y xy +=ìí=-î①② 的解为_______________【答案】121237,7322x x y y =-=ììïïíí==-ïïîî【解析】由①得出x=4-2y ③,把③代入②得:2(4-2y )y=-21,求出y 1 = 72 ,y 2 = - 32,分别代入③,求出x 即可.解: 24221x y xy +=ìí=-î①②由①得:x=4-2y ③,把③代入②得:2(4-2y )y=-21,解得:y 1 =72 ,y 2 = - 32 , 把y 1 = 72代入③得:x 1 =-3, 把y 2 =- 32代入③得:x 2 =7, 即原方程组的解是 121237,7322x x y y =-=ììïïíí==-ïïîî .【点睛】本题考查了解高次方程组的应用,解此题的关键是能正确消元,即把二元变成一元.17.解方程组224422032110x xy y x y x y ì-++--=í+-=î的解为_______________【答案】21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【解析】首先把方程②变形为y=1132x -,然后利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.解:224422032110x xy y x y x y ì-++--=í+-=î①②,由②得:y=1132x -③ 把③代入①得:x 2-4(113)2x x -+4(1132x -)2+x-2(113)2x --2=0. 整理得:4x 2-21x+27=0∴x 1=3 x 2=94. 把x=3代入③ 得:y=1把x=94代入④ 得:y=178. ∴原方程组的解为: 21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【点睛】本题考查了二元二次方程组的解法,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.18.二元二次方程()()23320x y +-=有__________个解.【答案】无数【解析】根据()()23320x y +-=可得230x +=或320y -=,从而得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,确定方程有无数个解.解:∵()()23320x y +-=∴230x +=或320y -=∴32x =-或23y =,当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,∴方程有无数个解,故答案为:无数.【点睛】本题考查了方程的因式分解解法,解题的关键是得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数.19.解方程组224915235x y x y ì-=í-=î时,采用“_________”的方法,将二元二次方程224915x y -=化为_________方程,这是一种“__________”的策略.【答案】因式分解二元一次 消元降次【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,其中二元二次方程可以进行因式分解化为二元一次方程,这是采用了“消元降次”的策略.由题意,得该方程组可采用因式分解的方法,将二元二次方程224915x y -=化为二元一次方程,这是一种消元降次策略,故答案为:因式分解;二元一次;消元降次.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.20.如果222461461,461a a b c b b c a c c a b ì++=+ï++=+íï++=+î,那么a b c ++的值为_________________.【答案】32-【解析】方程组的三个方程轮循环对称,可把组中的三个方程相加,利用完全平方公式和非负数的和先求出a 、b 、c 的值,再计算a b c ++.解:222461461461a a b c b b a c c c a b ì++=+ï++=+íï++=+î①②③①+②+③,得222461461461a a b b c c b c a c a b ++++++++=+++++,整理,得2224414414410a ab bc c ++++++++=所以222(441)(441)(441)0a ab bc c ++++++++=即222(21)(21)(21)0a b c +++++=因为2(21)0a +…,2(21)0b +…,2(21)0c +…,所以210a +=,210b +=,210c +=所以12a =-,12b =-,12c =-,所以32a b c ++=-.故答案为:32-【点睛】本题考查了完全平方公式、非负数的和等知识点.观察题目,发现三个方程的特点是解决本题的关键.三、解答题21.解方程组:22449(1)6(2)x xy y x y ì++=í-=î.【答案】33x y =ìí=-î或51x y =ìí=-î【解析】先降次转化成两个一次方程组,解方程组即可求解.解:224496x xy y x y ì++=í-=î①②,由方程①可得x +2y =﹣3或x +2y =3,则方程组可变为236x y x y +=-ìí-=î或236x y x y +=ìí-=î,解得33x y =ìí=-î或51x y =ìí=-î.【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.22.解方程组:222220560x y x xy y ì+=í-+=î.【答案】1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî【解析】由22560x xy y -+=得()()230x y x y --=,从而得到20x y -=或30x y -=,即2x y =或3x y =;再将2x y =或3x y =分别代入到2220x y +=,通过求解即可得到答案.由22560x xy y -+=得:()()230x y x y --=∴20x y -=或30x y -=∴2x y =或3x y=将2x y =代入2220x y +=,得:22420y y +=∴2y =±∴1142x y =ìí=î,2242x y =-ìí=-î将3x y =代入2220x y +=,得:22920y y +=∴y =∴33x y ì=ïí=ïî,44x y ì=ïí=ïî∴方程组的解是:1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî.【点睛】本题考查了二元二次方程、因式分解、二次根式的知识;解题的关键是熟练掌握因式分解、二元二次方程的性质,从而完成求解.23.解方程组:2220326x xy x xy y ì+=í-+=î①②【答案】11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î【解析】解①,用含y 的代数式表示x ,然后代入②求出y ,再求出方程组的解.解:2220326x xy x xy y ì+=í-+=î①②,由①,得()0x x y +=,所以0x =或x y =-.把0x =代入②,得226y =,解得y =.把x y =-代入②,得222326y y y ++=,整理,得21y =,所以1y =±.所以1x =-或1.故原方程组的解为:11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î.【点睛】本题考查了高次方程组的解法.变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.24.2222560112x xy y x x y y ì-+=í++-=î【答案】112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î【解析】根据二元二次方程组的解法进行求解即可.解:2222560112x xy y x x y y ì-+=í++-=î①②,由①得:23x y x y=ìí=î,当x=2y 时,代入②可得:25920y y --=,解得:121,25y y =-=,∴122,45x x =-=;当x=3y 时,代入②可得:210820y y --=,解得:341,15y y =-=,∴343,35x x =-=,综上所述:方程组的解为112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î.【点睛】本题主要考查二元二次方程方程组的解法,熟练掌握二元二次方程组的解法是解题的关键.25.解方程组:22312230x y x xy y +=ìí--=î【答案】1162x y =ìí=î;2266x y =-ìí=î【解析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.解:22312230x y x xy y +=ìí--=î①②由②得()()30x y x y -+=30x y -=或0x y +=原方程组可化为31230x y x y +=ìí-=î;3120x y x y +=ìí+=î解得1162x y =ìí=î;2266x y =-ìí=î所以原方程组的解是1162x y =ìí=î;2266x y =-ìí=î【点睛】本题考查高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.26.解下列方程(组)(1)33(2019)(2018)1x x -+-=;(2)22222293,19293,19293.192x y xy z yz x z ì=ï+ïï=í+ïï=ï+î【答案】(1)2019或2018;(2)111(,,)333或(0,0,0)【解析】(1)运用换元法的思想令2019,2018m x n x =-=-,联立方程组可得m 和n 的等式,再利用完全平方公式的变形即可得出答案;(2)根据条件易得x=0,y=0,z=0时方程成立,当,,x y z 不为0时,把三个方程相加222111(1)(1)(1)0333x y z-+-+-=,然后根据平方数的非负性可得三个式子分别为零,即可求出结果.解:(1)令2019,2018m x n x =-=-;则3311m n m n +=ìí+=î;∴222()31-+=+-=m mn n m n mn ;∴0mn =即0m =或n=0;∴2019x =或2018;(2)易知(,,)(0,0,0)x y z = 为一组解;若,,x y z 不为0;则222121,93121,93121.93x y yz zx ì+=ïïï+=íïï+=ïî相加得222111(1)(1)(1)0333x y z -+-+-=;∴111(,,)(,,333x y z =;综上:111(,,)(,,333x y z =或()0,0,0.【点睛】本题主要考查方程的解法,灵活利用换元法、乘法公式变形及分类讨论思想是解题的重要环节.27.解下列方程组:(1)222220560x y x xy y ì+=í-+=î(2)217,11 1.x y x y x y x yì-=ï+-ïíï+=-ï+-î 【答案】(1)3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)112512x y ì=ïïíï=ïî【解析】(1)把原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î再分别解这两个方程组可得答案.(2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案.解:(1)因为222220560x y x xy y ì+=í-+=î把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î因为222020x y x y ì+=í-=î把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =ìí=î 或42x y =-ìí=-î同理解222030x y x y ì+=í-=î得方程组的解是x y ì=ïí=ïî或x y ì=ïí=ïî所以原方程组的解是:3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)因为217,111.x y x y x y x yì-=ï+-ïíï+=-ï+-î①②所以①+②得:36x y=+,所以12x y +=,把12x y +=代入②得:13x y -=-,所以1213x y x y ì+=ïïíï-=-ïî,解得:112512x y ì=ïïíï=ïî 经检验112512x y ì=ïïíï=ïî是原方程组的解,所以原方程的解是112512x y ì=ïïíï=ïî【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.28.某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如下表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?【答案】(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元【解析】(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,根据第一、二次两种货车运货情况表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用a辆甲种货车,b辆乙种货车,根据货物的总重量为20吨且每辆货车都满载,即可得出关于a,b的二元一次方程,结合a,b均为非负整数,即可得出各租车方案;(3)设甲种货车每辆需运费m元,租用甲种货车n辆,则乙种货车每辆需运费1.4m元,租用乙种货车(n)1-辆,根据总费用=每辆车所需费用´租用该种车的辆数,即可得出关于m,n的二元二次方程组,解之即可得出结论.解:(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,依题意,得:2313 5628 x yx y+=ìí+=î,解得:23 xy=ìí=î.答:甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物.(2)设租用a 辆甲种货车,b 辆乙种货车,依题意,得:2320a b +=,3102a b \=-.a Q ,b 均为非负整数,b \为偶数,\当0b =时,10a =;当2b =时,7a =;当4b =时,4a =;当6b =时,1a =.\共有4种租车方案,方案1:租用10辆甲种货车;方案2:租用7辆甲种货车,2辆乙种货车;方案3:租用4辆甲种货车,4辆乙种货车;方案4:租用1辆甲种货车,6辆乙种货车.(3)设甲种货车每辆需运费m 元,租用甲种货车n 辆,则乙种货车每辆需运费1.4m 元,租用乙种货车(n )1-辆,依题意,得:8001.4(1)980mn m n =ìí-=î,解得:1008m n =ìí=î,1.4140m \=.答:甲种货车每辆需运费100元,乙种货车每辆需运费140元.【点睛】本题考查了二元一次方程组的应用、二元一次方程的应用以及二元二次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)找准等量关系,正确列出二元二次方程组.。
二元二次方程组经典例题
二元二次方程组经典例题二元二次方程组,这听起来是不是有点高大上?它就像你生活中的小麻烦,随时可能出现,得好好处理一下。
想象一下,某天你在街上遇到一个老朋友,聊着聊着,你们说到买房子的事。
老朋友说他想买个房子,结果发现,房子的价格和面积都是变量,就像那二元二次方程中的x和y。
于是,你俩一拍即合,决定用数学来解决这个“买房危机”。
你可能会觉得,哎呀,数学我最怕了。
可别着急,二元二次方程组其实并不复杂。
比如,有一个方程叫做y = ax² + bx + c,听上去很深奥,其实就像是你做饭时加的调料。
a、b、c分别代表了不同的调料,不同的比例,最后的味道才会不同。
我们把这些方程组结合起来,就能找到解决问题的钥匙。
想象一下,你和朋友一起决定,先写下两个方程,一个是房子的价格,另一个是面积。
然后你们就像侦探一样,开始破解这个数学谜题。
解方程就像解密游戏,先找到一个方程,弄明白它的意思,再去寻找另一个方程。
然后,就可以代入、消元,简简单单,就能找到x和y的值。
就好像打开了一扇门,瞬间看到光明的未来,房子终于在眼前了。
这里面有个小技巧,就是代入法和消元法。
就好比你跟朋友讨论,谁要去买零食,最后决定一个人去,那另一个人就可以省力。
你先算出一个变量,再把它代入另一个方程,哇,仿佛像在游戏中找到了一条捷径。
结果出来的那个x和y,就是你们的最终目标,房子的价格和面积都找到了。
做二元二次方程组的时候,咱们得注意一个事情,就是可能会有多个解。
就像生活中,我们可能有很多选择。
每个选择都有好坏之分,而方程的解也是如此。
有时候解出来的结果会让你眉头紧锁,有时候又会让你眉开眼笑。
选择就像一个游戏,有时候你得冒险,有时候你得稳妥,要做出最优的选择。
再说了,解二元二次方程的过程中,最重要的就是保持心态平和。
遇到困难,不要慌,深呼吸,理清思路。
就像一场马拉松,绝对不能中途放弃。
即使再复杂的方程,最终都能化为简单的答案。
人生不也如此吗?总会有难题,但只要你用心去解,总能找到属于自己的方向。
二元二次方程组的解法
3
y3
1 2
y4
1 2
(
2)
x x
2 2
y 2 20 5xy 6 y 2
0
① ②
解:由②得
x-2y=0或x-3y=0
解这两个方程组,得 原方程组的解为
因此,原方程组可化为两个方程 组
x1
3
2
x
2
3
2
x2+y2=20 x-2y=0
x2+y2=20 x-3y=0
y1 2 y2 2
思考题
解方程组 x 2 ( x
2xy y y)2 3(
2
x
4 y)
10
0
(1)此方程组与学过的方程组有何异同?
(2)此方程组能否像前面所学的方程组 那 样来解? 你能否想出其它的方法 来解?试加以证明。Fra bibliotek感 谢 阅
读感 谢 阅
读
5 2
y
2
5 2
x-2y =0
x3 y3
2 2
x4 y4
2 2
解方程组:
(2)
x x
2 2
4 xy 3 y 2 y2 5
0
① ②
解这两个方程组,得原方
程组的解为
解:由①得
x-y=0或x-3y=0
x1
10 2
x 2
10 2
因此,原方程组可化为两 个方程组
y1
10 2
解下列方程组:
(x 2y)(x 6y) 0 ①
(1)x2 4 y 2 10
②
解:由①得
x-2y=0或x+6y=0
因此,原方程组可化为两个方程组
x2+4y2=10 x-2y=0
二元二次方程的解法
二元二次方程的解法二元二次方程是指含有两个未知数的二次方程,通常形式为ax^2 + by^2 + cxy+ dx + ey + f = 0。
解二元二次方程是初中数学中的重要内容,掌握解题方法对于学生来说至关重要。
本文将介绍几种常见的解二元二次方程的方法,并通过实例进行说明。
一、配方法配方法是解二元二次方程的常用方法之一。
它的基本思想是通过将方程中的某些项配成完全平方的形式,从而将方程化简为两个一元二次方程。
下面通过一个例子来说明配方法的具体步骤。
例题:解方程组{ x^2 + y^2 + 2xy = 9{ x^2 - y^2 = 1解析:首先,我们可以将第一个方程中的2xy项配成完全平方的形式。
具体来说,我们可以将其改写为(x+y)^2。
然后,将这个改写后的表达式代入第一个方程,得到:(x+y)^2 = 9解这个方程,我们可以得到两个解:x+y=3或x+y=-3。
接下来,我们将这两个解分别代入第二个方程,得到两个一元二次方程:x^2 - y^2 = 1x^2 - y^2 = -7分别解这两个方程,我们可以得到四个解:(x,y)=(2,1),(x,y)=(-2,-1),(x,y)=(2,-1),(x,y)=(-2,1)。
综上所述,方程组的解为{(2,1), (-2,-1), (2,-1), (-2,1)}。
二、代入法代入法是解二元二次方程的另一种常用方法。
它的基本思想是通过将一个方程中的一个未知数表示成另一个方程中的未知数的函数,然后代入另一个方程,从而将方程化简为一个一元二次方程。
下面通过一个例子来说明代入法的具体步骤。
例题:解方程组{ x^2 + y^2 = 9{ x + y = 3解析:首先,我们可以将第二个方程改写为y = 3 - x。
然后,将这个表达式代入第一个方程,得到:x^2 + (3 - x)^2 = 9化简这个方程,我们可以得到一个一元二次方程:2x^2 - 6x = 0。
解这个方程,我们可以得到两个解:x=0或x=3。
21.5-21.6二元二次方程(组)及其解法(分层作业)(3种题型基础练+提升练)解析版
21.5-21.6二元二次方程(组)及其解法(3种题型基础练+提升练)题型一:二元二次方程1.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y;⑤2253370+++=x xy y x 中,是二元二次方程的有( )A .1个B .2个C .3个D .4个【答案】C【分析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.【详解】解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C【点睛】本题考查了对二元二次方程的定义的应用,解题的关键是掌握二元二次方程的定义:含有两个未知数,且未知数的最高次数是2的整式方程是二元二次方程.2.(2022秋·上海·八年级校考期中)二元二次方程2560x xy y --=可以化为两个一次方程,它们是______.【答案】x -6y =0或x +y =0【分析】把y 看成常量,方程就是关于x 的一元二次方程,利用因式分解法化为两个一次方程即可.【详解】解:x 2-5xy -6y 2=0,(x -6y )(x +y )=0,∴x -6y =0或x +y =0.故答案为:x -6y =0或x +y =0.【点睛】本题考查了二元二次方程,把y 看成常量,方程看成关于x 的一元二次方程是解决本题的关键.题型二:二元二次方程组1.下列方程组中,是二元二次方程组的是( )A .51x y x y +=ìí-=îB .210618x y x y ì+=ïïíï-=ïîC .716xy x =ìí=îD .312x y xy x yì+=í=+î【答案】C 【分析】根据二元二次方程组的定义进行解答即可.【详解】解:A 项为二元一次方程组,故本选项错误;B 项二元一次分式方程组,故本选项错误;C 项的第一个方程为二元二次方程,故为二元二次方程组,故本选项正确;D 中未知数的最高次数为3,故不是二元二次方程组,故本选项错误.故选:C【点睛】本题主要考查二元二次方程组的定义,解题的关键是根据二元二次方程组的定义逐个分析判断.2.(2023下·上海浦东新·八年级上海市进才中学北校校考阶段练习)方程组212x y x y k ì-=í-=î有实数解,则k 的取值范围是( )A .2k ³B .2k =C .2k <D .2k £【答案】D【分析】①-②得出221x x k -=-,求出2210x x k -+-=,根据方程组有实数解得出()()224110k D =--´´-³,再求出k 的取值范围即可.【详解】解:212x y x y k ì-=í-=î①②,①-②,得221x x k -=-,即2210x x k -+-=,∵方程组212x y x y k ì-=í-=î有实数解,∴一元二次方程2210x x k -+-=有实数根,∴()()224110k D =--´´-³,解得:2k £,故选:D .【点睛】本题考查了解高次方程组和一元二次方程根的判别式,方程组消元转化成一元二次方程是解此题的关键.3.(2022春·上海静安·八年级新中初级中学校考期末)写出一个由二元一次方程和一个二元二次方程组成的二元二次方程组___________,使它的解是34x y =ìí=î和34x y =-ìí=-î.【答案】2277x y x y +=ìí-=î(答案不唯一)【分析】根据方程组的解可得71x y x y +=-=,,再由平方差公式得到227x y -=,则可写出满足条件的一个方程组为2277x y x y +=ìí-=î.【详解】解:Q 方程组的解为34x y =ìí=î和34x y =-ìí=-î,71x y x y \+=-=,,227x y x y x y \-=+-=()(),\方程组可以是2277x y x y +=ìí-=î,故答案为:2277x y x y +=ìí-=î(答案不唯一).【点睛】本题考查二元二次方程组,熟练掌握二元一次方程和二元一次方程的基本形式,根据所给的条件写出符合题意的方程组是解题的关键.4.(2022秋·上海浦东新·八年级校考期中)方程组()()210x y m y x ì-+=í=î的解只有一组,则m 的取值范围是______.【答案】0m >【分析】根据条件表示方程组的解,再求m 的范围.【详解】解:()()210x y m y x ì-+=í=î①②,由①,得10x -=或0y m +=,1x \=,y m =-.当1x =时,代入②得:1y =,\原方程组的一组解为:11x y =ìí=î,当y m =-时,代入②得:2m x -=,Q 原方程只有一组解,2m x \-=无解,0m \-<.0m \>.故答案为:0m >.【点睛】本题考查二元二次方程组的解,根据第一个方程,求得1x =,y m =-是解题的关键.题型三:二元二次方程组的解法5.(2023下·上海黄浦·八年级统考期末)解方程组:2226444y x x xy y -=ìí++=î①②【答案】1114x y =-ìí=î或2222x y =-ìí=î【分析】由②得22x y +=±从而将原方程组化成两个二元一次方程组,分别求二元一次方程组的解即可.【详解】解:由②得:()224x y +=,∴22x y +=±,即22x y +=或22x y +=-,∴原方程组可化为两个二元一次方程组()Ⅰ2622y x x y -=ìí+=î ,()Ⅱ2622y x x y -=ìí+=-î,解()Ⅰ得:1114x y =-ìí=î 解()Ⅱ得:2222x y =-ìí=î所以原方程组的解是1114x y =-ìí=î,2222x y =-ìí=î.【点睛】本题考查二元二次方程的解法,掌握二元二次方程的解法是解题的关键.6.(2023下·上海虹口·八年级上外附中校考期末)222209x y x xy y ì-=í--=î.【答案】1133x y =ìí=-î,2233x y =-ìí=î.【分析】①-②得9xy =-③,由①得0x y +=或0x y -=,和③组成方程组,再得出答案即可.一、填空题1.(2022春·上海·八年级专题练习)把二元二次方程22560x xy y --=化成两个一次方程,则这两个一次方程分别是:__________和__________.【答案】 60x y -= 0x y +=【分析】把方程则左边分解因式,根据两个式子的积是0,则至少有一个因式是0,即可转化成两个一次方程.【详解】解:x 2﹣2xy ﹣3y 2=0即(x ﹣6y )(x +y )=0,则这两个一次方程分别是:x ﹣6y =0和x +y =0.故答案是:x ﹣6y =0和x +y =0.【点睛】本题考查了高次方程通过分解因式的方法转化成两个一次方程,降次是高次方程的基本思想.2.(2022春·上海徐汇·八年级校考期中)一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =ìí=î和24x y =-ìí=-î,试写出符合要求的方程组________(只要填写一个即可).【答案】28y x xy =ìí=î【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy =8,y =2x ,∴符合要求的方程组为28y x xy =ìí=î.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.二、解答题3.(2022春·上海·八年级上海市张江集团中学校考期末)解方程组:22222241929x xy y x x xy y y ì+++=í++-=î5411222x y x y íï+=ï+-î5.(2022春·上海·八年级期中)解方程组:22220290x y x xy y --=ìí++-=.6.(2022春·上海·八年级上海市市西初级中学校考期中)解方程组:2232032x xy yx yì-+=í+=î7.(2022春·上海·八年级期中)解方程组:2222449560x xy yx xy yì++=í+-=î.8.(2022春·上海普陀·八年级校考期中)解方程组:22240 40x xyx yì-+=í-=î.【答案】1124x y =ìí=î或2224x y =-ìí=-î.【分析】把第二个方程通过因式分解化为2x+y =0或2x−y =0,与第一个方程组成方程组,解方程组即可.【详解】解:原方程组为:2224040x xy x y ì-+=í-=î①②由②得,(2x+y )(2x−y )=0,则2x+y =0或2x−y =0,∴可得(1)24020x xy x y ì-+=í+=î,此方程组无解,(2)24020x xy x y ì-+=í-=î,解得,1124x y =ìí=î,2224x y =-ìí=-î,则原方程组的解为:1124x y =ìí=î或2224x y =-ìí=-î.【点睛】本题考查的是高次方程(组)的解法,解高次方程一般要降次,即把它转化成二次方程或一次方程.9.(2023春·八年级单元测试)k 为何值时,方程组242102y x y y kx ì--+=í=+î.(1)有两组相等的实数解;(2)有两组不相等的实数解;(3)没有实数解.【答案】(1)k =1;(2)k <1且k ≠0;(3)k >1【分析】(1)将方程组转化为k 2x 2+(2k ﹣4)x +1=0,用根的判别式,列出方程求解即可;(2)同(1)用根的判别式,列出不等式求解即可;(3)通过讨论k =0和k ≠0,根据方程无实根,确定k 的范围即可.10.解方程组:21238438 xy x yyz z yzx z x=+-ìï=+-íï=+-î11.(2022秋·上海·八年级上海市市西初级中学校考期中)“程,课程也,二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这是我国古代著名数学家刘徽在《九章算术》对方程一词给出的注释.对于一些特殊的方程,我们给出两个定义:①若两个方程有相同的一个解,则称这两个方程为“相似方程”:②若两个方程有相同的整数解,则称这两个方程为“相伴方程”.(1)判断分式方程12111x x+=-+=“相似方程”,并说明理由;(2)已知关于x ,y 的方程:224928x y -=和234x y -=,它们是“相似方程”吗?如果是,请写出它们的公共解;如果不是,请说明理由;(3)已知关于x ,y 的二元一次方程:()14y k x =+-和3y x k =-(其中k 为常数)是“相伴方程”,求k 的值.。
专题6 二元二次方程组的解法(必讲)
专题6 二元二次方程组的解法我们知道含有两个未知数、且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.至少有一个二次项、最高次不超过二次且包含两个未知数的整式方程组叫做二元二次方程组.通常由一个二元一次方程和一个二元二次方程组成,或由两个二元二次方程组组成。
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。
由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
【例题1】判断下列二元二次方程解的情况:(1)2240,+-=x y y(2)2246130,+--+=x y x y(3)2224100.+-++=x y x y【解】由(1)得()2224+-=x y ,有无数组解; 由(2)得()()22230-+-=x y ,只有一个解23=⎧⎨=⎩x y ; 由(3)得()()22125-++=-x y ,无解。
【小结】与二元一次方程不同,二元二次方程组的解可能有无穷多组、只有一解或无解。
【例题2】解方程组:222142=⎧⎪⎨+=⎪⎩y x x y 【解】把y=2x 代入另一方程得到:222491424+==x x x 即:249=x ,解得2x .3=± 所以方程组的解为2343⎧=⎪⎪⎨⎪=⎪⎩x y ,23.43⎧=-⎪⎪⎨⎪=-⎪⎩x y 【小结】(1) 本题中的方程组是由一个二元一次方程和一个二元二次方程组成的,这是二元二次方程组在高中数学应用中主要的类型;(2)解由一个二元一次方程和一个二元二次方程组成的方程组的步骤: ①由二元一次方程变形为用x 表示y 的方程,或用y 表示x 的方程(3); ②把方程(3)代入二元二次方程,得一个一元二次方程;③解消元后得到的一元二次方程;④把一元二次方程的根,代入变形后的二元一次方程(3),求相应的未知数的值; ⑤写出答案.(3) 消x ,还是消y ,应由二元一次方程的系数来决定.若系数均为整数,那么最好消去系数绝对值较小的,如方程210x y -+=,可以消去x ,变形得21x y =-,再代入消元.(4) 消元后,求出一元二次方程的根,应代入二元一次方程求另一未知数的值,不能代入二元二次方程求另一未知数的值,因为这样可能产生增根,这一点切记.【例题3】解关于x 的方程组⎩⎨⎧x c +y b=1①,x 2a 2+y 2b 2=1②, 【解】由①得=-+b y x b c③,代入②式得到: 22221⎛⎫-+ ⎪⎝⎭+=b x b x c a b, 即:222111⎛⎫+-+= ⎪⎝⎭x x a c , 即:2221120⎛⎫+-= ⎪⎝⎭x x a c c ,解得0=x 或222222211==++a c c x a c a c 所以方程组的解为⎩⎪⎨⎪⎧x =2a 2c a 2+c 2,y =b (c 2-a 2)a 2+c 2,或⎩⎪⎨⎪⎧x =0,y =b , 【小结】本题仍然是由一个二元一次方程和一个二元二次方程组成的二元二次方程组,只不过两个方程中都含有字母。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元二次方程的解法
二次方程组的基本思想和方法
方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。
因法和技巧是解二元二次方程组的关键。
型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。
程组的解法
元法(即代入法)
二·一”型方程组的一般方法,具体步骤是:
次方程中的一个未知数用另一个未知数的代数式表示;
数式代入二元二次方程,得到一个一元二次方程;
元二次方程,求得一个未知数的值;
的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题;
个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。
与系数的关系
二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。
当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。
注意
二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。
比较常用的解法。
除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。
解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。
(2)要防止漏解和增解的错误。
程组的解法
中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。
中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。
方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。
析:例1.解方程组
观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。
1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6.
(3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。
据根与系数的关系可知:x, y是一元二次方程,z2-8z+12=0的两个根,解这个方程,得z1=2, z2=6.
组的解是。
”型方程组中的两个方程,如果是以两数和与两数积的形式给出的,这样的方程组用根与系数的关系解是很方便的。
但要特别注意最后方程x与2y的和,方程②是x与2y的积, ∴x与2y是方程z2-4z-21=0的两个根解此方程得:z1=-3,z2=7,
∴原方程的解是
于特殊型的方程组,可用一元二次方程的根与系数的关系来解.
型的二元二次方程组,也都可以通过变形用简便的特殊解法.
用代入法) 由②得:y=③把③代入①得:
+4()2+x-
7=0
. 把x=3代入③得:y=1
代入④得:y=. ∴原方程组的解为:
式分解法)
为(x-2y)2+(x-2y)-2=0 即(x-2y+2)(x-2y-1)=0 ∴x-2y+2=0或x-2y-1=0
化为:
分别解得:
I型二元二次方程组,一般可用代入法求解,当求出一个未知数的值代入求另一个未知数的值时,一定要代入到二元一次方程中去求,若针对二元则较为简便.
何值时,方程组。
相等的实数解;(2)有两组不相等的实数解;(3)没有实数解。
代入法消去未知数y,可得到关于x的一元方程,如果这个一元方程是一元二次方程,那么就可以根据根的判别式来讨论。
入(1),整理得k2x2+(2k-4)x+1=0..................(3) 你(1)当时,方程(3)有两个相等的实数根
解得:
,原方程组有两组相等的实数根。
时,方程(3)有两个不相等的实数根。
k<1且k≠0. ∴当k<1且k≠0时,原方程组(1)、(2)中已知方程组有两组解,可以确定方程(3)是一元二次方程,但在此问中不能确定方程(3)是否是二次方程,所以需两种情况讨
是一元二次方程,无解条件是,,
解得:
k>1。
不是二次方程,则k=0,此时方程(3)为-4x+1=0,它有实数根x=. 两种情况可知,当k>1时,原方程组没有实数根。
判别式“Δ”的前提条件是能确定方程为一元二次方程,不是一元二次方程不能使用Δ。
程组
元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之。
本题用代入法消元。
y=.......................(3) 将式(3)代入式(2),得
)+()2-4x+3( -13x-35=0, 即(x-5)(4x+7)=0 ∴x1=5, x2=-.
(3),得y1=3, 将x2=-代入(3),得y2=-. ∴。
程组。
程组是由两个二元二次方程组成的方程组,在(1)式的等号左边分解因式后将二元二次方程转化为一元二次方程。
分解因式,得(x+y)(3x-4y)-(3x-4y)=0 即(3x-4y)(x+y-1)=0 ∴3x-4y=0,或x+y-1=0.
面两组方程组:
;(2)。
(1)由3x-4y=0,得
x,代入x2+y2=25,
x2=25, x2=16, x=±4, 即x1=4, x2=-4, 将x1和x2代入y=
1=0,得y=1-x,代入x2+y2=25, 得x2+(1-x)2=25,整理,得x2-x-12=0,
)=0, ∴x3=4, x4=-3. 当x3=4时, y3=-3;当x4=-3时,y4=4.
的解为:;;
;。
程组。
组可化为,从而由根与系数的关系,知x, -y是方程z2-17z+30=0的两个根。
得z1=2,z2=15。
即,故原方程组的解为
程组
方程(2),把(x-y)看成整体,那么它就是关于(x-y)的一元二次方程,因此可分解为
,由此可得到两个二元一次方程x-y-3=0和x-y+1=0。
一次方程分别和方程(1)组成两个“二·一”型的方程组:
个方程组,就可得到原方程组的解。
∴x-y-3=0或x-y+1=0。
∴原方程组可化为两个方程组:
法解方程组(1)和(2),分别得:
,∴原方程组的解为。
注意不要将(1)式错误分解为(x+y)(x-y)=1,故而分解为(x-y)=1或者(x+y)=1,这样做是错的,因为当右边≠0时,可以分解出无穷多种可解为x+y=2,x-y=等等。
程组
1)的右边为零,而左边可以因式分解,从而可达到降次的目的。
方程(2)左边是完全平方式,右边是1,将其两边平方,也可以达到降次的目
, ∴x-4y=0或x+y=0. 由(2)得(x+2y)2=1 ∴x+2y=1或x+2y=-1
化为以下四个方程组:
程组,得原方程组的四个解是:
把同一个二元二次方程分解出来的两个二元一次方程组成方程组,这样会出现增解问题,同时也不要漏解。
程组
程组是“二·二”型方程组,因为方程(1)和(2)都不能分解为两个二元一次方程,所以需要寻找其它解法。
我们先考虑能否换元法。
因为。
所以,方程(1)可化为, 显然此方程组具备换元条件,可
,得,
=v(这种换元是解决问题的关键),则原方程组可化为:
组,得:,即:
,解:无解。
的解为。
=z,那么原方程组变为: 解关于经检验是原方程组的解.
解是。