1.1.2 集合间的基本关系练习题及答案解析
2022-2022年高一必修一第1章 1.1.2 集合的基本关系数学题带答案和解析(人教A版)
2022-2022年高一必修一第1章1.1.2 集合的基本关系数学题带答案和解析(人教A版)填空题已知集合M={x|2m<x<m+1},且M=∅,则实数m的取值范围是____.【答案】m≥1【解析】∵M=∅,∴2m≥m+1,∴m≥1.故答案为m≥1解答题判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤xB(2) B A.【解析】试题分析:(1)利用一元一次不等式的解法分别求出集合A和集合B,由此能得到集合A是集合B的真子集.(2)A={x∈Z|-1≤x},∴利用数轴判断A、B的关系.如图所示,A B.(2)∵A={x∈Z|-1≤xA.选择题如果集合A={x|x≤},a=,那么()A. a∉AB. {a}AC. {a}∈AD. a⊆A【答案】B【解析】a=,∴a∈A,A错误.由元素与集合之间的关系及集合与集合之间的关系可知,C、D错,B正确.故选B点睛:本题考查了元素与集合,集合与集合的关系,元素与集合之间用属于∈,不属于∉的符号;集合与集合之间用包含于⊆,真包含,不包含相等=,的符号表示.解答题已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P ={x|x=+,p∈Z},试确定M,N,P之间的关系.【答案】M P=N.【解析】试题分析:M={x|x=m+,m∈Z}={x|x=,m ∈Z}={x|x=,m∈Z}M表示3的偶数倍加1除以6的数;N ={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},N表示3的整数倍加1除以6的数;P={x|x=+,p∈Z}={x|x=,p∈Z},P表示3的整数倍加1除以6的数即可得出结论.试题解析:∵M={x|x=m+,m∈Z}={x|x=,m∈Z}={x|x=,m∈Z},N={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},P={x|x=+,p∈Z}={x|x=,p∈Z},比较3×2m+1,3(n-1)+1与3p+1可知,3(n-1)+1与3p+1表示的数完全相同,∴N=P,3×2m+1只相当于3p+1中当p为偶数时的情形,∴M P=N.综上可知M P=N.解答题设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,求实数a、b的值.【答案】a=-1,b=1, a=b=1, a=0,b=-1【解析】试题分析:集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1},分情况进行讨论即可.试题解析:∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1}.当B={-1}时,Δ=4a2-4b=0且1+2a+b=0,解得a=-1,b=1.当B={1}时,Δ=4a2-4b=0且1-2a+b=0,解得a=b=1.当B={-1,1}时,有(-1)+1=2a,(-1)×1=b,解得a=0,b=-1.综上:a=-1,b=1;或a=b=1;或a=0,b=-1选择题集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A. 7B. 12C. 32D. 64【答案】D【解析】集合P*Q的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P*Q的子集个数为26=64.故选D选择题若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A 有()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.故选D选择题设A={x|-1a},若A B,则a的取值范围是()A. {a|a≥3}B. {a|a≤-1}C. {a|a>3}D. {a|aB,画出数轴如图可求得a≤-1,注意端点能取否得-1是正确求解的关键.故选B填空题集合⊆{(x,y)|y=3x+b},则b=____.【答案】2【解析】得,代入y=3x+b得b=2.故答案为2选择题已知集合M={(x,y)|x+y0}和P={(x,y)|xM B. M P C. M=P D. M P【答案】C【解析】∴M=P.故选C填空题已知集合A={1,2,m3},B={1,m},B⊆A,则m=____.【答案】0或2或-1【解析】由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m =0或2或-1.故答案为0或2或-1填空题已知集合{2x,x+y}={7,4},则整数x=___,y=____.【答案】25【解析】由集合相等的定义可知或解得或,又x,y∈Z.故x=2,y=5.故答案为2,5选择题已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x 是等腰直角三角形},D={x|x是等边三角形},则()A. A⊆BB. C⊆BC. D⊆CD. A⊆D【答案】B【解析】∵等腰直角三角形必是等腰三角形,∴C⊆B.故选B选择题下列命题中,正确的有()①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A. ①②B. ②③C. ②④D. ③④【答案】C【解析】空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.选择题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则a的值不可能是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由B={x|ax﹣2=0},且B⊆A,故讨论B的可能性,从而求a.解:∵B={x|ax﹣2=0},且B⊆A,∴若B=∅,即a=0时,成立;若B={1},则a=2,成立;若B={2},则a=1,成立;故a的值有0,1,2;故不可能是3;故选D.选择题若{1,2}={x|x2+bx+c=0},则()A. b=-3,c=2B. b=3,c=-2C. b=-2,c=3D. b=2,c=-3【答案】A【解析】由条件知,1,2是方程x2+bx+c=0的两根,由韦达定理得b=-3,c=2.故选A选择题集合A={(x,y)|y=x}和B=,则下列结论中正确的是()A. 1∈AB. B⊆AC. (1,1)⊆BD. ∅∈A【答案】B【解析】B=={(1,1)},而A={(x,y)|y=x},B 中的元素在A中,所以B⊆A故选B.选择题下列四个集合中,是空集的是()A. {0}B. {x|x>8,且x<5}C. {x∈N|x2-1=0}D. {x|x>4}【答案】B【解析】选项A、C、D都含有元素.而选项B无元素,故选B.填空题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为____.【答案】{0,1,2}【解析】∵B⊆A,∴B=∅,{1}或{2}.当B=∅时,a=0;当B={1}时,a=2,当B={2}时,a=1.∴a∈{0,1,2}.故答案为{0,1,2}11。
高中数学必修一1.2 集合间的基本关系-单选专项练习(27)(人教A版,含答案及解析)
1.2 集合间的基本关系1.集合A={}|2k k Z πααπ=+∈,与集合B={}|2,2k k Z πααπ=±∈的关系是( )A .A=B B .A ⊆BC .B ⊆AD .以上都不对2.设集合{}2|10A x ax ax =-->,若A 为空集,则实数a 的取值范围是( )A .(4,0)-B .(4,0]-C .[4,0)-D .[4,0]-3.下列关系正确的是( )A .0=∅B .1∈1}C .∅=0} D .0⊆0,1}4.已知:A =x|x 2=1},B =x|ax =1},C =x|x =a},B ⊆A ,则C 的真子集个数是( ) A .3B .6C .7D .85.设a ,b∈R,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a+b 三个元素,且集合A 与集合B 相等,则a+2b =( ) A .1B .0C .﹣1D .不确定6.已知集合{}1,2,4A =,{}|32,B y y x x A ==-∈,则A B 的子集个数是( ) A .1 B .2 C .3 D .4 7.设23{|}A x x =<<,{|}B x x m =<,若A B ⊆,则实数m 的取值范围是( ) A .[3,)+∞B .(3,)+∞C .(,2)-∞D .(,2]-∞8.已知集合{}1,2,3,4A =,那么A 的真子集的个数是 A .15 B .16 C .3 D .4 9.已知集合{}{}1,21,2,3,4A ⊆,则满足条件的集合A 的个数为( )A .1B .2C .3D .4 10.已知集合A ⊆0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为 A .6B .5C .4D .311.下列四个写法:①{}{}01,2,3∈;②{}0∅⊆;③{}{}0,1,21,2,0⊆;④0∉∅,其中错误写法的序号有( ) A .① B .②C .③D .④12.下列说法中正确的是( )A .(){}11,1∈B QC .{}{}11,2,3,4,5⊆D .{}5xx ∅∈≤∣ 13.已知集合A ,B 相等,A =R ,则B =( )A .NB .QC .RD .Z14.M =x|x 3=x},N =x|x 2=1},则下列式子中正确的是( )A .M =NB .M ⊆NC .N ⊆MD .M∩N=∅15.已知集合|,44k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,集合|,84k N x x k Z ππ⎧⎫==-∈⎨⎬⎩⎭,则( ) A .M N ⋂=∅ B .M N ⊆ C .N M ⊆D .M N M ⋃=16.设A 为非空的数集,{}3,6,7A ⊆,且A 中至少含有一个奇数元素,则这样的集合A 共有 A .6个B .5个C .4个D .3个17.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈,给出如下四个命题:①若1m =,则{}1S =;②若12m =-,则114l ≤≤;③若12l =,则0m ≤;④若1l =,则10m -≤≤或1m =;其中正确的命题个数是( ) A .1 B .2 C .3 D .4 18.已知集合{|1}M x x =>-,那么( )A .0M ⊆B .{0}M ∈C .M ∅∈D .{0}M ⊆19.集合A=正方形},B=矩形},C=平行四边形},D=梯形},则下面包含关系中不正确的是( ) A .A B ⊆B .BC ⊆C .CD ⊆D .A C ⊆20.{}a {},,P a b c ⊆的集合P 的个数是 A .2 B .3C .4D .5参考答案1.A2.D3.B4.C5.A6.D7.A8.A详解:集合A里有4个元素,那么它有42115-=个真子集,故选A9.C10.A详解:试题分析:根据已知中集合A满足A⊆0,1,2},且集合A中至少含有一个偶数,逐一列举出满足条件的集合A,可得答案.解:∵集合A⊆0,1,2},且集合A中至少含有一个偶数,∴满足条件的集合A可以为:0},2},0,1},1,2},0,2},0,1,2},共6个,故选A.考点:子集与真子集.11.A12.C13.C14.C15.B16.A17.D18.D19.C详解:{}{}{},,,,p a b a c a b c =或或【参考解析】1.解析:对于集合A ,当k 取奇数时,令k =2n ﹣1,α=2nπ2π-;当k 取偶数时,令k =2n ,α=2kπ2π+,n∈Z,即可看出A ,B 的关系 详解: 对于集合A ,当k 取奇数时,令k =2n ﹣1,α=2nπ2π-;n∈Z, 当k 取偶数时,令k =2n ,α=2kπ2π+,n∈Z, ∴A=α|α=2kπ±2π,k∈Z}=B . 故选:A .2.解析:分0,0a a =≠两种情况分类讨论,0a =时符合题意,0a ≠时只需满足0a <⎧⎨∆≤⎩ 即可求解. 详解:当0a =时,原不等式为10->,A 为空集; 当0a ≠时,因为A 为空集 所以210ax ax -->无解,只需满足2040a a a <⎧⎨+≤⎩,解得40a -≤<,综上实数a 的取值范围是[4,0]-. 故选D 点睛:本题主要考查了一元二次不等式的解为空集,分类讨论的思想,属于中档题.3.解析:利用元素与集合以及集合与集合的关系即可求解.对于A :0是一个元素,∅是一个集合,元素与集合是属于(∈)或者不属于(∉)关系,二者必居其一,A 不对. 对于B :1是一个元素,1}是一个集合,1∈1},所以B 对.对于C :∅是一个集合,没有任何元素,0}是一个集合,有一个元素0,所以C 不对. 对于D :0是一个元素,0,1}是一个集合,元素与集合是属于(∈)或者不属于(∉)关系,二者必居其一,D 不对. 故选:B. 点睛:本题考查了元素与集合关系的符号表示、集合与集合之间关系的符号表示,属于基础题.4.解析:首先求得A =﹣1,1},之后根据B ⊆A ,求得a 的值,从而得到C =﹣1,0,1},根据含有n 个元素的有限集合真子集的个数,求得结果. 详解:由A 中x 2=1,得到x =1或﹣1,即A =﹣1,1}, ∵B=x|ax =1},B ⊆A ,∴把x =﹣1代入ax =1,得:a =﹣1;把x =1代入ax =1得:a =1, 当B φ=时,0a =,满足B ⊆A , ∴C=﹣1,0,1},则C 真子集个数为23﹣1=7. 故选:C. 点睛:该题考查的是有关集合的问题,涉及到的知识点有根据包含关系求参数的值,含有n 个元素的有限集合真子集的个数公式,属于简单题目.5.解析:依据题意可得01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩,然后进行计算即可.详解:由题意可知a≠0,则只能a+b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②;由①得a =﹣1,b =1,符合题意; ②无解;则a+2b =﹣1+2=1. 故选:A 点睛:本题考查集合相等求参数,重在计算,属基础题.6.解析:求出集合B ,进而可得A B ,利用子集个数的公式2n 求解即可. 详解:解:由已知{}{}|32,1,4,10B y y x x A ==-∈=,{}1,4A B ∴=,A B ∴的子集个数为224=,故选:D. 点睛:本题考查集合交集的运算,及集合子集的个数,是基础题.7.解析:由A B ⊆得到关于m 的不等式,能求出实数m 的取值范围. 详解:解:{|23}A x x =<<,{|}B x x m =<,A B ⊆,3m ∴≥,∴实数m 的取值范围是[)3,+∞.故选:A . 点睛:本题考查实数的取值范围的求法,考查元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题. 8.9.解析:由题意可知,集合A 中一定有1,2两个元素,且A 中最多三个元素,从而可求得满足题意的集合A . 详解:由题意,当集合A 中有两个元素时,集合}{1,2A =, 当集合A 中有三个元素时, 集合}{1,2,3A =或}{1,2,4. 即满足条件的集合A 的个数为3. 故选:C. 点睛:本题考查了集合间的包含关系,考查了真子集的性质,属于基础题. 10.11.解析:利用元素与集合的关系以及集合与集合之间的关系,便可得出答案. 详解:对①:0}是集合,1,2,3}也是集合,所以不能用∈这个符号,故①错误. 对②:∅是空集,0}也是集合,由于空集是任何集合的子集,故②正确.对③:0,1,2}是集合,1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确. 对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④正确. 故选: A. 点睛:本题考查集合与元素的关系以及集合与集合之间的关系,属于基础题.12.解析:根据元素与集合的关系,以及集合与集合的关系,判断选项. 详解:根据元素与集合的关系可知,(){}11,1∉Q ,故AB 不正确;根据集合与集合的关系可知,{}{}11,2,3,4,5⊆,{}5xx ∅⊆≤∣,故C 正确,D 不正确. 故选:C13.解析:根据集合相等得概念,即可得出答案. 详解:解:因为集合A ,B 相等,A =R , 所以B =R. 故选:C.14.解析:求得两个集合的元素,由此确定正确选项. 详解:()()()332,0,1110x x x x x x x x x =-=-=+-=,所以{}0,1,1M =-,()()21,110x x x =+-=,所以{}1,1N =-,所以N M ⊆.故选:C15.解析:对两个集合中的元素x 所具有的性质P 分别化简,使其都是含有4π-的表达式. 详解:由题意可知,(24)|,84k M x x k Z ππ+⎧⎫==-∈⎨⎬⎩⎭2|,84n x x n Z ππ⎧⎫==-∈⎨⎬⎩⎭ 2(21)|,8484k k N x x x k Z ππππ-⎧⎫==-=-∈⎨⎬⎩⎭或所以M N ⊆,故选B. 点睛:本题考查两个集合之间的基本关系,要求对集合中的元素所具有的性质能进行化简.16.解析:可采用列举法(分类的标准为A 中只含3不含7,A 中只含7不含3,A 中即含3又含7)逐一列出符合题意的集合A. 详解:解:∵A 为非空集合,{}3,6,7A ⊆,且A 中至少含有一个奇数 ∴当A 中只含3不含7时A =3,6},3} 当A 中只含7不含3时A =7,6},7} 当A 中即含3又含7时A =3,6,7},3,7} 故符合题意的集合A 共有6个 故选A 点睛:本题主要考查了子集的概念,属中档题,较易.解题的关键是理解子集的概念和A 中至少含有一个奇数分三种情况:只含3不含7,A 中只含7不含3,A 中即含3又含7.17.解析:根据集合的定义,由m S ∈,l S ∈,得到2m S ∈,2l S ∈,即2m m ≥,21l ≤,然后利用一元二次不等式的解法化简后逐项判断. 详解:∵非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈ ∴m S ∈,l S ∈,则2m S ∈,2l S ∈,且2m m ≥,21l ≤ 即0m ≤或1m ≥,01l ≤≤且1m①当1m =时,有1l =,所以{}1s =,故正确;②当12m =时,214m S =∈,所以114l ≤≤,故正确;③当12l =时,2m S ∈,所以212m ≤,所以02m -≤≤,故正确; ④当1l =时,可知10m -≤≤或1m =,故正确; 故选:D 点睛:本题主要考查集合的新定义,元素与集合的关系以及一元二次不等式的解法,还考查了逻辑推理、求解问题的能力,属于中档题.18.解析:根据元素与集合、集合与集合之间的关系,逐项判断,即可得出结果. 详解:因为{|1}M x x =>-,元素与集合之间的符号表示只有∈和∉,故A 错;{}0和∅都是M 的子集,故BC 错,D 正确;故选:D. 点睛:本题主要考查元素与集合之间的关系,以及集合与集合之间的关系,属于基础题型.19.解析:利用正方形是特殊的矩形,矩形是特殊的平行四边形,梯形不是平行四边形,平行四边形也不是梯形等性质,判断集合间的包含关系. 详解:因为正方形一定是矩形,所以选项A 正确;矩形一定是平行四边形,所以选项B 正确; 正方形一定是平行四边形,所以选项D 正确;梯形不是平行四边形,平行四边形也不是梯形,所以选项C 不正确. 故选C . 点睛:本题考查平行四边形的分类,以及梯形的定义.其中两组对边分别平行的四边形是平行四边形,一组对边垂直的平行四边形是矩形,邻边相等的矩形是正方形;一组对边平行,另一组对边不平行的四边形是梯形. 20.。
高一数学《集合间的基本关系》巩固提升案(参考答案)
第一章集合与函数概念
1.1.2、集合间的基本关系
参考答案
1.【解析】选B.对于①,符号φ表示没有元素的集合,而{0}表示含有一个元素的集合,故①不正确,对于②,空集是其本身的子集,故②不正确,对于③空集只有一个子集,即本身,故③不正确,只有④是正确的.
2.【解析】选D.A中集合为{0},B中为{(0,0)},C中为{0},而D中方程无解,是空集.
3.【解析】如图,可知若A B,则a≥2.
答案:a≥2
4.【解析】因为A=B,所以m2=0,得m=0,经检验符合题意.答案:0
5.【解析】A={x|x-7≥2}={x|x≥9},又B={x|x≥5},所以A B.
6.【解析】具有伙伴关系的元素组是-1;,2,所以具有伙伴关系的集合有3个:{-1},,. 答案:3
7.【解析】选C.M={x|-2<x≤3且x∈N}={0,1,2,3},所以真子集为:①不含任何元素时: ∅
②含1个元素时:{0},{1},{2},{3}③含2个元素时:{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}
④含3个元素时:{0,1,2},{0,1,3},{1,2,3},{0,2,3},所以集合M共有15个真子集.
8.【解析】
(1)若A B,由图可知,a>2.
(2)若B⊆A,由图可知,1≤a≤2.。
人教A版必修1同步精练:1.1.2集合间的基本关系(含答案)
1.1.2集合间的基本关系1. 集合123{,,,,}n A a a a a =L ,则A 的子集有 个,真子集有 个。
2.(1)满足条件{2,3}{1,2,3,4,5}M ⊆⊆的集合M 有 个。
(2){2,3,7}A ⊂≠,且A 中至多有一个奇数,则这样的集合A 有 A .3个 B .4个 C .5个 D .6个3.(1)设集合2{|,}P y y x x R ==∈,2{(,)|,}Q x y y x x R ==∈,则P 与Q 的关系是A .P Q ⊆B .P Q ⊇C .P Q =D .以上都不对(2)已知集合},61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, },612|{Z p p x x P ∈+==试确定P N M ,,之间的关系.4.已知集合{(,)|2,,}A x y x y x y N =+=∈,写出A 的所有子集。
5.已知集合{|13}A x x =≤≤,{|(1)()0}B x x x a =--=。
(1)若A B ⊆,求实数a 的取值范围;(2)是否存在实数a ,使得A B =成立?6.已知集合{2,4,6,8,9}A =,{1,2,3,5,8}B =,又非空集合C 是这样的一个集合:若各元素都加上2后就变成了A 的一个子集;若各元素都减去2就变成了B 的一个子集,求集合C 。
7.(1)已知集合{1,3,21}A m =--,集合2{3,}B m =,若A B ⊆,则实数m 的取之集合为 。
(2)已知集合}1|{},1|{2====ax x B x x A .若A B ⊆,求实数a 的值;(3)集合{}02},1,1{2=+-=-=b ax x x B A ,若B ≠∅,且B A ⊆,求a 和b 的值.(4)已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求实数m 的范围。
8.设{}042=+=x x x A ,函数{}01)1(222=-+++=a x a x x B . (1)若B A ⊆,求实数a 的取值范围;(2)若A B ⊆,求实数a 的值.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)
1.2 集合间的基本关系一、单选题1.集合M= x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4答案:D 详解:{}{*|(3)0}{*|03}1,2M x N x x x N x =∈-<=∈<<=所以集合的子集个数为224=个,故选D .2.若集合{|11}M x x =∈-≤≤Z ,2{|,}P y y x x M ==∈,则集合M 与P 的关系是( ) A .M P = B .M P C .P MD .M P ⋂=∅答案:C解析:根据集合M ,求出集合P ,进而可得集合M 与P 的关系. 详解:解:由题意可得{1,0,1}M ,{0,1}P =,所以P M .故选:C . 点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤C .{}2a a ≥D .{}2a a >答案:D解析:利用数轴法,根据集合间的关系,即可得答案; 详解: 根据题意作图:易知2a >. 故选:D.点睛:本题考查根据集合间的关系求参数的取值,求解时注意等号成立的条件. 4.已知集合{}0,1A =,{}1,0,2B a =-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .1答案:B解析:根据A B ⊆可得出关于a 的等式,解出即可. 详解:集合{}0,1A =,{}1,0,2B a =-+,A B ⊆,21a ∴+=,解得1a =-. 故选:B. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 5.集合(1,2)(3,4)}的子集个数为( ) A .3 B .4C .15D .16答案:B解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题. 6.集合{1,0,1}-的非空真子集共有( ) A .5个 B .6个C .7个D .8个答案:B解析:将集合的所有非空真子集列举出来,即可得解. 详解:集合{1,0,1}-,则其非空真子集为{}1-,{0},{1},{1,0}-,{0,1},{1,1}-, 所以非空真子集共有6个, 故选:B. 点睛:本题考查了集合的真子集概念,真子集个数计算,属于基础题.7.已知集合{}0,1,2A =,则A 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案:D解析:根据集合中元素的个数,以及集合子集的个数2n ,简单计算可得结果. 详解:集合A 的子集共有328=个. 故选:D. 点睛:本题考查集合子集个数的计算,识记常用结论,假设集合元素个数为n ,则该集合子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集个数为22n -,属基础题. 8.含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20092009a b +的值为 A .0 B .-1 C .1 D .答案:B解析:根据集合的相等,分别找到元素的对应关系,排除不可能的情况,再进行分类讨论,得到答案. 详解:含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b + 所以可得0a =或者0ba=当0a =时,因有b a,所以不成立. 故只能0b a=,即0b =此时集合分别为{},0,1a 和{}2,,0a a所以有21a =,即1a =±而由集合的互异性可知,1a =时,不成立 故1a =- 故选B 项. 点睛:本题考查集合的相等,和集合的性质,属于简单题.9.集合P 具有性质“若x P ∈,则1P x∈”,就称集合P 是伙伴关系的集合,集合111,0,,,1,2,3,432A ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数为A .3B .7C .15D .31答案:C解析:首先分析集合A 中的哪些元素能是伙伴关系的集合里的元素,然后利用集合的子集个数公式求解. 详解:根据条件可知满足伙伴关系的集合里面有111,1,,3,,232-中的某些元素,13和3,12和2都以整体出现,13和3看成一个元素,12和2也看成一个元素,∴共有4个元素,集合是非空集合,∴有42115-=个.故选C 点睛:本题主要考查集合关系的判断,利用条件确定伙伴关系的元素是解决本题的关键,意在考查分析问题和解决问题的能力.10.设A=x|2≤x≤4},B=x|2a≤x≤a+3},若B 真包含于A ,则实数a 的取值范围是( ) A .[]1,3 B .(){}3,1∞+⋃ C .{}1 D .()3,∞+答案:C解析:由B 真包含于A ,讨论B =∅与B≠∅时,求出a 的取值范围. 详解:∵A=x|2≤x≤4},B =x|2a≤x≤a+3},且B 真包含于A ; 当B =∅时,2a >a+3,解得a >3;当B≠∅时,232234a a a a ≤+⎧⎪≥⎨⎪+≤⎩解得a =1;此时A=B.∴a 的取值范围是a|a >3} 故选C . 点睛:本题考查了集合之间的基本运算,解题时容易忽略B =∅的情况,是易错题.11.集合{}1,2,3的真子集有( ) A .4个 B .6个 C .7个 D .8个答案:C解析:根据集合真子集的个数公式求解即可. 详解:集合{}1,2,3的元素个数为3个, 故真子集的个数为3217-=, 故选:C 点睛:本题主要考查了集合子集,真子集的概念,考查了集合真子集个数公式,属于容易题.12.集合{}2|4,,A y y x x N y N ==-+∈∈的真子集的个数为A .9B .8C .7D .6答案:C 详解:{}0,3,4,A =故A 有7个真子集13.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1,0,1- B .{}1,1- C .{}1 D .{}1-答案:A 详解:试题分析:B A ⊆,∴B=φ或B =-1}或B =1},∴a=0,-1,1. 考点:子集关系点评:本题考查了子集关系,勿忘空集.14.下列四个集合中,空集是A .{}2|20x R x ∈+=B .0C .{}|84x x x ><或D .{}∅答案:A 详解:试题分析:A.因为方程2+2=0x 无解,所以{}2|20x R x ∈+= =φ;B.0中含有一个元素0,所以不是空集;C. {}|84x x x ><或含有很多元素,所以不是空集;D. {}∅含有一个元素φ,所以不是空集. 考点:集合的表示方法;空集的定义.点评:空集就是不含任何元素的集合.属于基础题型.15.下列四个关系中,正确的是( ) A .{},a a b ∈ B .{}{},a a b ∈ C .{}a a ∉D .(){},a a b ∈答案:A解析:因为a 是集合{,}a b 中的元素,判断A 选项正确;因为{}a 与{},a b 是两个集合,判断B 选项错误;因为a 是集合{}a 中的元素,判断C 选项错误;因为数a 不在集合{(,)}a b 中,判断D 选项错误. 详解:解:A 选项:因为a 是集合{,}a b 中的元素,所以{},a a b ∈,故A 选项正确; B 选项:{}a 与{},a b 是两个集合,集合之间没有属于关系,故B 选项错误; C 选项:因为a 是集合{}a 中的元素,所以{}a a ∈,故C 选项错误;D 选项:因为集合{(,)}a b 中的元素是点(,)a b ,数a 不在集合{(,)}a b 中,故D 选项错误; 故选:A. 点睛:本题考查元素与集合的属于关系、集合之间的包含关系,是基础题 16.集合{1,2,3}的子集共有 A .7个 B .8个 C .6个 D .5个答案:B 详解:集合{1,2,3}中共三个元素,子集个数为:328=. 故选B.17.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A答案:B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .18.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( )A .-3B .-2C .3D .-2或3答案:C解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件. 详解: 因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去; 若26a a +=,则3a =或-2,因为2a ≠-,所以3a =. 故选C. 点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.19.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<< D .2a <-或1a >答案:B解析:{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a <b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a|+|x -b|>c(c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.20.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤C .1a <D .2a ≥答案:D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含答案及解析)
1.2 集合间的基本关系1.若集合M 满足{}1M ≠∅,{}*3|1M x x ⊆∈N ,则符合条件的集合M 的个数为( ) A .2B .3C .4D .52.设集合6|2B x Z N ⎧⎫=∈∈⎨⎬+⎩⎭x ,则集合B 的子集个数为( ). A .3B .4C .8D .16 3.满足条件{1,2,3}M{1,2,3,4,5,6}的集合M 的个数是( )A .8B .7C .6D .5 4.集合{|3,}n M x x n ==∈N ,集合{|3,}x x n N n =∈=N ,则集合M 与集合N 的关系为( ) A .M N ⊆ B .N M ⊆ C .MND .MN 且NM5.已知集合{}|11A x x =-≤≤,{}|0B x x a =-≤,若A B ⊆,则实数a 的取值范围是( )A .(],1-∞B .[)1,-+∞C .(],1-∞-D .[)1,+∞6.设集合{}1012U =-,,,,2{|1}A y y x x U ==+∈,则集合A 的真子集个数为A .2B .3C .7D .8 7.集合A=﹣1,5,1},A 的子集中,含有元素5的子集共有A .2个B .4个C .6个D .8个8.已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是 A .A C φ⋂= B .A C C = C .B C B =D .AB C =9.集合{}2,1,2,3A =-的真子集个数为( ) A .16B .15C .14D .1310.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( ) A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-11.已知集合{}{}2|4,|1.A x x B x ax ====若B A ⊆,则实数a 的值是( )A .12B .2C .11,22-D .110,,22-12.已知函数1()lg1xf x x+=-的定义域为A , 函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A B 、的关系中,不正确的为A .AB ⊇ B .A B B ⋃=C .A B B =D .B A13.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .7个B .5个C .3个D .8个14.下列集合中表示同一集合的是 A .(){}2,3M =,(){}3,2N =B .2,3M,{}3,2N =C .(){},1M x y y x ==+,{}1N y y x ==+D .{}1M y y x ==+,{}21N y y x ==+15.已知集合{}1,2,{|20}A B x ax ==-=,若B A ⊆,则a 的值不可能是( ) A .0B .1C .2D .316.给出下列关系式:①23Q ⊆;②{}210x x x ∅∈++=;③(){}(){}21,4,23x y y x x -⊆=--;④{}[)22,x x <=+∞,其中正确关系式的个数是( ) A .0 B .1C .2D .317.下列符号表述正确的是( )A .*0N ∈B .1.732Q ∉C .{}0∅∈D .{}2x x ∅⊆≤18.已知集合{2,4}A ,则集合A 的子集个数是( ) A .2B .3C .4D .819.设集合{}2|1P x x ==,则集合P 的非空真子集的个数是( )A .2B .3C .7D .820.已知集合A =a ,b ,c },下列可以作为集合A 的子集的是A .aB .a ,c}C .a ,e}D .a ,b ,c ,d }参考答案1.C2.D3.C4.D5.D6.C7.B详解:试题分析:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得结论.解:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得:22=4,故选B.考点:子集与真子集.8.C9.B10.B11.D12.D13.A14.B15.D16.B17.D18.C19.A20.B详解:由集合的子集的定义可知:集合A=a,b,c}的子集为:∅,a},b},c},a,b},a,c},b,c},a,b,c},对应选项,则可以作为集合A的子集的是a,c}.故选B.点睛:集合A={}12n a a a ,,,的子集个数为2n ,非空真子集个数为22n -.【参考解析】1.解析:依题可知M 致少有元素1,结合子集定义即可求解. 详解:由题意可知,{}1M =或{1,2}或{1,3}或{1,2,3}. 故选:C2.解析:首先用列举法,分别取出满足题目时x 值,从而得出集合B 的元素,从而得出集B 的子集. 详解: 当666603,12,41,1620212421x x x x =⇒==⇒==⇒==-⇒=+++- 所以集合{}3,2,1,6B =,所以集合B 的子集个数为4216=. 故选D 点睛:本题主要考查就集合中子集的求法:若集合B 中有n 个元素,则集合B 的子集有2n 个,属于基础题.3.解析:根据题意,分析可得集合M 中必须有1,2,3这三个元素,且至少含有4、5、6中的一个但不能同时包含3个元素,即M 的个数应为集合{4,5,6}的非空真子集的个数,由集合的子集与元素数目的关系,分析可得答案. 详解:解:根据题意,满足题意条件的集合M 中必须有1,2,3这三个元素, 且至少含有4、5、6中的一个但不能同时包含3个元素, 则M 的个数应为集合{4,5,6}的非空真子集的个数, 集合{4,5,6}有3个元素,有3226-=个非空真子集; 故选:C . 点睛:本题考查集合间的基本关系,以及非空真子集的个数的运算.4.解析:分析集合M 和N 中元素的性质,进行比较即可得出答案. 详解:由{|3,}n M x x n ==∈N ,可得集合M 中的元素为:1,3,9,27,,3,n ;由{|3,}x x n N n =∈=N ,可得集合N 中的元素为:0,3,6,9,12,,3,n ,比较得1M ∈,但1N ∉,0N ∈,但0M ∉,3M ∈,3N ∈.∴MN 且NM .故选:D. 点睛:本题考查了两个集合关系的判断,准确分析集合中元素的特点并进行比较是解题的关键,属于一般难度的题.5.解析:根据集合的包含关系,即可求得参数a 的取值范围. 详解:集合{}|11A x x =-≤≤,{}|0B x x a =-≤,即{}|B x x a =≤ 因为A B ⊆, 则1a ≥ 即[)1,a ∈+∞ 故选:D 点睛:本题考查了集合的包含关系,求参数的取值范围,属于基础题.6.解析:先求出集合A ,进而求出其真子集的个数. 详解:因为集合{}1012U =-,,,,∴集合{|}A y y x U =∈=1, ∴真子集个数为23﹣1=7个, 故选C . 点睛:本题考查了真子集的概念及性质,考查集合的表示方法:列举法,是一道基础题. 7.8.解析:先求集合C ,再根据集合与集合的关系判断即可. 详解:由题设,{0,2,4}C =,则B C ⊆,故B C B = 选C . 点睛:本题考查的知识点是集合的包含关系判断及应用,属于基础题.9.解析:根据集合真子集的计算公式,直接得出结果. 详解:集合{}2,1,2,3A =-的真子集个数为42115-=. 故选:B. 点睛:本题主要考查求集合的真子集个数,属于基础题型.10.解析:根据题意,求得集合B ,结合A B ⊆,列出不等式组,即可求解. 详解:由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++, 因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--.故选:B.11.解析:计算{}2,2A =-,考虑{}2B =,{}2B =-,B =∅三种情况,计算得到答案. 详解:{}{}2|42,2A x x ===-,B A ⊆,当{}2B =时,21a =,12a =;当{}2B =-时,21a -=,12a =-;当B =∅时,0a =. 即0a =或12a =或12a =-. 故选:D. 点睛:本题考查了根据集合的包含关系求参数,意在考查学生的计算能力,忽略掉空集是容易发生的错误.12.解析:分别求出两函数的定义域,再判断集合关系. 详解: 因为1()lg1xf x x +=-,所以101x x +>-即()()110x x +-> ,解得11x -<< 故{}11A x x =-<<因为()lg(1)lg(1)g x x x =+--,所以1010x x +>⎧⎨->⎩,解得11x -<<故{}11B x x =-<< 所以A B = 故选D. 点睛:本题考查函数的定义域与集合之间的关系,属于简单题.13.解析:根据集合的补集判断集合的个数,进而求得集合的真子集个数. 详解:由题可知,集合A 有三个元素.所以A 的真子集个数为:32-1=7个.选A 点睛:集合中子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -214.解析:因为有序数对()2,3与()3,2不相同,所以A 错误;由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确;因为集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而集合N 是当1,y x x R =+∈时所得的y 值所构成的集合,所以C 错误;因为M R =,[)1,N =+∞,所以D 错误, 详解:对于A 选项:有序数对()2,3与()3,2不相同,所以集合M 与集合N 不是同一集合,故A 错误; 对于C 选项:由于{}(,)1,M x y y x x R ==+∈,所以集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而由{}1,N y y x x R ==+∈得集合N 是当1,y x x R =+∈时所得的y 值所构成的集合, 所以集合M 与集合N 不是同一集合,故C 错误;对于D 选项,{}1M y y x R ==+=,{}{}[)21,11,N y y x x R y y ==+∈=≥=+∞,所以集合M 与集合N 不是同一集合,故D 错误;对于B 选项:由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确; 故选B. 点睛:本题考查集合所表示的元素的意义,在判断时需分清集合中表示的是点集还是数集,理解元素的具体含义是什么,属于基础题.15.解析:由B A ⊆,分0a =和0a ≠两种情况讨论,结合集合间的关系,即可求解. 详解:由题意,集合{}1,2,{|20}A B x ax ==-=, 因为B A ⊆,当0a =时,集合B 为空集,此时满足B A ⊆;当0a ≠时,集合2{|20}{}B x ax a =-==,可得21a或22a=,解得1a =或2a =, 综上可得,实数a 的值为{}0,1,2,所以则a 的值不可能是3. 故选:D. 点睛:本题主要考查了根据集合的包含关系求解参数问题,其中解答中熟记集合间的包含关系,合理分类讨论求解是解答的关键,着重考查推理与运算能力,属于基础题.16.解析:对于①,23Q ∈;对于②,{}210x x x ∅⊆++=;对于③,点(1,4)-在抛物线223y x x =--上,对于④,{}[)22,x x <⊆+∞.详解:对于①,元素与集合不是包含关系,故①不正确;对于②,{}210x x x ∅∉++==∅,故②不正确;对于③,点(1,4)-在抛物线223y x x =--上,故(){}(){}21,4,23x y y xx -⊆=--正确;对于④,{}[)22,x x <⊆+∞,故④不正确. 故选:B. 点睛:本题考查了元素与集合的关系,考查了集合与集合的关系,考查了空集,属于基础题.17.解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题.18.解析:根据子集的定义依次列出集合的子集即可得出答案. 详解:集合{}2,4A =的子集分别是:φ,{}2,{}4,{}2,4,共有4个子集. 故选:C. 点睛:本题考查集合子集的概念,属于基础题.19.解析:解出集合P ,再写出集合P 的非空真子集即可. 详解:集合{}2|1P x x ==,即{}1,1P =-,集合P 的非空真子集有{}{}1,1-, 共2个. 故选:A . 点睛:本题考查的是集合子集,真子集,是基础题. 20.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(19)(人教A版,含答案及解析)
1.2 集合间的基本关系1.已知集合{}1,16,4A x =,{}21,B x =,若B A ⊆,则x = A .0 B .4-C .0或4-D .0或4±2.已知∅{}20xx x a -+=∣,则实数a 的取值范围是( )A .a<14B .a≤14C .a≥14D .a>143.下列表示错误的是( ) A .{}∅⊆∅ B .{}{}{}{}10,1∈C .A A ⋃∅=D .R C Q =无理数4.能正确表示集合M =x|x∈R 且0≤x≤1}和集合N =x∈R| x 2=x}关系的Venn 图是( )A .B .C .D .5.已知集合{}220,A xax x a a R =++=∈∣,若集合A 有且仅有两个子集,则a 的值是( ) A .1 B .-1 C .0,1D .-1,0,16.()S A 表示集合A 中所有元素的和,且{}1,2,3,4,5A ⊆,若()S A 能被3整除,则符合条件的非空集合A 的个数是 A .10 B .11 C .12 D .13 7.集合(1,2)(3,4)}的子集个数为( )A .3B .4C .15D .168.已知集合A ,B 均为全集{}1,2,3,4,5U =的子集,且(){}3,4U A B =,{}1,2B =,则集合A 可以有( )种情况 A .2B .3C .4D .69.设{}311A x x =<<,{}2337B x a x a =-≤≤-,若B A ⊆,则实数a 的取值范围是( )A .(36),B .(,6)-∞C .[4,6)D .(,4)-∞10.下列各式:①{}10,1,2⊆;②{}()00,1,2∈:③0∈∅:④{}{}2,0,10,1,2=.其中错误的个数是( ) A .4个B .3个C .2个D .1个11.已知集合321x A x x ⎧⎫=≤⎨⎬+⎩⎭,{}221B x a x a =-<<+,若A B ⊆,则实数a 的取值范围是( ) A .1,12⎛⎫⎪⎝⎭B .1,12⎛⎤⎥⎝⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,12⎡⎫⎪⎢⎣⎭12.集合{12}A =,,{123}B =,,,则下列关系正确的是 A .A B = B .A B =∅ C .A B ⊆ D .A B ⊇ 13.集合{}|61,M x x k k Z ==+∈与集合{}|32,N x x k k Z ==-∈的关系为 A .MNB .M N ⊆C .N M ⊆D .MN φ=14.若集合2}{01A =,,,则下列选项不正确的是( ) A .A ∅⊆ B .{}0,1 AC .{0,1,2}A ⊆D .{}0,1,2 A15.设集合{A x y ==,{B y y ==,则下列结论正确的是( ) A .A B = B .A B ⊆C .B A ⊆D .A B =∅16.设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则a 的取值范围为( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤17.下列表述正确的有( ) ①空集没有子集;②任何集合都有至少两个子集; ③空集是任何集合的真子集; ④若∅是A 的真子集,则A≠∅. A .0个B .1个C .2个D .3个18.设{|23}A x x =<<,{|}B x x a =<,若A B ⊆,则a 的取值范围是( )A .3a ≥B .2a ≥C .2a ≤D .3a ≤19.下列集合中为空集的是 A .x∈N|x 2≤0}B .x∈R|x 2–1=0}C .x∈R|x 2+x+1=0}D .0}20.满足{}{}11,2,3A ⊆的集合A 的个数为( )A .2B .3C .8D .4参考答案1.C 详解:试题分析:∵{}1,16,4A x =,{}21,B x =,若B A ⊆,则216x =或24x x =,则4,0,4x =-,又当4x =时,A 集合出现重复元素,因此0x =或4-.故选C. 考点:集合中子集的概念与集合中元素的互异性.2.B 3.D 4.B 5.D 6.B 7.B 8.C 9.B 10.B 11.B 12.C 详解:试题分析:由题{12}A =,,{123}B =,,.则根据子集的定义可得:A B ⊆. 考点:集合间的关系.13.B 14.D 15.B 16.A 17.B 18.A 19.C 20.B【参考解析】1.2.解析:由题得方程x 2-x +a =0有实根,解不等式(-1)2-4a≥0即得解. 详解:∵∅{}20xx x a -+=∣, 所以集合{}20xx x a -+=∣不是空集, ∴方程x 2-x +a =0有实根, ∴∆=(-1)2-4a≥0,故a≤14. 故选:B 点睛:本题主要考查集合的关系,意在考查学生对该知识的理解掌握水平.3.解析:根据空集是任何集合的子集来判断选项A ,根据元素与集合的关系来判断选项B ,根据并集的定义来判断选项C ,根据集合的表示方法来判断选项D . 详解:解:空集是任何集合的子集,∴{}∅⊆∅正确; 显然{}1是集合{}{}{}0,1的元素,∴{}{}{}{}10,1∈正确; 根据并集的定义,A A ⋃∅=正确;R C Q 表示无理数集,无理数不是无理数集,∴R C Q =无理数错误.故选D . 点睛:本题考查了空集是任何集合的子集,元素与集合的关系,并集的定义及运算,补集的运算,考查了推理能力和计算能力,属于基础题.4.解析:先求集合N,再判断集合间的关系 详解:N =x∈R|x 2=x}=0,1},M =x|x∈R 且0≤x≤1},∴N M.故选:B 点睛:本题考查集合间的关系,是基础题5.解析:根据集合A 有且仅有两个子集,由方程220ax x a ++=只有一个解求解.详解:因为集合A 有且仅有两个子集,即为∅和集合A 本身, 故集合A 中的元素只有一个, 即方程220ax x a ++=只有一个解,当0a =时,原方程为20x =,即0x =,符合题意; 当0a ≠时,令22240a ∆=-=,1a ∴=±综上,1a =-,0a =或1a =可符合题意. 故选:D. 点睛:本题主要考查集合的子集,还考查了分类讨论思想,属于基础题.6.解析:因为{}1,2,3,4,5A ⊆,所以非空集合A 可以是:{}{}{}{}{}{}{}{}{}{}{}3,1,2,1,5,2,4,4,51,2,3,1,3,5,2,3,4,3,4,5,1,2,4,5,1,2,3,4,5,故选B.7.解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题.8.解析:根据(){}3,4UA B =得到{}1,2,5A B =,故{}{}51,2,5A ⊆⊆得到答案.详解:∵{}1,2,3,4,5U =,(){}3,4U A B =,∴{}1,2,5A B =∵{}1,2B =,于是{}{}51,2,5A ⊆⊆∴集合A 可以是{}5、{}1,5、{}2,5、{}1,2,5四种情况. 故选:C 点睛:本题考查了集合的运算和子集问题,意在考查学生的计算能力.9.解析:对集合B 分成两种情况考虑,即B =∅和B ≠∅,分别求得a 的范围再取并集. 详解:当B =∅时,此时B A ⊆,所以23374a a a ->-⇒<;当B ≠∅时,因为B A ⊆,所以2337,233,463711,a a a a a -≤-⎧⎪->⇒≤<⎨⎪-<⎩; 综上所述:6a <. 故选B. 点睛:本题考查根据集合间的基本关系求参数的取值范围,求解过程中注意不等式的等号能否取到是成功解决问题的关键.10.解析:对每一个命题逐一分析判断得解. 详解:①{}10,1,2⊆是错误的,因为元素和集合之间不能用⊆连接; ②{}()00,1,2∈是错误的,因为集合之间不能用∈连接; ③0∈∅是错误的,因为不符合空集的定义;④{}{}2,0,10,1,2=是正确的,因为集合的元素是无序的,元素相同的两个集合相等. 故选:B 点睛:本题主要考查集合之间的关系,考查元素和集合之间的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.11.解析:先解分式不等式,化简集合A ,再由A B ⊆,即可列出不等式求出结果. 详解: 因为{}3322220012111xx x x A xx x x x x x x ⎧⎫⎧⎫⎧⎫---=≤=≤=≤=-<≤⎨⎬⎨⎬⎨⎬+++⎩⎭⎩⎭⎩⎭,又{}221B x a x a =-<<+,A B ⊆,所以21212a a -≤-⎧⎨+>⎩,解得112a <≤.故选:B. 点睛:本题主要考查由集合的包含关系求参数,涉及分式不等式的解法,属于基础题型. 12.13.解析:集合M 中任意元素x 满足()613212x k k =+=+-,由此可得出集合M 是集合N 的子集,即可得出结论.详解:集合M 中的任意元素x 都有()613212x k k =+=+-,由题意可知21k +为奇数 由于集合N 中的任意元素x 都有32,x k k Z =-∈ 所以M N ⊆ 故选B 点睛:本题主要考查了集合间的基本关系,属于基础题.14.解析:先列举出集合2}{01A =,,的所有真子集,再根据{}0,1,2A =,判断D 选项错误. 详解:解:因为集合2}{01A =,,的所有真子集有:∅,{0},{1},{2},{0}1,,{0,2},{1}2,, 故ABC 正确,{}0,1,2A =,所以{}0,1,2A ⊆,但不是真子集,故D 选项错误. 故选:D. 点睛:本题考查集合间的基本关系,是基础题.15.解析:分别化简两个集合,从而即可作出判断. 详解:∵{A x y ==,{B y y ==,∴[)1+A =∞,,[)0+B =∞,, ∴A B ⊆. 故选:B.16.解析:根据给定条件结合不等式恒成立即可求出a 的范围判断作答. 详解:集合{|12}A x x =<<,{|}B x x a =<,因A B ⊆, 于是得(1,2),x x a ∀∈<,因此有2a ≥, 所以a 的取值范围是2a ≥. 故选:A17.解析:根据空集是任何集合的子集,是任何非空集合的真子集判断. 详解:因为∅⊆∅,故①错;∅只有一个子集,即它本身.故②错;空集是任何集合的子集,是任何非空集合的真子集,故③错; 空集是任何非空集合的真子集,故④正确, 故选:B.18.解析:根据集合A B ⊆的关系可知集合A 为集合B 的子集,即可结合数轴求得a 的取值范围. 详解:根据题意,23{|}A x x =<<,如下图所示:若{|}B x x a =<,且A B ⊆,必有3a ≥ 则a 的取值范围是[)3,+∞ 故选:A 点睛:本题考查集合间关系的判断,对于此类问题可以借助数轴来分析,属于基础题.19.解析:A ,x∈N|x 2≤0}=0},不是空集;B ,x∈R|x 2–1=0}=–1,1},不是空集;C ,x∈R|x 2+x+1=0},因为方程x 2+x+1=0无实数解,所以集合是空集;D ,0}显然不是空集.故选C .20.解析:列举出符合条件的集合A ,即可得出答案. 详解: 满足{}{}11,2,3A⊆的集合A 有:{}1、{}1,2、{}1,3.因此,满足{}{}11,2,3A ⊆的集合A 的个数为3.故选:B. 点睛:本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.。
高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(10)(含答案及解析)
1.2 集合间的基本关系一、单选题 1.知集合,,且,则A .B .C .D .2.当集合A ,B ,C 满足A B A =,C C =B ∪时,则A 与C 之间的关系是( )A .A C =B .C A ⊆C .A C ⊆D .以上都不对3.已知非空集合P 满足:(1){1,2,3,4,5}P ⊆;(2)若a P ,则6a P -∈,符合上述要求的集合P 的个数是 A .4B .5C .7D .314.若集合{}42A x R x =∈-,集合{|23}B x R a x a =∈+,若B A ⊆,则实数a 的取值范围是.A .{}3x x >B .{}1x x ≥C .{}13x x <<D .{}13x x ≤≤5.设集合{}123,,A a a a =,记从集合A 中任取2个元素所组成的集合分别为B 1,B 2…,B n(n *∈N ),若集合B 1,B 2,…,B n 各自中的元素之和又构成集合C =1,2,5},则a 1+a 2+a 3= A .3 B .4C .5D .66.集合P=x|x<2},集合Q=y|y<1},则P 与Q 的关系为A .P ⊆QB .Q ⊆PC .P=QD .以上都不正确7.集合{}*2|log 2,M x x x N =<∈,则集合M 的真子集的个数为( )A .7B .8C .15D .168.已知集合{}2|0=-<A x x x ,{}|B x x a =<,若A B A =,则实数的取值范围是A .(]1-∞,B .()1-∞,C .[)1+∞,D .()1+∞,9.设集合{}22|0,R,R P x x y x y =+=∈∈,则下列各式中,正确的是( )A .0P =B .P =∅C .P ∅∈D .P ∅⊆ 10.已知集合{2,1}A =-,{|2}B x ax ==,若A B B =,则实数a 值集合为 A .{}1- B .{2} C .{1,2}- D .{1,0,2}- 11.已知集合{|13,}A x x x N =-<<∈,{|}B C C A =⊆,则集合B 中元素的个数为 A .6B .7C .8D .9 12.已知集合{|1}P x R x =∈≥,{}1,2Q =,则下列关系中正确的是( ) A .P Q =B .Q P ⊆C .P Q ⊆D .P Q R =13.下列命题中,正确的有( )①空集是任何集合的真子集;②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集:④如果不属于B 的元素一定不属于A ,则A B ⊆.A .①②B .②③C .②④D .③④ 14.设集合M =x|x<2 017},N =x|0<x<1},则下列关系中正确的是( )A .M∪N=RB .M∩N=x|0<x<1}C .N∈MD .M∩N=∅15.已知集合A =0,1},B =x|x ⊆A},则下列关于集合A 与B 的关系正确的是( )A .A ⊆B B .A BC .B AD .A∈B16.已知集合16M x x m m Z ⎧⎫==+∈⎨⎬⎩⎭,,123n N x x n Z ⎧⎫==-∈⎨⎬⎩⎭,,126p P x x p Z ⎧⎫==+∈⎨⎬⎩⎭,,则M 、N 、P 满足的关系是( ) A .MN PB .M N P =C .M N PD .N PM17.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A C B ⊆的集合C 的个数为 ( ) A .3 B .4 C .7 D .8 18.已知集合{1,2}A =,则集合A 的子集的个数为A .2B .3C .4D .519.已知集合A =*2|0,x x x N x -⎧⎫≤∈⎨⎬⎩⎭,{}2,B x x Z =∈,则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .5 B .6 C .7 D .8 20.设23{|}A x x =<<,{|}B x x m =<,若A B ⊆,则实数m 的取值范围是( )A .[3,)+∞B .(3,)+∞C .(,2)-∞D .(,2]-∞参考答案一、单选题 1.C 详解:试题分析:,31A B a ⊆∴+=,解得2a =-.故C 正确. 考点:集合间的关系.2.C解析:根据集合交集和并集的运算性质,结合子集的性质进行判断即可. 详解:因为A B A =,所以有A B ⊆,又因为C C =B ∪,所以有B C ⊆,因此有A C ⊆. 故选:C 点睛:本题考查了集合交集、并集的运算性质,考查了子集的性质,属于基础题. 3.C解析:根据题意可知,集合P 中,元素1和5同时存在,2和4同时存在,3可单独存在,因此根据条件列出符合题意的集合即可. 详解:非空集合{1,2,3,4,5}P ⊆,且若a P ,则6a P -∈,∴满足要求的集合P 有:{1,5},{2,4},{3},{1,5,3},{2,4,3},{1,5,2,4},{1,5,2,4,3},共有7个. 故选:C. 点睛:本题考查了集合子集的求法,难度不大. 4.B解析:解绝对值不等式求出A ,对集合B 分类讨论,构造关于a 的不等式组,解不等式组可得答案.详解:集合{}[]422,6A x R x =∈-=,若集合B 为空集,则23a a >+ ,即3a >时满足题意; 若集合B 不为空集,可得23aa +,即3a ,由B A ⊆得2236a a ⎧⎨+⎩解得[1a ∈,3], 综合两种情况可知[)1,a ∈+∞, 故选:B. 点睛:本题考查的知识点是集合的包含关系判断及应用,其中根据集合包含的定义,构造关于a 的不等式组,是解答的关键. 5.B解析:根据题意可得集合A 所有的二元素子集有3个,即{}12,a a ,{}13,a a ,{}23,a a ,根据题设条件可令121323125a a a a a a +=⎧⎪+=⎨⎪+=⎩,即可求得123a a a ++的值.详解:∵集合{}123,,A a a a =∴集合A 所有的二元素子集有3个,即{}12,a a ,{}13,a a ,{}23,a a∴由题意可令121323125a a a a a a +=⎧⎪+=⎨⎪+=⎩,即()12328a a a ++=∴1234a a a ++= 故选:B. 点睛:本题是一道考查集合子集的新定义题型,解题的关键是写出集合A 的所有二元素子集. 6.B 详解:试题分析:满足1y <的元素都在2x <的范围内,反之不成立,所以Q ⊆P 考点:集合的子集关系7.A解析:解对数不等式得{}1,2,3M =,根据集合元素的个数可得真子集个数. 详解:由2log 2x <,得04x <<,又*x ∈N , 所以集合{}1,2,3M =, 集合M 的真子集有3217-=个. 故选:A. 点睛:本题考查集合真子集的个数,关键是要确定集合元素的个数,利用子集个数公式2n 求得真子集个数,是基础题. 8.C解析:因为{}2|0A x x x =-<(0,1)= ,又A B A ⋂=,所以A B ⊆,因此1a ≥ ,选C. 9.D解析:由 x 2+ y 2=0可得P=0},从而可得正确选项. 详解:由 x 2+ y 2=0,可知 x=0且 y=0,所以 P=0},∴ P ∅⊆ .故选D. 点睛:本题考查空集的定义和集合间的基本关系,理解空集是任何集合的子集是解题的关键,属基础题. 10.D解析:A B B ⋂=,可以得到B A ⊆,求出集合A 的子集,这样就可以求出实数a 值集合. 详解:A B B B A ⋂=⇒⊆,{}2,1A =-的子集有{}{}{},2,1,2,1φ--, 当B φ=时,显然有0a =;当{}2B =-时,221a a -=⇒=-;当{}1B =时,122a a ⋅=⇒=;当{}2,1B =-,不存在a ,符合题意,实数a 值集合为{}1,0,2-,故本题选D. 点睛:本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论. 11.C解析:化简集合A ,求出集合A 的所有子集,即可得到集合B 元素的个数.详解:{}{|13,}0,1,2A x x x N =-<<∈= C A ⊆∴集合C 可能为:∅,0,{}1,{}2,{}0,1,{}0,2,{}1,2,{}0,1,2则集合B 中元素个数为8个 故选:C 点睛:本题主要考查了子集的个数,属于基础题. 12.B解析:本题考查的是两个集合之间的关系,题意中集合Q 中的元素较少,可以从集合Q 中的元素进行分析判断,判断集合Q 中的元素是否在P 中,从而得出结果. 详解:解:{|1}P x R x =∈≥1P ∴∈,2P ∈,且P Q ≠Q P ∴⊆故本题正确选项:B 点睛:本题考查了集合之间的运算,求解问题的方法可以用数轴法、列举法等等. 13.C解析:运用空集的性质,即可判断①;运用集合的传递性,即可判断②; 由集合的真子集的个数,即可判断③;由韦恩图,即可判断④. 详解:①空集是任何集合的子集,是任何非空集合的真子集,故①错误;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错误;④由韦恩图易知④正确.故选C. 点睛:本题考查集合的概念,主要是空集和子集、真子集的性质,考查判断能力,属于基础题. 14.B解析:集合{|2?017}{|01}M x x N x x =,=<<<, {}{}|2?017|01N M N x x M M N x x ⋃<=⋂<<==,=,所以N M ⊆. 故选B.15.D解析:根据集合B 的元素的意义,列举出集合A 的所有子集,得到集合B ,即可判定A 与B 的关系. 详解:因为x ⊆A ,所以B =∅,0},1},0,1}}, 则集合A =0,1}是集合B 中的元素, 所以A∈B, 故选:D. 16.B解析:先将集合M 、N 、P 化简成统一形式,然后判断即可. 详解:解:1613?21666m m M x x m m Z x x m Z x x m Z ⎧⎫⎧⎫⎧⎫++==+∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,,,, ()3111312366n n k N x x n Z x x n Z x x k Z ⎧⎫-+⎧⎫⎧⎫+⎪⎪==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎪⎪⎩⎭,,,,131266p p P x x p Z x x p Z ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,,,所以M N P =. 故选:B . 17.C解析:化简集合A ,B ,根据条件A C B ⊆确定集合的个数即可.详解:因为{}2320{1,2}A xx x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣, 且A C B ⊆,所以集合C 的个数为3217-=, 故选:C 点睛:本题主要考查了集合的子集,真子集的概念,考查了子集个数计算式,属于中档题. 18.C解析:根据集合中的元素个数可求得子集个数.详解:集合A 中包含2个元素 ∴集合A 的子集个数为:224=个 故选:C 点睛:本题考查集合子集个数的求解,关键是明确对于包含n 个元素的集合,其子集个数为2n 个. 19.C解析:分别求出,A B 对应的集合,再根据A C B ⊂⊆可得C 中元素需满足的关系再求解即可. 详解:{}*2|0,1,2x A x x N x -⎧⎫=≤∈=⎨⎬⎩⎭,{}{}2,0,1,2,3,4B x Z =∈=,又A C B ⊆⊆,故C 中一定有元素1,2,可能有元素0,3,4且至少有一个.故满足条件的集合A C B ⊆⊆C 的个数与{}0,3,4的非空子集的个数相同,为3217-=个.故选:C 点睛:本题主要考查了集合间的基本关系与非空子集的个数问题,属于中等题型. 20.A解析:由A B ⊆得到关于m 的不等式,能求出实数m 的取值范围. 详解:解:{|23}A x x =<<,{|}B x x m =<,A B ⊆,3m ∴≥,∴实数m 的取值范围是[)3,+∞.故选:A . 点睛:本题考查实数的取值范围的求法,考查元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(59)(人教A版,含答案及解析)
1.2 集合间的基本关系1.已知集合{|12}{|35}A x a x a B x x =-≤≤+=<<,,则能使B A ⊆成立的实数a 的取值范围是 A .34a ≤≤B .34a <<C .3a <D .4a >2.欧拉公式:10i e π+=因为非常简洁地融合了数学中最基本的五个常数(自然指数的底e ,圆周率π,虚数单位i ,自然数单位1,以及0)而被人们称为世间最美数学公式,由公式中数值组成的集合{},,,1,0A e i π=,则集合A 不含无理数的子集共有 A .8个B .7个C .4个D .3个3.已知集合(){}|lg 3A x y x ==+,{}2B x x =≥,则下列结论正确的是 A .3A -∈ B .3B ∉ C .A B B = D .A B B ⋃= 4.设{|4}P x x =<,2{|4}Q x x =<,则( )A .P Q ⊆B .Q P ⊆C .R P C Q ⊆D .R Q C P ⊆5.已知集合1282x M x ⎧⎫=∈<<⎨⎬⎩⎭Z ,{}14N x x =-≤≤,则M N ⋂中元素个数为 A .1B .3C .6D .无数个6.(四川省成都市第七中学2018届高三上学期一诊)已知集合{|},A x x a =<2{|320},B x x x =-+<若,A B B ⋂=则实数a 的取值范围是A .1a <B .1a ≤C .2a >D .2a ≥7.已知集合b}=x∈R|ax 2-4x+1=0, a,b ∈R }则a+b = A .0或1B .92C .14D .14或928.设非空集合A, B 满足A B, 则A .x 0∈A, 使得x 0B B .x∈A, 有x∈BC .x 0∈B, 使得x 0 AD .x∈B, 有x∈A 9.已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,)C .22∞(-,)D .22]∞(-, 10.集合,则的关系是 ( )A .B .C .D .P Q φ=11.下列各组集合中,M 与N 表示同一集合的是( ) A .M =∅,{0}N =B .{2,3}M =,{(2,3)}N =C .{1}M xy x ==+∣,{1,}N y y x x R ==+∈∣ D .{}2(,)5M x y y x ==-+∣,{}25N y x ==-+ 12.已知{}20x xx a ∅-+=,则实数a 的取值范围是( )A .14a a ⎧⎫<⎨⎬⎩⎭ B .14a a ⎧⎫≤⎨⎬⎩⎭C .14a a ⎧⎫≥⎨⎬⎩⎭D .14a a ⎧⎫>⎨⎬⎩⎭13.已知集合{}*N 0A x x y =∈=≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1B .3C .6D .1014.以下四个关系:∅∈0},0∈∅,∅}⊆0},∅≠⊂0},其中正确的个数是( ) A .1B .2C .3D .415.已知集合0,,a A a b b ⎧⎫=+⎨⎬⎩⎭,{}0,1,1B b =-,(a ,b R ∈),若A B =,则2+a b =( ) A .2-B .2C .1-D .116.已知集合{P x y ==,集合{Q y y ==,则P 与Q 的关系是( ) A .P Q = B .P Q C .P Q D .P Q =∅17.已知2{|4,R}M y y x x ==-∈,{|24}P x x =≤≤,则M 与P 的关系是A .M P =B .M P ∈C .MP =∅D .M P ⊇18.已知{1,2}A =,{1,2,6,7,8}B =,且A C B ⊆,满足这样的集合C 的个数( ) A .6B .7C .8D .919.已知集合{|}A x y x =∈Z ,则集合A 的真子集的个数为( ) A .1B .2C .3D .420.满足条件{},,M a b c φ≠⊂⊆的集合M 的个数为 A .6 B .7 C .8 D .9参考答案1.A 详解:试题分析:由B A ⊆可得13{3425a a a -≤∴≤≤+≥考点:集合的子集关系2.A 3.C 详解:试题分析:(){}{}|lg 3|3A x y x x x ==+=>-,{}|2B x x =≥,故A 选项错误,B 选项错误,B A ⊆,所以A B B ⋂=,故C 选项正确,A B A ⋃=,D 选项错误,故选C.考点:1.函数的定义域;2.集合间的包含关系4.B 5.B 6.D 7.D 8.B 详解:A B ⊆意味着集合A 中的元素都是集合B 中的元素,由此判断选B9.A 10.C 详解:试题分析:两集合化简得{}{}|1,|0P x x Q y y =≥-=≥∴考点:1.集合子集关系;2.函数的定义域值域11.C 12.B 13.B 14.A 15.D16.B 17.D 18.B 19.C 20.B 详解:试题分析:{},,a b c 的非空子集有3217-=个,故选B . 考点:集合的关系(子集).【参考解析】1.2.解析:依题意,即求集合{},1,0i 的子集个数,根据含有n 个元素的集合的子集个数为2n 计算可得. 详解:解:{},,,1,0A e i π=,e 、π为无理数则求集合A 不含无理数的子集个数,即求集合{},1,0i 的子集个数. 因为集合{},1,0i 中含有3个元素,则其子集有328=个 故选:A 点睛:本题考查集合的子集个数的计算,属于基础题. 3.4.解析:24222x x x <⇒<⇒-<<,即{|22}Q x x =-<<.Q P ∴⊆详解:24222x x x <⇒<⇒-<<,即{|22}Q x x =-<<.Q P ∴⊆.故B 正确.考点:集合间的关系.5.解析:求出集合M ,利用交集的定义得M N ⋂,即可得到结论. 详解:由题意得,{}{}128|130,1,22xM x x Z x ⎧⎫=∈<<=∈-<<=⎨⎬⎩⎭Z ,{}14N x x =-≤≤,所以{}0,1,2M N =,即M N ⋂中元素的个数是3.故选:B. 点睛:本题考查了交集的元素,求出不等式解集中的整数解确定出两集合是解题的关键,属于基础题.6.解析:集合{}{}{}2|,|320|12A x x a B x x x x x =<=-+<=<<,,A B B B A ⋂=∴⊆,则2a ≥,故选D .7.解析:解:因为b}为单元素集,说明集合x∈R|ax 2-4x+1=0, a,b ∈R },也只有一个元素为b ,即方程有两个等根,且为b ,故16- 4a=0,a=4,b=1/2,或者a=0,x=1/4=b,选项为D 8.9.解析:先计算集合A 和集合B ,再根据A B ⊆关系解得答案. 详解:{}{}3log (2)2211A x x x x =-≤=<≤{}202m B x x m x x ⎧⎫=->=>⎨⎬⎩⎭A B ⊆,则2,42mm ≤≤ 故选A 点睛:本题考查了集合的包含关系,属于基础题型. 10.11.解析:根据两个集合相等即集合中的所有元素相同可判断. 详解:对于A ,{}0∅≠,M N ∴≠,故A 错误;对于B ,{2,3}M =是数集,{(2,3)}N =是点集,M N ∴≠,故B 错误;对于C ,{1}M xy x R ==+=∣,{1,}N y y x x R R ==+∈=∣,M N ∴=,故C 正确; 对于D ,{}2(,)5M x y y x ==-+∣是点集,{}25N y x ==-+不是点集,M N ∴≠,故D 错误.故选:C. 点睛:本题考查了相等集合的判断,属于基础题.12.解析:根据题意知,方程20x x a -+=有实数根,140a ∴∆=-≥解出即可. 详解:{}20x xx a ∅-+=,∴方程20x x a -+=有实数根,140a ∴∆=-≥,解得14a ≤.故选B. 点睛:本题主要考查一元二次方程有解的条件应用.13.解析:将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.详解:解:根据题意将x 22x x =+ 继续平方整理得:()2224820y xy x x -+-=,故该方程有解. 所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤, 因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件; 当3x =时,242490y y -+=,方程有解,满足条件; 当4x =时,28160y y -+=,方程有解,满足条件; 故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素, 所以B 集合可以是{}2,3,{}2,4,{}3,4. 故选:B. 点睛:本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.14.解析:根据集合的定义及包含关系的相关知识,判断空集与集合的关系. 详解:集合与集合间的关系是⊆,因此∅∈0}错误;∅}表示只含有一个元素(此元素是∅)的集合,所以∅}⊆0}错误;空集不含有任何元素,因此0∈∅错误;∅≠⊂0}正确.因此正确的只有1个. 故选:A.15.解析:根据A B =,得到两类情况,解方程组,然后检验是否满足题意,即可得到结果. 详解:∵集合0,,a A a b b ⎧⎫=+⎨⎬⎩⎭,{}0,1,1B b =-,且A B =,∴1,1a a b b b +=-=,或1,1a a b b b+==-, 先考虑1,1aa b b b+=-=,解得13a b ==,此时20,,13A ⎧⎫=⎨⎬⎩⎭,20,,13B ⎧⎫=⎨⎬⎩⎭,满足题意, ∴21a b +=;再考虑1,1a a b b b+==-,解得0,1a b ==, 此时{}0,1,0A =,{}0,0,1B =,不满足题意, 综上,21a b += 故选:D16.解析:分别对集合P 和集合Q 进行化简,然后根据它们所表示的范围,判断出这两个集合的关系,得到答案. 详解:集合{P x y ==,表示函数y =x 的取值范围,10x +≥,得1x ≥-[)1,P =-+∞集合{Q y y ==,表示函数y =y 的取值范围,[)0,Q =+∞所以可得集合P 和集合Q 的关系为P Q , 故选B 项. 点睛:本题考查集合与集合的关系,属于简单题.17.解析:先求出M 的解集,再判断即可. 详解:2{|4,R}M y y x x ==-∈表示函数24,R y x x =-∈的值域,即[)4,-+∞.又[){|24}4,P x x =≤≤-⊆+∞,故M P ⊇ 故选:D 点睛:本题主要考查二次函数的值域与集合间的基本关系,属于基础题型.18.解析:先判断出C 中必有的元素,余下元素构成的集合为{}6,7,8的非空子集,利用非空子集个数的计算方法可得满足条件的C 的个数. 详解:因为A C ,故1,2C C ∈∈且A C ,又C B ⊆,故C 中除了1,2这两个元素,余下元素构成的集合为{}6,7,8的非空子集, 故满足条件的集合C 的个数为3217-=, 故选:B. 点睛:本题考查集合的包含关系及非空子集的个数计算,注意根据包含关系明确集合中哪些元素是明确的,再找出不确定的元素满足的条件,另外,要掌握有限集的子集(非空子集、真子集、非空真子集等)个数的计算公式.19.解析:由题可得,(1)(2)0x x --≥,结合Z x ∈可求出集合A ,进而可求出集合A 的真子集的个数. 详解:由题意,(1)(2)0x x --≥,解得12x ≤≤,又因为Z x ∈,所以1x =或2x =, 故{1,2}A =,则集合A 的真子集的个数为2213-=. 故选:C. 点睛:集合A 有n 个元素,其子集有2n 个,真子集有21n -个. 20.。
高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(49)(含答案及解析)
1.2 集合间的基本关系一、单选题1.集合{}(,)0,C x y y x =-=集合11(,),222y x D x y y x ⎧⎫⎧=+⎪⎪⎪=⎨⎨⎬⎪⎪⎪=-⎩⎩⎭则集合,C D 之间的关系为() A .D C ∈ B .C D ∈ C .C D ⊆ D .D C ⊆2.有下列四个命题:①最小的自然数是0;②空集是任何集合的子集.③若a Q ∈,则a R ∈;④方程212x x +=的解集可表示为{}1,1.其中正确命题的个数为A .0B .1C .2D .3 3.下面四个关系中正确的是( )A .{}0φ∈B .{}a a ∉C .{}00⊆D .{}{},,a b b a ⊆ 4.集合{}2,1,2,3A =-的真子集个数为( )A .16B .15C .14D .135.满足{2018}A ⊆≠⊂{2018,2019,2020}的集合A 的个数为 A .1 B .2 C .3 D .46.已知集合{}{}22011A x x x B x x =--<=-<<,则( )A .AB ⊆ B .B A ⊆C .A B =D .A B =∅7.已知集合{}27A x x =-≤≤,{}121B x m x m =+<<-,若A B A ⋃=,则实数m 的取值范围是A .[]3,4-B .()3,4-C .()2,4D .(],4-∞8.下列四个命题:(1)空集没有子集;(2)空集是任何一个集合的真子集;(3)φ =0};(4)任何一个集合必有两个或两个以上的子集.其中正确的个数有个A .0B .1C .2D .49.设)(1,2A =,](,B a =-∞,若A 是B 的真子集,则实数a 的取值范围是A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 10.{}{}21,4,,1,A x B x ==且B A ⊆,则x =A .2B .2或-2C .0或2D .0或2或-211.设集合{1,0,1}A =-,2{,}B a a =,则使B A ⊆成立的a 的值是( )A .1-B .0C .1D .1-或1 12.已知集合{12},{01}A x x B x x =-<<=<<∣∣,则( ) A .A B ≠⊃ B .A B ≠⊂ C .A B =D .A B ⊆ 13.下列表示方法正确的是( ) A .3∈[0,3) B .0 ⊆[0,3)C .1∈[0,3)D .{2}∈[0,3) 14.下列关于空集∅的叙述:①0∈∅;②{}∅∈∅;③{}0∅=;④满足{}{}1,21,2,3,4A ⊆的集合A 的个数是4个;正确的个数为( )A .1B .2C .3D .4 15.已知集合2{|320R}A x x x x =-+=∈,,{|06N}B x x x =<<∈,,则满足条件A C B ⊆⊆的集合C 的个数为( )A .3B .4C .8D .1616.已知集合{},A a b =,那么集合A 的所有子集为( )A .1B .2C .3D .417.下列说法正确的有(1)很小的实数可以构成集合;(2)集合2{|1}y y x =-与集合2{(,)|1}x y y x =-是同一个集合; (3) 3611,,,||,0.5242-这些数组成的集合有5个元素;(4)任何集合至少有两个子集. A .0个 B .1个 C .2个 D .3个18.已知集合2560,{|}M x x x =--≤1,16x N y y x ⎧⎫⎪⎪⎛⎫==≥-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则( ) A .M N ⊆ B .N M ⊆ C .M N D .()R M C N ⊆19.集合{}|212P x N x =∈-<-<的子集的个数是( )A .4B .8C .16D .3220.如果,那么 A .B .C .D .参考答案一、单选题1.D 解析:由11222y x y x⎧=+⎪⎨⎪=-⎩,得:11x y =⎧⎨=⎩,即(){}1,1D =,而()1,1C ∈ ∴D C ⊆故选:D2.D解析:①根据自然数的定义判断;②根据空集和集合的包含关系来判断;③根据实数和有理数的关系判断;④根据集合的特性来判断.详解:①自然数是非负整数,正确;②空集是任何集合的子集,正确;③是有理数,当然是实数,正确;④集合中的有元素有互异性的特点,错误.故选D.点睛:本题考查集合的概念及性质,以及对空集的理解,是基础题3.D解析:利用属于、不属于以及子集的定义逐一判断即可.详解:因为集合与集合之间不能用属于符号,故A 错;因为a 是集合{}a 的元素,故B 错;因为元素与集合之间不能用包含于符号,故C 错;根据子集的定义可知{}{},,a b b a ⊆正确,故选:D.点睛:本题主要考查元素与集合,集合与集合之间的关系,属于基础题.4.B解析:根据集合真子集的计算公式,直接得出结果.详解:集合{}2,1,2,3A =-的真子集个数为42115-=.故选:B.点睛:本题主要考查求集合的真子集个数,属于基础题型.5.C解析:根据子集的定义可知集合A 中一定含有2018,且A 不等于{}2018,2019,2020,利用列举法可得结果.详解:因为{}2018A ⊆ ≠⊂ {}2018,2019,2020, 所以A 中一定含元素2018,且A 不等于{}2018,2019,2020.得{}2018,2019A =或{}2018,2020A =或{}2018A =,即A 的个数为3,故选C .点睛:本题主要考查子集、真子集的定义、元素和集合的关系等知识,意在考查学生的逻辑思维能力以及灵活应用所学知识解答问题的能力,属于中档题.6.B解析:先化简集合A ,再判断集合间的关系.详解: 集合{}220A x x x =--<=x -1<x<2},已知{}11B x x =-<<故 B A ⊆,故选B点睛:判断集合间关系时,通常要先化简集合,然后可借助数轴、韦恩图或直接判断集合间的关系.7.D解析:A B A ⋃=可得B A ⊆,由{}121B x m x m =+<<-可判断,应对集合B 进行分类讨论,分为B 不是空集与B 是空集两种情况,再结合具体条件进行判断,求出参数m详解:A B A =,B A ∴⊆.①若B 不为空集,则121m m +<-,解得2m >.{}27A x x =-≤≤,{}121B x m x m =+<<-12m ∴+≥-,且217m -≤,解得34m -≤≤.此时24m <≤.②若B 为空集,则121m m +≥-,解得2m ≤,符合题意.综上,实数m 的取值范围为(],4-∞.答案选D点睛:本题考查根据集合的子集的运算求解参数问题,易错点为若B A ⊆,一定要根据两种基本情况讨论:①B =∅,②B 不是空集;情况①解题时往往容易忽略8.A解析:根据空集的定义:不含任何元素的集合;空集的性质:空集是任何集合的子集,是任何非空集合的真子集,即可判断对错选出答案.详解:空集是任何集合的子集,是任何非空集合的真子集,故(1)、(2)错又空集中不含任何元素,{}00∈ ,故(3)错误空集只有空集一个子集,故(4)错综上所述正确的个数为0个故选A点睛:本题考查空集的定义:不含任何元素的集合;与空集的性质:空集是任何集合的子集,是任何非空集合的真子集,属于基础题.9.A解析:根据集合A 是集合B 的真子集,求得实数a 的取值范围.详解:由于)(1,2A =,](,B a =-∞,且A 是B 的真子集,所以2a ≥.故选A.点睛:本小题主要考查根据集合的包含关系求参数的取值范围,属于基础题.10.D详解:根据已知条件,24x =或2,2,2,0x x x =∴=-或11x =时不满足集合元素的互异性,应舍去,0,2,x ∴=或2-故答案选D11.A解析:根据集合A ,B ,以及B ⊆A 即可得出211a a =-⎧⎨=⎩,从而求出a =﹣1. 详解:解:∵A=﹣1,0,1},B =a ,a 2},且B ⊆A ;∴211a a =-⎧⎨=⎩ ∴a=﹣1.故选:A .点睛:本题考查列举法的定义,集合元素的互异性,以及子集的定义,属于基础题.12.A解析:由真子集的定义可得结果.详解:显然,x B ∀∈,都有x A ∈;0x A ∃∈,但0x B ∉. 所以集合B 是集合A 的真子集.故选:A.13.C解析:由元素与集合的关系、集合与集合的关系的表示符号判断即可.详解:3[0,3)∉,故A 错误;0[0,3)∈,故B 错误;1[0,3)∈,故C 正确;{2}[0,3)⊆,故D 错误.故选:C.点睛:本题考查元素与集合、集合与集合关系的符号表示,属于基础题.14.A解析:利用集合与元素的关系,以及集合与集合的关系,逐一判断4个命题即可. 详解:对于①:∅不含任何元素,0∉∅,所以①不正确;对于②:{}∅是以∅作为元素的集合,所以{}∅∈∅正确,所以②正确;对于③:∅不含任何元素,而{}0的元素是0,所以两者不相等,所以③不正确; 对于④:因为{}{}1,21,2,3,4A ⊆,所以集合A 中必有1和2,可能含有3或4,所以{}{}{}1,2,1,2,3,1,2,4A =共3个,所以④不正确.所以正确的只有1个,故选:A点睛:本题主要考查了元素与集合、集合与集合之间的关系,考查了子集和真子集的定义,属于基础题.15.C解析:先求出集合A,B ,根据A C B ⊆⊆可得集合C 的个数.详解:{}2{|320}1,2A x x x x R =-+=∈=,{}{|06}1,2,3,4,5B x x x N =<<∈=,由A C B ⊆⊆,则集合C 中必有元素1,2,而元素3,4,5可以没有,可以有1个,或2个,或3个.即满足条件的集合C 为:{}1,2,{}1,23,,{}1,24,,{}1,25,,{}1,234,,, {}1,245,,,{}1,25,3,,{}1,25,4,3,共8个 故选: C16.D解析:按照子集的定义,写出集合A 的子集即可.详解:集合{},A a b =的子集分别是φ,{}a ,{}b ,{}ab ,共四个,故选:D.点睛:本题考查集合的子集个数,属于基础题.17.A解析:利用集合元素的特征,集合中元素的含义,子集的定义,判断命题的子集即可. 详解:(1)很小的实数不满足集合中元素的确定性,显然(1)不正确.(2)集合y|y =x 2﹣1}与集合(x ,y )|y =x 2﹣1}不是同一个集合,前者是函数的值域,后者是点的集合;所以不正确.(3)不正确;因为3624=,10.52-=,集合中的元素是互异的, 所以说36110.5242-,,,,这些数组成的集合有5个元素不正确, (4)例如空集,只有一个子集.所以任何集合至少有两个子集是不正确的;故选:A .点睛:本题考查命题的真假,集合概念的理解与应用,是基本知识的考查.18.B解析:求出集合M ,N ,然后判断M ,N 的关系即可.详解:∵M=x|﹣1≤x≤6},N =y|0<y≤6},∴N ⊆M .故选:B .点睛:本题考查了描述法的定义,一元二次不等式的解法,指数函数的值域和单调性,考查了计算能力,属于基础题.19.B解析:化简集合P 得到其元素个数,然后根据公式2n 计算可得结果.详解:因为{}|212P x N x =∈-<-<{|13}{0,1,2}x N x =∈-<<=,所以其子集个数为328=个.故选:B.点睛:本题考查了求集合的子集个数,属于基础题.20.D解析:集合A中包含数字0,所以结合集合间的关系可知正确.。
1.1.2集合间的基本关系附答案教师版
1.1.2集合间的基本关系一、单选题1.集合A={x∈N|-1<x<4}的真子集个数为()A.8B.15C.16D.17【答案】B【解析】【解答】由题意,集合={∈U−1<<4}={0,1,2,3},所以集合的真子集的个数为24−1=15个.故答案为:B.【分析】求得集合={0,1,2,3},根据集合真子集个数的计算方法,即可求解. 2.设,∈,集合={1,+s V,={0,,V,若=,则−=()A.2B.−1C.1D.−2【答案】A【解析】【解答】由已知,≠0,故+=0,则=−1,所以=−1,=1.故答案为:A【分析】由已知集合相等=列式,得到=−1,=1,即可求出b-a的值.3.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9【答案】C【解析】【解答】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.【分析】依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.4.若集合={∈b−1<<2},则A的真子集个数为()A.1B.2C.3D.4【答案】C【解析】【解答】因为集合={∈b−1<<2},所有集合={0,1},所以A的真子集个数为:22−2=3。
故答案为:C【分析】利用集合A的定义求出集合A,再利用真子集的定义,从而求出集合A的真子集的个数。
5.下列各组两个集合A和B表示同一集合的是()A.={V,={3.141 59}B.={2,3},={(2,3)}C.={1,3,V,={s1,|−3|}D.={U−1<≤1,∈V,={1}【答案】C【解析】【解答】A选项中集合A中的元素为无理数,而B中的元素为有理数,故≠HB选项中集合A中的元素为实数,而B中的元素为有序数对,故≠HD选项中集合A中的元素为0,1,而B中的元素为1,故≠.故答案为:C.【分析】两个集合相等,必须是两个集合的元素完全相同才行,观察各选项中两个集合的元素是不是完全相同得到正确选项.6.已知集合={∈∗|0≤<2},则集合的子集的个数为()A.2B.3C.4D.8【答案】A【解析】【解答】={∈∗|0≤<2}={1},则集合的子集的个数为2.故选:A.【分析】根据已知条件,求出={1},再根据子集的含义得出答案.7.已知集合P={-1,0,1,2},Q={-1,0,1},则()A.B.C.D.【答案】C【解析】【解答】集合P={-1,0,1,2},Q={-1,0,1},可知集合Q中的元素都在集合P中,所以Q⊆P.【分析】根据P和Q中的元素,判断两集合的关系即可.8.下列各组中的两个集合和表示同一集合的是()A.={V,={3.1415926}B.={0,1},={(0,1)}C.={∈U2=1},={0,1}D.={∈∗|−1<≤1},={1}【答案】D【解析】【解答】A选项,集合中元素为无理数,中元素为有理数,故≠;B选项,集合中元素为实数,中元素为有序数对,故≠;C选项,集合中元素为-1,1,中元素为0,1,故≠.故答案为:D.【分析】两个集合是同一集合必须所有元素完全相同才行.9.已知集合A={x∈Z|x2+x-2<0},则集合A的一个真子集为()A.{x|-2<x<0}B.{x|0<x<2}C.{0}D.{Ø}【答案】C【解析】【解答】解不等式得-2<x<1因为x∈Z所以x=-1,0所以集合A的真子集为,{−1},{0},{−1,0}故答案为:C【分析】计算出集合A,结合子集的写法,即可得出答案。
1.1.2 集合间的基本关系
-
[例3]
已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3}.若
B⊆A,求实数a的取值范围. [解] 当B=∅时,只需2a>a+3,即a>3;
当B≠∅时,根据题意作出如图所示的数轴,
a+3≥2a, 可得 a+3<-1
a+3≥2a, 或 2a>4,
解得a<-4或2<a≤3. 综上可得,实数a的取值范围为{a|a<-4或a>2}.
再来观察一下(1)、(2):
(1)A={1,2,3} ,B={1,2,3,4,5}
(2)A={高一1班全体男生} B={高一1班全体学生}
问题:集合B中的元素与集合A有什么关系? 在(1)中集合B中的元素1,2,3都在集合A中,但 元素4,5不在集合A中. 在(2)中集合B中的元素全体男生都在集合A中, 但元素全体女生不在集合A中.
2.利用集合的包含关系求参数
[典例]
已知集合A={x|-2≤x≤5},B={x|m-6≤x≤2m-
1},若A⊆B,求实数m的取值范围.
[解 ] ∵A⊆B, m>-5, 解得m≤4, m≥3,
2m-1>m-6, ∴m-6≤-2, 2m-1≥5,
故3≤m≤4.∴m的取值范围是{m|3≤m≤4}.
2.已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四 边形},那么A,B,C之间的关系是 A.A⊆B⊆C C.AB⊆C B.B⊆A⊆C D.A=B⊆C ( )
解析:集合A,B,C关系如图.
答案:B
3.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m= ________.
[多维探究] 1.本例中,若B⊆A,求实数m的取值范围.
集合间的基本关系重难点题型(解析版)
睯 1,
M={x|y=x2+1}=R,
所以 P⊊M,
故选:D.
【点睛】本题考查了集合的表示及函数的定义域及值域,属简单题
【练 2.2】若集合 M={x||x|≤1},N={y|y=x2,|x|≤1},则( )
A.M∩N=(0,1]
B.M⊆N
C.N⊆M
D.M=N
【思路分析】分别求出集合 M,N,由此能得到 N⊆M.
【练 4.3】定义 A B {z | z xy x ,x A ,y B} .设集合 A {0 ,2} ,B {1 ,2} .(1)求集合 A B y
的所有元素之和.(2)写出集合 A B 的所有真子集.
【思路分析】(1)分别将 A,B 中的元素代入,从而求出 A⊗B 中的元素,进而求出元素之和;(2)由(1) A⊗B={0,4,5,},逐项写出即可. 【答案】解:(1)A⊗B={0,4,5,}, 集合所有元素和 9 (2){0}{4}{5}{0,4}{0,5}{ 4,5}共 7 种可能. 【点睛】本题考查了集合问题,考查了子集和真子集问题,是一道基础题.
【答案】解:A={x|x≠0},B={y|y≠0},C 表示曲线 y 1上的点形成的集合;
∴A=B. 故选:A. 【点睛】考查描述法的定义,以及集合相等的定义.
【练 3.2】已知集合 A {1 , 2} , B {x | x2 (a 1)x a 0 , a R} ,若 A B ,则 a ( )
)
42
24
A. M N
B.M⊊N
C.N⊊M
D.M∩N=∅
【思路分析】将集合 M,N 中的表达式形式改为一致,由 N 的元素都是 M 的元素,即可得出结论.
【答案】解:M={x|x t 12,k∈Z}={x|
2018版 第1章 1.1.2 集合间的基本关系
学业分层测评(三)(建议用时:45分钟)[学业达标]一、选择题1.已知集合A={x|x2-1=0},则有()A.1∉A B.0⊆AC.∅⊆A D.{0}⊆A【解析】因为A={1,-1},所以选项A,B,D都错误,因为∅是任何非空集合的真子集,所以C正确.【答案】C2.已知集合N={1,3,5},则集合N的真子集个数为()A.5 B.6C.7 D.8【解析】∵集合N={1,3,5},∴集合N的真子集个数是23-1=7个,故选C.【答案】C3.集合A={2,-1},B={m2-m,-1},且A=B,则实数m=() A.2 B.-1C.2或-1 D.4【解析】∵A=B,∴m2-m=2,即m2-m-2=0,∴m=2或-1.【答案】C4.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为()A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}【解析】集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M .故选D.【答案】 D5.集合M =,,则( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N ∅【解析】 ∵M 中:x =k 2+13=⎩⎨⎧ n +13,k =2n ,n ∈Z , n +56,k =2n +1,n ∈Z . N 中:x =k +13=n +13,k =n ∈Z ,∴N ⊆M .【答案】 C二、填空题6.设a ,b ∈R ,集合⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },则a +2b =________. 【解析】 ∵⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },而a ≠0,∴a +b =0,b a=-1,从而b =1,a =-1,可得a +2b =1.【答案】 17.已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N },用适当的符号填空:(1)A ________B ;(2)A ________C ;(3){2}________C ;(4)2________C .【解析】 集合A 为方程x 2-3x +2=0的解集,即A ={1,2},而C ={x |x <8,x ∈N }={0,1,2,3,4,5,6,7}.故(1)A =B ;(2)A C ;(3){2} C ;(4)2∈C .【答案】 (1)= (2) (3) (4)∈8.设集合A ={x |x 2+x -6=0},B ={x |mx +1=0},则满足B ⊆A 的实数m 的取值集合为________.【解析】 ∵A ={x |x 2+x -6=0}={-3,2},又∵B ⊆A ,当m =0,mx +1=0无解,故B =∅,满足条件;若B ≠∅,则B ={-3},或B ={2},即m =13,或m =-12.故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12. 【答案】 ⎩⎨⎧⎭⎬⎫0,13,-12 三、解答题9.已知A ={x|x <3},B ={x|x <a}.(1)若B ⊆A ,求a 的取值范围;(2)若A ⊆B ,求a 的取值范围.【解】 (1)因为B ⊆A ,由图(1)得a ≤3.(1)(2)因为A ⊆B ,由图(2)得a ≥3.(2)10.已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.【解】 A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有{ Δ=0, a 2-1=0,∴a =-1.(3)当B ={-4}时,有{ Δ=0, a 2-8a +7=0,无解.(4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.[能力提升]1.已知集合A 满足{1,2}⊆A ⊆{1,2,3,4},则集合A 的个数为( )A .8B .2C .3D .4【解析】 由题意,集合A 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.【答案】 D2.已知集合M ={x ∈Z |1≤x ≤m },若集合M 有4个子集,则实数m =( )A .1B .2C .3D .4【解析】 根据题意,集合M 有4个子集,则M 中有2个元素,又由M ={x ∈Z |1≤x ≤m },其元素为大于等于1而小于等于m 的全部整数,则m =2.【答案】 B3.已知∅ {x |x 2-x +a =0},则实数a 的取值范围是________.【解析】 ∵∅ {x |x 2-x +a =0},∴Δ=(-1)2-4a ≥0,∴a ≤14.【答案】 ⎩⎨⎧ a ⎪⎪⎪⎭⎬⎫a ≤144.已知集合A ={x |-3≤x ≤5},B ={x |m -2<x <2m -3},且B ⊆A ,求实数m 的取值范围.【解】 ∵集合A ={x |-3≤x ≤5},B ={x |m -2<x <2m -3},且B ⊆A , ∴当B ≠∅时,应有{ m -2≥-3, 2m -3≤5, m -2<2m -3,解得1<m ≤4.当B =∅时,应有m -2≥2m -3,解得m ≤1.综上可得,实数m的取值范围为{m|m≤4}.。
第1章 1.1.2 集合间的基本关系(解析版)
第1章 1.1.2 集合间的基本关系一.选择题1.已知集合{|6A x x =<且*}x N ∈,则A 的非空真子集的个数为A .30B .31C .62D .63【答案】A 【解析】集合{|6A x x =<且*}{1x N ∈=,2,3,4,5},故A 的子集个数为5232=,非空真子集个数为30.故选A .2.集合{|22}A x Z x =∈-<<的子集个数为A .4B .6C .7D .8【答案】D【解析】{|22}{1A x Z x =∈-<<=-,0,1}, ∴集合A 的子集个数为328=个,故选D .3.已知集合{0A =,1},{B m =,1,2},若A B ⊆,则实数m 的值为A .2B .0C .0或2D .1【答案】B 【解析】集合{0A =,1},{B m =,1,2},A B ⊆,0m ∴=, 故实数m 的值为0.故选B .4.设集合{|21M x x k ==+,}k Z ∈,{|2N x x k ==+,}k Z ∈,则A .M NB .M N =C .N MD .M N =∅【答案】A 【解析】集合{|21M x x k ==+,}{k Z ∈=奇数},{|2N x x k ==+,}{k Z ∈=整数},M N ∴.故选A .5.设a ,b R ∈,集合{1,a b +,}{0a =,b a ,}b ,则b a -= A .1B .1-C .2D .2- 【答案】C 【解析】根据题意,集合{1,,}{0,,}b a b a b a +=, 又0a ≠,0a b ∴+=,即a b =-, ∴1b a=-, 1b =;故1a =-,1b =,则2b a -=,故选C .6.已知集合22{(,)|3A x y x y =+,x N ∈,}y Z ∈,则A 中元素的个数为A .9B .8C .7D .6【答案】D【解析】x N ∈, 0x ∴=时,1y =-,0,11x =时,1y =-,0,11x >时,不存在实数解x∴共有6种故选D .7.已知集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,}y A x∈,则集合B 所含元素个数为A .3B .6C .8D .10 【答案】D 【解析】集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,}y A x∈, {(1,2)B ∴=,(1,3),(1,4),(1,5),(2,4),(1,1),(2,2),(3,3),(4,4),(5,5)}, ∴集合B 所含元素个数为10.故选D .8.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ∅,则A ≠∅.其中正确的个数是A .0B .1C .2D .3 【答案】B【解析】在①中,空集的子集是空集,故①错误; 在②中,空集只有一个子集,还是空集,故②错误; 在③中,空集是任何非空集合的真子集,故③错误; 在④中,若A ∅,则A ≠∅,故④正确.故选B .9.已知集合{2A =-,3,1},集合{3B =,2}m ,若B A ⊆,则实数m 的取值集合为A .{1}B .C .{1,1}-D . 【答案】C【解析】{2A =-,3,1},{3B =,2}m , 若B A ⊆,则21m =1m ∴=或1m =-实数m 的取值集合为{1,1}-故选C .10.满足{1}{1X ⊆⊂,2,3,4,5}的集合X 有A .15个B .16个C .18个D .31个【答案】A 【解析】根据子集的定义,可得集合X 必定含有1这个元素,可能含有2、3、4、5,但不能是{1,2,3,4,5}.因此,满足条件的集合X 有:42115-=个. 故选A .二.填空题11.已知集合{0A =,2,3},{|B x x a b ==,a ,}b A ∈,则集合B 的子集个数为 .【答案】16【解析】{0A =,2,3},{|B x x a b ==,a ,}b A ∈, {0B ∴=,4,6,9}.所以集合B 中的子集个数为4216=个.故答案为:16.12.已知集合{|13}A x x =-<<,{|}B x m x m =-<<,若B A ⊆,则m 的取值范围为 .【答案】(-∞,1]【解析】集合{|13}A x x =-<<,{|}B x m x m =-<<, 若B A ⊆,则A 集合应含有集合B 的所有元素, 讨论B 集合:(1)当B =∅时,m m -,即:0m ,(2)当B ≠∅时,则由数形结合可知:需B 集合的端点a 满足: ①m m -<,②1m --,③3m ,三个条件同时成立. 解得:01m <综上由(1)(2)可得实数m 的取值范围为:1m 即:(-∞,1]故答案为:(-∞,1]13.设集合{1A =-,}a ,{2B =,}b ,若A B =,则a b += .【答案】1【解析】根据已知条件得:2a =,1b =-,1a b ∴+=; 故答案为:1.14.设{1M =,2,3,⋯,1995},A 是M 的子集且满足条件:当x A ∈时,15x A ∉,则A 中元素的个数最多是 .【答案】1870【解析】199515133=⨯.故取出所有不是15的倍数的数,共1862个, 这些数均符合要求.在所有15的倍数的数中,215的倍数有8个,这些数又可以取出,这样共取出了1870个.即||1870A .又{k ,15}(9k k =,10,11,⋯,133)中的两个元素不能同时取出, 故||199513381870A -+=.故答案为:1870.15.设集合{|32}A x x =-,{|2121}B x k x k =-+,且A B ⊇,则实数k 的取值范围是 . 【答案】112k - 【解析】2121k k -+恒成立,B ∴≠∅, 因为A B ⊇,∴213212k k --⎧⎨+⎩, 解得112k - 故答案为:112k-. 三.解答题16.(1)已知集合2{|310A x ax x =-+=,}a R ∈,若A 中只有一个元素,求a 的取值范围.(2)集合2{|650}A x x x =-+<,{|3243}C x a x a =-<<-,若C A ⊆,求a 的取值范围.【答案】(1)0a =或94a =;(2)2a【解析】(1)若A 中只有一个元素,则方程2310ax x -+=有且只有一个实根当0a =时方程为一元一次方程,满足条件 当0a ≠,此时△940a =-=,解得:94a =0a ∴=或94a =; (2)2{|650}{|15}A x x x x x =-+<=<<, C A ⊆,当C =∅时,3243a a ->-,解得1a <;当C ≠∅时∴321435a a -⎧⎨-⎩ 解得:2a .17.已知集合2{|40}A x x =-=,集合{|20}B x ax =-=,若B A ⊆,求实数a 的取值集合.【答案】{1,1-,0}【解析】2402x x -=⇒=±,则{2A =,2}-, 若B A ⊆,则B 可能的情况有B =∅,{2}B =或{2}B =-, 若B =∅,20ax -=无解,此时0a =,若{2}B =,20ax -=的解为2x =,有220a -=,解可得1a =,若{2}B =-,20ax -=的解为2x =-,有220a --=,解可得1a =-,综合可得a 的值为1,1-,0;则实数a 的取值集合为{1,1-,0}.18.已知集合2{|3100}A x x x =--.(Ⅰ)若{|621}B x m x m =--,A B ⊆,求实数m 的取值范围; (Ⅱ)若{|121}B x m x m =+-,B A ⊆,求实数m 的取值范围.【答案】(Ⅰ)[3,4];(Ⅱ)(-∞,3].【解析】集合2{|3100}{|25}A x x x x x =--=-, (Ⅰ)A B ⊆,∴62215m m --⎧⎨-⎩,解得:34m ,∴实数m的取值范围为:[3,4];(Ⅱ)B A⊆,①当B=∅时,121m m+>-,即2m<,②当B≠∅时,12112215m mmm+-⎧⎪+-⎨⎪-⎩,解得:23m,综上所述,实数m的取值范围为:(-∞,3].。
高中数学必修一1.2 集合间的基本关系-单选专项练习(人教A版,含答案及解析)
1.2 集合间的基本关系1.已知集合{}21,A x =,则下列说法正确的是A .{}1A ∈B .1A ⊆C .1A -∉D .{}A ∅⊆ 2.已知集合16A x x k k N ⎧⎫==+∈⎨⎬⎩⎭,,123m B x x m N ⎧⎫==-∈⎨⎬⎩⎭,,126n C x x n N ⎧⎫==+∈⎨⎬⎩⎭,,则集合、、A B C 的大小关系是( )A .A CB B .C A B C .A B C =D .A B C3.设集合{21,},{2,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,则( ) A .M N B .M N ⊆C .N M ⊆D .M N ⋂=∅4.已知集合2{1,}A x x =+,{1,2,3}B =,且A B ⊆,则实数x 的值是A .-1B .1C .3D .4 5.集合{}2*70,A x x x x N =-<∈,则集合*6,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭的子集个数为( ) A .4个 B .8个 C .15个 D .16个6.集合{}{},1,,1,2,P x Q y ==其中{},1,2,3,,9x y ∈⋅⋅⋅,且P Q ⊆,把满足上述条件的一对有序整数对(),x y 作为点,这样的点的个数是 ( )A .9B .14C .15D .217.已知集合{}221,M y y x x x R ==--∈,{}24P x x =-≤≤,则集合M 与集合P 的关系是( )A .P MB .P M ∈C .M PD .M P 8.已知A B ⊆,A C ⊆,{}1,2,3,5B =,{}0,2,4,8C =,则A 可以是 A .{}1,2 B .{}2,4 C .{}2D .{}4 9.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( )A .AB = B .A BC .B AD .A B =∅10.设集合{}1,2A =,则下列正确的是A .1A ∈B .1A ∉C .{}1A ∈D .1A ⊆11.设集合{}4A x x =≤,a = )A .a A ∉B .a A ⊆C .{}a A ⊆D .{}a A ∈12.已知12|,01A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,{}|1,B y y kx x A ==+∈,若A B ⊆,则实数k 的取值范围为 A .1k =- B .1k <-C .10k -≤≤D .1k ≤- 13.设集合{}|12A x x =<≤,{}|B x x a =<,若A B ⊆,则a 的取值范围是 A .{}|1a a ≥ B .{}|1a a ≤ C .{}|2a a ≥D .{}2a a > 14.定义集合运算A◇B=c|c=a+b,a∈A,b∈B},若A=0,1,2},B=3,4,5},则集合A◇B 的子集个数为( )A .32B .31C .30D .1415.已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 的元素不都是P 的元素;②M 的元素都不是P 的元素;③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为( ).A .1个B .2个C .3个D .4个16.已知集合{}24A x x =≤<,{}3B x a x a =-<≤+,若A B A =,则a 取值范围是( )A .()2,-+∞B .(],1-∞-C .[)1,+∞D .()2,+∞17.已知集合(){},A x y y x ==,()21,45x y M x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列结论中正确的是A .M A =B .M A ⊆C .()1,1A ⊆D .M A ∈18.已知集合{}1,2,4A =,{B x x =是8的正约数},则A 与B 的关系是.A .AB = B .A BC .A BD .A B =∅19.已知集合{3A x x =>或}1x <,{}0B x x a =-<,若B A ⊆,则实数a 的取值范围为()A .()3,+∞B .[)3,+∞C .(),1-∞D .(],1-∞20.{}{}2|60,|10A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是A .11,32⎧⎫-⎨⎬⎩⎭B .110,,32⎧⎫--⎨⎬⎩⎭ C .110,,32⎧⎫-⎨⎬⎩⎭ D .11,32⎧⎫⎨⎬⎩⎭参考答案1.C详解:试题分析:集合与集合关系为“包含”、“含于”,元素与集合关系为“属于”、“不属于”,故选C.考点:元素与集合、集合与集合的关系.2.A3.B4.B5.D6.B详解:解:根据题意,若P Q ⊆,有2种情况:①、x≠y,则必有x=2,y 可取的值为3、4、5、6、7、8、9,共7种情况,即(x ,y )有7种情况,②、x=y ,此时x 、y 可取的值为3、4、5、6、7、8、9,共7种情况,即(x ,y )有7种情况,则(x ,y )有7+7=14种情况,故答案为14, 选B7.D8.C详解:∵A B ⊆,A C ⊆,∴把选项代入检验即可,只有集合{}2符合题意,故选C9.C10.A详解:试题分析:由{}1,2A =可知1,2是集合中的元素,元素与集合间的关系是∈,所以1A ∈ 考点:集合和元素的关系11.C12.D13.D详解:根据已知A B ⊆以及子集的性质可知,当2a >时,A B ⊆,故2a >,故选D.14.A15.B16.C17.B18.B19.D20.C详解:由题意{}3,2,A A B A B A =-⋃=∴⊆ 当11,0,,3,,3B m B m m φφ==≠-=-=时当时由得由112,.2m m -==-得 所以,m 的取值范围为110,,32⎧⎫⎨⎬⎩⎭【参考解析】1.2.解析:列举出集合A,B,C 即得三个集合的关系.详解: 由题得1171319=,,,,66666A x x k k N ⎧⎫⎧⎫==+∈⎨⎬⎨⎬⎩⎭⎩⎭,, 1112710={,,,,}2336366m B x x m N ⎧⎫==-∈-⎨⎬⎩⎭,,, 11271013={,,,}2663666n C x x n N ⎧⎫==+∈⎨⎬⎩⎭,,,. 所以A C B .故选A点睛:本题主要考查集合的表示和集合的关系的判断,意在考查学生对这些知识的理解掌握水平.3.解析:先判断出M 为奇数集,N 为整数集,从而可判断两者之间的关系.详解:∵集合{21,}M xx k k Z ==+∈∣,故M 为奇数集. 而{2,}N xx k k Z ==+∈∣,故N 为整数集, ∴M N ⊆.故选:B.点睛:本题考查集合的包含关系,一般根据集合元素的特征确定出两个集合的包含关系,本题属于基础题.4.解析:已知集合的元素,根据集合间的包含关系A B ⊆即可求参数详解:由A B ⊆,知21x B +∈且x B ∈经检验1x =符合题意∴1x =故选:B点睛:本题考查了集合间的基本关系,利用包含关系求参数5.解析:先求出A ,再找出A 中6的正约数,可确定集合B ,进而得到答案.详解:集合2{|70A x x x =-<,{}**}|07,{1x N x x x N ∈=<<∈=,2,3,4,5,6}*6{|,}{1B y N y A y=∈∈=,2,3,6}, 故B 有4216=个子集,故选:D .点睛:本题考查的知识点是子集与真子集,求出集合B 是解答的关键,属于基础题.6.7.解析:首先,化简集合M ,就是求解函数221y x x =--,x ∈R 的值域,然后,利用集合之间的基本关系进行判断即可.详解:解:由集合M 得2221(1)2y x x x =--=--,x ∈R2y ∴-,{|2}M y y ∴=-,{}24P x x =-≤≤,M P ∴,故选:D .点睛:本题重点考查集合之间的基本关系,属于基础题,注意落实集合M 的元素取值情形. 8.9.解析:由题意得出Z A ⊆,而集合BZ ,由此可得出A 、B 的包含关系. 详解: 由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则B Z ,因此,B A .故选:C.点睛:本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题. 10.114,依次判断选项即可. 详解:对选项A4<,所以a A ∈,故A 错误.对选项B ,⊆用于集合与集合之间,故B 错误.对选项C 4<,所以{}a A ⊆,故C 正确.对选项D ,∈用于元素与集合之间,故D 错误.故选:C点睛:本题主要考查集合间的包含关系,同时考查了元素与集合的关系,属于简单题.12.解析:首先求出集合A ,分类讨论0k =,0k <,0k >情况下的B 集合,从而求出满足A B ⊆的实数k .详解:由题可得{}12|,01|01A y y x x y y ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,当0k =时,{}{}|1,1B y y kx x A ==+∈=,不满足A B ⊆,舍去,当0k <时,{}{}|1,|11B y y kx x A y k y ==+∈=+≤≤,由于A B ⊆,所以10k +≤,解得:1k ≤-, 当0k >时,{}{}|1,|11B y y kx x A y y k ==+∈=≤≤+,由于11k +>,所以不满足A B ⊆,舍去, 综述所述,实数k 的取值范围为1k ≤-故答案选D点睛:本题考查集合间的关系,涉及一次函数的值域,属于基础题13.14.解析:∵A=0,1,2},B=3,4,5}.又∵A◇B=c|c=a+b,a∈A,b∈B},∴A◇B=3,4,5,6,7}由于集合A◇B 中共有5个元素故集合A◇B 的所有子集的个数为25=32个 故选A15.解析:根据题意,由子集的定义分析M 、P 元素的关系分析4个命题是否正确,综合即可得答案.详解:根据题意,“非空集合M 的元素都是集合P 的元素”是假命题.则其否定为真, 则非空集合M 的元素不都是集合P 的元素,据此分析4个命题:①M 的元素不都是P 的元素,正确,②M 的部分元素可以为P 的元素,不正确,③可能M 的元素都不是P 的元素,故存在x P ∈且x M ∈,不正确,④存在x M ∈且x P ∉,正确,其中正确的命题有2个,故选:B .16.解析:由条件可知A B ⊆,列不等式求a 的取值范围.详解:由A B A =知A B ⊆,故234a a -<⎧⎨+≥⎩,解得1a ≥. 故选:C .17.解析:化简集合M ,最后根据集合的相等关系、子集关系、属于关系的概念选出正确答案.详解:因为(){}21,(1,1)45x y M x y x y ⎧⎫-=⎧⎪⎪==⎨⎨⎬+=⎩⎪⎪⎩⎭,所以M A ⊆,故本题选B. 点睛:本题考查了集合表示方法中的列举法,考查了集合之间的子集关系.18.解析:化简集合B ,比较A ,B 中的元素,即可判断A ,B 的关系.详解:{|B x x =是8的正约数}{1,2,4,8}=,又集合{1,2,4}A =,A B ∴.故选B .点睛:本题考查集合的包含关系及集合的基本运算,属于基础题.19.解析:由题得{}B x x a =<,根据已知得1a ≤.详解: 由题得{}B x x a =<,因为B A ⊆,所以1a ≤.故选:D点睛:本题主要考查根据集合的包含关系求参数,意在考查学生对该知识的理解掌握水平. 20.。
高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(27)(含答案及解析)
1.2 集合间的基本关系一、单选题1.设集合1,4A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,1,24k B y y k Z ⎧⎫==-∈⎨⎬⎩⎭,则它们之间最准确的关系是( ). A .A B = B .A B ⊄ C .A BD .A B ⊆2.已知集合{}14A x x =-<<,{}B x x a =<,若A B ,则实数a 的满足( ) A .4a <B .4a ≤C .4a >D .4a ≥3.已知全集为实数集R ,集合{}22A x x =-<<,{}220B x x x =+≤ ,则()A B =R( )A .()0,2B .(]0,2C .[)0,2D .[]0,24.集合12 1M xx Z N x ⎧⎫=∈∈⎨⎬+⎩⎭∣,,则M 的非空真子集的个数是( ) A .30个 B .32个 C .62个 D .64个5.A .B .C .D .6.已知集合{}1,2,3A =,非空集合B 满足{}1,2,3A B =,则集合B 有( )个 A .3B .6C .7D .87.设集合P {m |1m 0}=-<≤,2Q {m |mx 2mx 10}=+-<对任意x R ∈恒成立,则P 与Q 的关系是( )A .P QB .Q PC .P Q =D .P Q φ⋂=8.集合2{|230,}A x x x x Z =-≤∈, {|1232,}x B x x Z =≤<∈,集合C 满足A C ⊆,则C 的个数为A .3B .4C .7D .89.已知集合M 满足{}1,2M ⊆⊆{}1,2,3,4,5,那么这样的集合M 的个数为 A .5B .6C .7D .810.已知a ,b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .1-B .0C .1D .1-或011.若x 、y R ∈,点集{(,)|||||1}M x y x y =+<,{(,)|||1,||1,||1}N x y x y x y =+<<<,2222{(,)(0.5)(0.5)(0.5)(0.5)22}P x y x y x y =-++++-,则( )A .M N P ⊂⊂B .N M P ⊂⊂C .M P N ⊂⊂D .以上皆错 12.若集合A ,B ,U 满足UA B =∅,则下面选项中一定成立的是( )A .B A ⊆B .A B U ⋃=C .U A B U ⋃=D .U B A U ⋃=13.已知集合x y z xyz M mm x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2B .3C .4D .814.已知a ∈R ,b ∈R ,若集合{}2,,1,,0ba a ab a ⎧⎫=+⎨⎬⎩⎭,则20202021a b +的值为( )A .2-B .1C .1-D .215.已知集合1{|}6A x x k k Z ==+∈,,1{|}23mB x x m Z ==-∈,,1{|}26n C x x n Z ==+∈,,则集合A B C ,,的关系是( )A .A CB B .CAB C .A C B = D .A B C ==16.已知集合{},1A x =,{},1,2,4B y =,且A 是B 的真子集.若实数y 在集合{}0,1,2,3,4中,则不同的集合{},x y 共有 A .4个 B .5个 C .6个 D .7个 17.集合A =x|0≤x<3,x∈N}的真子集的个数是( )A .7B .8C .16D .418.已知集合(){}22,2,Z,Z A x y x y x y =+<∈∈,则A 的子集的个数为( )A .8B .16C .18D .3219.下列符号表述正确的是( )A .*0N ∈B .1.732Q ∉C .{}0∅∈D .{}2x x ∅⊆≤20.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A参考答案一、单选题 1.C解析:利用列举法可判断集合A 、B 的包含关系. 详解: 由集合A 得414k x +=,k Z ∈,则73159,,,,,44444A ⎧⎫=⋅⋅⋅--⋅⋅⋅⎨⎬⎩⎭,由集合B 得214k y -=,k Z ∈,则31135,,,,,44444B ⎧⎫=⋅⋅⋅--⋅⋅⋅⎨⎬⎩⎭, 所以,A B , 故选:C . 2.D解析:根据条件A B 得出关于a 的不等式,从而可得出正确选项. 详解:{}14A x x =-<<,{}B x x a =<,且AB ,因此,4a ≥.故选:D. 点睛:本题考查利用集合的包含关系求参数,对于无限数集之间的包含关系,可结合数轴来理解,考查分析问题和解决问题的能力,属于基础题. 3.A解析:分别求出两个集合,再根据集合运算求解即可. 详解:因为()2220x x x x +=+≤,所以{}{}22020B x x x x x =+≤=-≤≤,所以{2R B x x =<-或}0x >, 又因为{}22A x x =-<<, 所以(){}()020,2R A B x x ⋂=<<= 故选:A. 点睛:本题考查集合的补集运算与交集运算,是基础题.. 4.C解析:根据集合M 的条件,确定出集合M 中元素的个数,再根据22n -计算出非空真子集的个数. 详解:x 可以取的值有:0、1、2、3、5、11,即集合M 中非空真子集的个数为622-=62. 故选:C. 点睛:本题考查了集合非空真子集的个数的求解方法,属于简单题,解题时注意准确确定出集合M 中的元素个数. 5.A 详解: 略6.C解析:由已知可得B ≠∅,且B A ⊆,根据子集定义即可求解. 详解:{1,2,3},⋃==∴⊆A B A B A ,故{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}=B 共7个, 故选:C 点睛:本题考查集合间的关系,属于基础题. 7.C解析:先分别求出集合P ,Q ,由此能求出P 与Q 的关系. 详解:集合P {m |1m 0}=-<≤,2Q {m |mx 2mx 10}=+-<对任意x R ∈恒成立,当m=0时,-1<0,满足题意,当0m ≠时,结合二次函数的性质得到210440m m m m <⎧⇒-<<⎨∆=+<⎩Q {m |1m 0}∴=-<≤. P ∴与Q 的关系是P Q =.故选C . 点睛:本题考查集合的关系的判断,考查不等式性质等基础知识,考查运算求解能力,是基础题. 8.C解析:由题意可得{}{}0,1,0,1,2,3,4A B == ,集合C A M =⋃ ,其中M 为集合{}2,3,4 的真子集,由子集个数公式可得:C 的个数为3217-= 个.选C. 9.D解析:根据子集关系可知:集合M 中一定包含元素1,2,可能包含元素3,4,5,由此可判断集合M 的个数即为集合{}3,4,5的子集个数. 详解:由题意可知:1,2M ∈且M 可能包含{}3,4,5中的元素,所以集合M 的个数即为集合{}3,4,5的子集个数,即为328=个, 故选D. 点睛:本题考查根据集合的子集关系确定集合的数目,难度较易. 10.A解析:根据集合相等则元素相同,再结合互异性,计算即可得解. 详解:由0,,1b a a ⎧⎫∈⎨⎬⎩⎭且0a ≠,则0b a=,∴0b =,于是21a =,解得1a =或1a =-. 根据集合中元素的互异性可知1a =应舍去, 因此1a =-, 故()2021202120212021101a b +=-+=-.故选:A. 11.A解析:作出集合,,M N P 表示的平面区域,可得结论. 详解:如图,集合M 表示以(1,0),(0,1),(1,0),(0,1)A B D E --为顶点的正方形内部(不含边界)点的集合,集合N 表示以1111(1,0),(0,1),(,),(1,0),(0,1),(,)2222A B C D E F ----为顶点的六边形内部(不含边界)点的集合,集合P 表示以1111(,),(,)2222M N --为焦点,CF 为长轴(长轴长为22)的椭圆内部(不含边界)点的集合, 由图可得M N P ⊂⊂, 故选:A .点睛:本题考查集合间的关系,解题方法在平面直角坐标系上作出集合表示的点集,由图形得出集合间的包含关系. 12.D解析:根据交集的结果可知A B ⊆,结合韦恩图即可判断各选项的正误. 详解: 由UAB =∅知:A B ⊆,即A 错误,∴A B B ⋃=,即B 错误;仅当A B =时U A B U ⋃=,即C 错误;U B A U ⋃=,即D 正确. 故选:D. 13.D解析:分,,x y z 都是正数,,,x y z 都是负数,,,x y z 中有一个是正数,另两个是负数,,,x y z 中有两个是正数,另一个是负数四种情况分别得出m 的值,从而求得集合M 的元素的个数,由此可得出集合M 的子集的个数. 详解:因为集合x y z xyz M mm x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =; 当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =, 所以集合M 中的元素是3个,所以M 的子集个数是8, 故选:D. 14.B解析:先利用互异性求出a 、b ,再代入求20202021a b +的值. 详解:ba,0a ∴≠ {}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭0b a ∴=,即0b =,{}{}2,0,1,,0a a a ∴=∴当21a a a ⎧=⎨=⎩时,1a =-或1a =,当1a =时,即得集合{}1,0,1,不符合元素的互异性,故舍去, 当21a a a =⎧⎨=⎩时,1a =,即得集合{}1,0,1,不符合元素的互异性,故舍去, 综上,1a =-,0b =()2020202020212021101∴+=-+=a b ,故选:B15.C解析:对集合C 分析,当n 为偶数时,它与集合A 相等,所以集合A 是集合C 的真子集;又集合B 和集合C 相等,从而得出集合A 、B 、C 的关系. 详解:解:集合1{|}26nC x x n Z ==+∈,,∴当()2n a a Z =∈时,211266a x a =+=+, 当()21n a a Z =+∈时,2112263a x a +=+=+, 又集合1{|}6A x x k k Z ==+∈,,A C ∴,集合1{|}23m B x x m Z ==-∈,,集合1{|}26n C x n Z ==+∈,,1112326m m --=+,可得C B =, 综上可得A C B =. 故选:C . 16.A解析:根据集合中元素的互异性先确定y 的取值,再确定x 的值,排除x ≠y 的情况,即可得出答案. 详解:因为实数y 在集合{}0,1,2,3,4中,即y 可取0或3, A 是B 的真子集: 当y=0时x 可取0,2,4 当y=3时x 可取2,3,4 又x,y 组成集合{},x y ,即x ≠y 所以当y=0时x 可取2,4 当y=3时x 可取2,4.共4种 故选A 点睛:本题考查集合元素的互异性,属于中档题. 17.A解析:首先用列举法表示集合A ,含有n 个元素的集合的真子集的个数是21n -个. 详解:{}0,1,2A =,集合含有3个元素,真子集的个数是3217-=, 故选A. 点睛:本题考查集合的真子集个数的求解,属于基础题型,一个集合含有n 个元素,其子集个数是2n 个,真子集个数是21n -个.18.D解析:集合A 的元素代表圆内部的点,逐一写出满足条件的点的坐标,即可得到结论 详解:(){}22,2,,A x y xy x Z y Z =+<∈∈{}(1,0),(0,1),(0,0),(0,1),(1,0)=--,共5个元素,是平面直角坐标系中5个点,则A 的子集的个数为5232= 故选:D 点睛:本题考查集合的表示以及点与圆的位置关系,解题时需注意集合A 的元素为两坐标均为整数的点,本题属于基础题. 19.D解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题. 20.B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .。
高中数学必修一1.2 集合间的基本关系-单选专项练习(50)(人教A版,含答案及解析)
1.2 集合间的基本关系1.集合M=}|1,2n x x n Z ⎧=+∈⎨⎩,N=}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M∩N=∅B .M=NC .M ⊆ND .N ⊆M 2.已知集合{2,0,1},{0,1,3}M N =-=,则M N ⋃=( )A .{0,1}B .{2,1,3}-C .{2,0,1}-D .{2,0,1,3}-3.已知集合A ,B ,C 满足:A B ⊆,A C ⊆,{}0,1,2,3B =,{}1,3,8,9C =,则集合A 可以是( ) A .{}1,8B .{}1,3C .{}0D .{}94.集合{|13}P x Z x =∈-<,{}2R |9M x x =∈,则P∩M 等于A .{}1,2B .{}0,1,2C .1,0,1,2D .{|03}x x ≤≤5.设集合{}2|0log 1A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围是( ). A .2a ≥B .2a >C .1a <D .1a ≤6.已知集合{}20A x mx mx m =-+=有两个非空真子集,则实数m 的取值范围为( )A .{}4m m >B .{}04m m m <或>C .{}4m m ≥D .{}04m m m ≤≥或7.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆8.对于任意两个正整数,m n ,定义某种运算,法则如下:当,m n 都是正奇数时,mn m n =+ ;当,m n 不全为正奇数时,m n mn =,则在此定义下,集合(){,|M a b a=16,*,*}b a N b N =∈∈的真子集的个数是( )A .721-B .1121-C .1321-D .1421- 9.若集合{|13}A x x =<<,{|}B x x a =<,且A B B ⋃=,则a 的取值范围为( )A .3a ≥B .3a ≤C .1a ≥D .1a ≤10.已知集合A =x|x 2﹣3x+2=0},B =x|0<x <6,x∈N},则满足A ⫋C ⊆B 的集合C 的个数为( ) A .4B .7C .8D .1611.已知a R b R ∈∈,,若集合{}210b a a a b a ⎧⎫=-⎨⎬⎩⎭,,,,,则20212020a b +的值为( )A .2-B .1-C .1D .212.设集合{}210A x x =-=,则( )A .A ∅∈B .A π∈C .1A -∈D .{}11A -∈, 13.设集合A =x|x =2k +1,k ∈Z},若a =5,则有( )A .a ∈AB .-a ∉AC .a}∈AD .a}∉A14.设集合P=立方后等于自身的数},那么集合P 的真子集的个数是( )A .3B .4C .7D .815.集合|,3kA x x k Z ⎧⎫==∈⎨⎬⎩⎭,{}|,B x x k k Z ==∈,1{|,}3C x x k k Z ==+∈,2{|,}3D x x k k Z ==+∈,则下面正确的是( )A .C DB =B .CD A ⋃=C .B C A =D .B C D A =16.若集合|,2M k k Z πααπ⎧⎫==+∈⎨⎬⎩⎭,|,2N k k Z πββπ⎧⎫==-∈⎨⎬⎩⎭,|2,2P k k Z πθθπ⎧⎫==±∈⎨⎬⎩⎭,|2,2Q k k Z πϕϕπ⎧⎫==+∈⎨⎬⎩⎭,则四个集合中与其它三个集合不相等的一个集合是( )A .MB .NC .PD .Q17.已知集合2{|40}A x x =-=,则下列关系式表示正确的是( )A .A ∅∈B .{2}A -=C .2A ∈D .{2,2}- ≠⊂A 18.已知集合{}01A =,,{},,B z z x y x A y A ==+∈∈∣,则B 的子集个数为( ) A .3 B .4C .8D .619.设集合{|,}24k M x x k ππ==+∈Z ,{|,}42k N x x k ππ==+∈Z ,则( ) A .M NB .M N ⊆C .M N ⊇D .M N ⋂=∅ 20.若1,2,3} A ⊆1,2,3,4,5},则集合A 的个数为A .2B .3C .4D .5参考答案1.D 2.D 3.B 4.C 5.A 6.A 7.D 8.C 详解:由题意,当m n , 都是正奇数时,m n m n =+※ ;当m n ,不全为正奇数时,m n mn =※ ; 若a b , 都是正奇数,则由16a b =※ ,可得16a b += ,此时符合条件的数对为(115313151⋯,),(,),(,) 满足条件的共8个;若a b ,不全为正奇数时,m n mn =※ ,由16a b =※ ,可得16ab = ,则符合条件的数对分别为116284482161(,),(,),(,),(,),(,) 共5个;故集合**{|16}M a b a b a N b N ==∈∈(,)※,, 中的元素个数是13, 所以集合**{|16}M a b a b a N b N ==∈∈(,)※,,的真子集的个数是1321-.故选C .点睛:本题考查元素与集合关系的判断,解题的关键是正确理解所给的定义及熟练运用分类讨论的思想进行列举,9.A 10.B 11.B 12.C 13.A 14.C 15.D 16.D 17.C 18.C 19.C详解:集合1,2,3}是集合A 的真子集,同时集合A 又是集合1,2,3,4,5}的子集,所以集合A 只能取集合1,2,3,4},1,2,3,5}和1,2,3,4,5}. 考点:集合间的基本关系.【参考解析】1.解析:根据子集的定义判断. 详解:由题意,对于集合M ,当n 为偶数时,设n=2k (k∈Z),则x=k+1(k∈Z), 当n 为奇数时,设n=2k+1(k∈Z),则x=k+1+12(k∈Z), ∴N ⊆M , 故选:D.2.解析:根据并集的运算求解即可. 详解:因为{2,0,1},{0,1,3}M N =-=,由集合的并集运算,得{2,0,1,3}M N ⋃=-. 故选:D 点睛:本题主要考查了集合的并集运算,属于基础题.3.解析:根据题意,得()A B C ⊆,再利用交集的定义即可得到结论. 详解:由A B ⊆,A C ⊆,知()A B C ⊆, 又{}0,1,2,3B =,{}1,3,8,9C =, ∴{}1,3B C =, ∴集合A 可以为{}1,3. 故选:B. 点睛:本题考查交集的定义,集合与集合的关系,属于基础题.4.解析:先求出集合M 和集合P ,根据交集的定义,即得P M ⋂。
1.1.2 集合间的基本关系练习题及答案解析
1.下列六个关系式,其中正确的有()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A.6个B.5个C.4个D.3个及3个以下解析:选C.①②⑤⑥正确.2.已知集合A,B,若A不是B的子集,则下列命题中正确的是()A.对任意的a∈A,都有a∉BB.对任意的b∈B,都有b∈AC.存在a0,满足a0∈A,a0∉BD.存在a0,满足a0∈A,a0∈B解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅,∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|y x=1},则A 、B 间的关系为________. 解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故B A .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧ a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同,∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0, 即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12. 11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且BA ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∵B A ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13; 当mx +1=0的解为2时,由m ·2+1=0,得m =-12; 当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含解析)
1.2 集合间的基本关系一、单选题1.若集合(){}|10A x x x =+≥,{B y y ==,则 A .A B = B .A B ⊆ C .A B R = D .B A ⊆答案:D解析:分别求解出集合A 和集合B ,根据集合的包含关系可确定结果. 详解:(){}(][)|10,10,A x x x =+≥=-∞-+∞,{[)0,B yy ==+∞B A ∴⊆本题正确选项:D 点睛:本题考查集合间的包含关系,属于基础题.2.已知集合{1A =,2},{|10}B x mx =-=,若A B B =,则符合条件的实数m 的值组成的集合为( ) A .{1,1}2 B .{1-,1}2C .{1,0,1}2D .{1,1}2-答案:C解析:A B B =等价于B A ⊆,分B φ=和B φ≠两类情况,分别求出m 的值,得出答案. 详解:A B B =,B A ∴⊆,当0m =时,B φ=满足要求;当B φ≠时,10m +=或210m -=,1m =-或12,∴综上,{1m ∈,0,1}2.故选:C 点睛:本题考查集合间的关系,考查转化思想和分类讨论思想,属于基础题. 3.若集合{}|sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .A B A ⋃= B .R R C B C A ⊆ C .A B =∅ D .R R C A C B ⊆答案:B解析:根据正弦函数的性质可得集合A ,由集合性质表示形式即可求得A B ⊆,进而可知满足R R C B C A ⊆.详解:依题意,{}|sin 21|,4A x x x x k k Z ππ⎧⎫====+∈⎨⎬⎩⎭; 而|,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭()212|,,4242n n x x n Z x n Z ππππ+⎧⎫==+∈=+∈⎨⎬⎩⎭或()21|,,442n x x n n Z x n Z ππππ+⎧⎫==+∈=+∈⎨⎬⎩⎭或,故A B ⊆, 则R R C B C A ⊆. 故选:B. 点睛:本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题. 4.设{,}A a b =,{,,,,,}B a b c d e f =,集合M 满足A MB (都是真包含),这样的集合有( ) A .12个 B .14个 C .13个 D .以上都错答案:B解析:根据集合M 满足A MB ,分析出集合M 至少含3个元素,最多含5个元素再求解.详解:因为集合M 满足AMB , 所以集合M 至少含3个元素,最多含5个元素,则这样的集合有12344414C C C ++=(个).故选:B 点睛:本题主要考查集合的基本关系,属于基础题. 5.下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =答案:D解析:由相等集合的概念一一分析每个选项中的集合,然后进行比较即可得出答案.A 选项中(1,2),(2,1)表示两个不同的点,∴M N ,∴该选项不符合;B 选项中集合M 有两个元素1,2是实数,N 有一个元素(1,2)是点,∴MN ,∴该选项不符合;C 选项中集合M 是空集,集合N 是含有一个元素∅的集合,∴M N ,∴该选项不符合;D 选项中由2210x x -+=得121x x ==,∴{1}M N ==,∴该选项符合.故选:D. 点睛:本题考查了相等集合的判断,属于基础题. 6.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16答案:C解析:根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 详解: {0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴ A 的子集个数328=.故选:C . 点睛:本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.7.已知集合A 、B ,若A 不是B 的子集,则下列命题中正确的是 ( ) A .对任意的a A ∈,都有a B ∉ B .对任意的b B ∈,都有b A ∈ C .存在0a ,满足0a A ∈,0a B ∉ D .存在0a ,满足0a A ∈,0a B ∈答案:C解析:根据子集的定义进行判断. 详解:根据子集的定义:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.因为A 不是B 的子集所以存在0a ,满足0a A ∈,0a B ∉ 故选:C本题主要考查了集合子集的概念,还考查了理解辨析的能力,属于基础题.8.若集合M=x|x≤6}, ) A .{}a M ⊆ B .a M ⊆C .{}a M ∈D .a M ∉答案:A解析:根据元素与集合的关系,以及集合之间的包含关系,即可求解,得到答案. 详解:根据实数的性质,可得6,所以{|6}x x ≤,则a M ∈,所以B 、D 不正确;又根据集合的包含关系可得{|6}x x ⊆≤,即{}a M ⊆,故选A . 点睛:本题主要考查了元素与集合,集合与集合的关系的判定,其中解答中熟记元素与集合的关系,以及集合间的包含关系的概念与判定是解答的关键,着重考查推理与运算能力,属于基础题.9.集合M=16x x m m ⎧⎫=+∈⎨⎬⎩⎭Z ,,N=}1-23n x x n -⎧=∈⎨⎩Z ,,P=126p x x p ⎧⎫=+∈⎨⎬⎩⎭Z ,,则M ,N ,P 之间的关系是( ) A .M=N ⫋P B .M ⫋N=P C .M ⫋N ⫋P D .N ⫋P=M 答案:B解析:通分化简,再利用集合之间的包含关系即可求解. 详解: M=616m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,, N=3-23(-1)166n n x x n Z ⎧+⎫==∈⎨⎬⎭⎩,, P=316p x x p Z ⎧⎫+=∈⎨⎬⎩⎭,. 由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数, 所以M ⫋N=P . 故选:B 点睛:本题考查了集合的包含关系,考查了基本知识掌握情况,属于基础题. 10.下列几个关系中正确的是 A .{}00∈ B .{}00= C .{}00⊆ D .{}0∅=答案:A解析:由元素与集合、集合与集合的关系即可判断是否正确. 详解:0是集合{}0 的一个元素,所以{}00∈ ,故选择A . 点睛:本题考查了元素与集合、集合与集合的关系,属于基础题概念题. 11.下列表示正确的个数是( )(1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A = A .0 B .1 C .2 D .3答案:D解析:选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则A B A =正确.12.已知集合{|}M x x x Z <<∈=,则下列集合是集合M 的子集的为( ) A .P =-3,0,1} B .Q =-1,0,1,2}C .R =y|-π<y<-1,y∈Z}D .{|}S x x x N ∈=答案:D 详解:集合{}{}|2,1,0,1M x x x Z <<∈=--=,所以可知,P =-3,0,1}不成立,Q =-1,0,1,2}不成立,{}{}|13,2,1,0R y y y Z π<<∈=---=--,,不成立.{}{}|1,0S x x x N ∈=±=,满足.故选D.点睛:集合的表示法有描述法和列举法,本题中集合元素是整数即可利用限制条件解出,用列举法表示出来,进而将四个选项的元素与其比较,注意将描述法表示的集合转为列举法,一目了然.13.已知集合{}*3A x N x =∈<∣,则集合A 的子集个数为( ) A .3 B .4 C .5 D .6答案:B解析:先化简集合A ,再求得其子集即可. 详解:因为集合{}{}*31,2A x N x =∈<=∣,所以集合A 的子集为{}{}{},1,2,1,2∅, 所以集合A 的子集个数为4, 故选:B14.集合{}0与∅的关系是 A .{}0∅ B .{}0∈∅ C .{}0=∅ D .{}0⊆∅答案:A解析:根据空集为任意集合的子集,空集为任意非空集合的真子集,得出选项. 详解:因为空集为任意集合的子集,空集为任意非空集合的真子集,∴{}0∅,故选A . 点睛:本题考查空集的含义以及集合间的关系,属于基础题.15.设集合[)1,2M =-,(),N a =-∞,若M N ⋂=∅ ,则实数 a 的取值范围是( ) A .2a ≤ B .1a ≤- C .1a <- D .2a >答案:B解析:根据交集运算及空集的定义,可直接得到答案. 详解:[)1,2M =-,(),N a =-∞,且M N ⋂=∅,1a ∴≤-故选:B 点睛:本题主要考查交集运算以及空集,属于基础题. 16.下列关系中正确的个数为( ) ①{}00∈;②∅{}0;③{}(){}0,10,1⊆;④(){}(){}1,00,1=.A .1B .2C .3D .4答案:B解析:由集合的概念、元素与集合间的关系、集合与集合间的关系,逐项判断即可得解. 详解:对于①,因为0是{}0中的元素,所以{}00∈,故①正确; 对于②,因为空集是任何非空集合的真子集,所以∅{}0,故②正确;对于③,{}0,1为数集,(){}0,1为点集,所以{}(){}0,10,1,故③错误;对于④,集合(){}1,0、(){}0,1均为点集,但所含元素不同,故④错误. 故选:B. 点睛:本题考查了元素与集合、集合与集合间关系的判断,属于基础题.17.已知集合{}{}|15,|,x A x e B x x a =<<=<若,A B ⊆则实数a 的取值范围是( ) A .[)ln 5,+∞B .(ln5,)+∞C .(,ln5)-∞D .[)0,+∞答案:A解析:利用指数函数的性质化简集合A ,再利用包含关系求解即可. 详解:由15x e <<,得0ln5x <<,{}|0ln5A x x ∴=<<,,ln5A B a ⊆∴≥,a ∴的取值范围是[)ln 5,+∞,故选:A 点睛:本题主要考查指数函数的性质以及利用包含关系求参数,属于基础题.18.已知集合1,6M xx m m Z ⎧⎫==+∈⎨⎬⎩⎭∣,1,23n N x x n Z ⎧⎫==-∈⎨⎬⎩⎭∣,1,26p P x x p Z ⎧⎫==+∈⎨⎬⎩⎭∣,则M ,N ,P 的关系为( )A .M N P =⊆B .M N P ⊆=C .M N P ⊆⊆D .N P M ⊆⊆答案:B解析:将三个集合中的元素的公共属性分别变形为121626m x m =+=+,m Z ∈ ,1112326n n x -=-=+,n Z ∈,126p x =+,p Z ∈,比较可得答案.详解:因为121{|626m M x x m ==+=+,}m ∈Z , 111{|2326n n N x x -==-=+,}n Z ∈, 1{|26p P x x ==+,}p Z ∈, 所以M N P ⊆=. 故选:B. 点睛:本题考查了判断集合间的关系,将三个集合中的元素的公共属性分别变形是解题关键,属于基础题.19.下列各式:①{}10,1,2∈;②{}0,1,2∅⊆;③{}{}10,1,2∈;④{}{}0,1,22,0,1=,其中错误的个数是( ) A .1个 B .2个C .3个D .4个答案:A解析:根据集合与集合的关系,元素与集合的关系即可求解. 详解:由元素与集合的关系可知{}10,1,2∈正确,{}{}10,1,2∈不正确, 由集合之间的关系知{}0,1,2∅⊆正确, 由集合中元素的无序性知{}{}0,1,22,0,1=正确, 故错误的个数为1, 故选:A 点睛:本题主要考查了元素与集合的关系,集合的子集,集合的相等,属于容易题. 20.已知集合{}{}|02|20M x x N x x =≤≤=-=,,则下列说法正确的是 A .B .C .D .答案:B 详解:试题分析:{}{}|202N x x N M =-==∴⊆ 考点:集合的子集关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列六个关系式,其中正确的有()
①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.
A.6个B.5个
C.4个D.3个及3个以下
解析:选C.①②⑤⑥正确.
2.已知集合A,B,若A不是B的子集,则下列命题中正确的是()
A.对任意的a∈A,都有a∉B
B.对任意的b∈B,都有b∈A
C.存在a0,满足a0∈A,a0∉B
D.存在a0,满足a0∈A,a0∈B
解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.
3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()
A.a≥2 B.a≤1
C.a≥1 D.a≤2
解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.
4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.
解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.
答案:4
1.如果A={x|x>-1},那么()
A.0⊆A B.{0}∈A
C.∅∈A D.{0}⊆A
解析:选D.A、B、C的关系符号是错误的.
2.已知集合A={x|-1<x<2},B={x|0<x<1},则()
A.A>B B.A B
C.B A D.A⊆B
解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.
3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.B
C.{2} D.{1,7,9}
解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.
4.以下共有6组集合.
(1)A={(-5,3)},B={-5,3};
(2)M={1,-3},N={3,-1};
(3)M=∅,N={0};
(4)M={π},N={3.1415};
(5)M={x|x是小数},N={x|x是实数};
(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.
其中表示相等的集合有()
A.2组B.3组
C.4组D.5组
解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.
5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()
A .4
B .8
C .16
D .32
解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=
0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.
6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )
A .A ⊆
B B .B ⊆A
C .A ∈B
D .B ∈A
解析:选D.∵B 的子集为{1},{2},{1,2},∅,
∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .
7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|y x
=1},则A 、B 间的关系为________. 解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故B A .
答案:B A
8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.
解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.
答案:-1或2
9.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.
解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.
答案:{a |a >5或a ≤-5}
10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.
解:①若⎩⎪⎨⎪⎧ a +b =ac a +2b =ac
2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.
当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,
故a ≠0,c 2-2c +1=0,即c =1;
当c =1时,集合B 中的三个元素也相同,
∴c =1舍去,即此时无解.
②若⎩
⎪⎨⎪⎧
a +
b =a
c 2a +2b =ac ,消去b 得2ac 2-ac -a =0, 即a (2c 2-c -1)=0.
∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.
又∵c ≠1,∴c =-12
. 11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围;
(2)若B ⊆A ,求a 的取值范围.
解:(1)若A B ,由图可知,a >2.
(2)若B ⊆A ,由图可知,1≤a ≤2.
12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B
A ,求实数m 的值.
解:A ={x |x 2+x -6=0}={-3,2}.
∵B A ,∴mx +1=0的解为-3或2或无解.
当mx +1=0的解为-3时,
由m ·(-3)+1=0,得m =13
; 当mx +1=0的解为2时,
由m ·2+1=0,得m =-12
; 当mx +1=0无解时,m =0.
综上所述,m =13或m =-12
或m =0.。