生物医用高分子材料

合集下载

生物医用高分子材料[精选]

生物医用高分子材料[精选]
高分子材料在植入体内之前 ,都要经过严格的灭 菌消毒 。 目前灭菌处理一般有三种方法; 蒸汽灭菌;
化学灭菌 ,γ射线灭菌 。国内大多采用前两种方法 。
因此在选择材料时 ,要考虑能否耐受得了。
(7) 易于加工成需要的复杂形状
人工脏器往往具有很复杂的形状 , 因此 ,用于人 工脏器的高分子材料应具有优良的成型性能 。否则 , 即使各项性能都满足医用高分子的要求 ,却无法加 工成所需的形状 ,则仍然是无法应用的。
★骨水泥是一类传统的骨用粘合剂 , 1940年就已用
于脑外科手术中 , 几十年来 ,一直受到医学界和化学 界的重视。
骨水泥是由单体 、聚合物微粒(150--200μm) 、阻聚
剂 ,促进负等组成 。为了便于x射线造影 ,有还加入 造影剂BaSO4 。下表是常用骨水泥的基本组成和配方。
(4) 人造皮肤材料
(5) 医用粘合剂
粘合剂作为高分子材料中的一大类别 ,近年来, 它的应用领域已扩展到医疗卫生部门 。 目前 , 医用粘 合剂在医学临床中有十分重要的作用 。在外科手术中, 医用粘合剂用于某些器官和组织的局部粘合和修补; 手术后缝合处微血管渗血的制止; 骨科手术小骨骼、 关节的结合与定位; 齿科手术中用于牙齿的修补 。在 计划生育领域中 ,用粘合剂粘堵输精管或输卵管 , 既 简便 ,无痛苦感 ,又无副作用 ,必要时还可方便地重 新疏通。
由此可见 , 当向人体植入高分子材料时 , 除考虑 材料的物理 、化学性质外 ,还应充分考虑其形状因 素。

(4)具有抗血栓性 ,不会在材料表面凝血 (5)长期植入体内 ,不会减小机械强度
表6-3是一些高分子以纤维形式植入狗的动脉 后其机械强度的损失情况。
(6)能经受必要的清洁消毒措施而不产生变性

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一类应用于生物医学领域的高分子材料,具有优良的生物相容性、生物降解性和生物活性等特点。

这类材料旨在解决生物医学领域中的各种问题,如组织工程、药物缓释、生物传感等。

以下将介绍几种常见的生物医用高分子材料及其应用。

首先是生物可降解高分子材料,如聚乳酸(PLA)和聚乳酸-羟基磷灰石(PLGA)。

这类材料能够在体内逐渐降解,并最终被代谢排出体外,具有较好的生物相容性。

它们主要应用于组织修复与再生领域,如制作支架用于骨骼修复、软组织修复和脑部损伤修复等。

其次是生物活性高分子材料,如天然高分子材料胶原蛋白和壳聚糖。

这些材料本身具有一定的生物活性,能够促进细胞黏附、分化和增殖。

它们常用于组织工程中的细胞载体和生物传感器的制备,如用胶原蛋白包裹干细胞用于皮肤再生、用壳聚糖包裹药物用于药物缓释等。

另外一类是生物仿生高分子材料,如聚乙二醇(PEG)。

这类材料模拟生物体内的液体环境,具有良好的生物相容性和抗生物粘附能力。

它们主要应用于制备人工器官、药物控释系统和生物分离材料等,如用PEG涂层改善人工心脏瓣膜的生物相容性、用PEG修饰纳米材料用于靶向药物传递等。

此外,还有一种重要的生物医用高分子材料是羟基磷灰石(HA)。

羟基磷灰石具有良好的生物相容性和生物活性,能够与骨组织有很好的结合性。

它常用于骨修复和牙科领域,如制备骨替代材料、牙齿填充材料和人工牙齿的固定材料等。

总之,生物医用高分子材料在生物医学领域中具有广泛的应用前景。

它们的出现为治疗和修复各种组织和器官提供了新的手段,将对人类健康产生深远影响。

然而,随着研究的深入,还需要克服一些挑战,如材料的稳定性、生物相容性和生物降解速度等问题,以进一步提高材料的应用性能和安全性。

医用高分子材料

医用高分子材料

医用高分子材料首先,医用高分子材料具有良好的生物相容性。

这意味着它们与人体组织和生物体具有良好的相容性,不会引起排斥反应或过敏反应。

这使得它们可以用于制造各种植入式医疗器械,如人工关节、心脏起搏器和血管支架等。

常用的医用高分子材料包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯和聚乳酸等。

其次,医用高分子材料具有良好的耐用性和可塑性。

它们可以根据需要进行设计和加工,制成各种形状和结构的医疗器械和用品。

同时,它们具有较高的耐用性,能够承受人体内外的各种环境和应力,保持稳定的性能和形状。

这使得医用高分子材料在医疗器械和用品的制造中具有广泛的应用前景。

医用高分子材料在医疗行业中的应用非常广泛。

它们被用于制造各种医疗器械,如手术器械、诊断设备、植入式医疗器械和医疗用品等。

比如,聚乳酸材料被用于制造可降解的缝线和骨修复材料;聚碳酸酯材料被用于制造人工眼角膜和牙科修复材料;聚乙烯材料被用于制造输液管和输液袋等。

这些医疗器械和用品在临床上发挥着重要的作用,帮助医生诊断疾病、进行手术治疗和康复护理。

随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也在不断拓展和创新。

未来,医用高分子材料有望在生物医学工程、组织工程和再生医学等领域发挥更大的作用。

同时,人们也在不断研发新型的医用高分子材料,以满足不同医疗器械和用品的需求。

总之,医用高分子材料在医疗行业中具有重要的地位和应用前景。

它们具有良好的生物相容性、耐用性和可塑性,适用于各种医疗器械和用品的制造。

随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也将不断拓展和创新,为人类健康事业做出更大的贡献。

生物医用高分子材料及应用Polymericbio-materialsandits-

生物医用高分子材料及应用Polymericbio-materialsandits-

( 2 ) 低分子药物的高分子化。
低分子药物在体内新陈代谢速度快, 半 衰期短, 体内浓度降低快, 从而影响疗效, 故需 大剂量频繁进药, 而过高的药剂浓度又会加重 副作用, 此外, 低分子药物也缺乏进入人体部 位的选择性 。将低分子药物与高分子结合的 方法有吸附 、共聚 、嵌段和接枝等 。第一个 实现高分子化的药物是青霉素
总结
生物技术将是21 世纪最有前途的技术, 生物 医用高分子材料将在其中扮演重要角色, 其性能将 不断提高, 应用领域也将进一步拓宽 。今后的发展 趋势将主要体现在以下几个方面 : ( 1 ) 医用可生物降解高分子材料因其具有良好 的生物降解性和生物相容性而受到高度重视, 论是作为缓释药物还是作为促进组织生长的骨架材 料, 都将得到巨大的发展。
氨酯等。
◆ 人工心脏 材料多用聚醚氨酯和硅橡胶等。
◆ 人工肺 多用聚四氟乙烯、硅橡胶等材料
◆ 人工肾 材料除要求具备良好的血液相容性外, 还要求材
料具有足够的湿态强度、有适宜的超滤渗透性等, 可充当这一使命的材料有乙酸纤维素、铜氨再生纤 维素、尼龙、聚砜及聚醚砜等。
为提高人造器官的血液相容性, 现阶段的 研究重点是对现有生物材料的表面进行改性 和修饰, 其方法有 :
( 2 ) 复制具有人体各部天然组织的物理力学性 质和生物学性质的生物医用材料, 达到高分子 的生物功能化和生物智能化, 是医用高分子材 料发展的重要方向 。此外, 用生物技术合成高 分子的反应条件更温和 、产物的生物降解性 能更好, 因而具有诱人的前景。
( 3 ) 人工代用器官在材料本体及表面结构的有 序化 、复合化方面将取得长足进步, 以达到与 生物体相似的结构和功能, 其生物相容性将大 大提高。
5 眼科用高分子材料

第四章-生物医用高分子材料(1)

第四章-生物医用高分子材料(1)

血浆蛋白吸附
红血球粘附
血小板粘附 血小板放出凝血因子 血小板血栓 纤维蛋白朊沉积 血栓形成 溶血
凝血酶原活化
血栓形成过程示意图
(二)血液相容性高分于材料的制取 (1)使材料表面带上负电荷的基团 例如将芝加哥酸(1-氨基-8-萘酚-2, 4- 二磺酸萘)(见下式)引入聚合物表面后,可减少 血小板在聚合物表面上的粘附量,抗疑血性提高。
OH NH2 NH SO2 N N SO3H SO3H
(2)高分子材料的表面接枝改性 采用化学法(如偶联法、臭氧化法等)和物理 法(等离子体法、高能辐射法、紫外光法等)将具 有抗凝血性的天然和化学合成的化合物,如肝素、 聚氧化乙烯接枝到高分子材料表面上。研究表明, 血小板不能粘附于用聚氧化乙烯处理过的玻璃上。
(1)材料中渗出的化学成分对生物反应的影响 材料中逐渐渗出的各种化学成分(如添加剂、 杂质、单体、低聚物以及降解产物等)会导致不同 类型的组织反应,例如炎症反应。 组织反应的严重程度与渗出物的毒性、浓度、 总量、渗出速率和持续期限等密切相关。一般而言, 渗出物毒性越大、渗出量越多,则引起的炎症反应 越强。
二、医用高分子的分类:
(1)按材料的来源分类 1)天然医用高分子材料 如胶原、明胶、丝蛋白、角质蛋白、纤维素、多 糖、甲壳素及其衍生物等。 2)人工合成医用高分子材料 如聚氨酯、硅橡胶、聚酯等。
3)天然生物组织与器官 ① 取自患者自体的组织,例如采用自身隐静脉 作为冠状动脉搭桥术的血管替代物; ② 取自其他人的同种异体组织,例如利用他 人角膜治疗患者的角膜疾病; ③ 来自其他动物的异种同类组织,例如采用 猪的心脏瓣膜代替人的心脏瓣膜,治疗心脏病等。
医用高分子材料研发过程中遇到的一个巨大 难 题是材料的抗血栓问题。当材料用于人工器官 植入 体内时,必然要与血液接触。由于人体的自然 保护 性反应将产生排异现象,其中之一即为在材料 与肌 体接触表面产生凝血,即血栓,结果将造成手 术失 败,严重的还会引起生命危险。 对高分子材料的抗血栓性研制是医用高

生物医用高分子材料

生物医用高分子材料

胶原可以用于制造止血海绵、创伤辅料、人工 皮肤、手术缝合线、组织工程基质等。胶原在应用
时必须交联,以控制其物理性质和生物可吸收性。
戊二醛和环氧化合物是常用的交联剂。残留的戊二
醛会引起生理毒性反应,因此必须注意使交联反应
完全。胶原交联以后,酶降解速度显著下降。
6.3.2.2 甲壳素与壳聚糖
甲壳素是由β-(1, 4)-2-乙酰氨基-2- 脱氧-D-葡萄糖(N-乙酰-D-葡萄糖胺)组成 的线性多糖。昆虫壳皮、虾蟹壳中均含有丰富的甲
Me SiO Ph
Ph SiO Ph
CH3 SiO H
CH2CH2CF3 SiO Me
CH2CH2 SiO Me
CN
聚硅氧烷制备

通过烷基氯硅烷水解缩聚 RnSiXn-1
R: -CH3 , -C6H5, -CH=CH2
X: -Cl, -OCH3, -OCOCH3

环状单体通过阳离子或阴离子引发开环聚合 二甲基硅氧烷环状单体开环聚合
二:生物医用高分子的范畴
用于医疗目的:塑料针筒,合成纤维,纱布 和绷带。
塑料针筒
纱布
绷带
生物医用材料:药物释放体系,医用粘合剂, 固体化酶,隐形眼镜等。
隐形眼镜
固体化酶
三:生物医用高分子的要求
生物稳定性 物理和力学稳定性 易于加工成型 材料易得价格适当 便于消毒灭菌
无毒(化学惰性) 无热原反应 不致癌 不致畸 不引起过敏反应或干扰 机体的免疫机理 不破坏邻近组织,不发 生表面钙化沉积 血液相容性
表面的亲水性及自由能对血液成分的吸附,变性 等有密切联系。提高材料表面的亲水性,使表面 自由能降低到接近血管内膜的表面自由能值可取 得抗血栓性能。 具体操作中,可以通过在材料表面接枝亲水性强 的化合物来实现。EG:聚环氧乙烷(PEO)。 CH2—CH2 O 环氧乙烷 TURN BACK

医用高分子材料

医用高分子材料
领域中广泛应用的一类材料。
医用高分子材料的种类
1 生物可降解材料
2 人工器官材料
3 生物材料表面改性
这类材料在人体内可以自然 降解,减少对人体的刺激, 并且不需要二次手术取出。
这类材料可以用于制造人工 心脏瓣膜、人工血管等,帮 助患有心脏病和其他器官疾 病的患者。
通过改变材料表面的特性, 可以提高材料的生物相容性, 减少对人体的排异反应。
医用高分子材料的特点
生物相容性
医用高分子材料具有良好的生物 相容性,与人体组织相容性高, 不会引起排异反应。
可调控性
医用高分子材料具有可调控性, 可以根据具体需求进行调整,用 于不同的医学应用。
可塑性
医用高分子材料具有良好的可塑 性,易于加工成各种形状,适用 于复杂的医学器械制造。
创新研究
科学家们正在不断进行医用高分子材料的创新研究,开发出更先进的材料。
临床应用
医用高分子材料已经在临床上得到广泛应用,并取得了显著的效果。
合作交流
不同国家的科学家们正在进行医用高分子材料的合作交流,推动其发展。
未来医用高分子材料的发展趋势
生物仿生技术
未来医用高分子材料将更加注重 生物仿生技术,模拟自然生物系 统,实现更好的医疗效果。
医用高分子材料的应用
1
人工关节
医用高分子材料可以用于制造人工关节,帮助患有关节炎等疾病的患者恢复正常 生活。
2
可吸收缝合线
医用高分子材料制成的可吸收缝合线可以用于手术缝合,减少了术后的痛苦和并 发症。
3
人工眼角膜
医用高分子材料可以用于制造人工眼角膜,帮助视力受损的患者恢复视力。
医用高分子材料的发展现状
纳米技术应用
纳米技术将被广泛应用于医用高 分子材料,提高其性能并为医学 研究提供更多可能。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一种具有广泛应用前景的新型材料,它在医学领域中发挥着越来越重要的作用。

生物医用高分子材料是指能够与生物体相容并在生物体内具有一定功能的高分子材料,其应用范围涉及医疗器械、医用材料、组织工程、药物传递系统等多个方面。

本文将从生物医用高分子材料的特点、应用领域、发展趋势等方面进行介绍。

首先,生物医用高分子材料具有良好的生物相容性和生物降解性。

这意味着这类材料可以与生物体组织相容,不会引起排斥反应或过敏反应,并且在一定条件下可以被生物体降解或代谢,不会对生物体造成长期的不良影响。

这一特点使得生物医用高分子材料在医学领域中得到广泛应用,例如可用于制备生物可降解的缝合线、修复骨折的支架材料等。

其次,生物医用高分子材料在医疗器械和医用材料领域有着重要的应用。

例如,生物医用高分子材料可以用于制备人工关节、心脏起搏器、血管支架等医疗器械,同时也可以用于制备医用敷料、人工皮肤、植入式医用材料等。

这些应用为医学诊疗和治疗提供了重要的支持,推动了医学技术的不断进步。

此外,生物医用高分子材料在组织工程和药物传递系统中也有着广泛的应用。

在组织工程领域,生物医用高分子材料可以被用于制备人工器官、组织修复材料等,为组织修复和再生提供了新的途径。

在药物传递系统方面,生物医用高分子材料可以被用于制备缓释药物载体、靶向输送系统等,提高了药物的疗效和降低了药物的副作用。

未来,随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔。

例如,生物医用高分子材料的功能化设计和智能化材料的开发将会为医学诊疗提供更多的选择,同时生物医用高分子材料与生物学、医学、材料学等学科的交叉融合也将会带来更多的创新成果。

总之,生物医用高分子材料具有良好的生物相容性和生物降解性,其在医疗器械、医用材料、组织工程、药物传递系统等领域有着重要的应用。

随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔,为医学技术的不断进步和医学治疗的不断改善提供重要支持。

生物医用高分子抗凝血材料

生物医用高分子抗凝血材料

生物医用高分子材料的应用领域
生物医用高分子材料在医疗器械、人工器官、组织工程、药物传递系统等领域具 有广泛的应用。
医疗器械如导管、支架等,人工器官如人工心脏瓣膜、人工关节等,组织工程如 组织工程支架、细胞培养基质等,药物传递系统如药物载体、控释系统等。
02
抗凝血材料的基本概念
抗凝血材料的定义
抗凝血材料
天然高分子抗凝血材料的研究进展
01
天然高分子抗凝血材料的提取与纯化
研究者们从天然资源中提取和纯化出具有抗凝血性能的高分子材料,如
胶原、明胶、壳聚糖等。这些材料具有良好的生物相容性和止血性能,
可广泛应用于创伤止血、手术缝合线等领域。
02
天然高分子抗凝血材料的改性研究
为了提高天然高分子抗凝血材料的性能,研究者们对其进行改性研究。
02
这些材料需具备良好的生物相容 性、安全性和有效性,同时需满 足特定医疗应用的需求。
生物医用高分子材料的分类
根据材料的性质和应用,生物医用高 分子材料可分为天然和合成两大类。
合成高分子材料如聚乙烯、聚丙烯等, 具有优良的物理和化学性能,广泛应 用于医疗器械和药物传递系统。
天然高分子材料如胶原、明胶等,主 要用于制造人工器官和组织工程支架。
良好的化学稳定性
化学稳定性是指材料在生理环境中能够保持其结构和性质的稳定性。生物医用高分子抗凝血材料需要具备良好的化学稳定性 ,以避免在体内发生降解和变质。
化学稳定性的评价方法包括热重分析、差示扫描量热分析和核磁共振谱等。这些试验能够帮助评估材料的化学稳定性,确保 其安全性和有效性。
无毒、无致敏性、无致癌性
复合抗凝血材料
将天然和合成抗凝血材料 结合在一起,形成具有优 异性能的复合抗凝血材料。

生物高分子材料

生物高分子材料

生物高分子材料
生物高分子材料是一类具有生物活性和生物相容性的高分子材料,它们广泛应用于医疗、食品、环保等领域。

生物高分子材料的研究和开发已成为当今高分子材料领域的热点之一。

首先,生物高分子材料具有良好的生物相容性。

这意味着它们能够与生物体组织良好地相互作用,不会引起明显的免疫排斥反应。

这使得生物高分子材料在医疗领域有着广泛的应用,例如可用于制备人工器官、医用缝线、医用包装材料等。

其次,生物高分子材料具有可降解性。

与传统的高分子材料相比,生物高分子材料在生物体内能够逐渐降解并最终被代谢掉,不会对环境造成污染。

这使得生物高分子材料成为环保材料的重要选择,例如可用于制备生物降解塑料、生物降解包装材料等。

此外,生物高分子材料还具有优异的生物活性。

这意味着它们能够与生物体组织发生特定的相互作用,例如可用于制备药物载体、生物传感器等,具有广泛的应用前景。

总的来说,生物高分子材料具有生物相容性好、可降解性强、生物活性优异等特点,因此在医疗、食品、环保等领域有着广泛的应用前景。

随着生物技术的不断发展和创新,相信生物高分子材料将会在未来发展中发挥越来越重要的作用。

生物医用高分子材料的概念,功能,发展前景

生物医用高分子材料的概念,功能,发展前景

生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。

生物医用高分子材料的功能医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官,具有延长病人生命、提高病人生存质量等作用。

生物医用高分子材料的发展前景我国医用高分子材料的研究起步较早、发展较快。

目前约有50多个单位从事这方面的研究,现有医用高分子材料60多种,制品达400余种,用于医疗的聚甲基丙烯酸甲酯每年达300 t。

然而,我国医用高分子材料的研究目前仍然处于经验和半经验阶段[5],还没有能够建立在分子设计的基础上。

因此,应该以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。

医用高分子材料要应用于生物体必须同时要满足生物功能性、生物相容性、化学稳定性和可加工性等严格的要求。

生物医用材料的研究和发展方向主要包括以下几方面:1 、组织工程材料组织工程是应用生命科学与工程的原理和方法构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。

它的主要任务是实现受损组织和器官的修复或再建,延长寿命和提高健康水平。

其方法是:将特定组织细胞“种植”于一种生物相容性良好、可被人体逐步降解吸收的生物材料上,形成细胞-生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的与自身功能和形态相适应的组织或器官。

这种具有生命力的活体组织或器官能对病损组织或器官进行结构、形态和功能的重建,并达到永久替代。

2、生物医用纳米材料———药物控释材料及基因治疗载体材料高分子药物控制释放体系不仅能提高药效,简化给药方式,大大降低药物的毒副作用,而且纳米靶向控制释放体系使药物在预定的部位,按设计的剂量,在需要的时间范围内,以一定的速度在体内缓慢释放,从而达到治疗某种疾病或调节生育的目的。

生物医用仿生高分子材料

生物医用仿生高分子材料

生物医用仿生高分子材料是指通过模仿生物体结构和功能特点而设计和制造的高分子材料,用于医学领域的应用。

这些材料具有良好的生物相容性、生物活性和可控可调的特性,可以在医学上模拟和替代生物组织的功能,实现诊断、治疗和修复等应用。

以下是一些常见的生物医用仿生高分子材料及其应用:
1. 生物降解聚合物:如聚乳酸(Poly Lactic Acid, PLA)和聚乙二醇(Polyethylene Glycol, PEG),常用于制备可降解的植入型材料,如缝合线、支架和修复材料。

2. 水凝胶:如明胶、海藻酸钠(Sodium Alginate)和聚乙二醇二甲基丙烯酸酯(Polyethylene Glycol Diacrylate, PEGDA)等,可用于制备组织工程支架、脏器修复和药物传递等。

3. 多肽材料:如胶原蛋白和凝血蛋白,可用于修复软骨、皮肤和血管等组织。

4. 生物活性控释材料:如聚乳酸-羟基磷灰石(Poly Lactic Acid-Hydroxyapatite, PLA-HA)复合材料,可用于药物和生长因子的控释,促进组织修复和再生。

5. 智能材料:如形状记忆聚合物和响应性水凝胶,可根据环境条件(如温度、pH值、电场等)的变化实现形状转变、药物控释和传感应用。

这些生物医用仿真高分子材料在医学领域有着广泛的应用潜力,可以用于组织工程、细胞培养、药物传递、疾病诊断和治疗等方面。

通过不断的研究和创新,这些材料将有助于促进生物医学领域的发展和进步。

生物聚合物材料WORD

生物聚合物材料WORD

生物聚合物材料生物聚合物材料,又称生物医用高分子材料,指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料特性:特殊的功能高分子聚合物材料;应用于生物体必须同时要满足生物功能性、生物相容性、化学稳定性和可加工性等严格的要求;具有延长病人生命、提高病人生存质量等作用。

按照不同的性质,医用聚合物材料可分为非降解型和可降解型两类。

非降解型高分子聚合物主要包括聚乙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等。

可降解型高分子聚合物主要包括胶原、线性脂肪族聚酯、甲壳素、聚乳酸、聚乙醇酸等。

根据使用的目的或用途,医用高分子聚合物材料可分为心血管系统(血液相容性材料)、软组织材料(隐形眼镜、人工皮肤等)及硬组织(人工关节、人工骨等)修复材料。

血液相容性材料血液相容性是指高分子聚合物与血液接触时,不引起凝血或血小板粘着凝聚,没有溶血现象。

抗凝血功能高分子膜材料的研究赵长生教授人工皮肤利用工程学和细胞生物学的原理和方法,在体外人工研制的皮肤代用品,用来修复、替代缺损的皮肤组织。

优点:高度近似人类皮肤,在治疗烧伤、烫伤方面具有减轻患者疼痛,愈后不留瘢痕的特效,并且对治疗糖尿病足等长期难愈性溃疡具有良好疗效。

同时避免了传统上从人体其它隐蔽的地方挖取皮肤来填补损伤处的皮肤,所造成二次损伤和不便。

种类:硅橡胶、塑料薄膜人工皮、合成纤维人工皮、合成多肽类人工皮、水凝胶等。

发展进程1981年,一位名叫波克的医学家,想出制造人造皮肤。

目前,许多科学家已从生物高分子材料或合成高分子材料中制造出了一二十种人造皮肤。

他们把这些材料纺织成带微细孔眼的皮片,上面还盖着一层层薄薄的、模仿“表皮”的制品。

二十世纪九十年代以来,医学界已成功将复合皮用于大面积深度烧伤创面的修复,节省了伤者自体皮源,提高了就治率。

但是,由于复合皮制作费用十分昂贵,移植后存活率只有百分之五十左右,因此,在临床上的广泛使用有待时日。

医用高分子材料

医用高分子材料

5.3.1 分类
❖ 根据不同的分类方法人工器官可以分为如下几类:
❖ 1)按功能分:
(1)支持运动功能的人工器官,如人工关节、人工脊椎、人工骨、人工肌腱、肌电控制 人工假肢等。
(2)血液循环功能的人工器官,如人工心脏及其辅助循环装置、人工心脏瓣膜、人工血 管、人工血液等。
(3)呼吸功能的人工器官,如人工肺(人工心肺机)、人工气管、人工喉等。 (4)血液净化功能的人工器官,如人工肾(血液透析机)、人工肺等。 (5)消化功能的人工器官,如人工食管、人工胆管、人工肠等。 (6)排尿功能的人工器官,如人工膀胱、人工输尿管、人工尿道等。 (7)内分泌功能的人工器官,如人工胰、人工胰岛细胞。 (8)生殖功能的人工器官,如人工子宫、人工输卵管、人工睾丸等。 (9)神经传导功能的人工器官,如心脏起搏器、膈起搏器等。 (10)感觉功能的人工器官,如人工视觉、人工听觉(人工耳蜗)、人工晶体、人工角
5.2 高分子材料的特性
❖ 高分子材料:一类相对分子质量比一般有机化合物高得多的化 合物。
❖ 一般有机化合物的相对分子质量只有几十到几百,高分子化合 物是通过小分子单体聚合而成的相对分子质量高达上万甚至上 百万的聚合物。
❖ 通常高分子材料可以压延成膜;可以纺制成纤维;可以挤铸或 模压成各种形状的构件;可以产生强大的粘结能力;可以产生 巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、 自润滑等许多独特的性能。
❖ 旋光异构:有机物能构成互为镜影的两种异构体,表现出不同的旋光性。
❖ 例如饱和氢化物中的碳构成一个四面体,碳原子位于四面体中心,4个基团位 于四面体的顶点,当4个基团都不相同时,位于四面体中心的碳原子称为不对 称原子,用C*表示,其特点是C*两端的链节不完全相同。有一个C*存在,每一 个链节就有两个旋光异构体。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料
生物医用高分子材料是指可以用于生物医学领域的高分子材料,它们具有生物相容性、生物降解性和生物活性等特点,广泛应用于医疗器械、组织工程、药物传递系统等领域。

生物医用高分子材料的研究和开发,对于提高医疗水平、改善生活质量具有重要意义。

首先,生物医用高分子材料在医疗器械领域具有重要应用。

例如,生物相容性良好的聚乳酸和聚己内酯等高分子材料,可以用于制备缝合线、支架等医疗器械,其生物降解性可以避免二次手术,减轻患者痛苦,加快伤口愈合。

另外,生物医用高分子材料还可以用于制备人工关节、人工血管等医疗器械,为患者提供更好的治疗方案。

其次,生物医用高分子材料在组织工程领域具有广阔前景。

通过生物医用高分子材料的设计和制备,可以构建人工骨骼、软骨、皮肤等组织工程产品,用于修复受损组织、替代器官,为患者提供更好的治疗选择。

例如,具有生物活性的生物医用高分子材料可以促进细胞黏附、增殖和分化,有助于组织再生和修复。

此外,生物医用高分子材料在药物传递系统领域也发挥着重要作用。

通过将药物载体与生物医用高分子材料结合,可以实现药物的缓释、靶向释放等功能,提高药物的疗效,减少药物的副作用。

例如,利用生物医用高分子材料制备的纳米载体可以有效提高药物的生物利用度,延长药物在体内的半衰期,为药物的治疗效果提供更好的保障。

综上所述,生物医用高分子材料在医疗器械、组织工程、药物传递系统等领域具有重要应用前景,对于提高医疗水平、改善生活质量具有重要意义。

随着生物医学技术的不断进步和生物医用高分子材料研究的深入,相信生物医用高分子材料将会在医疗领域发挥越来越重要的作用,为人类健康事业作出更大的贡献。

生物医学高分子材料汇总

生物医学高分子材料汇总


[( CH2 CO O CH2 CO O )P ...( CH CO CH 3
聚-对-二氧杂环已酮(PDS)
O
CH CO O )]P CH3
[CH2 CH2 O CH2 CO O ]P
有几种已工业化生产的聚合物,虽不是专 门为生物医学应用而生产,但通过用专门的技 术进行加工后也可以制成供生物医学方面应用 的纤维、细丝、微孔材料和管状材料。
我国的甲壳质资源极其丰富,而且曾是研究 开发甲壳质制品较早的国家之一。早在1958年, 就对甲壳质的性能及生产进行过研究,并用于 纺织染整上作上浆剂。进入20世纪80年代后期, 甲壳质资源的开发利用引起了一些科研院所的 重视,并开始了在医疗和保健等领域的研究与 开发。
3.甲壳质及壳聚糖的生物活性

(3) 农业领域

-----作植物种子处理剂
6.甲壳素类纤维的制备技术
1) 甲壳素类纤维纺丝原液的制备
以壳聚糖为原料时,多选用5%以下的醋酸水溶液 作为溶剂。
甲壳素纺丝原液的制备多采用溶解性能优异的有 机溶剂,加适当的氯化锂助溶。
2) 甲壳素类纤维的成型
制备甲壳素类纤维可采用干法纺丝、湿法纺丝和 干-湿法纺丝等不同的成型工艺 。
3.生物降解吸收性
指材料在活体环境中可发生速度能控 制的降解,并能被活体在一定时间内自 行吸收代谢或排泄。
按照在生物体内降解方式可分为水 解型和酶解型两种。
(三)具备效果显示功能
具有显示其医用效果的功能,即生物功 能性。
1.可检查、诊断疾病
2.可辅助治疗疾病如注射器、缝合线和 手套等手术用品材料
1.严格控制用于合成医用高分子材料的原料 的纯度,不能代入有害杂质,重金属含量不 能超标。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料简介生物医用高分子材料是一类应用于医疗领域的材料,由具有生物相容性和生物可降解性的高分子化合物制成。

这些材料具有优异的物理、化学和生物学性能,可以用于制备医疗器械、药物递送系统和组织工程材料等。

特点生物医用高分子材料具有以下特点:1.生物相容性:材料与生物体组织之间有良好的相容性,不引起排异反应和毒性反应;2.生物可降解性:材料在体内可逐渐分解和吸收,降低二次手术的风险;3.可塑性:材料具有良好的加工性能,可以通过热处理、注塑、拉伸等方式制备成各种形状;4.调控性:材料的组分和结构可以通过化学修饰进行调控,以实现特定的功能和效果;5.故障警示功能:材料可以通过改变颜色、形状等方式表达材料出现故障的信息。

应用生物医用高分子材料在医疗领域有广泛的应用,包括但不限于以下几个方面:医疗器械生物医用高分子材料可以用于制备各种医疗器械,包括人体植入物、支架和修复材料等。

例如,可降解聚合物可以用于制备骨修复材料,用于治疗骨折和骨缺损。

此外,生物医用高分子材料还可以制备耐高温和耐化学腐蚀的医用管道、接头和阀门等。

药物递送系统生物医用高分子材料可以用于制备药物递送系统,通过控制材料的解理速率和药物的释放速率,实现药物在体内定点释放和长效治疗。

例如,聚乳酸-羟基乙酸共聚物可以用于制备微球,用于缓释抗癌药物。

此外,生物医用高分子材料还可以制备胶囊、片剂和注射剂等药物剂型。

组织工程材料生物医用高分子材料可以用于制备组织工程材料,用于修复受损组织和器官。

例如,聚丙烯酸甲酯可用于制备人工表皮,用于治疗烧伤和创面愈合。

此外,生物医用高分子材料还可以制备人工骨髓和人工心脏瓣膜等组织工程产品。

发展趋势随着生物医学技术和材料科学的不断发展,生物医用高分子材料的应用前景越来越广阔。

未来,我们可以预见以下几个发展趋势:1.新型材料的研发:研究人员将继续开发新型的生物医用高分子材料,以满足不断增长的临床需求。

2.功能化材料的应用:利用纳米技术和生物传感技术,将进一步开发具有特定功能的生物医用高分子材料,例如智能控释材料和组织修复材料等。

生物医学高分子材料

生物医学高分子材料

物理性能
包括密度、拉伸强度、断裂伸长 率、冲击强度等,这些指标直接
关系到材料的使用性能。
化学性能
主要包括耐候性、耐腐蚀性、抗 氧化性等,这些性能决定着材料
的使用寿命。
生物相容性
主要评价材料与人体或微生物环 境的相容性,包括细胞毒性、致 敏性、血液相容性等,这是生物 医学应用中非常重要的一个方面

04
生物医学高分子材料
2023-11-12
目 录
• 生物医学高分子材料概述 • 生物相容性高分子材料 • 生物降解性高分子材料 • 高分子药物载体 • 生物医学高分子材料的未来发展
01
生物医学高分子材料概述
定义与分类
生物医学高分子材料定义
是一类用于诊断、治疗、修复、替代人体组织或器官,以及实现人体组织或器 官功能的具有高分子特性的材料。
生物传感器
用于检测人体内化学物质或生理参数的制品 ,如血糖传感器、血压传感器等。
药物载体
用于药物输送的制品,如药物涂层、药物微 球等。
组织工程
用于促进人体组织或器官修复和再生的制品 ,如组织工程支架、生长因子等。
02
生物相容性高分子材料
生物相容性高分子材料的定义与分类
定义
生物相容性高分子材料是指与生物体组织或血液接触后,不会引起明显的组织反应,不会导致疾病或对人体健康 产生不良影响的聚合物材料。
合成生物相容性高分子材料的制备
一般采用聚合反应合成,如乳液聚合法、溶液聚合法、本体聚合法等,根据需要 可添加交联剂、增塑剂等改性剂。
生物相容性高分子材料的性能评价
生物安全性评价
主要考察材料与生物体接触后 是否产生毒性、致敏性、致突
变性等不良反应。

生物高分子

生物高分子


安全在于心细,事故出在麻痹。20.10.1920.10.1922:14:4922:14:49October 19, 2020

踏实肯干,努力奋斗。2020年10月19 日下午1 0时14 分20.10. 1920.1 0.19

追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2020年10月19日星期 一下午10时14分49秒22:14:4920.10.19
高物报告
生物高分子的最新进展
—人造心脏的研制成功
德国科学家发明的新
INCOR
型人造心脏“Incor”
已获准在欧洲范围内
正式投入临床使用。
这种新型人造心脏以
一种特殊结构的泵为
血液循环提供动力,
其叶片在磁场作用下
旋转。这种设计,可
避免系统内部出现摩
擦、磨损及发热等问
题,同时也降低了血
液凝结给人造心脏带

人生得意须尽欢,莫使金樽空对月。22:14:4922:14:4922:1410/19/2020 10:14:49 PM

安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.10.1922:14:4922:14Oc t-2019- Oct-20

加强交通建设管理,确保工程建设质 量。22:14:4922:14:4922:14M onday, October 19, 2020
血栓
人类白蛋白分子 纤维蛋白
高物报告 白血球 红血球
高物报告
提高血液相容性的技术—表面修饰
▪ 首先是利用各种物理和化学的方法对材料的 表面进行处理
(1)提高表面亲水性,降低表面自由能 (2)使表面带负电荷 (3)设计微相分离结构 (4)表面粗糙度的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物医用高分子材料
一、生物医用材料
生物医用材料简介:
生物医用材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。

现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。

生物医用材料分类:
生物材料应用广泛,品种很多,有不同的分类方法。

通常是按材料属性分为:合成高分子材料(聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。

根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。

二、生物医用高分子材料
1、定义:生物医用高分子材料是指对生物体进行诊断、治疗和置换损坏组织、器官或增进其功能的材料。

生物医学材料中发展最早、应用最广泛、用量最大的材料,也是一个正在迅速发展的材料。

它既可以来源于天然产物,又可以人工合成。

此类材料除应满足一般的物理、化学性能要求外,还必须具有足够好的生物相容性。

2、分类:
按材料来源分:
(1)医用金属和合金。

主要用于承力的骨、关节和牙等硬组织的修复和替换。

(2)医用高分子生物材料。

高分子化合物是构成人体绝大部分组织和器官的物质,医用高分子生物材料包括合成(如:聚酯、硅橡胶)和天然高分子(如:胶原、甲壳素)。

(3)医用生物陶瓷。

有惰性生物陶瓷和活性生物陶瓷(羟基磷灰石陶瓷、可吸收磷酸三钙陶瓷等)
(4)医用生物复合材料。

如羟基磷灰石涂复钛合金,炭纤维或生物活性玻璃纤维增强聚乳酸等高分子材料。

(5)生物衍生材料。

这类材料是将活性的生物体组织,包括自体和异体组织,经处理改性而获得的无活性的生物材料。

按用途分:
(1)手术治疗用高分子材料,如:
缝合线,黏胶剂,止血剂,各种导管,引流管,一次性输血输液器材
(2)药用及药物传递用高分子材料,如:
靶向性高分子载体(肝靶向性,肿瘤靶向性),高分子药物(干扰素,降胆敏),高分子控制释放载体(胶囊,水凝胶,脂质体)
(3)人造器官或组织,如:
人造皮肤,血管,骨,关节,肠道,心脏,肾等。

按降解性能分
(1)可生物降解材料-指聚合物在生物体内酶、酸碱性环境下或微生物存在的情况下可以发生分子量下降、生成水和二氧化碳等对生物体或环境无毒害的小分子化合物的性能。

(2)不可生物降解材料(生物惰性材料)-一种生物材料在特殊应用中和宿主反应起作用的能力,要求植入材料和机体间的相互作用能够永久地被协调。

在生物环境下自身不发生有害的物理(渗透、溶解或吸附)或者化学反应(对酸碱酶稳定)。

3、天然可降解高分子材料
胶原蛋白、纤维蛋白
甲壳素、壳聚糖、淀粉、纤维素海藻酸钠衍生物、可吸收缝线、药物控释载体、人工皮肤
(1)胶原
胶原是人体组织中最基本的蛋白质类物质,至今已经鉴别出13种胶原,其中I~III、V和XI 型胶原为成纤维胶原。

I 型胶原在动物体内含量最多,已被广泛应用于生物医用材料和生化试剂。

结构:由各种物种和肌体组织制备的胶原差异很小。

最基本的胶原结构为由三条分子量大约为1×105的肽链组成的三股螺旋绳状结构,直径为1~1.5nm,长约300nm,每条肽链都具有左手螺旋二级结构。

胶原分子的两端存在两个小的短链肽,称为端肽,不参与三股螺旋绳状结构。

研究证明,端肽是免疫原性识别点,可通过酶解将其除去。

除去端肽的胶原称为不全胶原,可用作生物医学材料。

制备来源:牛和猪的肌腱、生皮、骨骼是生产胶原的主要原料。

特点:优点:胶原材料具有生物力学性能好,免疫原性低等优点,被制造成为各种生物医学材料,在医疗器械产品制造领域有着不可替代的优势和相当广泛的应用。

缺点:要通过对实际生产过程的严格控制才能达到动物源性胶原的人用标准。

应用:胶原可以用于制造心脏瓣膜、支架、血管修复材料、止血海绵、创伤辅料、明胶、化妆品、人工皮肤、手术缝合线、组织工程基质等。

前景展望:胶原材料应用范围极其广泛,优势明显。

我国在对胶原类医疗器械产品的检验评价方面也日趋完善,如不久前又增添了对免疫原性检测的要求。

但当前国内对胶原类生物医用材料免疫原性的研究很少,并且对于此类产品的免疫原性尚无标准评价方法。

这一点仍需要我们继续不断地摸索与探究。

(2)甲壳质
甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(Dier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。

结构:
1.分子量:甲壳质的化学结构和植物纤维素非常相似。

都是六碳糖的多聚体,分子量都在100万以上。

分子量越高吸附能力越强,适合工业、环保领域应用。

低分子量容易被人体吸收。

分子量为7000左右的几丁聚糖,大约含30个左右的葡萄糖胺残基。

2.脱乙酰基纯度:几丁质经过脱乙酰基成为几丁聚糖,而几丁聚糖的基本单位是葡萄糖胺。

几丁质因为不溶于酸碱也不溶于水而不能被身体利用。

脱乙酰基后可增加其溶解性因此可被身体吸收。

几丁质脱乙酰基纯度越高其品质越好。

制备来源:自然界中,甲壳质存在于低等植物菌类、藻类的细胞,甲壳动物虾、蟹、昆虫的外壳,高等植物的细胞壁等,其量不低于丰富的纤维素,是除纤维素以外的又一大类重要多糖。

据估计自然界中,甲壳质每年生物合成的量多达1000亿吨。

生产:首先用稀的氢氧化钠液除去蛋白质,然后,用盐酸除去钙盐,剩下的就是几丁质。

为了从这些几丁质中除去乙酰基,用长时间的高温,使之在浓的氢氧化钠中发生反应,就可制成含有氨基的甲壳质(几丁聚糖或壳糖胺)。

因为几丁质不溶于酸碱,也不溶于水,很难被人体利用。

经脱乙酰基成几丁聚糖后它能溶于稀酸和体液中,可被人体所利用。

(3)壳聚糖
壳聚糖为甲壳素的脱乙酰衍生物,由甲壳素在40%~50%浓度的氢氧化钠水溶液中110~120℃下水解2~4h得到。

壳聚糖接枝丙烯酸在酸性条件下存在大量氢键,体系收缩,药物通透率低,表现为“关”;在碱性条件下成盐,离子性基团解离,由于同种电荷的相互排斥,聚合物网络扩张,药物通透率高,表现为“开”,因此具有pH刺激响应性,可作为智能型药物控制释放材料使用。

(4)甲壳素、壳聚糖及其衍生物在医药敷料中的应用
研究意义:医用生物材料的基本要求是安全、有效,研究甲壳素、壳聚糖及其衍生物的使用安全性对该产品在临床的推广和应用具有重要意义。

可以用来1、治疗外伤、创伤,甲壳素、壳聚糖等产品生物相容性好,且具有止血、止痛、抑菌、促进肉芽组织和上皮组织的形成等作用,是外伤、创伤治疗的理想产品。

2、治疗烧伤、烫伤,壳聚糖的线型分子链结构使其具有优良的成纤性,其纤维可作为可吸收医用手术缝合线、人造皮肤、止血材料、手术包扎材料等。

壳聚糖与胶原、明胶、抗菌药物等复合,改善物理性能和功能特性,可应用于烧伤、烫伤病人的治疗。

3、治疗溃疡,中药选择选用紫草、当归、白芷、甘草等活血止痛、祛腐生肌类药物,并提取有效成分;珍珠经超微粉碎后制成分子离子态溶液;壳聚糖经化学修饰后制成水溶液。

采用微乳化技术与微胶囊技术,将以上成分配制成具有定量缓释功能的微胶囊药膜。

该复合膜中药有效成分与壳聚糖结合在一起,既保持了壳聚糖本身生物活性,又使中药缓释吸收,而且具有喷涂方便、自然成膜、渗透性强、易于吸收、加快溃疡愈合等特点。

4、治疗褥疮,褥疮又名压迫性溃疡,是老龄人群的多发病和常见病,可分为外源性、原发性、内源性、继发性等类型。

壳聚糖应用于褥疮的临床治疗取得了良好的效果。

应用:甲壳素能为肌体组织中的溶菌酶所分解,已用于制造吸收型手术缝合线。

其抗拉强度优于其他类型的手术缝合线。

在兔体内试验观察,甲壳素手术缝合线4个月可以完全吸收。

甲壳素还具有促进伤口愈合的功能,可用作伤口包扎材料。

甲壳素膜用于覆盖外伤或新鲜烧伤的皮肤创伤面时,具有减轻疼痛和促进表皮形成的作用,因此是一种良好的人造皮肤材料。

三、生物医用高分子材料市场发展概况
我国生物医学材料的生物医学工程产业的市场增长率高达28%(全球市场增长率20%),居全球之首。

我国人工关节替换年增长率高达30%,远高于美国的4%。

775万肢残患者和每年新增的300万骨损伤患者-------需要大量骨修复材料
2000万心血管病患者--------每年需要24万套人工心瓣膜
肾衰患者--------每年需要12万个肾透析器
目前用高分子材料制成的人工器官中,比较成功的有人工血管、人工食道、人工尿道、人工心脏瓣膜、人工关节、人工骨、整形材料等,已取得重大研究成果。

还需不断完善的有人工肾、人工心脏、人工肺、人工胰脏、人工眼球、人造血液等。

还有一些功能较为复杂的器官,如人工肝脏、人工胃、人工子宫等,则正处于大力研究开发之中。

相关文档
最新文档