高等数学上(修订版)黄立宏(复旦出版社)习题六答案详解
(完整版)《高等数学》课程教学大纲
《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
高等数学下册(黄立宏廖基定著)复旦大学出版社第八章课后答案(..
习题八1.判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1){(x ,y )|x ≠0};(2){(x ,y )|1≤x 2+y 2<4};(3){(x ,y )|y <x 2};(4){(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}.(2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )|x 2+y 2=4}.(3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )|y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}.2.已知f (x ,y )=x 2+y 2-xy tan xy ,试求(,)f tx ty .解:222(,)()()tan (,).txf tx ty tx ty tx ty t f x y ty =+−⋅=3.已知(,,)w u vf u v w u w +=+,试求(,,).f x y x y xy +−解:f (x +y ,x -y ,xy )=(x +y )xy +(xy )x +y +x -y =(x +y )xy +(xy )2x .4.求下列各函数的定义域:2(1)ln(21);z y x =−+(2)z =+(3)z =(4)u =(5)z =(6)ln()z y x =−+(7)u =解:2(1){(,)|210}.D x y y x =−+>(2){(,)|0,0}.D x y x y x y =+>−>22222(3){(,)|40,10,0}.D x y x y x y x y =−≥−−>+≠(4){(,,)|0,0,0}.D x y z x y z =>>>2(5){(,)|0,0,}.D x y x y x y =≥≥≥22(6){(,)|0,0,1}.D x y y x x x y =−>≥+<22222(7){(,,)|0,0}.D x y z x y x y z =+≠+−≥5.求下列各极限:10(1)y x y →→22001(2)lim;x y x y→→+00(3)x y →→(4)x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→−++解:(1)原式0ln 2.=(2)原式=+∞.(3)原式=001lim.4x y →→=−(4)原式=lim2.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=×=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6.判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x yx y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+−⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++又lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y u x y u →→→+==+,故00lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续.(2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y )沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+,若点P (x ,y )沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=−→−===⋅−++故00lim x y z→→不存在.故函数z 在O (0,0)处不连续.7.指出下列函数在向外间断:(1)f (x ,y )=233x y x y −+;(2)f (x ,y )=2222y x y x +−;(3)f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y y y −⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x −→→=→==∞.故(0,0)是函数的间断点,而在其余各点处均连续.8.求下列函数的偏导数:(1)z =x 2y +2x y ;(2)s =22u v uv +;(3)z =x;(4)z =lntan xy ;(5)z =(1+xy )y ;(6)u =z xy ;(7)u =arctan(x -y )z ;(8)y zu x =.解:(1)223122,.z z x xy x xy y y ∂∂=+=−∂∂ (2)u vs v u =+2211,.s v s u u v u v v u∂∂=−=−+∂∂(3)2222212ln(),2z x x x x y x x y ∂=+=++∂+222.z xyx y y x y ∂==∂+(4)21122sec csc ,tan z x x xx y y y yy ∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅−=−∂(5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy−∂′=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤′++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z xy z −∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y −−∂−=⋅−=∂+−+−112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z z z z u z x y z x y y x y x y u x y x y x y x y z x y x y −−∂−⋅−−==−∂+−+−∂−−−−==∂+−+−(8)1.yzu y x x z −∂=∂2211ln ln .ln ln .y y z z y yzz u x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎞=⋅=−−⎜⎟∂⎝⎠9.已知22x y u x y =+,求证:3u u x y ux y ∂∂+=∂∂.证明:222223222()2()()u xy x y x y x y xy x x y x y ∂+−+==∂++.由对称性知22322()u x y yx y x y ∂+=∂+.于是2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+.10.设11ex y z ⎛⎞+−⎜⎟⎝⎠=,求证:222z z x y z x y ∂∂+=∂∂.证明:11112211e e x y x y z x x x ⎛⎞⎛⎞++−−⎜⎟⎜⎟⎝⎠⎝⎠∂⎡⎤⎛⎞=−=−⎜⎟⎢⎥∂⎝⎠⎣⎦,由z 关于x ,y 的对称性得1121e x y z y y ⎛⎞+−⎜⎟⎝⎠∂=∂故11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎞⎛⎞⎛⎞+++−−−⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(y,求f x(x ,1).解:1(,)1(x f x y y y =+−则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α,则tan α=1.故α=π4.13.求下列函数的二阶偏导数:(1)z =x 4+y 4-4x 2y 2;(2)z=arctan yx ;(3)z =y x ;(4)z =2e x y+.解:(1)2322224812816z z z x xy x y xyxx x y ∂∂∂=−=−=−∂∂∂∂ ,,由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=−=−∂∂∂ (2)222211z y y x x y x y x ∂⎛⎞=⋅=−−⎜⎟∂+⎝⎠⎛⎞+⎜⎟⎝⎠,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x yy x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅−⋅=−=∂++∂=⋅=∂+⎛⎞+⎜⎟⎝⎠∂=−∂+∂+−⋅−=−=∂∂++∂+−⋅−=−=∂∂++(3)222ln ,ln ,xx z z y y y y xx ∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x−−−−−−−∂∂==−∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx xy ++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x yx y x y x yz x x x x z z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂ 14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f −解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=−==+===15.设z=x ln(xy),求32zx y∂∂∂及32zx y∂∂∂.解:ln()1ln(),z yx xy xyx xy∂=⋅+=+∂232223221,0,11,. z y zx xy x x yz x zx y xy y x y y ∂∂===∂∂∂∂∂===−∂∂∂∂16.求下列函数的全微分:(1)22e x yz+=;(2)z=(3)zyu x=;(4)yzu x=.解:(1)∵2222e2,e2x y x yz zx y x y++∂∂=⋅=⋅∂∂∴222222d2e d2e d2e(d d) x y x y x yz x x y y x x y y +++=+=+(2)∵22223/21() z xy yx yx x y∂⎛⎞−=⋅=−⎜⎟+∂+⎝⎠2223/2()z xy x y∂==∂+∴223/2d(d d).()xz y x x yx y=−−+(3)∵11,lnz zz y y z u uy x x x zy x y−−∂∂==⋅⋅∂∂2ln lny zux x y yz∂=⋅⋅⋅∂∴211d d ln d ln ln d.z z zy y z y zu y x x x x zy y x x y y z −−=+⋅+⋅⋅⋅(4)∵1yzu yxx z−∂=∂1lnyzux xy z∂=⋅⋅∂lnyzu yx xz z2∂⎛⎞=⋅⋅−⎜⎟∂⎝⎠∴121d d ln d ln d.y y yz z zy yu x x x x y x x z z z z−⎛⎞=+⋅⋅+⋅⋅−⎜⎟⎝⎠17.求下列函数在给定点和自变量增量的条件下的全增量和全微分:(1)222,2,1,0.2,0.1; z x xy y x y x y=−+==−∆=∆=−(2)e ,1,1,0.15,0.1.xyz x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆−+∆+∆++∆−=−=d (2)(4) 1.6z x y x x y y =−∆+−+∆=(2)()()0.265e e e(e 1)0.30e.x x y y xy z +∆+∆∆=−=−=d e e e ()0.25exy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算:(1)(1.02)3·(0.97)2;;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y == 故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y )取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==−=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====−,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==−=≈+=×+×−=+×−=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y ,取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =−==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm,当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =×−×=(cm)故矩形的对角线长约增加0.062cm.20.1mol 理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L ,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT 得V =RTP ,且在标准状态下,R =8.20568×10-2,ΔV ≈d v =-2d d RT R p T P P +=d d V R P T PP −+222.48.20568100.01530.0911−×=−×+×≈−故体积改变量大约为0.09.21.测得一物体的体积V =4.45cm 3,其绝对误差限是0.01cm 3,质量m =30.80g ,其绝对误差限是0.01g ,求由公式mv ρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m =30.80,d v =0.01,d m =0.01时,22130.801d d d 0.010.014.45 4.450.01330.0133m v m v v ρ==−+−×+×≈=−当v =4.45,m =30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22.求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =−==求z u ∂∂,zv ∂∂;(2)z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v ∂∂;(3)ln(e e )x yu =+,y =x 3,求d d u x ;(4)u =x 2+y 2+z 2,x =e cos t t ,y =e sin t t ,z =e t,求d d ut .解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y uu v v v v ∂∂∂∂∂=⋅+⋅=−⋅+−∂∂∂∂∂=−223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y vu v v v v u v v ∂∂∂∂∂=⋅+⋅=−−⋅+−⋅∂∂∂∂∂=−+++(2)222222211111xz z x z y y x vyu x u y u y x y u vx xy y∂∂∂∂∂−−⎛⎞−=⋅+⋅=⋅+⋅==⎜⎟∂∂∂∂∂++⎝⎠⎛⎞⎛⎞++⎜⎟⎜⎟⎝⎠⎝⎠2222222111(1)11.xz z x z yyv x v y v yx xy yy x ux y u v−∂∂∂∂∂⎛⎞=⋅+⋅=⋅+⋅⋅−⎜⎟∂∂∂∂∂⎝⎠⎛⎞⎛⎞++⎜⎟⎜⎟⎝⎠⎝⎠+==++(3)33222d d d11e3e e3ee e3.d d de e e e e e e ex y x xx yx y x y x y x xu u x u y x xxx x x y x∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++(4)d d d dd d d du u x u y u zt x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂2 2(e cos e sin)2(e sin e cos)2e4e t t t t t t x t t y t t z =−+++⋅=.23.设f具有一阶连续偏导数,试求下列函数的一阶偏导数:(1)22(,e);xyu f x y=−(2),;x yu fy z⎛⎞=⎜⎟⎝⎠(3)().,,u f x xy xyz =解:(1)12122e2e.xy xyuf x f y xf y fx∂′′′′=⋅+⋅⋅=+∂1212(2)e2e.xy xyuf y f x yf x f y∂′′′′=⋅−+⋅⋅=−+∂(2)1111uf fx y y∂′′=⋅=∂121222222211..xu xf f f fyy z y zu yyf fz zz∂⎛⎞′′′′−=⋅+⋅=−+⎜⎟∂⎝⎠∂⎛⎞′′=⋅=−−⎜⎟∂⎝⎠(3)1231231, uf f y f yz f yf yzf x∂′′′′′′=⋅+⋅+⋅=++∂12323330,.uf f x f xz xf xzfyuf xy xyfz∂′′′′′=⋅+⋅+⋅=+∂∂′′=⋅=∂24.设(),,()yz xy xF u u F ux=+=为可导函数,证明:.z zx y z xyx y∂∂+=+∂∂证明:2()()()() z yyy xF u F u F u y F u x xx∂⎛⎞′′=+⋅+=+−−⎜⎟∂⎝⎠1()().z x xF u x F u y x∂′′=+⋅=+∂故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy ′∂∂⎡⎤′+=+++−⎢⎥∂∂⎣⎦′′=+−++=++=+25.设22()yz f x y =−,其中f (u )为可导函数,验证:211z z zx x y y y ∂∂+=∂∂.证明:∵2222z yf x xyf x f f ′′∂⋅=−=−∂,222(2)2z f y f y f y f y f f ′′∂−⋅⋅−+==∂,∴22222112211z z yf f y f y zx x y yf yf yf f y y ′′∂∂++=−+==⋅=∂∂⋅26.22()z f x y =+,其中f 具有二阶导数,求22222,,.z z z x x y y ∂∂∂∂∂∂∂解:2,2,z zxf yf xy ∂∂′′==∂∂ 222222224,224,z f x xf f x f x zxf y xyf x y∂′′′′′′=+⋅=+∂∂′′′′=⋅=∂∂由对称性知,22224.zf y f y∂′′′=+∂27.设f 是c 2类函数,求下列函数的二阶偏导数:(1),;x x z f y ⎛⎞=⎜⎟⎝⎠(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y +=解:(1)1212111,z f f f f xy y ∂′′′′=⋅+⋅=+∂2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎞′′′′′′′′′′′′′′+⋅=+⋅+=+⋅+⎜⎟∂⎝⎠∂⎛⎞⎛⎞⎛⎞′′′′′′′′′′−−+=⋅−+⋅=−−⎜⎟⎜⎟⎜⎟∂∂⎝⎠⎝⎠⎝⎠∂⎛⎞′′−==−⎜⎟∂⎝⎠∂′′=−∂22222342.x x x f f y yy ⎛⎞′′′′−⋅=+⎜⎟⎝⎠,(2)22121222,zf y f xy y f xyf x∂′′′′=⋅+⋅=+∂()()22222211122122432221112222222244,z y yf xy f y f xy f y f xy xyf y f xy f x y f ∂′′′′′′′′′=++⋅+⋅⋅+⋅∂′′′′′′′=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yz xf xy x f xy f x f xy f x yxf ∂′′′′′′′′′′=+++⋅+⋅⋅+⋅∂∂′′′′′′′′=++++∂′′′′=⋅+⋅=+∂∂′′′′′′′′′=++⋅+⋅⋅+⋅∂′=223411122244.x y f x yf x f ′′′′′′+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂′′′′=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂′′′′′′′′′′=−+++⋅+⋅+⋅∂′′′′′′′′=−+++∂′⎡⎤′′′′′′=++⋅⋅−+⋅⋅−+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤′′⋅⎣⎦′′′′′′′′′=−+−+∂′′′′=−+=−+∂∂′′⎡⎤⎡′′′′′′′′=−−++−+⋅−+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦′′′′′′′′=−+−+28.试证:利用变量替换1,3x y x yξη=−=−,可将方程22222430u u ux x y y∂∂∂++=∂∂∂∂化简为20uξη∂=∂∂.证明:设1(,),3u f f x y x y ξη⎛⎞==−−⎜⎟⎝⎠2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u uu u u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎞⎛⎞=+⋅−+⋅+⋅−=−−−−−⎜⎟⎜⎟∂∂∂∂∂∂∂∂∂∂∂⎝⎠⎝⎠22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uu u u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎞=⋅+⋅−=−−−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂∂∂∂∂⎛⎞⎛⎞=−⋅−⋅−−⋅−⋅−=++−−⎜⎟⎜⎟∂∂∂∂∂∂∂∂∂∂∂⎝⎠⎝⎠∂∂∂++∂∂∂∂∂∂∂∂∂=+++−−∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎞⎛⎞∂∂∂∂+−++⎜⎟⎜⎟∂∂∂∂∂∂∂⎝⎠⎝⎠∂=−=∂∂故20.uξη∂=∂∂29.求下列隐函数的导数或偏导数:(1)2sin e 0xy xy +−=,求d d y x ;(2)arctany x =,求d d yx ;(3)20x y z ++−=,求,z z x y ∂∂∂∂;(4)333z xyz a −=,求22,z zx y ∂∂∂∂.解:(1)[解法1]用隐函数求导公式,设F (x ,y )=sin y +e x -xy 2,则2e ,cos 2,x x y F y F y xy =−=− 故22d e e d cos 2cos 2x xx y F y y y x F y xy y xy−−=−=−=−−.[解法2]方程两边对x 求导,得()2cos e 02x y y y x yy ′⋅+−=′+⋅故2e .cos 2xy y y xy−′=−(2)设()221(,)ln arctanln arctan ,2y y F x y x y x x =−=−+∵222222121,21x x x y y F x y x y x y x +⎛⎞=−⋅=−⎜⎟++⎝⎠⎛⎞+⎜⎟⎝⎠222221211,21y y y x F x y x x yy x −=−⋅=++⎛⎞+⎜⎟⎝⎠∴d .d x y F y x y x F x y+=−=−(3)方程两边求全微分,得d 2d d 0,x y z ++=,z x y =+则d ,z x y =+故z z x y ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =−−,23,3,33,x y z F yz F xz F z xy =−=−=− 则223,33x z F z yz yz x F z xy z xy∂−=−=−=∂−−223,33y z F z xz xz y F z xy z xy∂−=−=−=∂−−()()()()22222222322232222()z z z x x xz z xy xz y z y z xy y y z xy xz xz z x xxz z xy z xy x yzz xy xy z z xy ∂∂⎛⎞−−−⎜⎟∂∂∂∂⎛⎞⎝⎠==⎜⎟−∂∂⎝⎠−⎛⎞⋅−−−⎜⎟−−⎝⎠==−−30.设F (x ,y ,z )=0可以确定函数x =x (y ,z ),y =y (x ,z ),z =z (x ,y ),证明:1x y zy z x ∂∂∂⋅⋅=−∂∂∂.证明:∵,,,y x z x y zF F F x y zy F z F x F ∂∂∂=−=−=−∂∂∂∴1.y z x y z x F F F x y z F F F y z x ⎛⎞⎛⎞∂∂∂⎛⎞−−−⋅⋅=⋅⋅=−⎜⎟⎜⎟⎜⎟∂∂∂⎝⎠⎝⎠⎝⎠31.设11,0F y z x y ⎛⎞++=⎜⎟⎝⎠确定了函数z =z (x ,y ),其中F 可微,求,z z x y ∂∂∂∂.解:12122110x F F F F x x ⎛⎞′′′=⋅+⋅=−−⎜⎟⎝⎠122122121222122221222011111z y x z y z F F F F F F F y F F F z x x F F x F F F F F y F z y y F F y F ′′′=⋅+⋅=⎛⎞′′−=⋅+⋅⎜⎟⎝⎠′−′∂=−=−=∂′′′′−′′−∂=−=−=∂′′32.求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求:d d ,;d d y z x x (2)1,0,xu yv yu xv +=⎧⎨−=⎩求:,,,;u v u vx x y y ∂∂∂∂∂∂∂∂(3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=−⎩其中f ,g 是c ′类函数,求,;u v x x ∂∂∂∂(4)e sin ,e cos ,uu x u v y u v ⎧=+⎪⎨=−⎪⎩求,,,.u u v vx y x y ∂∂∂∂∂∂∂∂解:(1)原方程组变为222222320y z x y z x⎧−=−⎪⎨+=−⎪⎩方程两边对x 求导,得d d 22d d d d 23d d y zy x x x y z y z x x x ⎧−=−⎪⎪⎨⎪−=−⎪⎩当2162023y J yz y y z−==+≠21d 16(61),3d 622(31)22d 12.2d 6231x y xz x x z x z x J yz y y z y x z xy x y x x J yz y z −−−−+===−−++−===−++(2)设(,,,)1,(,,,),F x y u v xu yvG x y u v yu xv =+−=−,,,,,,,,x y u v x y u v F u F v F x F y G v G u G y G x =====−===− 22u v uv F F x y J x y G G y x ===−−−故22x v xv F F u yG G v x u ux yv x J J x y −−∂−+=−=−=∂+222222,,.u x uxy v yv u y uy F F x uG G y v v vx uy x J J x y F F v yG G u x u vx uy yJ J x y F F x vG G y u vxu vy y JJ x y −∂−−=−=−=∂+−∂−−=−=−=∂+∂−=−=−=∂+(3)设(,,,)(,),F u v x y f ux v y u =+−2(,,,)(,),G u v x y g u x v y v =−−则121221121(1)(21),21uv uvF F xf f J xf yvg f gG G g vyg ′′−′′′′===−−−′′−故12121221122121(21),(1)(21)x v xvuf f F F G G g yvg uf yvg f g uxJJ xf yvg f g ′′′′′′′′−−−−−∂=−=−=∂′′′′−−−111111112211(1).(1)(21)u x uxxf uf F F G G g g g xf uf vxJJxf yvg f g ′′−′′′′′−+−∂=−=−=∂′′′′−−−(4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得1e sin cos ,0e cos (sin ),u u u u v v u v x x xu u v v u v x x x ∂∂∂⎧=++⎪⎪∂∂∂⎨∂∂∂⎪=−−−⎪∂∂∂⎩整理得(e sin )cos 1,(e cos )sin 0,uu u v v u v x x u v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪−+=⎪∂∂⎩解得sin e (sin cos )1uu vx v v ∂=∂−+cos e [e (sin cos )1]uu v v x u v v ∂−=∂−+方程组两边对y 求导得0e sin cos 1e cos sin u u u u v v u v y y y u u v v u v y y y ∂∂∂⎧=++⎪∂∂∂⎪⎨∂∂∂⎪=−+⎪∂∂∂⎩整理得(e sin )cos 0(e cos )sin 1uu u v v u v y y u v v u v y y ∂∂⎧++=⎪∂∂⎪⎨∂∂⎪−+=⎪∂∂⎩解得cos sin ,.e (sin cos )[e (sin cos )1]uu u u v v v e y v v y u v v ∂−∂+==∂−∂−+ 33.设e cos ,e sin ,u ux v y v z uv ===,试求,.z zx y∂∂∂∂解:由方程组e cos e sin u u x v y v ⎧=⎪⎨=⎪⎩可确定反函数(,),(,)u u x y v v x y ==,方程组两边对x 求导,得1e cos e sin 0e sin e cos uu u u u v v v x x u v v v x x ∂∂⎧=−⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解得cos sin ,e e u u u v v v x x ∂∂==−∂∂ 所以cos sin e uz u v v v u v v u x x x ∂∂∂−=+=∂∂∂方程组两边对y 求导,得0e cos e sin 1e sin e cos uu u u u v v v y y u v v v y y ∂∂⎧=−⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得sin cos ,e eu u u v v v x y ∂∂==∂∂所以sin cos e uz u v v v u v v u y y y ∂∂∂+=+=∂∂∂.34.求函数322(,)51054f x y x x xy y x y =−−+++−在(2,-1)点的泰勒公式.解:(2,1)2f −=231010,(2,1)325,(2,1)1610,(2,1)21,6,2,x x y y xx xx xy xxx yy f x x y f f x y f f x f f f f =−−+−==−++−==−−==−== 故223223(,)(2,1)(2)(2,1)(1)(2,1)1(2)(2,1)2(2)(1)(2,1)(1)(2,1)2!1(2)(2,1)3!23(2)(1)(2)(2)(1)(1)(2)x y xx xy yy xxx f x y f x f y f x f x y f y f x f x y x x y y x =−+−−++−⎡⎤+−−+−+−++−⎣⎦+⎡⎤−−⎣⎦=+−+++−−−++++−35.将函数(,)xf x y y =在(1,1)点展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x yf y y f xy −====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().xxx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ−−==⎛⎞+⋅==⎜⎟⎝⎠=−===+−+−−+。
《高等数学第五版》(黄立宏)(上)第4章习题详解附答案
习题4-11. 利用定义计算下列定积分: 定积分 定积分的概念定积分的定义(1) d ();b ax x a b <⎰ 10(2)e d .x x ⎰解:(1)将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=-L 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==L 则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2) 将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-L 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==L 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰L2. 利用定积分概念求下列极限:定积分 定积分的概念定积分的定义111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭L ;21(2)lim n n →+∞+L解:(1)原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰L (2)原式13200122lim ..33n x x n →+∞====⎰L 3. 用定积分的几何意义求下列积分值:定积分 定积分的概念定积分的定义10(1)2 d x x ⎰;(2)(0)x R >⎰.解:(1)由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2) 由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 4. 证明下列不等式: 定积分 定积分的性质定积分的性质2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰; 21(2)1e d e.x x ≤≤⎰证明:(1)当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 证明:当0 1.x ≤≤时,21e e,x ≤≤ 由积分的保序性知:2111d e d ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰5. 证明:(1) 12lim 0;nn x →∞=⎰(2) π40lim sin d 0.n n x x →∞=⎰定积分定积分的性质 定积分的性质 定积分定积分的性质 积分中值定理证明:(1) 当102x ≤≤时,0,n n x ≤≤于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) 由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰Q习题4-21. 计算下列定积分: 定积分 定积分的计算微积分学基本定理3(1)x ⎰; 221(2)d x x x --⎰;π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩;222(4)max{1,}d x x -⎰;(5)x .解:(1)原式43238233x ==-(2)原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰01232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= (3)原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰(4)原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5)原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=2. 计算下列导数: 定积分 定积分积分法复合函数求导法20d (1)d x t x ⎰;32d (2)d x x x ⎰解:(1)原式2=(2)原式32200d d d d x x x x =-=⎰⎰3. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x .定积分 定积分积分法 复合函数求导法解:222d d cos d cot .d d sin d yy t t t x x tt=== 4. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数()y y x =的导数.定积分 定积分积分法 复合函数求导法解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 cos sin 1xy x '=-.5. 求下列极限: 定积分 定积分积分法微积分学基本定理2030ln(12)d (1)lim xx t t x →+⎰; 2220020e d (2)lim e d x t xx t t t t→⎡⎤⎣⎦⎰⎰.解: (1)原式21222300ln(12)22lim lim ln(12).333x x x x x x →→+==+=(2)原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰6. a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.定积分 定积分积分法 复合函数求导法解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.习题4-31. 利用基本积分公式及性质求下列积分:不定积分 求不定积分的方法基本积分公式2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx x -⎛⎫- ⎪⎝⎭⎰解:原式=e d d e 2.xx x x x c x-=-+⎰⎰2352(14)d ;3x xxx ⋅-⋅⎰ 解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x ⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 2. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程. 不定积分 求不定积分的方法 基本积分公式 解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 3. 在下列各式等号右端的空白处填入适当的系数,使等式成立.不定积分 求不定积分的方法 基本积分公式(1)()2(1)xdx d x =-;(2)()22x xx dx d e e =;(3)()(35ln )d xx xd -=; (4)()33(1)x x a a dx d =-;(5)()sin3cos3xdx d x=;(6)()2cos5tan5dxxd x =;(7)()221ln1x x ddx x=--;(8)()l2552ndd xxx=--;()(1arcs in)d x-=;(10)()2arcta9n13ddxxx=+;(11)()()2(3)(3)4dx dx x=---;(12)()22(1)x xx de d e--+=. 4.利用换元法求下列积分:不定积分求不定积分的方法基本积分公式2(1)cos()dx x x⎰;解:原式=22211cos d sin.22x x x c=+⎰(2)x;解:原式=12333(sin cos)d(sin cos)(sin cos).2x x x x x x c---=-+⎰2d(3)21xx-⎰;解:原式=1d112x c=+-+⎰.c=+3(4)cos d x x⎰;解:原式=231(1sin)dsin sin sin.3x x x x c-=-+⎰(5)cos cos d2xx x⎰;解:原式=1133d sin sin.cos cos232222xxx x cx⎛⎫=+++⎪⎝⎭⎰(6)sin2cos3dx x x⎰;解:原式=111(sin5sin)d cos cos5.2210x x x x x c-=-+⎰2arccos(7)xx;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10xx x c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.d (12)12xx -⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .cos c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++. (20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=---⎰arcsin .xa c a =⋅d (23)e ex x x-+⎰;解:原式=2d(e )arctane .1(e )x x x c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =(27)⎰;d ln |1|ln(1.1tt t t c c t =-++=+++(28) d ;x x⎰解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x ===故上式33arccosc x+.(29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t 所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② 1t c =+ ② - ① 2 l n sin cos t t c =++ 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰5. 用分部积分法求下列不定积分:不定积分 求不定积分的方法分部积分法2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+6. 求下列不定积分:不定积分 求不定积分的方法分部积分法221(1)d (1)(1)x x x x ++-⎰;解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.习题4-4利用计分表,计算下列不定积分: (1)2sin3d x e x x -⎰;解:由积分表(十三)中公式(128)得()()()222221sin 32sin 33cos32312sin 33cos313x xxe xdx e x x C e x x C ---=--+-+=-++⎰(2)x ; 解:令u =,则dx =,由积分表(六)中公式(39)得(9ln 2ln 4u C C⎤==+⎥⎦=++(3)arcsin d 2xx x ⎰;()()2221142arcsin sin 22421arcsin 22x x x x dx acr C x x C⎛⎫=- ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎰由积分表十二中公式得(4);()()12,,45211ln 221ln 22x u dx du u C x C ==⎡⎤==+⎢⎥⎣⎦=++令则由积分表七中公式得(5)()21d 1x x x -⎰;()()()2261111ln 11111ln xdx C x x x x xCx x--=-++--=--+⎰g 由积分表一中公式得(6)x ; ()()51111arccos arccos 1C Cx x =+=+由积分表七中公式得(7)x x ⎰;()()((256121ln .88x xx x C =-++⎰由积分表七中公式得(8)x ;()()().5961=arcsin .x C ==-+⎰⎰Q 由积分表八中公式和得(9)x ;()()12,3721313ln 32u x dx du C C x=====+令则,由积分表六中公式得(10)4sin d x x ⎰.()()432339513sin sin cos sin 441311sin cos sin cos 4422133sin cos sin cos 488xdx x x xdx x x x x dx x x x x x C=-+⎡⎤=-+-+⎢⎥⎣⎦=--++⎰⎰⎰由积分表十一中公式得习题4-51. 利用被积函数奇偶性,计算下列积分值(其中a 为正常数) 定积分 定积分的计算 微积分学基本定理(1)sin d ;||aa xx x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||a a xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2. 计算下列积分: 定积分 定积分的计算 ??此处更细还需看(1)1x -⎰;2e 1(2)⎰;π40sin (3)d 1sin xx x+⎰;0(4)x ⎰;231(5)ln d x x x ⎰; π220(6)e cos d x x x ⎰;322d (7)2x x x +-⎰;21(8)x ⎰; ππ3π(9)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰; 2120(10)e d t t t -⎰;π22π6(11)cos d u u ⎰.解:(1)()()()()111111311122115451415441554541616125542541631616xx xx x----------=-=-+=---=---=⎰⎰⎰⎰⎰⎰g g(2)原式=221e211).(1ln)d(1ln)x x-=++=⎰(3)原式=πππ244422000sin(1sin)sind d tan dcos cosx xx x x xx x-=-⎰⎰⎰π4π12.tan4cosx xx⎛⎫==+-+⎪⎝⎭(4)原式=πππ2π0002d cos d cos dcosx x x x x xx==⎰⎰ππ2π02x x==(5)原式=22243411111151ln d d4ln2.ln44164x x x xx x=-=-⎰⎰(6)ππππ22222222000e cos d e dsin e sin2e sin dx x x xx x x x x x==⋅-⎰⎰⎰πππ2π2π222200e2e d cos e2e cos4e cos dx x xx x x x=+=+-⎰⎰所以,原式=π1(e2)5-.(7)原式=3322111111d ln ln2ln5.333122xxx x x-⎛⎫==--⎪-++⎝⎭⎰(8)原式11611d6d(1)t1t tt t t⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+(9)原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ (10)原式=2212122ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰(11)原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰3. 证明:2321()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);定积分 定积分的计算 换元法证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.4. 证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算0a⎰(a 为正常数)定积分 定积分的计算换元法证明:ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又 πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.定积分定积分积分法分部积分法解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰习题4-61. 用定义判断下列广义积分的敛散性,若收敛,则求其值: 定积分 反常积分 反常积分的计算:定积分的计算22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=100e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n xx n x x n x n +∞+∞---=+===⎰⎰L(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰2. 讨论下列广义积分的敛散性:定积分 定积分的计算 反常积分的计算:定积分的计算2d (1)(ln )kxx x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰.解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散. 3. 已知0sin πd 2x x x +∞=⎰,求:定积分 定积分的计算反常积分的计算:定积分的计算sin cos (1)d ;x xx x+∞⎰220sin (2) d .x x x +∞⎰ 解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰ (2)222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰4. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 定积分 反常积分 反常积分敛散性定理 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题四1.填空题(1)设40ln sin d I x x π=⎰,40ln cot d J x x π=⎰,40ln cos d K x x π=⎰,则,,I J K 的大小关系是 I K J << . 定积分 定积分积分法 牛顿莱布尼兹公式 (2)设2x e -是函数()f x 的一个原函数,则(2)d f x x =⎰2412x e C -+ .定积分 定积分的计算 换元法(3)设[]x 表示不超过x 的最大整数,则定积分[]()2012d x x x -⎰的值是多少 1006 .定积分 定积分的计算 牛顿莱布尼兹公式(4)已知函数()f x ,则1()()d f x f x x '''⎰的值为14.定积分定积分的计算复合函数求导法(5)反常积分220d (1)x x x +?+ò的值为 12.定积分 反常积分的计算定积分的计算2.选择题(1)设函数()f x 与()g x 在(,)-∞+∞内皆可导,且()()f x g x <,则必有( A ).定积分定积分的性质定积分性质A.0lim ()lim ()x x x x f x g x →→< B.()()f x g x ''< C.d ()dg()f x x < D.()d ()d xxf t tg t t <⎰⎰(2)下列定积分中,积分值不等于零的是( D ).定积分 定积分的计算A.20ln(sin x x π⎰B. 2cos 0sin(sin )d x e x x π⎰C.cos 2d x x ππ-⎰ D.2222sin cos d cos 2sin x xx x x ππ-++⎰(3)设()F x 是连续函数()f x 的一个原函数,“⇔M N ”表示“M 的充分必要条件是N ”,则必有( A ). (05年全国考研题第(8)题)定积分 定积分基本公式 原函数定义A.()F x 是偶函数⇔()f x 是奇函数B.()F x 是奇函数⇔()f x 是偶函数 B.()F x 是周期函数()⇔f x 是周期函数 D.()F x 是单调函数()⇔f x 是单调函数 (4)设ln xx为()f x 的一个原函数,则()d xf x x '=⎰( D ).定积分定积分基本公式 原函数定义A.ln x C x + B.2ln 1x C x ++ C.1C x + D.12ln xC x x-+ (5)设函数1()sin()d ,()ln(1)d xf x x t tg x x xt t =-=+⎰⎰,则当0x →时,()f x 是()g x 的( C ).定积分 定积分的计算 牛顿莱布尼兹公式A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量 3.利用定积分概念求下列极限:定积分 定积分的概念 定积分的定义(1)lim n →∞; 解:(1)()()11112001=lim 12131333nn n i n x d x →∞=-===++==⎰⎰g原式(2)1lim ln 1ln 1ln 1n n →∞⎡⎤⎛⎛⎛+++++⎢⎥ ⎢⎥⎝⎝⎝⎣⎦L . 解:(2)有定积分的定义可得(101lim ln 1ln 1ln 1ln 1n dx n →∞⎛⎫⎛⎛⎛+++++=+ ⎪ ⎪⎝⎝⎝⎝⎭⎰L ()120ln 1u du =+⎰(令2x u =)2111200011ln(1)ln 2(1)011u u u du u du du u u =+-=---++⎰⎰⎰11ln 21ln 222=-+-=4*. 已知曲线在点(,)x y 处的斜率为2sin cos x x +,且曲线过点(,0)π,求该曲线的方程. 不定积分 不定积分的计算 基本积分公式解:由已知2sin cos ,(2sin cos )2cos sin y x x y x x dx x x C '=+=+=-++⎰,由于曲线过(,0)π,则有2C =-,因此所求曲线方程为2cos sin 2y x x =-+-.5*. 设函数()f x 连续,且满足0()()d (2)2xx x t f t t x x e x -=-+⎰.(1)求函数()f x 的表达式;定积分定积分的计算 牛顿莱布尼兹公式(2)求函数()f x 的单调区间与极值.微分中值定理 函数的单调性与凹凸性 函数凹凸性判别法解:(1)00()()()()(2)2xxxx x t f t dt xf t dt tf t dt x x e x -=-=-+⎰⎰⎰,方程两边对x 求导数,则有20()(2)2xx f t dt e x =-+⎰,再对x 求导数得2()(22)x f x e x x =+-.(2)()(4)xf x x x e '=+,令()0f x '=得04x x ==-或.所以,函数()f x 的单调增加区间为(),4(0,)-∞-+∞与;单调减少区间为[]4,0-.函数()f x 的极大值为()446f e --=,极小值为()02f =-.6*.设函数2202(1)d ,0,(),0,x t e t x f x x A x ⎧-⎪≠=⎨⎪=⎩⎰问当A 取何值时,()f x 在0x =处可导,并求出(0)f '的值. (国防科大09-10年秋季第三大题第2小题)解:()()()()()()()()()()()22222224222020022020304221214limlimlim 02010lim lim 000110limlim2124limlim 33xt x x x x xt x x xt xt x x x x x e dte xx xxf x x e dtA f x f x x xA A e dt e dt x f xx exx →→→→→→→→→--====---=-==--'==-==⎰⎰⎰⎰Q g 若在处可导,则存在,若,则上述的极限不存在为无穷大,故于是283x =定积分 定积分的计算牛顿莱布尼兹公式7*.设函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上连续,且满足2222()cos ()d x f x x xe f t t ππ-=++⎰,求()f x 的表达式.定积分定积分的计算 牛顿莱布尼兹公式解:设22()a f x dx ππ-=⎰,则有22()cos x f x x xe a =++,所以有222222(cos )2cos 2x a x xe a dx xdx a a ππππππ-=++=+=+⎰⎰,解得2(1)a ππ=-,因此所求函数的表达式为22()cos 2(1)xf x x xe ππ=++-.8. 求下列不定积分,并用求导方法验证其结果正确否:d (1)1exx+⎰; 不定积分 求不定积分的方法基本积分公式解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;不定积分求不定积分的方法分部积分法解:原式=ln(ln(.x x x x x c -=+-验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;不定积分求不定积分的方法分部积分法解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;不定积分 求不定积分的方法 基本积分公式解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=+==所以,结论正确.(5)sin(ln)dx x⎰;不定积分求不定积分的方法基本积分公式解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1ln d d ln(.x x x cx=-=++⎰验证:ln(x c '⎤-++⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;不定积分 求不定积分的方法分部积分法解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tantan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;不定积分求不定积分的方法分部积分法解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).不定积分求不定积分的方法分部积分法解:1sin d sindcos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰ 22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.9. 求不定积分max(1,)d x x ⎰.不定积分求不定积分的方法 基本积分公式解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰10.计算下列积分:(1)1解:210210211220,1,2,3110422=2111212ln 1112ln 2t x t dx tdt x t x t t tdt dtt t dt t t t ==-=-====-∴=--⎛⎫=+=⎡+-⎤ ⎪⎣⎦-⎝⎭=-⎰⎰⎰则当时,,当时,原式 (2)1定积分 定积分的计算基本积分公式解:原式=211112⎛⎫+ ⎪-== (3) ln3ln 2d e ex xx--⎰;定积分 定积分的计算基本积分公式解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(4)x ⎰;定积分 定积分的计算分部积分法解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=(5)120ln(1)d (2)x x x +-⎰;定积分定积分的计算分部积分法解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰(6){}230max ,d x x x ⎰.解:{}2123301122401max ,1151724244x x dx xdx x dxxx =+=+=+=⎰⎰⎰11. 计算下列积分(n 为正整数): (1)1;n x ⎰定积分 定积分的计算换元法解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰L L为偶数, 为奇数.(2)π240tan d .n x x ⎰定积分 定积分的计算分部积分法解:πππ2(1)22(1)22(1)4440π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-L。
高等数学上(修订版)黄立宏(复旦出版社)__习题四答案详解
1. 利用定义计算下列定积分: (1)d ();bax x a b <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得22122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a n b a λξ→→∞=-+=∆=-+=-∑⎰(2)1e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==- 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ== 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰2. 用定积分的几何意义求下列积分值:1(1)2 d x x ⎰;解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2)(0)x R >⎰.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 3. 证明下列不等式:2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰;证明:当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤ 由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 211e d e.x x ≤≤⎰证明:当0 1.x ≤≤时,21e e,x ≤≤由积分的保序性知:2111d ed ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰4. 证明: (1) 12lim0;nn x →∞=⎰证明:当12x ≤≤时,0,n n x ≤≤ 于是11120110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) π4limsin d 0.n n x x →∞=⎰证明:由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰5.计算下列定积分:3(1);x ⎰解:原式43238233x ==-.221(2)d x x x --⎰;解:原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰1232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩ 解:原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰ 222(4)max{1,}d ;x x -⎰解:原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5).x解:原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=6. 计算下列导数:2d (1)d x t x ⎰解:原式2=32d (2)d x x x ⎰解:原式32200d d d d x x x x =-=⎰⎰ 7. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot .d d sin d yy t t t x x tt=== 8. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数()y y x =的导数.解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 c o s s i n 1xy x '=-.9. 利用定积分概念求下列极限:111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭解:原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++ ⎪=⋅===++++ ⎪+⎝⎭⎰21(2)limn n →+∞解:原式13200122lim ..33n x x n →+∞====+⎰ 10. 求下列极限:203ln(12)d (1)lim;xx t tx →+⎰解:原式21222300ln(12)22lim limln(12).333x x x x x x →→+==+=2220020e d (2)lim .e d x t x x tt t t→⎡⎤⎣⎦⎰⎰ 解:原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰11. a , b , c 取何实数值才能使201limsin x bx t c x ax →=-⎰ 成立. 解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.12. 利用基本积分公式及性质求下列积分:2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰.(2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x+-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰;解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx-⎛ ⎝⎰解:原式=e d e .xx x x c-=-⎰2352(14)d ;3x xxx ⋅-⋅⎰解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 13. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 14. (略).15. 利用换元法求下列积分:2(1)cos()d x x x ⎰;解:原式=22211cos d sin .22x x x c =+⎰(2)x ;解:原式=12333(sin cos )d(sin cos )(sin cos ).2x x x x x x c ---=-+⎰21x -解:原式=1d 112x c =+-+⎰.c =+ 3(4)cos d x x ⎰;解:原式=231(1sin )dsin sin sin .3x x x x c -=-+⎰(5)cos cos d 2xx x ⎰;解:原式=1133d sin sin .cos cos 232222x x x x c x ⎛⎫=+++ ⎪⎝⎭⎰ (6)sin 2cos3d x x x ⎰;解:原式=111(sin 5sin )d cos cos5.2210x x x x x c -=-+⎰2arccos (7)xx ;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10x xx c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰; 解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=22arctan.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.12x -解:原式=1ln .122c x -+-(13)t;解:原式=2sin .c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x==+⎰⎰ 2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++.(20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.(21)x ;解:原式=12222d 1112(94)d(94)arcsin .2823x x x x c -⎛⎫ ⎪+--=+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=--⎰⎰arcsin .xa c a=⋅- d (23)e ex xx-+⎰; 解:原式=2d(e )arctane .1(e )x xx c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式23(2.3x c x-=+(27)100d ln |1|ln(1.1tt t t c c t =-++=+++(28) ;x 解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x === 故上式33arccosc x+. (29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t =所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② = t + c 1② - ① = ln |sin t +cos t | + c 2 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰16. 用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222d cos cos 2cos d cos 2d sin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰1012cos 2sin 2cos .x x x x x c =-+++ (2)e d x x x -⎰;解:原式=dee e d e e .xx x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:ecos d e d sin e sin e sin d xx x x x x x x x x ----==⋅+⎰⎰⎰e sin e d cos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x ⎰;102解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭⎰⎰32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x =----+(10)x ⎰.解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰ 故11ln .22x c x =+17. 求下列不定积分:221(1)d (1)(1)x x x x ++-⎰; 解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1xx +⎰; 解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰10332118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 2d 1x x x x x x ⎛=+-+⎝⎰⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=+故原式=1)x c -+.18. 求下列不定积分,并用求导方法验证其结果正确否:104d (1)1e xx+⎰; 解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;解:原式=ln(ln(.x x x x x c -=+验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;解:原式=9212)arcsin (.232x x x c ++=++验证:921arcsin (232x x '+⎡++⎢⎣211(2)32x =+== 所以,结论正确.(5)sin(ln )d x x ⎰;105解:1sin(ln )d sin(ln )cos(ln )d x x x x x x x x=-⋅⋅⎰⎰ sin(ln )cos(ln )sin(ln )d x x x x x x =--⎰所以,原式=().sin(ln )cos(ln )2xc x x +- 验证: ()sin(ln )cos(ln )2x c x x '⎡⎤+-⎢⎥⎣⎦()111sin(ln )cos(ln )cos(ln )sin(ln )22sin(ln ).x x x x x x x x ⎛⎫=+-⋅+⋅ ⎪⎝⎭= 故结论成立.2e (6)d (e 1)xx x x +⎰; 解:原式=1e 1d d d e 1e 1e 11e e 1x x x x xx x x x x x --⎛⎫-=-+=-+ ⎪+++++⎝⎭⎰⎰⎰ ln(1e ).e 1x xxc --=-+++ 验证:22(e 1)e e e ln(1e )(e 1)1e (e 1)e 1x xx x xx x x x x x x c ---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦. 故结论成立.23/2ln (7)d (1)xx x +⎰; 解:原式=1ln d d ln(.x x x c x =-=++⎰验证:ln(x c '⎤-+⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;106解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tan tan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).解:1sin d sind cos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰ 故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x xn n n x -----=-⋅-⋅+--=--+= 故结论成立.19. 求不定积分max(1,)d x x ⎰.107解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰20. 计算下列积分:4(1)x ⎰;333211221313d .36222t t t t ⎛⎫⎛⎫==++ ⎪ ⎪⎝⎭⎝⎭2e 1(2)⎰;解:原式=221e211).(1ln )d(1ln )x x -=++=⎰1(3);解:原式=211112⎛⎫+ ⎪-== π40sin (4)d 1sin xx x+⎰;108解:原式=πππ244422000sin(1sin )sin d d tan d cos cos x xx x x x xx -=-⎰⎰⎰π40π1 2.tan 4cos x x x ⎛⎫==+-+ ⎪⎝⎭ ln3ln 2d (5)e e x xx--⎰;解:原式=ln 3ln 32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(6)x ⎰;解:原式=πππ2π02d cos d cos d cos x x x x x x x ==⎰⎰ππ2π02xx==(7)x ⎰;解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=231(8)ln d x x x ⎰;解:原式=22243411111151ln d d 4ln 2.ln 44164x x x x x x =-=-⎰⎰π220(9)e cos d x x x ⎰;解:ππππ222222220e cos d e dsin e sin 2e sin d xx xx x x x xx x ==⋅-⎰⎰⎰πππ2π2π22220e 2e d cos e 2e cos 4e cos d xxx x xx x =+=+-⎰⎰所以,原式=π1(e 2)5-.109120ln(1)(10)d (2)x x x +-⎰;解:原式=111000111ln(1)ln(1)dd 2212x x x x x x x ++=-⋅--+-⎰⎰ 101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰322d (11)2xx x +-⎰; 解:原式=3322111111d ln ln 2ln 5.333122x x x x x -⎛⎫==-- ⎪-++⎝⎭⎰21(12)x ⎰; 解:原式11611d 6d (1)t 1t t t t t ⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+ππ3π(13)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰;解:原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ 212(14)e d t t t -⎰;解:原式=221212200ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰π22π6(15)cos d u u ⎰.解:原式=ππ22ππ661π11(1cos 2)d sin 226824u u u u ⎛⎫+==-+ ⎪⎝⎭⎰21. 计算下列积分(n 为正整数):110(1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342,253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数. (2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)4440π2(1)411tan tan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+- 22. 证明下列等式:232001(1)()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.(2)若()[,]f x c a b ∈,则ππ220(sin )d (cos )d f x x f x x =⎰⎰.证明:左πππ0222π02(cos )(d )(cos )d (cos )d x tf t t f t t f x x =--==⎰⎰⎰令.所以,等式成立.23. 利用被积函数奇偶性计算下列积分值(其中a 为正常数)(1)sin d ;||aa x x x -⎰111解:因sin ||xx 为[-a , a ]上的奇函数, 故s i n d 0.||aa xx x -=⎰(2)ln(aax x -⎰;解:因为ln(ln(x x -=-+即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰24. 利用习题22(2)证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算a⎰(a 为正常数)证明:由习题22(2)可知ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰112故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令25. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰26. 用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim cos lim cos 1.bbb b b x b x x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)aa >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;113解:原式=()e e 011πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰解:原式=110+⎰21212211121202lim 2lim πππlim arcsin lim 2222π.424εεεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰27. 讨论下列广义积分的敛散性:2d (1)(ln )kxx x +∞⎰;解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x k k +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰. 解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b kk b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散.28. 已知0sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x x x x+∞⎰解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰22sin (2) d .xx x +∞⎰114解:222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰29. 已知()d 1p x x +∞-∞=⎰,其中1,()0,1,x p x x <=≥⎩求c .解:1111()d 0d 0d p x x x x x x +∞-+∞-∞-∞--=⋅++⋅=⎰⎰⎰⎰⎰11001arcsin arcsin π1x x c x c xc --=+=⋅+⋅==⎰⎰所以1πc =. 30. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.*31. 计算下列广义积分的柯西主值:(1) V.P.x +∞-∞⎰;115解:原式=0lim AA x x -→+∞⎡⎤+⎢⎥⎣⎦⎰⎰lim lim 0.11A A A →+∞→+∞⎤=⎦==+212d (2) V.P.ln xx x⎰; 解:原式=121211001212d d lim lim ln ln ln ln ln ln x x x x x x x x εεεεεε++--+→→+⎡⎤⎡⎤⎢⎥+=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰01lim ln ln(1)ln ln ln 2ln ln(1)0.ln 2εεε+→⎡⎤=--+-+=⎢⎥⎣⎦2d (3) V.P.32xx x +∞-+⎰; 解:x =1, x =2是奇点. 故 原式1222201200d d d lim323232b n b x x x x x x x x x εηεηε++--++→→→+∞⎡⎤=++⎢⎥-+-+-+⎣⎦⎰⎰⎰ 120000120222lim ln lim ln lim ln 111bb x x x x x x εηεεηεηη++++--→→→++→∞→⎡-⎤⎡-⎤⎡-⎤=++⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 0000112lim ln ln 2lim ln ln lim ln ln 1111ln 2ln .2b b b εεηηεηεηεηεη++++→→→→∞→⎡⎤⎡⎤+--⎡⎤=-+-+-⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦=-=30d (4) V.P.1xx-⎰. 解:原式=1313010001d d lim lim ln ln 1111xx x xx x εεεεεε++--+→→+⎡⎤⎡⎤=--+--⎢⎥⎢⎥--⎣⎦⎢⎥⎣⎦⎰⎰ []0lim ln 2ln ln 2ln εεε+→==---+.。
高等数学第六版上册课后习题答案与及解析
高等数学第六版上册课后习题答案与及解析第一章习题111设A (5)(5)B [103)写出ABABA \B 及A \(A \B )的表达式 解AB (3)(5) AB [105) A \B (10)(5)A \(A \B )[105)2设A 、B 是任意两个集合证明对偶律(AB )C A C B C 证明因为x (AB )C xABxA 或xBxA C 或xB C xA C B C 所以(AB )C A C B C3设映射fXYAXBX 证明 (1)f (AB )f (A )f (B ) (2)f (AB )f (A )f (B ) 证明因为yf (AB )xAB 使f (x )y(因为xA 或xB )yf (A )或yf (B ) yf (A )f (B )所以f (AB )f (A )f (B ) (2)因为yf (AB )xAB 使f (x )y (因为xA 且xB )yf (A )且yf (B )yf (A )f (B ) 所以f (AB )f (A )f (B )4设映射fXY 若存在一个映射gYX 使X I f g =οY I g f =ο其中I X 、I Y 分别是X 、Y 上的恒等映射即对于每一个xX 有I X xx 对于每一个yY 有I Y yy 证明f 是双射且g 是f 的逆映射gf 1 证明因为对于任意的yY 有xg (y )X 且f (x )f [g (y )]I y yy 即Y 中任意元素都是X 中某元素的像所以f 为X 到Y 的满射又因为对于任意的x 1x 2必有f (x 1)f (x 2)否则若f (x 1)f (x 2)g [f (x 1)]g [f (x 2)]x 1x 2 因此f 既是单射又是满射即f 是双射对于映射gYX 因为对每个yY 有g (y )xX 且满足f (x )f [g (y )]I y yy 按逆映射的定义g 是f 的逆映射5设映射fXYAX 证明 (1)f 1(f (A ))A(2)当f 是单射时有f 1(f (A ))A证明(1)因为xAf (x )yf (A )f 1(y )xf 1(f (A )) 所以f 1(f (A ))A(2)由(1)知f 1(f (A ))A另一方面对于任意的xf 1(f (A ))存在yf (A )使f 1(y )xf (x )y 因为yf (A )且f 是单射所以xA 这就证明了f 1(f (A ))A 因此f 1(f (A ))A 6求下列函数的自然定义域 (1)23+=x y解由3x 20得32->x 函数的定义域为) ,32[∞+-(2)211x y -=解由1x 20得x 1函数的定义域为(1)(11)(1) (3)211x x y --=解由x 0且1x 20得函数的定义域D [10)(01] (4)241x y -=解由4x 20得|x |2函数的定义域为(22) (5)x y sin =解由x 0得函数的定义D [0) (6)y tan(x 1)解由21π≠+x (k 012)得函数的定义域为 12-+≠ππk x (k 012)(7)y arcsin(x 3)解由|x 3|1得函数的定义域D [24] (8)x x y 1arctan 3+-=解由3x 0且x 0得函数的定义域D (0)(03) (9)y ln(x 1)解由x 10得函数的定义域D (1) (10)xe y 1=解由x 0得函数的定义域D (0)(0)7下列各题中函数f (x )和g (x )是否相同?为什么? (1)f (x )lg x 2g (x )2lg x (2)f (x )xg (x )2x(3)334)(x x x f -=31)(-=x x x g (4)f (x )1g (x )sec 2x tan 2x 解(1)不同因为定义域不同(2)不同因为对应法则不同x 0时g (x )x (3)相同因为定义域、对应法则均相相同 (4)不同因为定义域不同8设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x 求)6(πϕ)4(πϕ)4(πϕ-(2)并作出函数y (x )的图形 解21|6sin |)6(==ππϕ22|4sin |)4(==ππϕ22|)4sin(|)4(=-=-ππϕ0)2(=-ϕ9试证下列函数在指定区间内的单调性 (1)x x y -=1(1)(2)yx ln x (0)证明(1)对于任意的x 1x 2(1)有1x 101x 20因为当x 1x 2时 所以函数x x y -=1在区间(1)内是单调增加的(2)对于任意的x 1x 2(0)当x 1x 2时有所以函数yx ln x 在区间(0)内是单调增加的10设f (x )为定义在(ll )内的奇函数若f (x )在(0l )内单调增加证明f (x )在(l 0)内也单调增加证明对于x 1x 2(l 0)且x 1x 2有x 1x 2(0l )且x 1x 2 因为f (x )在(0l )内单调增加且为奇函数所以f (x 2)f (x 1)f (x 2)f (x 1)f (x 2)f (x 1)这就证明了对于x 1x 2(l 0)有f (x 1)f (x 2)所以f (x )在(l 0)内也单调增加 11设下面所考虑的函数都是定义在对称区间(ll )上的证明 (1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明(1)设F (x )f (x )g (x )如果f (x )和g (x )都是偶函数则 F (x )f (x )g (x )f (x )g (x )F (x )所以F (x )为偶函数即两个偶函数的和是偶函数 如果f (x )和g (x )都是奇函数则 F (x )f (x )g (x )f (x )g (x )F (x )所以F (x )为奇函数即两个奇函数的和是奇函数 (2)设F (x )f (x )g (x )如果f (x )和g (x )都是偶函数则F (x )f (x )g (x )f (x )g (x )F (x )所以F (x )为偶函数即两个偶函数的积是偶函数 如果f (x )和g (x )都是奇函数则F (x )f (x )g (x )[f (x )][g (x )]f (x )g (x )F (x )所以F (x )为偶函数即两个奇函数的积是偶函数 如果f (x )是偶函数而g (x )是奇函数则 F (x )f (x )g (x )f (x )[g (x )]f (x )g (x )F (x )所以F (x )为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数? (1)yx 2(1x 2)(2)y 3x 2x 3(3)2211x x y +-= (4)yx (x 1)(x 1) (5)y sin x cos x 1(6)2x x a a y -+= 解(1)因为f (x )(x )2[1(x )2]x 2(1x 2)f (x )所以f (x )是偶函数 (2)由f (x )3(x )2(x )33x 2x 3可见f (x )既非奇函数又非偶函数(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-所以f (x )是偶函数 (4)因为f (x )(x )(x 1)(x 1)x (x 1)(x 1)f (x )所以f (x )是奇函数(5)由f (x )sin(x )cos(x )1sin x cos x 1可见f (x )既非奇函数又非偶函数(6)因为)(22)()()(x f a a a a x f xx x x =+=+=-----所以f (x )是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期 (1)y cos(x 2)解是周期函数周期为l 2 (2)y cos4x解是周期函数周期为2π=l(3)y 1sin x解是周期函数周期为l 2 (4)yx cos x解不是周期函数 (5)y sin 2x解是周期函数周期为l 14求下列函数的反函数(1)31+=x y解由31+=x y 得xy 31所以31+=x y 的反函数为yx 31 (2)xx y +-=11解由x x y +-=11得y yx +-=11所以x x y +-=11的反函数为xx y +-=11(3)dcx b ax y ++=(adbc 0)解由d cx b ax y ++=得a cy bdy x -+-=所以d cx b ax y ++=的反函数为acx b dx y -+-=(4)y 2sin3x解由y 2sin3x 得2arcsin 31yx =所以y 2sin3x 的反函数为2arcsin 31x y =(5)y 1ln(x 2)解由y 1ln(x 2)得xe y 12所以y 1ln(x 2)的反函数为ye x 12(6)122+=xxy 解由122+=x x y 得y y x -=1log 2所以122+=x x y 的反函数为x x y -=1log 215设函数f (x )在数集X 上有定义试证函数f (x )在X 上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f (x )在X 上有界则存在正数M 使|f (x )|M 即Mf (x )M 这就证明了f (x )在X 上有下界M 和上界M再证充分性设函数f (x )在X 上有下界K 1和上界K 2即K 1f (x )K 2取M max{|K 1||K 2|}则MK 1f (x )K 2M 即|f (x )|M这就证明了f (x )在X 上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x 1和x 2的函数值(1)yu 2u sin x 61π=x 32π=x解y sin 2x 41)21(6sin 221===πy 43)23(3sin 222===πy(2)y sin uu 2x 81π=x 42π=x解y sin2x 224sin )82sin(1==⋅=ππy 12sin )42sin(2==⋅=ππy(3)u y =u 1x 2x 11x 2 2解21x y +=21121=+=y 52122=+=y (4)ye u ux 2x 10x 21解2x e y =1201==e y e e y ==212(5)yu 2ue x x 11x 21 解ye 2x y 1e 21e 2y 2e 2(1)e 217设f (x )的定义域D [01]求下列各函数的定义域 (1)f (x 2)解由0x 21得|x |1所以函数f (x 2)的定义域为[11] (2)f (sin x )解由0sin x 1得2nx (2n 1)(n 012)所以函数f (sin x )的定义域为 [2n (2n 1)](n 012) (3)f (xa )(a >0)解由0xa 1得ax 1a 所以函数f (xa )的定义域为[a 1a ] (4)f (xa )f (xa )(a 0)解由0xa 1且0xa 1得当210≤<a 时ax 1a 当21>a 时无解因此当210≤<a 时函数的定义域为[a 1a ]当21>a 时函数无意义18设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f g (x )e x 求f [g (x )]和g [f (x )]并作出这两个函数的图形 解⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f ⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g19已知水渠的横断面为等腰梯形斜角40(图137)当过水断面ABCD 的面积为定值S 0时求湿周L (LABBCCD )与水深h 之间的函数关系式并指明其定义域 图137解ο40sin h DC AB ==又从)]40cot 2([21S h BC BC h =⋅++ο得h hS BC ⋅-=ο40cot 0所以自变量h 的取值范围应由不等式组h 0040cot 0>⋅-h hS ο确定定义域为ο40cot 00S h <<20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元 (1)将每台的实际售价p 表示为订购量x 的函数 (2)将厂方所获的利润P 表示成订购量x 的函数 (3)某一商行订购了1000台厂方可获利润多少? 解(1)当0x 100时p 90令001(x 0100)9075得x 01600因此当x 1600时p 75 当100x 1600时p 90(x 100)00191001x 综合上述结果得到(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P(3)P 3110000011000221000(元)习题121观察一般项x n 如下的数列{x n }的变化趋势写出它们的极限 (1)nn x 21=解当n 时n n x 21=0021lim =∞→nn (2)nx n n 1)1(-=解当n 时n x n n 1)1(-=001)1(lim =-∞→nn n(3)212nx n +=解当n 时212n x n +=22)12(lim 2=+∞→n n (4)11+-=n n x n解当n 时12111+-=+-=n n n x n 0111lim =+-∞→n n n(5)x n n (1)n解当n 时x n n (1)n 没有极限2设数列{x n }的一般项n n x n 2cos π=问n n x ∞→lim 求出N 使当nN 时x n 与其极限之差的绝对值小于正数当0001时求出数N 解0lim =∞→n n xn n n x n 1|2cos ||0|≤=-π0要使|x n 0|只要ε<n 1也就是ε1>n 取]1[ε=N 则nN 有|x n 0| 当0001时]1[ε=N 10003根据数列极限的定义证明(1)01lim 2=∞→n n分析要使ε<=-221|01|n n 只须ε12>n 即ε1>n 证明因为0]1[ε=N 当nN 时有ε<-|01|2n 所以01lim 2=∞→n n (2)231213lim =++∞→n n n分析要使ε<<+=-++n n n n 41)12(21|231213|只须ε<n41即ε41>n 证明因为0]41[ε=N 当nN 时有ε<-++|231213|n n 所以231213lim =++∞→n n n(3)1lim22=+∞→na n n分析要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|只须ε2a n >证明因为0][2εa N =当nN 时有ε<-+|1|22n a n 所以1lim 22=+∞→n a n n(4)19 999.0lim =⋅⋅⋅∞→43421个n n 分析要使|09991|ε<=-1101n 只须1101-n 即ε1lg 1+>n 证明因为0]1lg 1[ε+=N 当nN 时有|09991|所以19 999.0lim =⋅⋅⋅∞→43421个n n 4a u n n =∞→lim 证明||||lim a u n n =∞→并举例说明如果数列{|x n |}有极限但数列{x n }未必有极限证明因为a u n n =∞→lim 所以0N N 当nN 时有ε<-||a u n 从而||u n ||a |||u n a |这就证明了||||lim a u n n =∞→数列{|x n |}有极限但数列{x n }未必有极限例如1|)1(|lim =-∞→n n 但n n )1(lim -∞→不存在5设数列{x n }有界又0lim =∞→n n y 证明0lim =∞→n n n y x证明因为数列{x n }有界所以存在M 使n Z 有|x n |M 又0lim =∞→n n y 所以0N N 当nN 时有M y n ε<||从而当nN 时有 所以0lim =∞→n n n y x6对于数列{x n }若x 2k 1a (k )x 2k a (k ) 证明x n a (n )证明因为x 2k 1a (k )x 2k a (k )所以0 K 1当2k 12K 11时有|x 2k 1a | K 2当2k 2K 2时有|x 2k a |取N max{2K 112K 2}只要nN 就有|x n a | 因此x n a (n ) 习题131根据函数极限的定义证明 (1)8)13(lim 3=-→x x分析因为|(3x 1)8||3x 9|3|x 3|所以要使|(3x 1)8|只须ε31|3|<-x证明因为0εδ31=当0|x 3|时有|(3x 1)8| 所以8)13(lim 3=-→x x(2)12)25(lim 2=+→x x分析因为|(5x 2)12||5x 10|5|x 2|所以要使|(5x 2)12|只须ε51|2|<-x证明因为0εδ51=当0|x 2|时有 |(5x 2)12|所以12)25(lim 2=+→x x(3)424lim 22-=+--→x x x分析因为所以要使ε<--+-)4(242x x 只须ε<--|)2(|x 证明因为0εδ=当0|x (2)|时有所以424lim 22-=+--→x x x(4)21241lim 321=+--→x x x 分析因为所以要使ε<-+-212413x x 只须ε21|)21(|<--x 证明因为0εδ21=当δ<--<|)21(|0x 时有所以21241lim 321=+--→x x x 2根据函数极限的定义证明(1)2121lim 33=+∞→x x x 分析因为所以要使ε<-+212133x x 只须ε<3||21x 即321||ε>x 证明因为0321ε=X 当|x |X 时有所以2121lim 33=+∞→x x x (2)0sin lim =+∞→x x x分析因为所以要使ε<-0sin x x 只须ε<x1即21ε>x证明因为021ε=X 当xX 时有所以0sin lim =+∞→xx x3当x 2时yx 24问等于多少使当|x 2|<时|y 4|<0001? 解由于当x 2时|x 2|0故可设|x 2|1即1x 3要使|x 24||x 2||x 2|5|x 2|0001 只要0002.05001.0|2|=<-x取00002则当0|x 2|时就有|x 24|00014当x 时13122→+-=x x y 问X 等于多少使当|x |X 时|y 1|001 解要使01.034131222<+=-+-x x x 只要397301.04||=->x 故397=X5证明函数f (x )|x |当x 0时极限为零证明因为|f (x )0|||x |0||x ||x 0| 所以要使|f (x )0|只须|x | 因为对0使当0|x 0|时有 |f (x )0|||x |0| 所以0||lim 0=→x x6求,)(xx x f =x x x ||)(=ϕ当x 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为所以极限)(lim 0x f x →存在因为所以极限)(lim 0x x ϕ→不存在7证明若x 及x 时函数f (x )的极限都存在且都等于A 则A x f x =∞→)(lim证明因为A x f x =-∞→)(lim A x f x =+∞→)(lim 所以>0X 10使当xX 1时有|f (x )A | X 20使当xX 2时有|f (x )A |取X max{X 1X 2}则当|x |X 时有|f (x )A |即A x f x =∞→)(lim8根据极限的定义证明函数f (x )当xx 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f (x )A (xx 0)则>00使当0<|xx 0|<时有 |f (x )A |<因此当x 0<x <x 0和x 0<x <x 0时都有 |f (x )A |<这说明f (x )当xx 0时左右极限都存在并且都等于A 再证明充分性设f (x 00)f (x 00)A 则>0 1>0使当x 01<x <x 0时有|f (x )A <2>0使当x 0<x <x 0+2时有|f (x )A |<取min{12}则当0<|xx 0|<时有x 01<x <x 0及x 0<x <x 0+2从而有 |f (x )A |< 即f (x )A (xx 0)9试给出x 时函数极限的局部有界性的定理并加以证明解x 时函数极限的局部有界性的定理如果f (x )当x 时的极限存在则存在X 0及M 0使当|x |X 时|f (x )|M证明设f (x )A (x )则对于1X 0当|x |X 时有|f (x )A |1所以 |f (x )||f (x )AA ||f (x )A ||A |1|A |这就是说存在X 0及M 0使当|x |X 时|f (x )|M 其中M 1|A | 习题141两个无穷小的商是否一定是无穷小?举例说明之 解不一定例如当x 0时(x )2x (x )3x 都是无穷小但32)()(lim0=→x x x βα)()(x x βα不是无穷小2根据定义证明(1)392+-=x x y 当x 3时为无穷小; (2)xx y 1sin =当x 0时为无穷小证明(1)当x 3时|3|39||2-=+-=x x x y 因为0当0|x 3|时有所以当x 3时392+-=x x y 为无穷小 (2)当x 0时|0||1sin |||||-≤=x xx y 因为0当0|x 0|时有所以当x 0时xx y 1sin =为无穷小3根据定义证明函数xx y 21+=为当x 0时的无穷大问x 应满足什么条件能使|y |104?证明分析2||11221||-≥+=+=x x x x y 要使|y |M 只须M x >-2||1即21||+<M x证明因为M 021+=M δ使当0|x 0|时有M xx >+21所以当x 0时函数xx y 21+=是无穷大取M 104则21014+=δ当2101|0|04+<-<x 时|y |104 4求下列极限并说明理由 (1)xx x 12lim +∞→;(2)xx x --→11lim 20 解(1)因为xx x 1212+=+而当x 时x 1是无穷小所以212lim =+∞→x x x(2)因为x xx +=--1112(x 1)而当x 0时x 为无穷小所以111lim 20=--→x x x5根据函数极限或无穷大定义填写下表f (x )Af (x )f (x )f (x )xx 0 00使当0|xx 0|时 有恒|f (x )A |xx 0 xx 0x 0X 0使当|x |X 时 有恒|f (x )|Mx x解f (x )A f (x ) f (x ) f (x ) xx 000使当0|xx 0|时有恒|f (x )A | M 00使当0|xx 0|时有恒|f (x )|M M 00使当0|xx 0|时有恒f (x )M M 00使当0|xx 0|时有恒f (x )M xx 000使当0xx 0时有恒|f (x )A | M 00使当0xx 0时有恒|f (x )|M M 00使当0xx 0时有恒f (x )M M 00使当0xx 0时有恒f (x )M xx 000使当0x 0x 时有恒|f (x )A | M 00使当0x 0x 时有恒|f (x )|M M 00使当0x 0x 时有恒f (x )M M 00使当0x 0x 时有恒f (x )M x0X 0使当|x |X 时有恒|f (x )A | 0X 0使当|x |X 时有恒|f (x )|M 0X 0使当|x |X 时有恒f (x )M 0X 0使当|x |X 时有恒f (x )M x0X 0使当xX 时有恒|f (x )A | 0X 0使当xX 时有恒|f (x )|M 0X 0使当xX 时有恒f (x )M 0X 0使当xX 时有恒f (x )Mx0X 0使当xX 时有恒|f (x )A | 0X 0使当xX 时有恒|f (x )|M 0X 0使当xX 时有恒f (x )M 0X 0使当xX 时有恒f (x )M6函数yx cos x 在()内是否有界?这个函数是否为当x 时的无穷大?为什么? 解函数yx cos x 在()内无界这是因为M 0在()内总能找到这样的x 使得|y (x )|M 例如y (2k )2k cos2k 2k (k 012)当k 充分大时就有|y (2k )|M 当x 时函数yx cos x 不是无穷大这是因为M 0找不到这样一个时刻N 使对一切大于N 的x 都有|y (x )|M 例如0)22cos()22()22(=++=+ππππππk k k y (k 012)对任何大的N 当k 充分大时总有N k x >+=22ππ但|y (x )|0M7证明函数xx y 1sin 1=在区间(01]上无界但这函数不是当x 0+时的无穷大证明函数xx y 1sin 1=在区间(01]上无界这是因为M 0在(01]中总可以找到点x k 使y (x k )M 例如当221ππ+=k x k (k 012)时有当k 充分大时y (x k )M当x 0+时函数xx y 1sin 1=不是无穷大这是因为M 0对所有的0总可以找到这样的点x k 使0x k 但y (x k )M 例如可取πk x k 21=(k 012)当k 充分大时x k 但y (x k )2k sin2k 0M 习题151计算下列极限(1)35lim 22-+→x x x 解9325235lim222-=-+=-+→x x x (2)13lim 223+-→x x x 解01)3(3)3(13lim 22223=+-=+-→x x x (3)112lim 221-+-→x x x x 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x (4)x x x x x x 2324lim 2230++-→ 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x (5)hx h x h 220)(lim -+→解x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→(6))112(lim 2x x x +-∞→解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x (7)121lim 22---∞→x x x x 解2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x (8)13lim 242--+∞→x x x x x 解013lim 242=--+∞→x x x x x (分子次数低于分母次数极限为零) 或012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x (9)4586lim 224+-+-→x x x x x 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x (10))12)(11(lim 2x x x -+∞→解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x (11))21 41211(lim n n +⋅⋅⋅+++∞→ 解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n (12)2)1( 321limn n n -+⋅⋅⋅+++∞→解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n (13)35)3)(2)(1(limn n n n n +++∞→解515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同极限为 最高次项系数之比)或51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n (14))1311(lim 31x x x ---→解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 2计算下列极限(1)2232)2(2lim -+→x x x x 解因为01602)2(lim 2322==+-→x x x x 所以∞=-+→2232)2(2lim x x x x (2)12lim 2+∞→x x x解∞=+∞→12lim 2x x x (因为分子次数高于分母次数) (3))12(lim 3+-∞→x x x解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)3计算下列极限 (1)xx x 1sin lim 20→解01sin lim 20=→x x x (当x 0时x 2是无穷小而x 1sin 是有界变量) (2)xx x arctan lim ∞→解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x 时x 1是无穷小 而arctan x 是有界变量) 4证明本节定理3中的(2) 习题151计算下列极限(1)35lim 22-+→x x x解9325235lim222-=-+=-+→x x x (2)13lim 223+-→x x x解01)3(3)3(13lim 22223=+-=+-→x x x (3)112lim 221-+-→x x x x 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x (4)xx x x x x 2324lim 2230++-→ 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x (5)hx h x h 220)(lim -+→解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→ (6))112(lim 2x x x +-∞→解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x (7)121lim 22---∞→x x x x 解2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x (8)13lim 242--+∞→x x x x x 解013lim 242=--+∞→x x x x x (分子次数低于分母次数极限为零) 或012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x (9)4586lim 224+-+-→x x x x x解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x (10))12)(11(lim 2xx x -+∞→解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x (11))21 41211(lim n n +⋅⋅⋅+++∞→解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n (12)2)1( 321limnn n -+⋅⋅⋅+++∞→ 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n (13)35)3)(2)(1(limn n n n n +++∞→解515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同极限为 最高次项系数之比)或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n (14))1311(lim 31x x x ---→解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 2计算下列极限(1)2232)2(2lim -+→x x x x 解因为01602)2(lim 2322==+-→x x x x 所以∞=-+→2232)2(2limx x x x (2)12lim 2+∞→x x x 解∞=+∞→12lim 2x x x (因为分子次数高于分母次数) (3))12(lim 3+-∞→x x x解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)3计算下列极限 (1)xx x 1sin lim 20→解01sin lim 20=→x x x (当x 0时x 2是无穷小而x 1sin 是有界变量) (2)xx x arctan lim ∞→解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x 时x 1是无穷小 而arctan x 是有界变量) 4证明本节定理3中的(2) 习题171当x 0时2xx 2与x 2x 3相比哪一个是高阶无穷小?解因为02lim 2lim 202320=--=--→→xx x x x x x x x 所以当x 0时x 2x 3是高阶无穷小即x 2x 3o (2xx 2)2当x 1时无穷小1x 和(1)1x 3(2))1(212x -是否同阶?是否等价?解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x 所以当x 1时1x 和1x 3是同阶的无穷小但不是等价无穷小(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x 所以当x 1时1x 和)1(212x -是同阶的无穷小而且是等价无穷小3证明当x 0时有 (1)arctan x ~x(2)2~1sec 2x x - 证明(1)因为1tan limarctan lim 00==→→y yxx y x (提示令y arctan x 则当x 0时y 0) 所以当x 0时arctan x ~x(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x 所以当x 0时2~1sec 2x x -4利用等价无穷小的性质求下列极限 (1)xx x 23tan lim 0→(2)mn x x x )(sin )sin(lim 0→(nm 为正整数)(3)x x x x 30sin sin tan lim -→ (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x 解(1)2323lim 23tan lim 00==→→x x x x x x(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00 (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x x x x x x x x x x x (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x 0)23232223231~11)1(11x x x x x ++++=-+(x 0) x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x 0) 所以33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x 5证明无穷小的等价关系具有下列性质 (1)~(自反性)(2)若~则~(对称性) (3)若~~则~(传递性) 证明(1)1lim =αα所以~(2)若~则1lim =βα从而1lim=αβ因此~ (3)若~~1lim limlim =⋅=βαγβγα因此~ 习题181研究下列函数的连续性并画出函数的图形(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f解已知多项式函数是连续函数所以函数f (x )在[01)和(12]内是连续的 在x 1处因为f (1)1并且所以1)(lim 1=→x f x 从而函数f (x )在x 1处是连续的综上所述,函数f (x )在[02]上是连续函数(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f解只需考察函数在x 1和x 1处的连续性在x 1处因为f (1)1并且所以函数在x 1处间断但右连续 在x 1处因为f (1)1并且1lim )(lim 11==--→→x x f x x f (1)11lim )(lim 11==++→→x x x f f (1)所以函数在x 1处连续综合上述讨论函数在(1)和(1)内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续(1)23122+--=x x x y x 1x 2 解)1)(2()1)(1(23122---+=+--=x x x x x x x y 因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点因为∞=+--=→→231lim lim 2222x x x y x x 所以x 2是函数的第二类间断点因为2)2()1(limlim 11-=-+=→→x x y x x 所以x 1是函数的第一类间断点并且是可去间断点在x 1处令y 2则函数在x 1处成为连续的 (2)xx y tan =xk 2ππ+=k x (k 012)解函数在点xk (k Z)和2ππ+=k x (k Z)处无定义因而这些点都是函数的间断点因∞=→x x k x tan lim π(k 0)故xk (k 0)是第二类间断点 因为1tan lim0=→x x x 0tan lim2=+→xx k x ππ(k Z)所以x 0和2 ππ+=k x (k Z)是第一类间断点且是可去间断点令y |x 01则函数在x 0处成为连续的令2 ππ+=k x 时y 0则函数在2ππ+=k x 处成为连续的(3)xy 1cos 2=x 0解因为函数x y 1cos 2=在x 0处无定义所以x 0是函数x y 1cos 2=的间断点又因为xx 1cos lim 20→不存在所以x 0是函数的第二类间断点(4)⎩⎨⎧>-≤-=1 31 1x x x x y x 1解因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x 所以x 1是函数的第一类不可去间断点3讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性若有间断点判别其类型 解⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim )(22x x x x x x xx x f nnn 在分段点x 1处因为1)(lim )(lim 11=-=---→-→x x f x x 1lim )(lim 11-==++-→-→x x f x x 所以x 1为函数的第一类不可去间断点在分段点x 1处因为1lim )(lim 11==--→→x x f x x 1)(lim )(lim 11-=-=++→→x x f x x 所以x 1为函数的第一类不可去间断点4证明若函数f (x )在点x 0连续且f (x 0)0则存在x 0的某一邻域U (x 0)当xU (x 0)时f (x )0 证明不妨设f (x 0)>0因为f (x )在x 0连续所以0)()(lim 00>=→x f x f x x 由极限的局部保号性定理存在x 0的某一去心邻域)(0x U ο使当x )(0x U ο时f (x )>0从而当xU (x 0)时f (x )>0这就是说则存在x 0的某一邻域U (x 0)当xU (x 0)时f (x )0 5试分别举出具有以下性质的函数f (x )的例子(1)x 01221±n n1±是f (x )的所有间断点且它们都是无穷间断点解函数x x x f ππcsc )csc()(+=在点x 01221±n n1±处是间断的且这些点是函数的无穷间断点(2)f (x )在R 上处处不连续但|f (x )|在R 上处处连续解函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续但|f (x )|1在R 上处处连续(3)f (x )在R 上处处有定义但仅在一点连续解函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义它只在x 0处连续习题191求函数633)(223-+--+=x x x x x x f 的连续区间并求极限)(lim 0x f x →)(lim 3x f x -→及)(lim 2x f x → 解)2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f 函数在()内除点x 2和x 3外是连续的所以函数f (x )的连续区间为(3)、(32)、(2) 在函数的连续点x 0处21)0()(lim 0==→f x f x 在函数的间断点x 2和x 3处2设函数f (x )与g (x )在点x 0连续证明函数 (x )max{f (x )g (x )}(x )min{f (x )g (x )} 在点x 0也连续证明已知)()(lim 00x f x f x x =→)()(lim 00x g x g x x =→可以验证因此] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ因为] |)()(|)()([210000x g x f x g x f -++=(x 0) 所以(x )在点x 0也连续同理可证明(x )在点x 0也连续 3求下列极限 (1)52lim 20+-→x x x(2)34)2(sin lim x x π→(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→(5)145lim 1---→x x x x(6)a x a x a x --→sin sin lim(7))(lim 22x x x x x --++∞→解(1)因为函数52)(2+-=x x x f 是初等函数f (x )在点x 0有定义所以(2)因为函数f (x )(sin2x )3是初等函数f (x )在点4π=x 有定义所以(3)因为函数f (x )ln(2cos2x )是初等函数f (x )在点6π=x 有定义所以(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x (5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→(6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2limsin sin lim (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→4求下列极限 (1)xx e 1lim∞→(2)x x x sin ln lim 0→(3)2)11(lim xx x +∞→ (4)x x x 2cot 20)tan 31(lim +→(5)21)63(lim -∞→++x x xx (6)x x x x x x -++-+→20sin 1sin 1tan 1lim解(1)1lim 01lim 1===∞→∞→e ee xxx x(2)01ln )sin lim ln(sin ln lim 00===→→x x x x x x(3)[]e e x x x x xx ==+=+∞→∞→21212)11(lim )11(lim(4)[]33tan 312cot 222)tan31(lim )tan 31(lim e x x x x x x =+=+→→(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x 因为 所以2321)63(lim --∞→=++e xx x x(6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(limsin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→ 5设函数⎩⎨⎧≥+<=0 0)(x x a x e x f x 应当如何选择数a 使得f (x )成为在()内的连续函数?解要使函数f (x )在()内连续只须f (x )在x 0处连续即只须 因为1lim )(lim 0==-→-→x x x e x f a x a x f x x =+=+→+→)(lim )(lim 00所以只须取a 1习题1101证明方程x 53x 1至少有一个根介于1和2之间 证明设f (x )x 53x 1则f (x )是闭区间[12]上的连续函数因为f (1)3f (2)25f (1)f (2)0所以由零点定理在(12)内至少有一点 (12)使f ()0即x 是方程x 53x 1的介于1和2之间的根 因此方程x 53x 1至少有一个根介于1和2之间2证明方程xa sin xb 其中a 0b 0至少有一个正根并且它不超过ab 证明设f (x )a sin xbx 则f (x )是[0ab ]上的连续函数f (0)bf (ab )a sin(ab )b (ab )a [sin(ab )1]0若f (ab )0则说明xab 就是方程xa sin xb 的一个不超过ab 的根若f (ab )0则f (0)f (ab )0由零点定理至少存在一点(0ab )使f ()0这说明x 也是方程x =a sin xb 的一个不超过ab 的根总之方程xa sin xb 至少有一个正根并且它不超过ab3设函数f (x )对于闭区间[ab ]上的任意两点x 、y 恒有|f (x )f (y )|L |xy |其中L 为正常数且f (a )f (b )0证明至少有一点(ab )使得f ()0 证明设x 0为(ab )内任意一点因为 所以0|)()(|lim 00=-→x f x f x x即)()(lim 00x f x f x x =→因此f (x )在(ab )内连续同理可证f (x )在点a 处左连续在点b 处右连续所以f (x )在[ab ]上连续因为f (x )在[ab ]上连续且f (a )f (b )0由零点定理至少有一点(ab )使得f ()0 4若f (x )在[ab ]上连续ax 1x 2x n b 则在[x 1x n ]上至少有一点使证明显然f (x )在[x 1x n ]上也连续设M 和m 分别是f (x )在[x 1x n ]上的最大值和最小值因为x i [x 1x n ](1in )所以有mf (x i )M 从而有 由介值定理推论在[x 1x n ]上至少有一点使5证明若f (x )在()内连续且)(lim x f x ∞→存在则f (x )必在()内有界证明令A x f x =∞→)(lim 则对于给定的0存在X 0只要|x |X 就有|f (x )A |即Af (x )A又由于f (x )在闭区间[XX ]上连续根据有界性定理存在M 0使|f (x )|Mx [XX ] 取N max{M |A ||A |}则|f (x )|Nx ()即f (x )在()内有界 6在什么条件下(ab )内的连续函数f (x )为一致连续? 总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内 (1)数列{x n }有界是数列{x n }收敛的________条件数列{x n }收敛是数列{x n }有界的________的条件(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件)(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件(3)f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件(4)f (x )当xx 0时的右极限f (x 0)及左极限f (x 0)都存在且相等是)(lim 0x f x x →存在的________条件 解(1)必要充分 (2)必要充分 (3)必要充分 (4)充分必要2选择以下题中给出的四个结论中一个正确的结论 设f (x )2x 3x 2则当x 0时有()(A )f (x )与x 是等价无穷小(B )f (x )与x 同阶但非等价无穷小 (C )f (x )是比x 高阶的无穷小(D )f (x )是比x 低阶的无穷小解因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim 0000-+-=-+=→→→→3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x 1t 3x 1u )所以f (x )与x 同阶但非等价无穷小故应选B 3设f (x )的定义域是[01]求下列函数的定义域 (1)f (e x ) (2)f (ln x ) (3)f (arctan x ) (4)f (cos x )解(1)由0e x 1得x 0即函数f (e x )的定义域为(0] (2)由0ln x 1得1xe 即函数f (ln x )的定义域为[1e ](3)由0arctan x 1得0x tan1即函数f (arctan x )的定义域为[0tan1] (4)由0cos x 1得2222ππππ+≤≤-n x n (n 012)即函数f (cos x )的定义域为[2,22ππππ+-n n ](n 012)4设求f [f (x )]g [g (x )]f [g (x )]g [f (x )]解因为f (x )0所以f [f (x )]f (x )⎩⎨⎧>≤=0 00x x x因为g (x )0所以g [g (x )]0因为g (x )0所以f [g (x )]0因为f (x )0所以g [f (x )]f 2(x )⎩⎨⎧>-≤=0 002x x x5利用y sin x 的图形作出下列函数的图形(1)y |sin x | (2)y sin|x | (3)2sin 2x y =6把半径为R 的一圆形铁片自中心处剪去中心角为的一扇形后围成一无底圆锥试将这圆锥的体积表为的函数解设围成的圆锥的底半径为r 高为h 依题意有R (2)2r παπ2)2(-=R r圆锥的体积为22234)2(24a R -⋅-=πααππ(02) 7根据函数极限的定义证明536lim 23=---→x x x x证明对于任意给定的0要使ε<----|536|2x x x 只需|x 3|取当0|x 3|时就有|x 3|即ε<----|536|2x x x 所以536lim 23=---→x x x x8求下列极限(1)221)1(1lim -+-→x x x x (2))1(lim 2x x x x -++∞→(3)1)1232(lim +∞→++x x x x(4)30sin tan lim x x x x -→ (5)x x x x x c b a 10)3(lim ++→(a 0b 0c 0) (6)x x x tan 2)(sin lim π→解(1)因为01)1(lim 221=+--→x x x x 所以∞=-+-→221)1(1lim x x x x (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x (4)xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ (提示用等价无穷小换)(5)x c b a c b a x x x x x x x x x x x x x x x c b a c b a 3333010)331(lim )3(lim -++⋅-++→→-+++=++因为所以3ln 103)3(lim abc e c b a abc x x x x x ==++→提示求极限过程中作了变换a x 1tb x 1uc x1v(6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin 1[lim )(sin lim -⋅-→→-+=ππ因为 所以1)(sin lim 0tan 2==→e x x x π9设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f 要使f (x )在()内连续应怎样选择数a 解要使函数连续必须使函数在x 0处连续 因为f (0)a a x a x f x x =+=--→→)(lim )(lim 20001sin lim )(lim 00==++→→xx x f x x所以当a 0时f (x )在x 0处连续因此选取a 0时f (x )在()内连续10设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln(0 )(11x x x e x f x 求f (x )的间断点并说明间断点所属类形 解因为函数f (x )在x 1处无定义所以x 1是函数的一个间断点因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x )∞==-→→++1111lim )(lim x x x e x f (提示+∞=-+→11lim 1x x )所以x 1是函数的第二类间断点又因为0)1ln(lim )(lim 0=+=--→→x x f x x ee xf x x x 1lim )(lim 11==-→→++所以x 0也是函数的间断点且为第一类间断点11证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n 证明因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n 且所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n 12证明方程sin xx 10在开区间)2,2(ππ-内至少有一个根证明设f (x )sin xx 1则函数f (x )在]2,2 [ππ-上连续因为2121)2 (πππ-=+--=-f 22121)2 (πππ+=++=f 0)2 ()2 (<⋅-ππf f所以由零点定理在区间)2,2 (ππ-内至少存在一点使f ()0这说明方程sin xx 10在开区间)2,2 (ππ-内至少有一个根13如果存在直线Lykxb 使得当x (或xx )时曲线yf (x )上的动点M (xy )到直线L 的距离d (ML )0则称L 为曲线yf (x )的渐近线当直线L 的斜率k 0时称L 为斜渐近线 (1)证明直线Lykxb 为曲线yf (x )的渐近线的充分必要条件是 (2)求曲线xe x y 1)12(-=的斜渐近线证明(1)仅就x 的情况进行证明按渐近线的定义ykxb 是曲线yf (x )的渐近线的充要条件是 必要性设ykxb 是曲线yf (x )的渐近线则0)]()([lim =+-∞→b kx x f x于是有0])([lim =--∞→x b k x x f x x 0)(lim =-∞→k x x f x xx f k x )(lim∞→= 同时有0])([lim =--∞→b kx x f x ])([lim kx x f b x -=∞→充分性如果xx f k x )(lim∞→=])([lim kx x f b x -=∞→则 因此ykxb 是曲线yf (x )的渐近线(2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k。
高等数学上复旦大学(修订版)黄立宏 习题一答案详解
是偶函数.
(2)
函数 是奇函数.
14.判断下列函数在定义域内的有界性及单调性:
解: (1)函数的定义域为(-∞,+∞),当 时,有 ,当 时,有 ,
故 有 .即函数 有上界.
又因为函数 为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数 有界.
又由 知,当 且 时, ,而
高等数学上
1.设 ,求 ,B\A.
解:
2.设 ,求 ,CXA,CXA∪CXB,CXA∩CXB.
解:
CXA=X\A={1,2,3,4,5,6}\{1,2,3}={4,5,6}
CXB=X\B={1,2,3,4,5,6}\{2,4,6}={1,3,5}=C
CXA∪CXB={4,5,6}∪{1,3,5}={1,3,4,5,6}
当 且 时, .
故函数 在定义域内不单调.
(2)函数的定义域为(0,+∞),
且 ,使 .
取 ,则有 ,
所以函数 在定义域内是无界的.
又当 时,有
故 .
即当 时,恒有 ,所以函数 在 内单调递增.
15.下列函数是由哪些基本初等函数复合而成的?
解: (1) 是由 复合而成.
(2) 是由 复合而成.
(3) 是由 复合而成.
解:设年销售批数为x,则准备费为103x;
又每批有产品 件,库存数为 件,库存费为 元.
设总费用为,则 .
18.邮局规定国内的平信,每20g付邮资0.80元,不足20g按20g计算,信件重量不得超过2kg,试确定邮资y与重量x的关系.
解:当x能被20整除,即 时,邮资 ;
当x不能被20整除时,即 时,由题意知邮资 .
高等数学下册复旦大学出版社 答案 黄立宏著
习题七1. 在空间直角坐标系中,定出下列各点的位置:A (1,2,3);B (-2,3,4);C (2,-3,-4);D (3,4,0);E (0,4,3);F (3,0,0).解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限;点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上.2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0;在yOz 面上的点,x =0; 在zOx 面上的点,y =0.3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0;y 轴上的点,x =z =0;z 轴上的点,x =y =0.4. 求下列各对点之间的距离: (1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4); (3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3).解:(1)s ==(2) s ==(3) s ==(4) s ==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故 02s =x s ==y s ==5z s ==.6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z =即所求点为M (0,0,149).7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB = c ,BC = a 表示向量1D A ,2D A ,3D A 和4D A .解:1115D A BA BD =-=-- c a2225D A BA BD =-=-- c a3335D A BA BD =-=-- c a444.5D A BA BD =-=-- c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯=12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP ==12Pr j 2.z z a PP ==-(2) 12PP =(3) 12cos x aPP α==12cos ya PP β==12cos zaPP γ==(4) 12012PP PP ===+e j. 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||=Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ===a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有cos (1,1)3x a ia a i a iπ⋅====⋅求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则22cos 42a b a b π⋅=⇒=⋅ 则214y a =求得12y a =± 又1,a = 则2221x y z a a a ++=从而求得11{,,}222a =± 或11{,,}222-±18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM的坐标.解:设向径OM={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB在向量CD上的投影.解:AB={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|; (2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k12|| ||==l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯ .证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =--{2,0,3}BC =-22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y zi j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()() 则C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()() xy z xy z xyza a ab b b C C C = 若 ,,C a b共面,则有 a b ⨯ 后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z xy za a a ab b b b C C C ⨯⋅=() a xy z xy z xy z b b b b C C C C a a a ⨯⋅=() b xy z xy z xy z C C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z xy z x y z xy z xyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =. 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅ , 而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB = ,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥ ,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2} 故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x – y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=046. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x t y t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k --={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为 234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离. 解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ) 3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x 2+y 2+z 2=a 2与z =0,z =2a (a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0;(3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y +==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y += 故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.故曲线在xOy平面上的投影方程为2215 ()24x yz⎧-+=⎪⎨⎪=⎩。
高等教育数学上[修订版]黄立宏[复旦出版社]习题五答案解析详细讲解
高等数学上(修订版)黄立宏(复旦出版社)习题五答案详解1. 求下列各曲线所围图形的面积:(1) y =12x 2 与x 2+y 2=8(两部分都要计算);解:如图D 1=D 2解方程组⎩⎪⎨⎪⎧y =12x 2x 2+y 2=8得交点A (2,2)(1)D 1=⎠⎜⎛02⎝⎛⎭⎪⎫8-x 2-12x 2d x =π+23 ∴ D 1+D 2=2π+43,D 3+D 4=8π-⎝ ⎛⎭⎪⎫2π+43=6π-43.(2) y =1x与直线y =x 及x =2;解: D 1=⎠⎜⎛12⎝ ⎛⎭⎪⎫x -1x d x =⎣⎢⎡⎦⎥⎤12x 2-ln x 21=32-ln2. (2) (3) y =e x ,y =e x 与直线x =1;解:D =⎠⎛01()e x -e -x dx =e+1e-2.(3)(4) y =ln x ,y 轴与直线y =ln a ,y =ln b .(b>a>0); 解:D =⎠⎛l n al n be ydy =b -a .(4)(5) 抛物线y =x 2和y =x 2;解:解方程组⎩⎨⎧y =x 2y =-x 2+2得交点 (1,1),(1,1)D =⎠⎛-11()-x 2+2-x 2d x =4⎠⎛01()-x 2+1d x =83.(5)(6) y =sin x ,y =cos x 及直线x =π4,x =94π; 解:D =2⎠⎜⎜⎛π45π4(sin x -cos x )d x =2[]-cos x -sin x 5π4π4=42.(6)(7) 抛物线y =x 2+4x3及其在(0,3)和(3,0)处的切线;解:y ′=2x +4. ∴y ′(0)=4,y ′(3)=2. ∵抛物线在点(0,3)处切线方程是y =4x 3 在(3,0)处的切线是y =2x +6 两切线交点是(32,3).故所求面积为(7)()()()()()33222302332223024343d 2643d d 69d 9.4D x x x x x x x x x x x x x⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦=+-+=⎰⎰⎰⎰(8) 摆线x =a (t sin t ),y =a (1cos t )的一拱 (0≤t ≤2π)与x 轴; 解:当t =0时,x =0, 当t =2π时,x =2πa . 所以()()()2π2π2π2202d 1cos d sin 1cos d 3π.aS y x a t a t t a t ta ==--=-=⎰⎰⎰(8)(9) 极坐标曲线 ρ=a sin3φ; 解:D =3D 1=3·a 22⎠⎜⎛π3sin 23φd φ=3a 22 ·⎠⎜⎛0π3 1-cos6φ2d φ =3a 24 ·⎣⎢⎡⎦⎥⎤φ-16sin6φπ3=πa 24. (9) (10) ρ=2a cos φ;解:D =2D 1=2⎠⎜⎛0π212·4a 2·cos 2φd φ=4a 2⎠⎜⎛0π2 1+cos2φ2d φ=4a 2·12⎣⎢⎡⎦⎥⎤φ+12sin2φπ20=4a 2·12·π2=πa 2.(10)2. 求下列各曲线所围成图形的公共部分的面积: (1) r =a (1+cos θ)及r =2a cos θ;解:由图11知,两曲线围成图形的公共部分为半径为a 的圆,故D =πa 2.(11)(2) r =2cos θ及r 2=3sin2θ.解:如图12,解方程组⎩⎪⎨⎪⎧r =2cos θr 2=3sin2θ得cos θ=0或tan θ=33, 即θ=π2或θ=π6.(12) D =⎠⎜⎛0π612·3sin2θd θ+⎠⎜⎜⎛π6π212·()2cos θ2d θ=⎣⎢⎡⎦⎥⎤-34cos2θπ60+θ2+ ⎣⎢⎡⎦⎥⎤14sin4θπ2π6=π6. 3. 已知曲线f (x )=xx 2与g (x )=ax 围成的图形面积等于92,求常数a .解:如图13,解方程组⎩⎨⎧f (x )=x -x2g (x )=ax得交点坐标为(0,0),(1a ,a (1a ))∴D =⎠⎛01-a()x -x 2-ax d x=⎣⎢⎡⎦⎥⎤12()1-a ·x 2-13x 31-a0 =16()1-a 3 依题意得 16()1-a3=92得a =2.(13)4. 求下列旋转体的体积:(1) 由y =x 2与y 2=x 3围成的平面图形绕x 轴旋转;解: 求两曲线交点⎩⎨⎧y =x2y 2=x3得(0,0),(1,1)V =π⎠⎛01()x 3-x 4d x=π⎣⎢⎡⎦⎥⎤14x 4-15x 51=π20. (14) (2)由y =x 3,x =2,y =0所围图形分别绕x 轴及y 轴旋转;解:见图14,V x =π⎠⎜⎛02x 6d x =1287πV y =π⎠⎜⎛08⎝⎛⎭⎪⎫22-y 23d y=645π. (2) 星形线x 2/3+y 2/3=a 2/3绕x 轴旋转; 解:见图15,该曲线的参数方程是:⎩⎨⎧x =a cos 3t y =a sin 3t0≤t ≤2π , 由曲线关于x 轴及y 轴的对称性,所求体积可表示为V x =2π⎠⎛0ay 2d x=2π⎠⎜⎛π2()a sin 3t 2d ()a cos 3t=6πa 3⎠⎜⎛0π2sin 7t cos 2t d t=32105πa 3(15)5. 设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B ,求这截锥体的体积。
高等数学(黄立宏)(第三版)习题三课后答案
习题三1. 验证:函数()ln sin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的x ,使()0f x ¢=. 证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()ln 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66x Î使()0f x ¢=.事实上,由c o s ()c o t 0s i n x f x x x¢===得ππ5π(,),266x =Î故取π2x =,可使()0f x ¢=. 2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的x ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ì£<=í=î;⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0, x x f x x <£ì=í=î 解:⑴()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x ¢=<<,即在(0,1)内不存在x ,使()0f x¢=罗尔定理的结论不成立.⑵ 1, 12,()1, 0 1.x x f x x x -£<ì=í-<<î(1)f ¢不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件. 而1, 12,()1, 0 1.x f x x <<ì¢=í-<<î即在(0,2)内不存在x ,使()0f x ¢=.罗尔定理的结论不成立. ⑶ 因(0)1(π)=0f f =¹,且()f x 在区间[0,[0,ππ] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x ¢=<<,取π2x =,使()0f x ¢=.有满足罗尔定理结论的π2x =. 故罗尔定理的三个条件是使结论成立的充分而非必要条件. 3. 函数()(2)(1)(1)(2)f x x x x x x =--++的导函数有几个零点?各位于哪个区间内?内?解:因为(2)(1)(0)(1)(2)0f f f f f ===-=-=,则分别在[-2,-1],[-1,0],[0,1],[1,2]上应用罗尔定理,有1234(2,1),(1,0),(0,1),1(1,2),,2),x x x x Î--Î-ÎÎ使得12()()()f f f f x x x x ¢¢¢¢====.因此,()x 至少有4个零点,且分别位于(2,1),(1,0),(0,1),(1,2)---内. 4. 验证:拉格朗日定理对函数3()2f x x x =+在区间[0,1]上的正确性. 验证:因为()f x 在[0,1]上连续,在(0,1)内可导,满足拉格朗日定理的条件. 由(1)(0)()(10)f f f x ¢-=-得2322x =+解得13x =,即存在13x =使得拉格朗日定理的结论成立. 5. 如果()f x ¢在[a ,b ]上连续,在(a ,b )内可导且()0,()0,f a f x ¢¢¢³>证明:()()f b f a >. 证明:因为()f x ¢在[a , b]上连续,在(a ,b )内可导,故在[a ,x ]上应用拉格朗日定理,则(,),()a x a x b x $Î<<,使得()()()0f x f a f x a x ¢¢-¢¢=>-, 于是()()0f x f a ¢¢>³,故有()()f b f a >6. 设()()()f a f c f b ==,且a c b <<,()f x ¢¢在[a ,b ]内存在,证明:在(a ,b )内至少有一点x ,使()0f x ¢¢=. 证明:()f x ¢¢在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c x $Î,使得1()0f x ¢=,2(,)c b x $Î,使得2()0f x ¢=,又()f x ¢在12[,]x x 上连续,在12(,)x x 内可导,由罗尔定理知,12(,)x x x $Î,使()0f x ¢¢=,即在(a ,b )内至少有一点x ,使()0f x ¢¢=. 7. 已知函数()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()0f a f b ==,试证:在(a ,b )内至少有一点x ,使得,使得()()0, (,)f f a b x x x ¢+=Î. 证明:令()()e ,xF x f x =×()F x 在[a ,b ]上连续,在(a ,b )内可导,且()()0F a F b ==,由罗尔定理知,(,)a b x $Î,使得()0F x ¢=,即()e ()e f f x x x x ¢+=,即()()0, (,).f f a b x x x ¢+=Î 8. 证明恒等式:证明恒等式:222arctan arcsinπ (1).1xx x x+=³+证明:令22()2arctan arcsin 1x f x x x =++, 22222222212(1)22()1(1)21()122 011x x x f x x x x x x x +-×¢=+×++-+=-=++ 故()f x C º,又因(1)πf =,所以()πf x =,即222arctan arcsinπ.1x x x +=+9. 对函数()sin f x x =及()cos g x x x =+在[0,]2p 上验证柯西定理的正确性. 验证:()f x ,()g x 在[0,]2p 上连续,在(0,)2p 内可导,且()1sin 0g x x ¢=-¹,满足柯西定理的条件. 由 π()(0)()2π()()(0)2f f f g g g x x-¢=¢-,得2c o s πc o t ()π21s i n 42x x x ==---, 故ππ2π2arctan (0,)222x -=-Î满足柯西定理的结论. 10. 设()f x 在[,]a b 上有(1)n -阶连续导数,在(,)a b 内有n 阶导数,且(1)()()()()0.n f b f a f a f a -¢=====试证:在(,)a b 内至少存在一点x ,使()()0n fx =. 证明:首先,对()f x 在[,]a b 上应用罗尔定理,有1(,)a a b Î,即1a a b <<,使得1()0f a ¢=;其次,对()f x ¢在[,]a b 上应用罗尔定理,有21(,)a a b Î,即12a a a b <<<, 使得2()0; ,f a ¢¢=一般地,设在(,)a b 内已找到1n -个点121,,,,n a a a -其中121,n a a a a b-<<<<<使得(1)1()0n n f a --=,则对(1)()0nfx -=在1[,]n a b -上应用罗尔定理有1(,)(,),n a b a b x -ÎÌ使得()()0nf x =. 11. 利用洛必达法则求下列极限:利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x ®; ⑵ 3π2lnsin lim (2)x xx p ®-; ⑶ 0e 1lim (e 1)x x x x x ®---; ⑷⑷ sin sin lim x a x a x a ®--; ⑸ lim m m n n x a x a x a ®--; ⑹ 1ln(1)lim cot x x arc x®+¥+; ⑺ 0ln lim cot x xx+®; ⑻⑻ 0lim sin ln x x x +®; ⑼ 0e 1lim()e 1x x x x ®--; ⑽ 01lim (ln )x x x +®;⑾ 2lim (arctan )πxx x ®+¥×; ⑿ 10lim(1sin )xx x ®+; ⒀ 0lim[ln ln(1)]x x x +®×+; ⒁ 332lim (1)x x x x x ®+¥+++-; ⒂ sin 0e e limsin x x x x x®--; ⒃ 21sin lim()x x x x®; ⒄ 1101lim[(1)]ex x x x ®+. 解:⑴解:⑴ 原式原式==2π3cos33lim5sec 55x x x ®=-. ⑵ 原式原式==2ππ221cot 1csc 1limlim 4π-2428x x xx x ®®--=-=--. ⑶ 原式原式==000e 1e 11limlim lim e 1e 2e e 22x x x x x x x x x x x x ®®®-===-+++. ⑷ 原式原式==cos lim cos 1x a x a ®=. ⑸ 原式原式==11lim m m n n x a mx m a nx n ---®=. ⑹ 原式原式==22221()11lim lim 111x x x x x x x x x ®+¥®+¥×-++==+-+. ⑺ 原式原式==22001sin lim lim 0csc x x x x xx ++®®=-=-. ⑻ 原式原式==001ln limlim 0csc csc cot x x xx x x x++®®==-×. ⑼ 原式22200e e e e lim =lim (e 1)x x x xx x x x x x x®®----=-202e e 1=lim 2x x x x ®-- 204e e3=l i m 22x xx ®-=. ⑽ 原式原式==0lim(1ln )xx x +®- 令(1ln )xy x =-00020011()ln(1ln )1ln lim ln lim lim 111 lim lim 011ln x x x x x x x x y x xx x x+++++®®®®®×---==-===-- ∴原式∴原式==0lim e 1x y +®==. ⑾ 令2(arctan )πxy x =×,则,则2222211l n l n a r c t a n πa rc t a n 1l i m l n l i m l i m 1112 limarctan 1πx x x x x x x y xxx x x ®+¥®+¥®+¥®+¥+×+==-=-×=-+ ∴原式∴原式==2πe-. ⑿ 令1(1sin )xy x =+,则,则000cos ln(1sin )1sinlimln lim lim 11x x x x x x y x ®®®++=== ∴原式∴原式==e =e ¢. ⒀ 原式00ln lim(ln )lim 1x x x x x x++®®=×=0021=lim=lim()01x x x x x ++®®-=-⒁ 原式32311111lim1x x x x x ®+¥+++-=2234232311111=lim(1)(23)=33x x x x x x xx ----®+¥+++×++× ⒂ 原式sin sin 0e (e 1)lim sin x x x x x x -®-=-sin 00e (sin )=lim =e =1sin x x x x x x®×--⒃ 令12sin()x x y x=,则,则200023002220011cos ln sin ln sin limln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1 lim lim .666x x x x x x x x x x x x y x xx x x x x xx x x x x x x x x x ®®®®®®®--==--==---===- ∴原式∴原式==16e -. ⒄ 令111[(1)]ex xy x =+,则11ln [ln(1)1]xy x x=+-2000011ln(1)1limln lim lim 2111 lim .212x x x x x x x y x x x ®®®®-+-+===-=-+ 12. 求下列极限问题中,能使用洛必达法则的有( ). ⑴ 201sinlimsin x x x x ®; ⑵ lim (1)x x k x®+¥+; ⑶ sin lim sin x x x x x ®¥-+; ⑷ e e lim .e ex xx x x --®+¥-+ 解:⑴解:⑴ ∵200111sin 2sin cos limlim sin cos x x x x x x x x x®®-=不存在,(因1sin x ,1cos x 为有界函数)函数)又2001sin 1limlim sin 0sin x x x x x x x®®==, 故不能使用洛必达法则 ⑶ ∵sin 1cos lim lim sin 1cos x x x x x x x x®¥®¥--=++不存在, 而sin 1sinlim lim 1.sin sin 1x x x x x x x x x x®¥®¥--==++故不能使用洛必达法则故不能使用洛必达法则..⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xx x x x x x x x x ------®+¥®+¥®+¥-+-==+-+利用洛必达法则无法求得其极限利用洛必达法则无法求得其极限..而22e e 1e lim lim 1e e 1ex x xx x x x x ----®+¥®+¥--==++. 故答案选(2). 13. 设21lim 51x x mx n x ®++=-,求常数m , n 的值.解:要使21lim 51x x mx n x ®++=-成立,则21lim()0x x mx n ®++=,即10m n ++=又2112limlim2511x x x mx nx m m x ®®+++==+=-得3,4m n ==- 14. 设()f x 二阶可导,求2()2()()limh f x h f x f x h h®+-+-. 解:解:2000()2()()()()lim lim21()()()() lim []21 [li 2h h h f x h f x f x h f x h f x h h h f x h f x f x h f x h h®®®¢¢+-+-+--=¢¢¢¢+---=+-=00()()()()m lim ]1 [()()]2 ().h h f x h f x f x h f x h h f x f x f x ®®¢¢¢¢+---+-¢¢¢¢=+¢¢= 15. 确定下列函数的单调区间:确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-¥+¥内连续、可导,且内连续、可导,且2612186(1)(3)y x x x x ¢=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-¥--+¥内,y ¢分别取+,–,+号,故知函数在(,1],[3,)-¥-+¥内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x =+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x¢=-,则函数有驻点2x =,在部分区间(0,2]内,0y ¢<;在[2,)+¥内y ¢>0,故知函数在[2,)+¥内单调增加,而在(0,2]内单调减少. (3) 2ln(1)y x x =++; 解: 函数定义域为(,)-¥+¥,2101y x¢=>+,故函数在(,)-¥+¥上单调增加. (4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-¥+¥,22(1)(21)y x x ¢=+-,则函数有驻点: 11,2x x =-=,在1(,]2-¥内,内, 0y ¢<,函数单调减少;在1[,)2+¥内,内, 0y ¢>,函数单调增加. (5) e (0,0)n xy x n x -=>³;解: 函数定义域为[0,)+¥,11e e e ()n xn xx n y nx x x n x -----¢=-=-函数的驻点为0,x x n ==,在[0,]n 上0y ¢>,函数单调增加;在[,]n +¥上0y ¢<,函数单调减少. (6) sin 2y x x =+; 解: 函数定义域为(,)-¥+¥, πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ì+Î+Îï=íï-Î-ÎïîZ Z 1) 当π[π,π]2x n n Î+时,时, 12cos 2y x ¢=+,则,则1π0cos 2[π,π]23y x x n n ¢³Û³-ÛÎ+;πππ0cos 2[π,π]232y x x n n ¢£Û£-ÛÎ++. 2) 当π[π,π]2x n n Î-时,时, 12cos 2y x ¢=-,则,则1ππ0cos 2[π,π]226y x x n n ¢³Û£ÛÎ--1π0cos 2[π,π]26y x x n n ¢£Û³ÛÎ-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +Î, 函数单调减少区间为ππππ[,] ()2322k k k z ++Î. (7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-¥+¥. 4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x ¢=-++-+×=+--函数驻点为123111,,2218x x x =-==, 在1(,]2+¥-内,内, 0y ¢>,函数单调增加,函数单调增加,在111[,]218-上,上, 0y ¢<,函数单调减少,函数单调减少,在11[,2]18上,上, 0y ¢>,函数单调增加,函数单调增加, 在[2,)+¥内,内, 0y ¢>,函数单调增加. 故函数的单调区间为: 1(,]2-¥-,111[,]218-,11[,)18+¥. 16. 证明下列不等式: (1) 当π02x <<时,时, sin tan 2;x x x +>证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x -++¢=, 当π02x <<时,时, ()0,()f x f x ¢>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时,时, 2e sin 1.2x x x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos xf x x x -¢-+-, ()=e sin 1e (sin 1)0x xf x x x --¢¢--=-+<,则()f x ¢为严格单调减少的函数,故()(0)0f x f ¢¢<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2x x x -+<+17. ⑴ 证明:不等式ln(1) (0)1x x x x x<+<>+证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x x $Î使得使得 ()(0)()(f x f f x x ¢-=- 即ln(1)1x x x +=+,因为0x x <<,则11x x x x x<<++即ln(1) (0)1x x x x x <+<>+ ⑵ 设0, 1.a b n >>>证明:证明:11()().n nnn nb a b a b naa b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a x $Î使得使得1(), (,)nnna b n a b b a x x --=-Î 因为b a x <<,则111()()()n n n nb a b n a b na a b x----<-<-, 即11()().n nnn nb a b a b na a b ---<-<-⑶ 设0a b >>证明:证明:l n .a b a a ba b b--<<证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a x $Î使得使得 1l n l n ()a b a b x-=- 因为b a x <<,所以1111, ()a b a ba b a b a b x x--<<<-<, 即ln a b a a b a b b --<<. ⑷ 设0x >证明:证明:111.2x x +>+ 证明:令()1f x x =+,[0,]x x Î,应用拉格朗日定理,有应用拉格朗日定理,有()(0)()(0), (0,(0,)f x f f x x x x ¢-=-Î ()()(0)f x f x f x ¢=×+11221x x x=+<++即111.2x x +>+18. 试证:方程sin x x =只有一个实根. 证明:设()sin f x x x =-,则()c o s 10,f x x =-£()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根. 19. 求下列函数的极值: (1) 223y x x =-+;解: 22y x ¢=-,令0y ¢=,得驻点1x =. 又因20y ¢¢=>,故1x =为极小值点,且极小值为(1)2y =. (2) 3223y x x =-;解: 266y x x ¢=-,令0y ¢=,得驻点120,1x x ==, 126y x ¢¢=-,010,0x x y y ==¢¢¢¢<>, 故极大值为(0)0y =,极小值为(1)1y =-. (3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x ¢=--=-+, 令0y ¢=,得驻点121,3x x =-=. 1212y x ¢¢=-,130,0x x y y =-=¢¢¢¢<>, 故极大值为(1)17y -=,极小值为(3)47y =-. (4) ln(1)y x x =-+;解: 1101yx ¢=-=+,令0y ¢=,得驻点0x =. 21,0(1)x y y x =¢¢¢¢=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x ¢=-+=-, 令0y ¢=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=¢¢¢¢¢¢=-+<>故(1)1y ±=为极大值,(0)0y =为极小值. (6) 1y x x =+-;解: 1121y x¢=--,令0y ¢=,得驻点13,4x =且在定义域(,1]-¥内有一不可导点21x =,当34x >时,时, 0y ¢<;当34x <时,时, 0y ¢>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x £,故1x =不是极值点. (7) 21345xy x +=+; 解: 23125(45)x y x -¢=+,令0y ¢=,得驻点125x =. 当125x >时,时, 0y ¢<;当125x <,0y ¢>,故极大值为121()205510y =. (8) 223441x x y x x ++=++; 解: 2131x y x x +=+++,22(2)(1)x x y x x -+¢=++, 令0y ¢=,得驻点122,0x x =-=. 2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++¢¢=++200,0x x y y =-=¢¢¢¢><, 故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos xy x =; 解: e (cos sin )x y x x ¢=-, 令0y ¢=,得驻点ππ (0,1,2,)4k x k k =+=±±. 2e sin xy x ¢¢=-,ππ2π(21)1)ππ440,0x k x k y y =+=++¢¢¢¢<>, 故2π2π 4k x k =+为极大值点,其对应的极大值为π2π422()e 2k ky x +=; 21π(21)1)ππ 4k xk +=++为极小值点,对应的极小值为π(21)1)ππ4212()e2k k y x +++=-. (10) 1xy x =;解: 11211ln(ln )xxxy x x x x x-¢¢==, 令0y ¢=,得驻点e x =. 当e x >时,时, 0y ¢<,当e x <时,时, 0y ¢>, 故极大值为1e(e)e y =. (11) 2e e xx y -=+;解: 2e e xx y -¢=-,令0y ¢=,得驻点ln 22x =-. ln 222e e ,0x x x y y -=-¢¢¢¢=+>, 故极小值为ln 2()222y -=. (12) 232(1)y x =--; 解: 32131y x ¢=--,无驻点. y 的定义域为(,)-¥+¥,且y 在x =1处不可导,当x >1时0y ¢<,当x <1时,时, 0y ¢>,故有极大值为(1)2y =. (13) 1332(1)y x =-+; 解: 23213(1)y x ¢=-+.无驻点.y 在1x =-处不可导,但y ¢恒小于0,故y 无极值. (14) tan y x x =+. 解: 21sec 0y x ¢=+>, y 为严格单调增加函数,无极值点. 20. 试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值. 证明:232y ax bx c ¢=++,令0y ¢=,得方程2320ax bx c ++=,由于由于 22(2)4(3)4(3)0b a c b ac D =-=-<,那么0y ¢=无实数根,不满足必要条件,从而y 无极值. 21. 试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有处取得极值,必有π3π0()(cos cos3)3x f a x x =¢==+,得a =2. 又π3π30()(2sin 3sin 3)3x f x x =¢¢=-<=--, 所以π3x =是极大值点,极大值为π()33f =. 22. 求下列函数的最大值、最小值:求下列函数的最大值、最小值:254(1) (1) ((), (,0)f x x x x=-Î-¥; 解:y 的定义域为(,0)-¥,322(27)0x y x +¢==,得唯一驻点x =-3 且当(,3]x Î-¥-时,0y ¢<,y 单调递减;当[3,0)x Î-时,0y ¢>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x ®-¥=+¥,故f (x )无最大值. (2) (2) (()1, [5,1]f x x x x =+-Î-; 解:11021y x ¢=-=-,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)6544y y y æö==-=-ç÷èø , 故函数()f x 在[-5,1]上的最大值为54,最小值为65-. 42(3) 82, 13y x x x =-+-££. 解:函数在解:函数在((-1,3)中仅有两个驻点x =0及x =2, 而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在故在[[-1,3]上,函数的最大值是11,最小值为-14. 23. 求数列1000n n ìüíý+îþ的最大的项. 解:令1000xy x =+, 2221(1000)1000210002(1000)2(1000)2(1000)x xx x x xy x x x x x +-+--¢===+++ 令0y ¢=得x =1000.因为在(0,1000)上0y ¢>,在(1000,)+¥上0y ¢<, 所以x =1000为函数y 的极大值点,也是最大值点,max 1000(1000)2000y y ==. 故数列1000n n ìüíý+îþ的最大项为100010002000a =. 24. 设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和ba为端点的闭区间上的最大值和最小值. 解:20y ax b ¢=+=得2bx a=-不可能属于以0和b a为端点的闭区间上, 而 22(0)0,bb y ya a æö==ç÷èø, 故当a >0时,函数的最大值为22b b y a a æö=ç÷èø,最小值为(0)0y =; 当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a æö=ç÷èø. 25. 已知a >0,试证:11()11f x x x a=+++-的最大值为21a a ++. 证明:证明:11,01111(),01111,11x x x a f x x a x x ax a x x a ì+<ï--+ï=+££í+-+ïï+>++-î 当x <0时,()()2211()011f x x x a ¢=+>--+; 当0<x <a 时,()()2211()11f x x x a ¢=-++-+; 此时令()0f x ¢=,得驻点2ax =,且422a f aæö=ç÷+èø,当x >a 时,()()2211()011f x x x a¢=--<++-, 又lim ()0x f x ®¥=,且2(0)()1af f a a+==+. 而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得 故 {}m a x 242(),,0121a a f x a a a++==+++. 26. 在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高. 解:设圆柱体的高为h , 则圆柱体底圆半径为224h r -, 22232πππ44h V h r h h r æö=×=--ç÷èø令0V ¢=, 得23.3h r =即圆柱体的高为233r 时,其体积为最大. 27. 某铁路隧道的截面拟建成矩形加半圆形的形状(如12题图所示),设截面积为am 2,问底宽x 为多少时,才能使所用建造材料最省? 解:由题设知解:由题设知21π22x xy a æö+×=ç÷èø得 21π18π8a x a y x xx -==-12题图题图截面的周长截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x =++×=+-+=++¢=+- 令()0l x ¢=得唯一驻点84πax =+,即为最小值点. 即当84πax =+时,建造材料最省. 28. 甲、乙两用户共用一台变压器(如13题图所示),问变压器设在输电干线AB 的何处时,所需电线最短?的何处时,所需电线最短? 解:所需电线为解:所需电线为2222222()1 1.5(3)(03)2.25(3)(3)1()1 2.25(3)L x x x x x x x x L x x x =+++-<<+---+¢=++-13题图题图在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短. 29. 在边长为a 的一块正方形铁皮的四个角上各截出一个小正方形,的一块正方形铁皮的四个角上各截出一个小正方形,将四边上折将四边上折焊成一个无盖方盒,问截去的小正方形边长为多大时,方盒的容积最大? 解:设小正方形边长为x 时方盒的容积最大. 232222(2)44128V a x x x ax a x V x ax a=-×=-+¢=-+令0V ¢=得驻点2a x =(不合题意,舍去),6a x =. 即小正方形边长为6a时方盒容积最大. 30. 判定下列曲线的凹凸性:判定下列曲线的凹凸性:(1) y =4x -x 2;解:42,20y x y ¢¢¢=-=-<,故知曲线在(,)-¥+¥内的图形是凸的. (2) sin(h )y x =; 解:cosh ,sinh .y x y x ¢¢¢==由sinh x 的图形知,当(0,)x Î+¥时,0y ¢¢>,当(,0)x Î-¥时,0y ¢¢<, 故y =sinh x 的曲线图形在(,0]-¥内是凸的,在[0,)+¥内是凹的. 1(3) (0)y x x x =+> ;解:23121,0y y x x¢¢¢=-=>,故曲线图形在(0,)+¥是凹的. (4) y =x arctan x . 解:2arctan 1x y x x ¢=++,2220(1)y x ¢¢=>+ 故曲线图形在(,)-¥+¥内是凹的. 31. 求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++; 解:23103y x x ¢=-+610y x ¢¢=-,令0y ¢¢=可得53x =. 当53x <时,0y ¢¢<,故曲线在5(,)3-¥内是凸弧;内是凸弧; 当53x >时,0y ¢¢>,故曲线在5[,)3+¥内是凹弧. 因此520,327æöç÷èø是曲线的唯一拐点. (2) e x y x -=;解:(1)e , e (2)xxy x y x --¢¢¢=-=-令0y ¢¢=,得x =2 当x >2时,0y ¢¢>,即曲线在[2,)+¥内是凹的;内是凹的; 当x <2时,0y ¢¢<,即曲线在(,2]-¥内是凸的. 因此(2,2e -2)为唯一的拐点. 4(3) (1)e x y x =++;解:324(1)e , e 12(1)0x xy x y x ¢¢¢=++=++> 故函数的图形在(,)-¥+¥内是凹的,没有拐点. (4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -¢¢¢==++ 令0y ¢¢=得x =-1或x =1. 当-1<x <1时,0y ¢¢>,即曲线在,即曲线在[[-1,1]内是凹的. 当x >1或x <-1时,0y ¢¢<,即在(,1],[1,)-¥-+¥内曲线是凸的. 因此拐点为因此拐点为((-1,ln2),(1,ln2). arctan (5) e xy =; 解:arctan arctan 222112e ,e 1(1)x x xy y x x -¢¢¢==++ 令0y ¢¢=得12x =. 当12x >时,0y ¢¢<,即曲线在1[,)2+¥内是凸的;内是凸的;当12x <时,0y ¢¢>,即曲线在1(,]2-¥内是凹的,内是凹的, 故有唯一拐点1arctan 21(,e )2. (6) y =x 4(12ln x -7). 解:函数y 的定义域为(0,+∞)且在定义域内二阶可导. 324(12ln 4),144ln .y x x y x x ¢¢¢=-= 令0y ¢¢=,在(0,+∞),得x =1. 当x >1时,0y ¢¢>,即曲线在[1,)+¥内是凹的; 当0<x <1时,0y ¢¢<,即曲线在(0,1]内是凸的,内是凸的, 故有唯一拐点(1,-7). 32. 利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nnnx y x y x y n x y +æö>>>¹>+ç÷èø ; 证明:令证明:令 ()nf x x =12(),()(1)0n n f x nx f x n n x--¢¢¢==-> ,则曲线y =f (x )是凹的,因此,x y R +"Î,()()22f x f y x y f ++æö<ç÷èø, 即 1()22nn nx y x y +æö<+ç÷èø. 2e e (2)e()2x y x yx y ++>¹ ; 证明:令f (x )=e x ()e ,()e 0x x f x f x ¢¢¢==> . 则曲线y =f (x )是凹的,,,x y R x y "ι则 ()()22f x f y x y f ++æö<ç÷èø 即 2eee2x yxy++<. (3) ln ln ()ln(0,0,)2x y x x y y x y x y x y ++>+>>¹证明:令证明:令 f (x )=x ln x (x >0) 1()ln 1,()0(0)f x x f x x x¢¢¢=+=>>则曲线()y f x =是凹的,,x y R +"Î,x ≠y ,有,有()()22f x f y x y f ++æö<ç÷èø即 1l n (l n l n )222x y x y xx y y ++<+, 即 l n l n ()l n 2x y x x y y x y ++>+. 33. 求下列曲线的拐点:求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-==令22d 0d yx =,得t =1或t =-1 则x =1,y =4或x =1,y =-4 当t >1或t <-1时,22d 0d yx >,曲线是凹的,,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a q q q q q ××==-×- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a aq q q q q q =-+×=×--令22d 0d yx =,得π3q =或π3q =-,不妨设a >0,不失一般性,当3tan 3q >>-时,即ππ33q -<<时,22d 0d yx >,当tan 3q >或tan 3q <-时,即π3q <-或π3q >时,22d 0d yx<, 故当参数π3q =或π3q =-时,都是y 的拐点,且拐点为233,32a a æöç÷èø及233,32a a æö-ç÷èø. 34. 试证明:曲线211x y x -=+有三个拐点位于同一直线上. 证明:222221(1)x x y x -++¢=+, 232(1)(23)(23)(1)x x x y x +---+¢¢=+ 令0y ¢¢=,得1,23,23x x x =-=+=-当(,1)x Î-¥-时,0y ¢¢<; 当(1,23)x Î--时0y ¢¢>; 当(23,23)x Î-+时0y ¢¢<; 当(23,)x Î++¥时0y ¢¢>, 因此,曲线有三个拐点因此,曲线有三个拐点((-1,-1),1313(23,),(23,)44---+-+. 因为因为 111131234131234------++=0 因此三个拐点在一条直线上. 35. 问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点?的拐点?解:y ′=3ax 2+2bx , y ″=6ax +2b 依题意有依题意有3620a b a b +=ìí+=î 解得解得 39,22a b =-=. 36. 试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点为拐点,且点((-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d 联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16. 37. 试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x ¢¢¢=-=-令0y ¢¢=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点. 18x k y =±¢=±,那么拐点处的法线斜率等于18k,法线方程为18y xk=. 由于(1,4k ),(-1,4k )在此法线上,因此在此法线上,因此148k k =±, 得22321, 321k k ==-(舍去) 故 12832k =±=±. 38. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x ¢¢¢==,而0()0f x ¢¢¢¹,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么?么?答:因00()()0f x f x ¢¢¢==,且0()0f x ¢¢¢¹,则x =x 0不是极值点.又在0(,)U x d 中,000()()()()()()f x f x x x f x x f h h ¢¢¢¢¢¢¢¢¢¢=+-=-,故()f x ¢¢在0x 左侧与0()f x ¢¢¢异号,在0x 右侧与0()f x ¢¢¢同号,故()f x 在x =x 0左、右两侧凹凸性不同,右两侧凹凸性不同,即即00(,())x f x 是拐点. 39. 作出下列函数的图形:作出下列函数的图形:2(1)()1xf x x=+; 解:函数的定义域为(-∞,+∞),且为奇函数, 2222222223121(1)(1)2(3)(1)x x xy x x x x y x +--¢==++-¢¢=+ 令0y¢=,可得1x =±, 令0y ¢¢=,得x =0,3±, 列表讨论如下:列表讨论如下:x 0 (0,1) 1 (1,3) 3(3,+∞) y′ + 0 - - -y″ 0 - - - 0 + y 0 极大极大拐点拐点当x →∞时,y →0,故y =0是一条水平渐近线. 函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为3,3,4æö--ç÷èø(0,0),33,4æöç÷èø,作图如上所示. (2) f (x )=x -2arctan x 解:函数定义域为(-∞,+∞),且为奇函数, 2222114(1)y x xy x ¢=-+¢¢=+ 令y ′=0,可得x =±1, 令y ″=0,可得x =0. 列表讨论如下:列表讨论如下:X 0 (0,1) 1 (1,∞) y′ - 0 + y″ 0 + + Y 0 极小极小又()2limlim(1arctan )1x x f x x x x®¥®¥=-=且 l i m [()]l i m (2a r c t a nπx x f x x x ®+¥®+¥-=-=- 故πy x =-是斜渐近线,由对称性知πy x =+亦是渐近线.函数有极小值π(1)12y =-,极大值π(1)12y -=-.(0,0)为拐点.作图如上所示. 2(3) (3) (()1x f x x=+; 解:函数的定义域为,1x R x ι-. 22232(1)(2)(1)(1)(1)2(1)x x x x x y x x x y x +-+¢==¹-++¢¢=+令0y ¢=得x =0,x =-2 当(,2]x Î-¥-时,0,()y f x ¢>单调增加;单调增加; 当[2,1)x Î--时,0,()y f x ¢<单调减少;单调减少; 当(1,0]x Î-时,0,()y f x ¢<单调减少;单调减少; 当[0,)x Î+¥时,0,()y f x ¢>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0 又211lim ()lim 1x x x f x x ®-®-==¥+,故x =-1为无穷型间断点且为铅直渐近线. 又因()lim 1x f x x ®¥=, 且2lim(())lim 11x x x f x x x x ®¥®¥éù-==--êú+ëû, 故曲线另有一斜渐近线y =x -1. 综上所述,曲线图形为:综上所述,曲线图形为:-∞,+∞) . 22(1)(1)22(1)e e2(241)x x y x y x x ----¢=--¢¢=×-+22±. 22][1,22-++¥22]2时,y 112222,),,)22---+曲线族曲线族,,,,01ecxA y x ABC B -=-¥<<+¥>+建立了动物的生长模型. (1) 画出B =1时的曲线()1e cxAg x -=+的图像,参数A 的意义是什么(设x 表示时间,y 表示某种动物数量)?解:2e ()0(1e )cx cx Ac g x --¢=>+,g (x )在(-∞,+∞)内单调增加,内单调增加, 222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x ---------+×+×--¢¢==++ 当x >0时,()0,()g x g x ¢¢<在(0,+∞)内是凸的. 当x <0时,()0,()g x g x ¢¢>在(-∞,0)内是凹的. 当x =0时,()2A g x =. 且lim ()0,lim ()x x g x g x A ®-¥®+¥==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:如图:(2) 计算g (-x )+g (x ),并说明该和的意义;,并说明该和的意义; 解:()()1e 1e cx cx A A g x g x A--+=+=++. (3) 证明:曲线1e cxAy B -=+是对g (x )的图像所作的平移. 证明:∵()1e 1e e c x T cx cTA Ay B B -+--==++取e 1cT B -=,得ln BT c=即曲线1e cx A y B -=+是对g (x )的图像沿水平方向作了ln BT c =个单位的平移. 。
高等数学上复旦第三版 课后习题答案
高等数学上(修订版)(复旦出版社)习题六 无穷数级 答案详解1.写出下列级数的一般项: (1)1111357++++L ;2242468x x ++⋅⋅⋅⋅L ; (3)35793579a a a a -+-+L ;解:(1)121n U n =-; (2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1)()()()1111n x n x n x n ∞=+-+++∑;(2) 1n ∞=∑;(3)23111555+++L ; 解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ⎛-+-= +++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭L因此()1lim 21n n S x x →∞=+,故级数的和为()121x x +(2)因为n U =-从而11n S =-+-+-++-==+L所以lim 1n n S →∞=,即级数的和为1 (3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦L 从而1lim 4n n S →∞=,即级数的和为14. 3.判定下列级数的敛散性:(1) 1n ∞=∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+L L ; (3) ()23133222213333n n n --+-++-L L ;(4)15++L L ; 解:(1)1n S =+++=L从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++-⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭L从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散. 4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2) 1cos 2nn nx∞=∑; (3) 1111313233n n n n ∞=⎛⎫+-⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n p n n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+L L L L 当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+L L L L 因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+L , ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n pU U U ε++++++<L 成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n p n n n p n n n p n p n p nU U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<L L L 于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<L 成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>L L L 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>L ,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++L L ;(2)22212131112131nn +++++++++++L L (3)1πsin 3n n ∞=∑;(4) 1n ∞=;(5)()1101nn a a∞=>+∑;(6) ()1121n n ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散. 综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021limln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n∞=∑发散,由比较审敛法知()1121nn ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333*********nn n +++++⋅⋅⋅⋅L L ; (1) 12!n n n n n ∞=⋅∑解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫⎪+⎝⎭∑;(2) ()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim 1313n n n n →∞==>+, 故原级数发散.(2) ()1lim 01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==< ⎪-⎝⎭, 故原级数收敛.(4) lim n n nb b a a →∞==, 当b <a 时,ba <1,原级数收敛;当b >a 时,b a>1,原级数发散;当b =a 时,b a=1,无法判定其敛散性.8.判定下列级数是否收敛若收敛,是绝对收敛还是条件收敛(1)1-+L ; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+L ;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn n n ∞=⎛⎫-++++ ⎪⎝⎭∑L .解:(1)()1n n U -=-,级数1n n U ∞=∑是交错级数,且满足>,0n =,由莱布尼茨判别法级数收敛,又11121n n n U n∞∞===∑∑是P <1的P级数,所以1n n U ∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim 0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++所以,1n n U ∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1n n U ∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n n U U n ++→∞→∞==+∞+. 故可得1n n U U +>,得lim0n n U →∞≠, ∴lim 0n n U →∞≠,原级数发散. (5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n nα→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim 0n n U →∞≠,所以原级数发散. (6)由于11111123n n n ⎛⎫⋅>++++ ⎪⎝⎭L而11n n∞=∑发散,由此较审敛法知级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑L 发散. 记1111123n U n n ⎛⎫=⋅++++ ⎪⎝⎭L ,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>L L L即1n n U U +>又01111lim lim 12311d n n n n U nn x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰L 由0111lim d lim 01t t t t x t x→+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑L 收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1) ()1!1nn x n ∞=-∑,x ∈[-3,3]; (2) 21n n x n∞=∑,x ∈[0,1];(3) 1sin 3n n nx ∞=∑,x ∈(-∞,+∞); (4) 1!nxn e n -∞=∑,|x |<5;(5) 1n ∞=,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx n n≤,x ∈[0,1],而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛. (3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113n n ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛. (4)因为5!!n nxe e n n -≤,x ∈(-5,5), 由比值审敛法可知51!nn e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)531n≤,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1n n V x ∞=∑在Ⅰ上一致收敛时,级数()1n n U x ∞=∑在这区间Ⅰ上也一致收敛.证:由()1n n V x ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N时,∀x ∈Ⅰ有|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1n n U x ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知()1n n U x ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n+…; (2)1!nn x n n ∞=⎛⎫⎪⎝⎭∑;(3)21121n n x n -∞=-∑;(4)()2112nn x n n∞=-⋅∑;解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x nn →-≠知级数1(1)nn n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e nn n nn∞=∑;应用洛必达法则求得()10e e 1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n na n na n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 12.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nx x ∞-==∑则()1011xn n x S x x x∞===-∑⎰ 于是()()12111x S x x x'⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x ++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211n n S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x )=ln(2+x );(2)f (x )=cos 2x ;(3)f (x )=(1+x )ln(1+x ); (4)()2f x =;(5)()23xf x x=+; (6)()()1e e 2x x f x -=-; (7)f (x )=e x cos x ;(8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111n nn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2)因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2xf x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x )=(1+x )ln(1+x ) 由()()()10ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()11200111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2nnn n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n xf x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e!n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部, 而()()[]()10002011!1!ππcos sin !44ππ2cos sin !44nxi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎤⎫=+⎪⎥⎭⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑取上式的实部.得2π2cos4cos !nxn n n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑ (|x |<2) 14.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()f x =(x -1)的幂级数. 解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<L L L所以()()[]()()()3221133333331121222222211111!2!!n f x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---L L L(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!n nnnn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑L L L 16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过); (2)cos20(误差不超过)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭L L ,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-,故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-L L 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+L L L 故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯.因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++ ⎪⋅⋅⋅⎝⎭L(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-L L∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d xx x⎰(误差不超过)的近似值.解:由于()3521arctan 13521n n x x x x x n +=-+-++-+L L ,(-1≤x ≤1) 故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x x x n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰L L L L 而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈. 因此0.5350arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑;(2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑; (3) ()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnnn nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 而()22211221lim lim 10111nnn n n n nn n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn n n ∞=⎛⎫⎪+⎝⎭∑发散,由比较审敛法知原级数发散. (2)∵2cos 3022n nnx n n ⎛⎫⎪⎝⎭<≤ 由比值审敛法知级数12n n n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑收敛.(3)∵()()ln ln 220313nnn n n ++<<⎛⎫+ ⎪⎝⎭ 由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=< 知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213n n n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛. 19.若2lim n nn U →∞存在,证明:级数1n n U ∞=∑收敛. 证:∵2lim n n n U →∞存在,∴∃M >0,使|n 2U n |≤M , 即n 2|U n |≤M ,|U n |≤2M n 而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛. 20.证明,若21n n U ∞=∑收敛,则1nn U n ∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n ∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n ∞=∑绝对收敛. 21.若级数1n n a ∞=∑与1n n b ∞=∑都绝对收敛,则函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n n U a nx b nx a nx b nx a b x =+≤+≤+由于1n n a ∞=∑与1n n b ∞=∑都绝对收敛,故级数()1n n n a b ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 111nn n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2) ()1πsin12nn n x ∞=+∑; (3) ()2112nn n x n ∞=-⋅∑解:(1)111limlim 11lim lim lim 22e e n n nn nn nnn n n a a n n n ρ+→∞+→∞→∞→∞→∞-==⋅⎛⎫++⎛⎫=⋅⋅ ⎪++⎝⎭=⋅=∴13R ρ==, 又当3x=±时,级数变为()111311333nnnn n n n n n ∞∞==⎛⎫⎛⎫⎛++=±± ⎪ ⎪ ++⎝⎭⎝⎭⎝⎭∑∑,因为3lim 033nn n n →∞⎛⎫+=≠ ⎪+⎝⎭所以当3x=±,级数发散,故原级数的收敛半径3R =,收敛域(-3,3). (2) 111ππsin122lim limlim ππ2sin 22n n n n n n nnnaa ρ+++→∞→∞→∞====故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n→∞→∞⋅==≠. 所以当(x +1)=±2时,级数()1πsin12nn n x ∞=+∑发散, 从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3) ()212121lim lim 221n n n n n na n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3. 当x =-1时,级数变为()2111nn n ∞=-∑,其绝对收敛,当x =3时,级数变为211n n∞=∑,收敛. 因此原级数的收敛域为[-1,3]. 23.将函数()0arctan d xtF t x t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113nnn x ∞=-+∑,x ∈[-3,+∞); (2)1n n n x ∞=∑,x ∈(2,+∞); (3) ()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113nnn x ∞=-+∑在[-3,+∞)上一致收敛. (2)当x >2时,有2n nn nx=< 由1112lim 122n n nn n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n nx ∞=∑在(2,+∞)上一致收敛. (3)∀x ∈R 有()()()22224322111nn n x n n n x n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛. 25.求下列级数的和函数: (1)()211121n n n x n ∞-=--∑; (2)21021n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1] 记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑ 则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑ 所以()()1121d arctan 01xS S x x x x-==+⎰ 即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()2211n n S x x x ∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021x S S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n an n an +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n nS xx n ∞-==-∑则()()()1011d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑,()[]1111n n x xS x x ∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰ 即()()()1ln 1xS x x x x =--+当x ≠0时,()()111ln 1S x x x⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1(∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭) 综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩U 26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩试问f (x )的傅里叶级数在x =-π处收敛于何值解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+ 27.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数. 解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰L L于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰L 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos 2x f x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰L所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰[]()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰L()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰L L所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数.解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx xn==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π) 若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰L L()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n ∞=∑的和. 解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰L L所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑所以211π6n n∞==∑32.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数. 解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰L L 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n x x x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()102cos πd n a f x n x x =⎰,求52s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1sin πn n s x b n x ∞==∑,-∞<x <+∞,其中()102sin πd n b f x n x x =⎰ (n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰L所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰,()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x x n x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰L ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰L 而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2T l T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰()()π2π222π2π22222π2211e d e d 212πed e d 2ππsin e 2ππn T n i t l i t l TT n l n n it i t TT n i t T c u t t u t tl T h T n h t i t TT n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰ 故该矩形波的傅里叶级数的复数形式为()2π1πsin eπn i t Tn n h h n u t T n Tττ∞-=-∞≠=+∑ (-∞<t <+∞,且3,22t ττ≠±±,…) 37.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x ,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…) 38.求矩形脉冲函数(),00,A t Tf t ≤≤⎧=⎨⎩其他的傅氏变换解:()()()01e ed ed i x Ti xi xA F f t A t t i ωωωωω-+∞---∞-===⎰⎰39.求下列函数的傅里叶积分:。
高等数学第六版(同济大学)上册课后习题答案解析
高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A=(-, -5)(5, +), B=[-10, 3), 写出A B, A B, A\B及A\(A\B)的表达式.解A B=(-, 3)(5, +),A B=[-10, -5),A\B=(-, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合, 证明对偶律: (A B)C=A C B C.证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C.3. 设映射f : X Y, A X, B X . 证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f (A B )x A B , 使f (x )=y(因为x A 或x B ) y f (A )或y f (B )y f (A )f (B ), 所以 f (AB )=f (A )f (B ). (2)因为y f (A B )x A B , 使f (x )=y (因为x A 且x B ) y f (A )且y f (B ) y f (A )f (B ), 所以 f (A B )f (A )f (B ).4. 设映射f : X Y , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X Y , A X . 证明:(1)f -1(f (A ))A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x A f (x )=y f (A ) f -1(y )=x f -1(f (A )),所以 f -1(f (A ))A . (2)由(1)知f -1(f (A ))A .另一方面, 对于任意的xf -1(f (A ))存在y f (A ), 使f -1(y )=x f (x )=y . 因为y f (A )且f 是单射, 所以x A . 这就证明了f -1(f (A ))A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域:(1)23+=x y ; 解 由3x +20得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 20得x 1. 函数的定义域为(-, -1)(-1, 1)(1, +). (3)211x xy --=; 解 由x0且1-x 20得函数的定义域D =[-1, 0)(0, 1].(4)241x y -=; 解 由4-x 20得 |x | 2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x 0得函数的定义D =[0, +¥).(6) y =tan(x +1);解 由21π≠+x (k =0, 1, 2, )得函数的定义域为 12-+≠ππk x (k =0, 1, 2, ). (7) y =arcsin(x -3);解 由|x -3|1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x 0且x 0得函数的定义域D =(-¥, 0)È(0, 3).(9) y =ln(x +1);解 由x +10得函数的定义域D =(-1, +¥). (10)x e y 1=.解 由x0得函数的定义域D =(-¥, 0)È(0, +¥). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x 0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, j (-2), 并作出函数y =j (x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-, 1); (2)y =x +ln x , (0, +).证明 (1)对于任意的x 1, x 2(-, 1), 有1-x 10, 1-x 20. 因为当x 1x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-, 1)内是单调增加的. (2)对于任意的x 1, x 2(0, +), 当x 1x 2时, 有0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于"x 1, x 2Î(-l , 0)且x 1<x 2, 有-x 1, -x 2Î(0, l )且-x 1-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以 f (-x 2)f (-x 1), -f (x 2)-f (x 1), f (x 2)f (x 1),这就证明了对于"x1, x2Î(-l, 0), 有f(x1)f(x2), 所以f(x)在(-l, 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l, l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数, 即两个奇函数的和是奇函数.(2)设F(x)=f(x)×g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)×g(-x)=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)×g(-x)=[-f(x)][-g(x)]=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数.如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)×g(-x)=f(x)[-g(x)]=-f(x)×g(x)=-F(x),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2p .(2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin px ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =p .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
高等数学上(修订版)黄立宏(复旦出版社) 习题三答案详解
高等数学上(修订版)黄立宏(复旦出版社)习题三答案详解1. 确定下列函数的单调区间: (1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x=+>;解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x'=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =+; 解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加.(4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加.(5) e(0,0)n xy x n n -=>≥;解: 函数定义域为[0,)+∞,11eee()n xn xxn y nx x xn x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+; 解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++.2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈--1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈,函数单调减少区间为ππππ[,] ()2322k k k z ++∈.(7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+--函数驻点为123111,,2218x x x =-==,在1(,]2+∞-内, 0y '>,函数单调增加,在111[,]218-上, 0y '<,函数单调减少,在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.2. 证明下列不等式:(1) 当π02x <<时, sin tan 2;x x x +>证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x-++'=,当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=,即sin 2tan 2.x x x ->(2) 当01x <<时, 2esin 1.2xxx -+<+证明: 令2()=esin 12xxf x x -+--,则()=e cos x f x x x -'-+-,()=e sin 1e (sin 1)0x xf x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)f x f <=,即2esin 1.2xxx -+<+3. 试证:方程sin x x =只有一个实根. 证明:设()sin f x x x =-,则()c o s 10,f x x =-≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4. 求下列函数的极值: (1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =. (2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==, 126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-.(3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+, 令0y '=,得驻点121,3x x =-=. 1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-. (4) ln(1)y x x =-+; 解: 1101y x'=-=+,令0y '=,得驻点0x =.201,0(1)x y y x =''''=>+,故(0)0y =为极大值.(5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-, 令0y '=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x =+ 解: 1y '=-令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点.(7)y =解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =.(8) 223441x x y x x ++=++;解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++,令0y '=,得驻点122,0x x =-=. 2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=.(9) e cos x y x =; 解: e (cos sin )x y x x '=-, 令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±± .2e sin xy x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()e2k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()e2k k y x +++=-.(10) 1x y x =;解: 11211ln (ln )x xx y x x x xx-''==,令0y '=,得驻点e x =.当e x >时, 0y '<,当e x <时, 0y '>,故极大值为1e (e)e y =. (11) 2e e xxy -=+;解: 2e ex xy -'=-,令0y '=,得驻点ln 22x =-.ln 222e e,0x xx y y -=-''''=+>,故极小值为ln 2()2y -=.(12) 232(1)y x =--; 解: y '=-,无驻点. y 的定义域为(,)-∞+∞,且y 在x =1处不可导,当x >1时0y '<,当x <1时, 0y '>,故有极大值为(1)2y =.(13) 1332(1)y x =-+; 解: y '=-.无驻点.y 在1x =-处不可导,但y '恒小于0,故y 无极值.(14) tan y x x =+.解: 21sec 0y x '=+>, y 为严格单调增加函数,无极值点.5. 试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值. 证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.6. 试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有π3π0()(cos cos 3)3x f a x x ='==+,得a =2.又π3π0()(2sin 3sin 3)3x f x x =''=<=--,所以π3x =是极大值点,极大值为π()3f =7. 求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞;解:y 的定义域为(,0)-∞,322(27)0x y x+'==,得唯一驻点x =-3且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '=-=,在(5,1)-上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎫==-=⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545-.42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2,而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在[-1,3]上,函数的最大值是11,最小值为-14.8. 设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和ba为端点的闭区间上的最大值和最小值.解:20y ax b '=+=得2b x a =-不可能属于以0和ba 为端点的闭区间上,而 22(0)0,bb y y a a ⎛⎫== ⎪⎝⎭,故当a >0时,函数的最大值为22bb y a a ⎛⎫= ⎪⎝⎭,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22bb y a a ⎛⎫= ⎪⎝⎭.9.求数列1000n +⎩⎭的最大的项.解:令1000y x =+,(1000)y x '===+令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<,所以x =1000为函数y的极大值点,也是最大值点,m ax (1000)2000y y ==.故数列1000n ⎧⎫⎨⎬+⎩⎭的最大项为10002000a =10. 已知a >0,试证:11()11f x xx a=+++-的最大值为21a a++.证明: 11,01111(),01111,11x x x a f x x a x x a x ax x a⎧+<⎪--+⎪⎪=+≤≤⎨+-+⎪⎪+>⎪++-⎩ 当x <0时,()()2211()011f x x x a '=+>--+;当0<x <a 时,()()2211()11f x x x a '=-++-+;此时令()0f x '=,得驻点2a x =,且422a f a ⎛⎫=⎪+⎝⎭, 当x >a 时,()()2211()011f x x x a '=--<++-,又lim ()0x f x →∞=,且2(0)()1a f f a a+==+.而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故 {}m ax 242(),,0121a af x aa a++==+++.11. 在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高. 解:设圆柱体的高为h ,223πππ4V h r h h ⎛=⋅=-⎝令0V '=,得.3h =即圆柱体的高为3r 时,其体积为最大.12. 某铁路隧道的截面拟建成矩形加半圆形的形状(如12题图所示),设截面积为am 2,问底宽x 为多少时,才能使所用建造材料最省? 解:由题设知21π22x xy a ⎛⎫+⋅= ⎪⎝⎭得 21π18π8a x a y x x x-==-截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x xxal x x=++⋅=+-+=++'=+-令()0l x '=得唯一驻点x =.即当x =.13. 甲、乙两用户共用一台变压器(如13题图所示),问变压器设在输电干线AB 的何处时,所需电线最短? 解:所需电线为()(03)()L x x L x =+<<'=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短. 14. 在边长为a 的一块正方形铁皮的四个角上各截出一个小正方形,将四边上折焊成一个无盖方盒,问截去的小正方形边长为多大时,方盒的容积最大? 解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a x V x ax a=-⋅=-+'=-+令0V '=得驻点2a x =(不合题意,舍去),6a x =.即小正方形边长为6a 时方盒容积最大.15. 判定下列曲线的凹凸性:(1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的.(2) y =sinh x ;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y xx'''=-=>,故曲线图形在(0,)+∞是凹的.(4) y =x arctan x . 解:2arctan 1x y x x'=++,2220(1)y x ''=>+故曲线图形在(,)-∞+∞内是凹的.16. 求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+610y x ''=-,令0y ''=可得53x =.当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) y =x e -x ;解:(1)e , e (2)x x y x y x --'''=-=-令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e xy x =++;解:324(1)e , e 12(1)0x x y x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点.(4) y =ln (x 2+1); 解:222222(1), 1(1)x x y y xx -'''==++令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) exy =;解:arctan arctan 222112e,e 1(1)xxx y y xx -'''==++令0y ''=得12x =.当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的,故有唯一拐点1arctan21(,e)2.(6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).17. 利用函数的图形的凹凸性,证明下列不等式:()1(1)(0,0,,1)22nn nx y x y x y n x y+⎛⎫>>>≠>+⎪⎝⎭; 证明:令 ()n f x x =12(),()(1)0n n f x nx f x n n x --'''==-> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎫< ⎪⎝⎭, 即 1()22nn nx y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e()2x yx y x y ++>≠ ;证明:令f (x )=e x()e ,()e 0x xf x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠则 ()()22f x f y x y f ++⎛⎫<⎪⎝⎭即 2e e e2x yx y++<.(3) ln ln ()ln(0,0,)2x y x x y y x y x y x y ++>+>>≠证明:令 f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x'''=+=>>则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎫<⎪⎝⎭即1ln(ln ln )222x y x y x x y y ++<+,即 ln ln ()ln 2x y x x y y x y ++>+.18. 求下列曲线的拐点:23(1) ,3;x t y t t ==+ 解:22223d 33d 3(1),d 2d 4y t y t xtxt+-==令22d 0d y x=,得t =1或t =-1则x =1,y =4或x =1,y =-4 当t >1或t <-1时,22d 0d y x>,曲线是凹的,当0<t <1或-1<t <0时,22d 0d y x<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a xa θθθθθ⋅⋅==-⋅-222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y xa aθθθθθθ=-+⋅=⋅--令22d 0d y x=,得π3θ=或π3θ=-,不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x>,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x<,故当参数π3θ=或π3θ=-时,都是y 的拐点,且拐点为3,32a a ⎛⎫ ⎪⎝⎭及3,32a a ⎛⎫- ⎪⎝⎭.19. 试证明:曲线211x y x -=+有三个拐点位于同一直线上.证明:22221(1)x x y x -++'=+,(1)y x ''=+令0y ''=,得1,22x x x =-=+=-当(,1)x ∈-∞-时,0y ''<;当(1,2x ∈--时0y ''>;当(22x ∈-+时0y ''<;当(2)x ∈++∞时0y ''>,因此,曲线有三个拐点(-1,-1),11(2(244---+-+.因为111212--+因此三个拐点在一条直线上.20. 问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y ′=3ax 2+2bx , y ″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=.21. 试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.22. 试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=-令0y ''=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k ,法线方程为18y x k= . 由于(1,4k ),(-1,4k )在此法线上,因此148k k =±, 得22321, 321k k ==-(舍去) 故18k =±=±.23. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x '''==,而0()0f x '''≠,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么?答:因00()()0f x f x '''==,且0()0f x '''≠,则x =x 0不是极值点.又在0(,)U x δ中,00()()()()()()f x f x x x f xx f ηη''''''''''=+-=-,故()f x ''在0x 左侧与0()f x '''异号,在0x 右侧与0()f x '''同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24. 作出下列函数的图形:2(1)()1xf x x=+; 解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x xy x x x x y x +--'==++-''=+令0y '=,可得1x =±, 令0y ''=,得x =0,当x →∞时,y →0,故y =0是一条水平渐近线. 函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为,4⎛- ⎝⎭(0,0),4⎭,作图如上所示.(2) f(x)=x-2arctan x解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx'=-+''=+令y′=0,可得x=±1,令y″=0,可得x=0.又()2lim lim(1arctan)1x xf xxx x→∞→∞=-=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞-=-=-故πy x=-是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=-,极大值π(1)12y-=-.(0,0)为拐点.作图如上所示.2(3) ()1xf xx=+;解:函数的定义域为,1x R x∈≠-.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+-+'==≠-++''=+令0y'=得x=0,x=-2当(,2]x∈-∞-时,0,()y f x'>单调增加;当[2,1)x∈--时,0,()y f x'<单调减少;当(1,0]x∈-时,0,()y f x'<单调减少;当[0,)x ∈+∞时,0,()y f x '>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0 又211lim ()lim1x x xf x x→-→-==∞+,故x =-1为无穷型间断点且为铅直渐近线.又因()lim1x f x x→∞=, 且2lim (())lim 11x x x f x x x x →∞→∞⎡⎤-==--⎢⎥+⎣⎦,故曲线另有一斜渐近线y =x -1.综上所述,曲线图形为:(4)2(1)ex y --=.解:函数定义域为(-∞,+∞) .22(1)(1)22(1)e e2(241)x x y x y x x ----'=--''=⋅-+令0y '=,得x =1.令0y ''=,得12x =±.当(,1]x ∈-∞时,0,y '>函数单调增加; 当[1,)x ∈+∞时,0,y '<函数单调减少;当(,1[1,)22x ∈-∞-++∞ 时,0y ''>,曲线是凹的;当[122x ∈-+时,0y ''<,曲线是凸的,故函数有极大值f (1)=1,两个拐点:1122(1e),(1e)22A B ---+,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25. 逻辑斯谛(Logistic)曲线族,,,,01ecxA y x ABC B -=-∞<<+∞>+建立了动物的生长模型. (1) 画出B =1时的曲线()1ecx A g x -=+的图像,参数A 的意义是什么(设x 表示时间,y 表示某种动物数量)? 解:2e ()0(1e)cxcxAc g x --'=>+,g (x )在(-∞,+∞)内单调增加,222244ee2(1e )ee(1e)()(1e)(1e )cxcxcxcxcxcxcxcxAc Ac Ac g x ---------+⋅+⋅--''==++当x >0时,()0,()g x g x ''<在(0,+∞)内是凸的. 当x <0时,()0,()g x g x ''>在(-∞,0)内是凹的. 当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A →-∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2) 计算g (-x )+g (x ),并说明该和的意义;解:()()1e 1ecx cxA Ag x g x A --+=+=++.(3) 证明:曲线1e cxA yB -=+是对g (x )的图像所作的平移. 证明:∵()1e1eec x T cxcTA Ay B B -+--==++取e 1cT B -=,得ln B T c=即曲线1ecxA yB -=+是对g (x )的图像沿水平方向作了ln B T c=个单位的平移.26. 球的半径以速率v 改变,球的体积与表面积以怎样的速率改变?解: 324d π,π,.3d rV r A r v t===2d d d 4πd d d d d d 8πd d d V V r r vt rtAA r r v t r t=⋅=⋅=⋅=⋅27. 一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d d ee .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=28. 一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a ttϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=29. 椭圆22169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x y x y t t ⋅+⋅=由d d d d x y tt-=. 得 161832,9y x y x ==代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.30. 一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快? 解:当水深为h 时,横截面为212s h =⋅=体积为22212V sh '====d d 2d d V h h tt=⋅当h =0.5m 时,31d 3m m in d V t-=⋅.故有d 320.5d h t=⋅,得d d 4h t=(m 3·min -1).31. 某人走过一桥的速度为4km ·h -1,同时一船在此人底下以8 km ·h-1的速度划过,此桥比船高200m ,求3min 后,人与船相离的速度. 解:设t 小时后,人与船相距s 公里,则d d s s t ===且120d 8.16d t s t==≈ (km ·h-1)32. 一动点沿抛物线y =x 2运动,它沿x 轴方向的分速度为3 cm ·s -1,求动点在点(2,4)时,沿y 轴的分速度.解: d d d 236.d d d y y xx x t x t =⋅=⋅=当x =2时,d 6212d y t=⨯= (cm ·s -1).33. 设一路灯高4 m ,一人高53m ,若人以56 m ·min -1的等速沿直线离开灯柱,证明:人影的长度以常速增长.证明:如图,设在t 时刻,人影的长度为y m.则 53456yy t=+化简得 d 7280,40,40d y y t y t t===(m ·min -1).即人影的长度的增长率为常值.34. 计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- ,故 23/22.(1)y k y ''=='+35. 计算曲线y =cosh x 上点(0,1)处的曲率. 解:sinh ,cosh .y x y x '''==当x =0时,0,1y y '''== ,故 23/21.(1)y k y ''=='+36. 计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- ,故 23/21.(1)y k y ''=='+37. 求曲线y =ln(sec x )在点(x ,y )处的曲率及曲率半径. 解:2tan ,sec y x y x '''==故 223/223/2sec cos (1)(1tan )y x k x y x ''==='++ 1sec R x k==.38. 求曲线x =a cos 3t ,y = a sin 3t 在t =t 0处的曲率.解: 22d d 3sin cos d tan d d 3cos sin d yya t tt t x x a t t t===--, 22224d d d (tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x xxta t ta t tt--=-=⋅==-,故 423/2123sin cos [1(tan )]3sin 2a t tk t a t==+- 且当t =t 0时, 023sin 2k a t =.39. 曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点的曲率半径. 解:cos ,sin y x y x '''==- .23/223/2(1cos )1sin ,sin (1cos )x x R k xRx +===+显然R 最小就是k 最大, 225/22cos (1sin )(1cos )x x k x +'=+令0k '=,得π2x =为唯一驻点.在π0,2⎛⎫ ⎪⎝⎭内,0k '>,在π,π2⎛⎫ ⎪⎝⎭内,0k '<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为23/2π2(1cos )1sin x x R x=+==.40. 求曲线y =ln x 在与x 轴交点处的曲率圆方程. 解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,1 1.x x x x y xy x===='==''=-=-故曲率中心 212(1,0)(1)312x y y x y y y y αβ=⎧''⎡⎤+==-⎪⎢⎥''⎣⎦⎪⎨'⎡⎤+⎪==-+⎢⎥⎪''⎣⎦⎩曲率半径为R =故曲率圆方程为:22(3)(2)8x y -++=. 41. 一飞机沿抛物线路径210000xy =( y 轴铅直向上,单位为m )做俯冲飞行,在坐标原点O处飞机速度v =200 m ·s -1,飞行员体重G =70kg ,求飞机俯冲至最低点即原点O 处时,座椅对飞行员的反力.解:0010,5000x x y y =='''== ,23/2(1)5000y R y '+==''飞行员在飞机俯冲时受到的向心力22702005605000m v F R⋅=== (牛顿)故座椅对飞行员的反力560709.81246F =+⨯= (牛顿).42. 设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q =即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0q 2-1300q +100000=0 解得q =1218(舍去),q =82.43. 设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少? 解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q q L q q q =-+-=-+-'=-+-令()0L q '=,得 231206000q q -+= 即 2402000q q -+=得20q =-(舍去) 2034.q =+≈ 此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.44. 求下列初等函数的边际函数、弹性和增长率:(1) y =ax +b ;(其中a ,b ∈R ,a ≠0) 解:y ′=a 即为边际函数.弹性为: 1Ey axa x Ex axb ax b=⋅⋅=++, 增长率为: y aax bγ=+.(2) y =a e bx;解:边际函数为:y ′=ab e bx弹性为: 1e e bxbx Ey ab x bx Ex a =⋅⋅=,增长率为: e ebxy bxab b a γ==.(3) y =x a解:边际函数为:y ′=ax a -1.弹性为: 11a a Ey ax x a Ex x -=⋅⋅=,增长率为: 1.a y aax a xxγ-==45. 设某种商品的需求弹性为0.8,则当价格分别提高10%,20%时,需求量将如何变化? 解:因弹性的经济意义为:当自变量x 变动1%,则其函数值将变动%E y E x ⎛⎫⎪⎝⎭.故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%. 46. 国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少?解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。
高等数学中极限的教学探析
714289877@职成教苑高等数学中极限的教学探析ʏ㊀武昌工学院㊀张志会㊀㊀摘要:本文主要介绍了高等数学这门课程中计算函数极限的三种方法,同时论述了极限思想在微积分中的应用㊂关键词:高等数学;函数极限;极限思想;微积分1㊀计算函数极限的方法计算函数的极限,学生在高中就接触过,但是接触和学习极限都不够深入㊂本文介绍三种高等数学中的方法㊂第一种方法:函数的四则运算法则㊂高等数学这门课程中计算函数极限的方法很多,其中,函数的四则运算法则这种方法,学生在高中就接触学习过,很多学生对法则内容很熟悉㊂然而,很多函数的极限不能够直接利用函数的四则运算法则来计算,需要先把函数进行变形,本文通过归纳总结,把函数极限分成四个类型,分别为00型,ɕɕ型,0㊃ɕ型,ɕ-ɕ型等㊂00型即分子分母的极限同时等于0;ɕɕ型即分子分母同时无限趋于ɕ;0㊃ɕ型即函数的两个因式的极限分别是0和ɕ;ɕ-ɕ型即在自变量的同一变化过程中,函数的被减数与减数同时无限趋于ɕ㊂这四种类型很好区分,学生能够正确快速地判断函数的极限属于哪种类型的极限㊂接下来,我们分别对这四种类型通过举例进行方法说明㊂关于00型,例如lim xң1x2-3x+2x-1,只需要消除分母中的零因子x-1就可以计算出来㊂但是很多时候,不能直接去掉分母中的零因子,那么只能利用其他方法把函数进行变形之后才能合理消除掉零因子㊂上例对分子进行因式分解即x2-3x+2=(x-1)(x-2)后,才可以进行计算㊂关于ɕɕ型,需要分子除以分母中自变量的次数最高项,同时分母也除以分母中自变量的次数最高项㊂例如limxңɕx2+2x+1x4-3x+1,分母中自变量x的次数最高项是x4,因此只要让分子除以x4,同时分母也除以x4,这样就可以解出正确答案即limxңɕx2+2x+1x4-3x+1=lim xңɕ1x2+2x3+1x41-3x3+1x4=01=0㊂而对于0㊃ɕ型和ɕ-ɕ型的极限问题,都可以想办法把它们变形成能够利用00型或ɕɕ型方法的函数极限,例如lim xң0x2㊃x+2x3+x属于0㊃ɕ型,可以把它变形成00型再计算,即limxң0x2㊃x+2x3+x=lim xң0x2+2x x2+1=0,再如lim xң111-x-31-x3()属于ɕ-ɕ型,不能够直接利用四则运算法则计算,但是我们可以对它进行通分,先把它变形成00型即lim xң111-x-31-x3()=lim xң1-(1-x)(x+2)(1-x)(1+x+x2),然后消除掉分母中的零因子1-x就解决问题了即limxң111-x-31-x3()=lim xң1-(1-x)(x+2)(1-x)(1+x+x2)=-1㊂因此可以说,0型和ɕɕ型的极限方法是最基础的,教师要让学生认识到这个问题,学生要把这个基础方法掌握好㊂第二种方法:两个重要极限学生在中学大多没有接触过,那就是两个重要极限,即limxң0sin xx=1与lim xңɕ1+1x()x=e,关于这两个重要极限,教师要引导学生深刻理解和掌握这两个重要极限的结构:第一个重要极限limxң0sin xx=1,在自变量x无限趋于点x=0时,分子与分母的极限必须同时无限趋近于零,并且分子上正弦函数sin x里的函数x必须和分母里的函数x保持一致,如果同时满足上述两个特点,我们可以把第一种重要极限推广成lim sin u(x)u(x)=1(其中u(x)是自变量变化过程中的无穷小量,也就是说,函数u(x)的极限等于0);第二个重要极限limxңɕ1+1x()x= e,位于底数位置的第二个加数1x的极限必须等于零,职成教苑714289877@而位于指数位置的函数x 的极限必须等于ɕ,并且位于底数位置的第二个加数1x和位于指数位置的函数x必须互为倒数,若同时满足这两个特点,我们可以把第二种重要极限推广成公式lim 1+1u (x )()u (x )=e (其中u (x )是自变量变化过程中的无穷大量),或者推广成公式lim 1+u (x )[]1u (x )=e(其中u (x )是自变量变化过程中的无穷小量,即u (x )的极限等于0)㊂教师要用由简到难的方法教授,这样讲授可以让学生更容易接受新知识㊂先指导学生做一些经典的简单的练习题㊂学生基本掌握这两种重要极限的方法之后,再让学生练习一些难度较大的题目㊂第三种方法:洛必达法则㊂我们还会接触学习一种跟导数有关的求函数极限的方法,即洛必达法则㊂利用洛必达法则解决函数极限的问题,最基础的计算极限的类型有两种,分别为型与ɕɕ型㊂00型是指同一自变量无限趋于一点时,分子分母的极限同时等于零;而ɕɕ型是指分子分母的极限同时等于ɕ㊂对于00型与ɕɕ型,利用洛必达法则求极限,方法是一样的,就是对分子进行求导,同时再对分母进行求导,例如lim x ң0sin5x x 是0型,对分子分母同时求导得到lim x ң05cos5x 1=5,再例如lim x ң+ɕln x x 属于ɕɕ型,然后同时对分子分母求导limx ң+ɕln x x =lim x ң+ɕ1/x 1=lim x ң+ɕ1x=0㊂利用洛必达法则还可以计算很多类型函数的极限,例如lim x ң0+sin x ln x 属于0㊃ɕ型,需要先把它变形成ɕɕ型,即lim x ң0+sin x ln x =lim x ң0+ln xcsc x ,再同时对分子分母求导即lim x ң0+sin x ln x =lim x ң0+ln x csc x =lim x ң0+1/x -csc x㊃cot x =lim x ң0+-sin x x ㊃tan x =0㊂2㊀极限思想在微积分中的应用在高等数学的微积分理论中,人们把极限思想的应用体现得淋漓尽致,可以说,微积分的形成就是人们深刻理解极限思想下的产物㊂微积分中的导数理论是很重要的一部分知识内容,而导数的概念就是由极限思想得来的㊂实际生活中,很多实际问题总可以转化为求极限lim Δx ң0ΔyΔx即在一个点x =x 0处,函数y =f (x )的增量Δy 除以自变量x 的改变量Δx 所得到的商的极限㊂这种结构的极限就定义为导数㊂微积分里面的导数与积分互为逆运算,积分是微积分中的一个重要部分,极限思想在定积分的形成中有着不可替代的作用㊂因为定积分的概念就是从极限思想产生的㊂生活中,很多问题都可以转化为求这种和式ðn i =1f (ξi )Δxi的极限,即lim λң0ðni =1f (ξi )Δx i ,此极限就定义为定积分㊂无论微积分中的导数理论,还是定积分理论,都是人们在极限思想下的产物,是人类智慧的结晶㊂高等数学中还有一个重要的知识点,那就是学生必须要好好学习的另一个内容,即无穷级数㊂极限思想在无穷级数的研究中发挥了很重要的作用,如果不利用极限思想,那么就不能够更好地分析研究无穷级数,也就不能够更好地了解分析函数的性质㊂我们学习和研究无穷级数的敛散性对进一步研究函数的特性有着至关重要的作用㊂我们往往感兴趣的就是函数具有什么样的性质,一个无穷级数是否收敛,意味着这个级数能否表示一个函数㊂假设一个无穷级数的前n 项部分和为s (n ),那么若lim n ң0s (n )存在,则定义级数收敛,若lim n ң0s (n )不存在,则定义级数发散㊂由此我们可以看出,级数收敛与发散的这两个概念是由极限思想产生的㊂极限思想在无穷级数这部分内容中的作用是不可或缺的,人们如果想要用无穷级数的性质研究函数的特性,需要充分理解和应用极限思想㊂3㊀结语高等数学是学生学习专业课之前必须要学习的课程,它是基础课㊂计算函数极限有很多种方法,只有能够混合灵活应用各种方法,才能够快速地把函数极限解答出来㊂极限思想在高等数学里的作用是显而易见的,是很重要的㊂学生在面对这门数学课时,要做好深刻理解极限思想的准备,只有极限思想理解的足够清晰透彻,那么极限思想在高等数学里的应用就很容易理解和掌握了㊂学生只要理解了极限思想,就能够更好㊁更深入地学好高等数学这门课㊂参考文献[1]黄立宏主编.高等数学上册[M ].上海:复旦大学出版社,2010.[2]卢玉峰.关于数学基础课程学的一点思考[J ].高等数学研究,2003,6(03):5-7.[3]经玲.试论数学思想方法的教学[J ].中国科技信息,2005,(21):68-70.[4]论极限的思想方法[J ].广州大学学报,2003,(10):410-412.[5]徐利治.数学分析的方法及例题选讲[M ].大连:大连理工大学出版社,2008.责任编辑㊀孙晓东。
兰州大学考研各专业参考书目
兰州大学2012年硕士研究生招生参考书目说明:从2009年起,教育部提倡各招生单位不指定参考书目。
我校部分学院不再提供相关考试科目的参考书目。
考生可根据报考专业和考试科目自行选择相关参考书作为参考。
高等数学参考书目011数学与统计学院参考书目016信息科学与工程学院参考书目020生命科学学院参考书目021资源环境学院参考书目022草地农业科技学院硕士研究生参考书目023西部环境与气候变化研究院024地质科学与矿产资源学院参考书目025大气科学学院参考书目027核科学与技术学院参考书目031基础医学院参考书目033口腔医学院参考书目034公共卫生学院参考书目035药学院参考书目061文学院参考书目062历史文化学院参考书目065外国语学院参考书目068经济学院参考书目069管理学院参考书目071新闻与传播学院参考书目073政治与行政学院参考书目075教育学院参考书目生物化学《生物化学》,沈同主编,高等教育出版社,第二版或第三版《有机化学》,汪小兰主编,最新版本,高等教育出版社分子生物学《植物分子生物学》,曹仪植编,高等教育出版社细胞生物学《细胞生物学》,翟中和主编,高等教育出版社《细胞生物学》,郑国锠编著,高等教育出版社,1991年第二版植物生物学《植物生理学》,曹仪植,宋占午编,兰州大学出版社,1998年《植物生物学》,周云龙主编,高等教育出版社,1999年版植物生理学《植物生理学》,白宝璋,史芝文主编,中国科学技术出版社,1992年版复试:普通微生物学《微生物学》,沈萍等主编,高等教育出版社,第一版。
(整理)第七章 向量代数与空间解析几何
第七章向量代数与空间解析几何讲授内容:§7-1向量及其线性运算教学目的与要求:1.理解向量概念.2.掌握向量的加减以及数乘运算律,掌握两向量平行的充要条件. 教学重难点:重点――向量的线性运算.难点――两向量平行的条件的运用.教学方法:讲授法教学建议:掌握用向量的理论证明几何问题.学时:2学时教学过程:一、向量概念向量: 既有大小又有方向的量.向量在数学上的表示:有向线段AB表示以A为起点,B为终点的向量.其中|AB|表示向量的大小; 有向线段的方向表示向量方向或者表示为: a、b、c 或者、、等.自由向量: 与起点无关的向量.向量a=b 大小相等、方向相同.向量的模: 向量的大小|AB| .单位向量: 模等于1的向量.零向量: 模等于0的向量,记作0,或者,起点与终点重合,方向任意.向量a∥b: 两个非零向量的方向相同或相反.零向量与任意向量平行.两向量共线: 两向量平行时,当将起点放在一起时,终点在同一直线上;k 个向量共面: k 个向量起点放在同一点时,起点和终点在同一平面上.例: 把空间中的一切单位向量归结到共同的始点,他们的终点构成单位球面二、 向量的线性运算1. 向量的加法设有向量a 与b ,任取一点A ,作AB =a ,再以B 为终点,作BC =b ,连接AC ,则AC =c , 称为a 与b 的和,记作c =a +b .三角形法则平行四边形法则 加法的运算规律(1) 交换律a +b =b +a (2) 结合律(a +b )+c = a +(b +c )(结合律示意图) (s =a 1+a 2+a 3+a 4+a 5示意图)推广: 任意有限个向量1a ,2a ,…, n a 的和可记为1a +2a +…+n a .作图法,由向量的三角形求和法则推广到 多边形法则即 n n n A A A A OA OA 1211-+++= (当A n 与O 重合时=n OA )2. 向量的减法a 的负向量: 与a 的模相同,方向相反的向量.记作 –a .a -b ∆ a +(- b )任给向量AB 及点O ,有:AB=AO+OB=OB-OA.三角形原理:| a+b |≤| a |+| b |; | a – b |≤| a |+| b |;3.向量与数的乘法向量a与实数λ的乘积记作λa, 规定λa是一个向量,其模为: |λa|=λ|a|,其方向为: 当λ>0时与a相同,当λ<0时与a相反.运算规律:(1)结合律: λ(μa)=μ(λa)=(λμ)a.(2)分配律: (λ+μ)a=λa+μa;λ(a+b)=λa+μb.向量的线性运算: 向量相加及数乘向量4.两向量平行的充分必要条件定理:设向量a≠0,则向量b∥a ⇔∃| λ∈R: 使b=λa.证明:充分性显然(必要性) 设b∥a.取|λ|=|b|/|a|,且规定:b与a同向时,λ>0; b与a反向时,λ<0.则有: b=λa.唯一性设b=λa ,b=μa ,则(λ-μ)a=0 ⇒|λ-μ||a|=0因|a|≠0, ⇒λ=μ5.向量a的单位向量e a:e a=a/|a|.例1.在平行四边形ABCD中,设AB=a,AD=b.试用a和b表示向量MA, MB, MC, MD,这里M是平行四边形对角线的交点.解:MA=-(1/2)AC=-(a+b)/2; MC=-MA=(a+b)/2;MB=(1/2)DB=(a-b)/2; MD=-MB=(b-a)/2作业:高等数学练习册C习题三十六第4题教学后记:教学参考书:《高等数学》北京大学数学科学部编《高等数学典型题精解》陈兰祥编《高等数学》黄立宏廖基定主编复旦大学出版社《高等数学》同济大学应用数学系主编《高等数学》同济大学应用数学系主编(本科少学时类型)复习思考题:用向量的方法证明:梯形两腰中点的连线平行底边且等于两底边和的一半.讲授内容:§7-2点的坐标与向量的坐标教学目的与要求:1.理解空间直角坐标系的概念.2.掌握用坐标进行线性运算的方法,会求向量的模以及两点间的距离.3.掌握定比分点的坐标公式.教学重难点:重点――用坐标进行线性运算.难点――理解空间直角坐标系的概念.教学方法:讲授法教学建议:在解题过程中要掌握数形结合的方法,充分采用向量形式,最后用代数方法解之.学时:2学时教学过程:一、空间直角坐标系坐标轴: x轴(横轴),y轴(纵轴), z轴(竖轴)以O为原点,两两垂直.三轴的单位向量依次为i, j, k.构成空间直角坐标系Oxyz或[O,i,j,k],正向符合右手规则.坐标面: 任意两条坐标轴确定的平面.xOy平面; xOz平面; yOz平面.卦限: 坐标平面将空间划分的每一个部分称为一个卦限.卦限内点的坐标如下表.向量的坐标分解式:给定向量r,对应点M,使OM=r.则r=OM=OP+PN+NM=OP+OQ+OR设OP=x i; OQ=y j; OR=z k.则r =OM=x i+y j+z k. 称为r的坐标分解式.空间点M,向量r = OM与有序数组(x,y,z)的关系:M ↔ r =OM=x i+y j+z k ↔ (x,y,z)称(x,y,z)为点M的坐标.记为M(x,y,z).向径:向量OM称为点M关于原点O的向径.点与此点的向径有相同的坐标. (x,y,z)既表示点M,又表示向量OM. 坐标轴及坐标面上的点的坐标特征:x 轴: (x ,0,0); y 轴: (0,y ,0); z 轴:(0,0,z ).xoy 面:(x ,y ,0); yoz 面: (0,y ,z );xoz 面: (x ,0,z ).原点: (0,0,0). 二、 利用坐标作向量的运算设a =(a x ,a y ,a z ),b =(b x ,b y ,b z ) ⇒ a =a x i +a y j +a z k , b = b x i +b y j +b z k , 则a +b =( a x + b x )i +(a y +b y )j +(a z +b z )ka-b =( a x -b x )i +(a y -b y )j +(a z -b z )kλa =(λa x )i +(λa y )j +(λa z )k向量平行充分必要条件:设: a =(a x ,a y ,a z )≠0, b =(b x ,b y ,b z )b ∥a ⇔ b=λa ⇔ (b x ,b y ,b z )= (a x ,a y ,a z )⇔zz y y x x a b a b a b == 三、 向量的模、两点间的距离1. 向量的模设向量r =(x ,y ,z ),作OM =r ,则r =OM =OP+OQ+OR| r |=|OM |=2||2||2||OR OQ OP ++OP =x i , OQ =y j , OR =z k |OP |=|x|, |OQ |=|y |,|OR |=|z |2. 两点间的距离公式设有点A (x 1,y 1,z 1)、点B (x 2,y 2,z 2),则AB=OA-OB =(x 1,y 1,z 1)-(x 2,y 2,z 2)=(x 2-x 1,y 2-y 1,z 2-z 1)点A 和点B 的距离|AB |为:四、 定比分点对于有向线段P 1P 2 (P 1≠P 2),如果点P 满足P 1P =λPP 2(λ≠-1),我们就称点P 为有向线段P 1P 2的λ分点.说明:○1λ≠-1使得P 1≠P 2; ○2λ>0,则P 1P 与PP 2同向,P 为P 1P 2内部的点; ○3λ<0,则P 1P 与PP 2反向,P 为P 1P 2外部的点: 且若λ<-1,则P 点在P 2右侧;若-1<λ<0,则P 点在P 1左侧.例1. 已知点A (x 1,y 1,z 1)、点B (x 2,y 2,z 2)和实数λ≠-1,在直线AB 上求点M,使AM =λMB .解: AM=OM-OA , M B=OB-OM ,OM-OA=λ(OB-OM )⇒ OM=λ+11(OA+λOB )=λ+11[(x 1,y 1,z 1)+λ(x 2,y 2,z 2)]⇒ OM=(λλ++121x x ,λλ++121y y ,λλ++121z z ) ⇒ 此为点M 的坐标.此为定比分点公式.当λ=1时,为中点公式. 例2. 求证:以M 1(4,3,1)、M 2(7,1,2)、M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.解: |M 1M 2|2=(7-4)2+(1-3)2+(2-1)2=14;|M 1M 3|2=(5-7)2+(2-1)2+(3-2)2=6;|M 2M 3|2=(4-5)2+(3-2)2+(1-3)2=6例3. 在z 轴上求与两点A (-4,1,7)、B (3,5,-2)等距离的点.解: 设所求点的坐标为 (0,0,z ), 则有:|MA |2=|MB |2 ⇒(0+4)2+(0-1)2+(z -7)2=(3-0)2+(5-0)2+(-2-z )2,⇒ z=19=4/9 所求点为: (0,0,14/9)例4. 求点A (a ,b ,c )关于(1)各坐标轴;(2)各坐标面;(3)坐标原点的对称点的坐标.解: (1) 关于x 轴:(a ,-b ,-c ); 关于y 轴:(-a ,b ,-c ); 关于z 轴: (-a ,-b ,c );(2) 关于xoy 面: (a ,b ,-c );关于xoz 面: (a ,-b ,c );关于yoz 面: (-a ,b ,c );(3) 关于坐标原点:(-a ,-b ,-c ) 例5. 已知两点A (4,0,5)和点B (7,1,3),求与AB 方向相同的单位向量. 解: AB=OB-OA =(7,1,3)-(4,0,5)= (3,1,-2)⇒ |AB |=222)2(13-++=14⇒ e AB =||AB AB =141(3,1,-2) 作业:练习册C 习题三十六第2、3题.教学后记:教学参考书: 《高等数学》 北京大学数学科学部编《高等数学典型题精解》 陈兰祥编《高等数学》 黄立宏 廖基定主编 复旦大学出版社 《高等数学》 同济大学应用数学系主编《高等数学》 同济大学应用数学系主编(本科少学时类型) 复习思考题:已知两点)2,1,0(1M 和)0,1,1(2-M ,求平行于向量−→−21M M 的单位向量.讲授内容:§7-3 向量的方向余弦及投影教学目的与要求:1.理解方向角、方向余弦及向量的投影的概念.2.会求方向角、方向余弦.教学重难点:重点――向量的方向余弦.难点――向量在轴上的投影.教学方法:讲授法教学建议:向量的方向余弦在以后经常用到,应该让学生熟练掌握.学时:2学时教学过程:一、方向角与方向余弦1. 两向量的夹角:设有非零向量a,b,任取一点O,作OA=a,OB=b,称不超过π的角φ=∠AOB为向量a,b的夹角.记为(a^b)或(b^a).2.向量的方向角:非零向量r=OM与三条坐标轴的夹角α, β,γ(0≤α,β,γ≤π)称为向量r的方向角.3. 向量的方向余弦设r =(x ,y , z )由图可知,OP =x i , ⇒cos α=||OM x =||r x;同理: c os β=||r y ; cos γ=||r z⇒ (cos α,cos β,cos γ)=(||r x ,||r y ,||r z )=||1r ( x ,y , z )=||r r=e r . cos α,cos β,cos γ叫做r 的方向余弦.|r |=222z y x ++⇒cos α=222z y x x ++;cos β=222z y x y ++;cos γ=222z y x z ++性质:例1.已知两点M 1(2,2,2)和M 2(1,3,0),求向量M 1M 2的模、方向余弦和方向角.解: M 1M 2=(1-2,3-2,0-2)=(-1,1,-2).|M 1M 2|=222)2(1)1(-++-=2 cos α=-1/2, cos β=1/2, c os γ=-2/2 α=2π/3,β=π/3,γ=3π/4例2.设点A 位于第Ⅰ卦限,向经OA 与x 轴,y 轴的夹角依次为π/3和π/4,且|OA |=6,求点A 的坐标.解: α=π/3; β=π/4由cos 2α+cos 2β+cos 2γ=1 ⇒ cos 2γ=1/4 又点A 在第Ⅰ卦限,⇒ cos γ=1/2.OA =|OA |e OA =6 (21,2121)=(3,32,3) 此为点A 的坐标. 二、 向量在轴上的投影设点O及单位向量e确定轴u(相当于坐标轴).给定向量r,作r=OM,过点M作与轴u垂直的平面交轴u于点M′,(点M′称为点M在轴u上的投影)向量OM′称为向量r在轴u上的投影,记为prj u r(或(r)u.由此向量a在坐标系Oxyz中的坐标a x,a y,a z为a在三条坐标轴上的投影.即有:a x=Prj x a, a y= Prj y a, a z= Prj z a,或a x=(a)x, a y=(a)y, a z=(a)z向量投影的性质:向量的投影具有于向量坐标相同的性质:性质1:(a)u=|a|cosφ[或Prj u a=|a|cosφ]其中φ为a与轴u的夹角.性质2: (a+b)u=(a)u+(b)u [或Prj u(a+b)=Prj u a+Prj u b ]Prj u(a1+a2+…+a n)=Prj u a1+Prj u a2+…+ Prj u a n.性质3: (λa)u=λ(a)u[或Prj u(λa)=λPrj u a]例3.设向量a=(4,-3,2),又轴u的正向与三条坐标轴的正向构成相等锐角,试求(1)向量a在u轴上的投影;(2)向量a与u轴的夹角θ.解:设e u的方向余弦为cosα,cosβ,cosγ.则由题义有:0<α=β=γ<π/2.由cos2α+cos2β+cos2γ=1,得: cosα=cosβ=cosγ=3/3.e u=3/3i+3/3j+3/3k.a=4i-3j+2k.Prj u a = Prj u (4i )+ Prj u (-3j )+ Prj u (2k )=4Prj u i -3Prj u j + 2Prj u k=4•3/3-3•3/3+2•3/3=3. 由于Prj u a =|a |cos θ=29cos θ=3,⇒ θ=arccos 3/29.例4.设立方体的一条对角线为OM ,一条棱为OA ,且|OA |=a ,求OA 在OM 上的投影Prj OM OA . 解: 设 φ=∠MOA ,则 φ=||||OM OA =31⇒ Prj OM OA =|OA |•cos φ=3a作业:高等数学练习册C 习题三十六第一大题 教学后记:教学参考书: 《高等数学》 北京大学数学科学部编 《高等数学典型题精解》 陈兰祥编《高等数学》 黄立宏 廖基定主编 复旦大学出版社 《高等数学》 同济大学应用数学系主编《高等数学》 同济大学应用数学系主编(本科少学时类型) 复习思考题:已知单位向量→a 与x 轴正向夹角为3π,与其xoy 面上的投影向量夹角为4π,试求向量→a .讲授内容:§7-4数量积向量积教学目的与要求:1、理解向量的数量积、向量积的概念.2、掌握向量的数量积、数量积的性质和运算律.3、掌握用数量积,向量积证明两向量垂直、平行的方法.4、熟练掌握数量积、向量积的坐标表达式,并会用数量积、向量积解决相关实际问题.教学重难点:重点――数量积、向量积的计算与运用.难点――数量积与向量积的混合运用教学方法:讲授法教学建议:为帮助学生记忆向量积的坐标表达式,可先简要介绍三阶行列式及其记忆的方法.学时:2学时教学过程:一、两向量的数量积1.向量a,b的数量积: a•b ∆|a||b|cosθ. [θ=(a^b)]当a≠0时, |b|cosθ=|b|cos(a^b)= |b|Prj a ba•b=|a|Prj a b(a≠0),同理a•b=|b|Prj b a(b≠0)性质:(1)a•a=|a|2(2)a•b=0 ⇔a⊥b2.运算规律(1)交换律: a•b = b•a(2)分配律: (a+b)•c= a•c+b•c(3)结合律: (λa)•b=λ(a•b)=a•(λb)(λa)•(μb)=λ[a•(μb)]= λ[μ(a•b)]= λμ(a•b) 证明:(1) a•b = |a||b|cosθ;b•a = |a||b|cosθ;⇒a•b = b•a(2) 当c=0时,显然成立.当c≠0时,(a+b)•c=|c|Prj c(a+b)=|c|(Prj c a+Prj c b)=|c|Prj c a+|c|Prj c b=a•c+b•c(3) 当b=0时,结论成立.当b≠0时,(λa)•b=|b|Prj b(λa)= |b|•λPrj b a =λ|b|Prj b a=λ(a•b)=a•(λb).(λa)•(μb)=λ[a•(μb)]= λ[μ(a•b)]= λμ(a•b)例1.试用向量证明三角形的余弦定理.证明:设在△ABC中,∠B C A=θ, |BC|=a, |CA|=b, |AB|=c记CB=a, CA=b, AB=c. ⇒c=a-b⇒c2=|c|2=c•c=(a-b)•(a-b)=a•a+b•b-2a•b⇒c2=|a|2+|b|2-2|a||b|cosθ=a2+b2-2ab cosθ3.数量积的坐标表达式设a=a x i+a y j+a z k , b= b x i+b y j+b z k则a•b =(a x i+a y j+a z k)•( b x i+b y j+b z k)= a x b x+a y b y+a z b z从而 cos θ=b a b a ∙=2z2y 2x 2z 2y 2x z z y y x x b b b a a a b a b a b a ++++++例2. 已知三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB .解:作MA ,MB , ∠AMB 为MA 与MB 的夹角 ⇒ MA =(2,2,1)-(1,1,1)=(1,1,0); MB =(2,1,2)-(1,1,1)=(1,0,1)MA •MB =1⨯1+1⨯0+0⨯1=1; |MA |=2;|MB |=2cos ∠AMB =21 ⇒ ∠AMB=π/3.例3. 已知a ,b ,c ,两两垂直,且|a |=1,|b |=2,|c |=3,求s =a +b +c 的长度与它和a ,b ,c 的夹角.解: |s |2 =s • s =(a +b +c )•(a +b +c )=a •a +b •b +c •c +2a •b +2b •c +2a •c 由于: a •a =|a |2=1,b •b =|b |2=4,c •c =|c |2=9;a •b =b •c =a •c =0 ⇒ |s |2=14,⇒|s |=14cos(s •a )=a s a s ∙= 14a c)b (a ∙++=14aa ∙=1/14. ⇒ (s ^a )=arcos(1/14); 同理: (s ^b )= (s ^c ) =accos(1/14)例4.设a ,b ,c 为单位向量,且满足a +b +c =0,求a •b +b •c +c •a .解: (a +b +c )• a =a 2+b •a +c •a =1+a •b +c •a ;(a +b +c )• b =a •b +b 2+c •b =1+a •b +b •c ; (a +b +c )• c =a •c +b •c +c 2=1+c •a +b •c ; 三式相加:⇒ 3+2[a •b +b •c +c •a ]= (a +b +c )• (a +b +c )=0⇒ a •b +b •c +c •a =-3/2.例5.利用向量证明不等式:232221a a a ++•232221b b b ++≥|a 1b 1+ a 2b 2+ a 3b 3| 其中a 1,a 2,a 3,b 1,b 2,b 3为任意常数,并指出等号成立的条件. 证明:设a =( a 1,a 2,a 3),b =( b 1,b 2,b 3)cos(a ^b )=b a b a ∙=232221232221332211b b b a a a b a b a b a ++++++⇒232221a a a ++•232221b b b ++≥|a 1b 1+ a 2b 2+ a 3b 3|等号“=”成立 ⇔a //b例6.有一个△ABC 和一个圆,三角形边长BC =a ,CA =b ,AB =c ,圆的中心为A ,半径为r .引圆的直径PQ ,试求当BP •CQ 取得最大、最小时PQ 的方向,并用a ,b ,c ,r 表示BP •CQ 的最大值、最小值.解:AQ =-AP , |AP |=|AQ |=r ,AB •AC =|AB ||AC |cos A =bc [(b 2+c 2-a 2)/2bc ]=( b 2+c 2-a 2)/2⇒ BP •CQ =(AP -AB )•(AQ -AC )=(AP -AB )•(-AP -AC ) =-|AP |2+(AB -AC )•AP +AB •AC =( b 2+c 2-a 2)/2-r 2+CB •AP=( b 2+c 2-a 2)/2-r 2+BC •PA⇒ 当BC •PA 最大(小)时,BP •CQ 最大(小).⇒ 当BC •PA 同向即PQ 与BC 同向时,BC •PA 最大,其最大值是ar .⇒ 当BC •PA 反向即PQ 与BC 反向时,BC •PA 最小,其最小值是-ar .⇒ PQ 与BC 同向时, max{ BP •CQ }=( b 2+c 2-a 2)/2-r 2+ar ;PQ与BC反向时, min{ BP•CQ}=( b2+c2-a2)/2-r2-ar二、两向量的向量积1.定义: a×b = c, c称为a与b的向量积.其中,(1)|c|=|a||b|sinθ, θ=(a^b)(2)c的方向垂直于a,b所决定的平面,其指向按右手从a转向b确定.性质:由定义可得:(1)a×a=0(2)a∥b a×b=0几何意义: | a×b |为以a,b为边的平行四边形的面积.2.运算律:(1)a×b= - b×a(2)分配律: (a+b)×c=a×c+b×cc×(a+b)=c×a+c×b(3)结合律: (λa)×b=a×(λb)=λ(a×b)3. 向量积的坐标表达式设 a = a x i+a y j+a z k , b = b x i+b y j+b z k则a×b =(a x i+a y j+a z k)×( b x i+b y j+b z k)=(a y b z-a z b y)i+(a z b x-a x b z)j+ (a x b y-a y b x)ka ×b =z y z yb b a a i -zx z xb b a a j +yx y xb b a a k =zy xz y xb b b a a a k j i例7. 设a =(2,1,-1),b =(1,-1,2),计算 a ×b .解: a ×b =211112--k j i=2111--i -2112-j +1112-k =i -5j -3k.例8.已知△ABC 的顶点分别是A (1,2,3)、B (3,4,5)和C (2,4,7),求△ABC 的面积.解: S ∆ABC =21|AB |•|AC |•sin ∠A=21|AB ⨯AC | AB =(3,4,5)-(1,2,3)=(2,2,2,), AC =(2,4,7)-(1,2,3)=(1,2,4).S ΔABC =21|AB ⨯AC |=421222kj i =4222i -4122j +4121k =4i -6j +2k. 例9. 利用向量积证明三角形的正弦定理.证明:如图S △abc =1/2|a ×b |=1/2|b ×c |=1/2|c ×a |⇒ |a ||b |sin C =|b ||c |sin A =|c ||a |sin B例10. 已知M 1(1,-1,2), M 2(3,3,1), M 3(3,1,3),求与M 1M 2,M 2M 3同时垂直的单位向量.解: M 1M 2=(3,3,1)-(1,-1,2)=(2,4,-1),M 2M 3=(3,1,3)-(3,3,1)=(0,-2,2);与M 1M 2,M 2M 3同时垂直的一个向量为:a =M 1M 2⨯M 2M 3=220142--k j i=2214--i -2012-j +2042-k=6i -4j -4k .|a|=222)4()4(6-+-+=217⇒ a =±171(3i -2j -2k ) 作业:高等数学练习册C 习题三十七 教学后记:教学参考书: 《高等数学》 北京大学数学科学部编 《高等数学典型题精解》 陈兰祥编《高等数学》 黄立宏 廖基定主编 复旦大学出版社 《高等数学》 同济大学应用数学系主编《高等数学》 同济大学应用数学系主编(本科少学时类型) 复习参考题:设向量→→→→++=k j i a 32,→→→→--=k j i b 2 (1)求向量→a 在→b 上的投影;(2)若|→c |=3,求向量→c ,使得三向量→a ,→b ,→c 构成的平行六面体的体积最大.|讲授内容:§7-5 平面及其方程教学目的与要求:1 掌握平面的点法式、一般式、截距式方程,会根据相应条件求平面的方程.2.掌握两平面夹角的概念与求法,掌握两平面平行、垂直的充分必要条件.3.掌握点到平面的距离公式,会求点到平面的距离.教学重难点:重点――求平面的方程.难点――根据相应条件灵活选取平面方程的形式.教学方法:讲授法教学建议:用点法式求平面方程的关键是确定平面上的一个已知点和平面的法向量学时:2学时教学过程:一、平面的点法式方程1.法线向量: 与平面垂直的非零向量.2.平面的点法式方程设M0(x0,y0,z0)是平面П上的已知点,n=(A,B,C)是平面П的法线向量,M(x,y,z)是平面П上的任一点.则有n•M0 M=0.由于n=(A,B,C) ; M0M=( x-x0,y-y0,z-z0)即有此为平面的点法式方程.例1.求过点(2,-3,0)且以n =(1,-2,3)为法线向量的平面方程.解:代入方程得:(x -2)-2(y +3)+3(z -0)=0 ⇒x -2y +3z -8=0例2.求过三点M 1(2,-1,4)、M 2(-1,3,-2)、M 3(0,2,3)的平面方程.解:由于n ∥M 1M 2×M 1M 3=132643----kj i =14i +9j -k则所求平面方程为 ⇒ 14(x -2)+9(y +1)-(z -4)=0 ⇒14x +9y -z -15=0二、 平面的一般方程1. 平面的一般方程为其中n =(A ,B ,C )为法向量2. 各种特殊情形a) D =0,平面Ax +By +Cz =0经过原点; b) A =0,平面By +Cz +D =0平行于x 轴; c) B =0,平面Ax +Cz +D =0平行于y 轴; d) C =0,平面Ax +By +D =0平行于z 轴; e)A =B =0,平面Cz +D =0平行于xoy 平面;f)A=C=0,平面By+D=0平行于xoz平面;g)B=C=0,平面Ax+D=0平行于yoz平面.例3.求通过x轴和点(4,-3,-1)的平面方程.解:平面经过x轴,则法向量在x轴上的投影为0, ⇒A=0;平面经过x轴,则平面经过原点, ⇒D=0;故可设平面方程为: By+Cz=0,又平面经过点(4,-3,-1), ⇒-3B-C=0,或C=-3B.代入有y-3z=0.例4.设一平面与x,y,z轴的交点依次为P(a,0,0)、Q(0,b,0)和R(0,0,c)三点,求此平面的方程.(其中a≠0,b≠0,c≠0)解:设平面方程为Ax+By+Cz+D=0代入P(a,0,0)、Q(0,b,0)和R(0,0,c) 得A=-D/a, B=-D/b, C=-D/c,代入方程并消去D得平面方程:此方程称为平面的截距式方程,a,b,c依次称为平面在x,y,z轴上的截距.三、两平面的夹角1.两平面的夹角: 两平面的法线向量的夹角(通常指锐角).设平面П1和П2的法线向量依次为:n 1=(A 1,B 1,C 1) n 2=(A 2,B 2,C 2)则平面П1和П2的夹角θ为(n 1^n 2)和π-(n 1^n 2)中的锐角,⇒ cos θ=|cos(n 1^n 2)|,即有:2. 两平面垂直、平行的充分必要条件例1. 求两平面x -y +2z -6=0和2x +y +z -5=0的夹角. 解:n 1=(1,-1,2) n 2=(2,1,1)⇒ cos θ=2222221122)1(1|121)1(21|++∙+-+⨯+⨯-+⨯=21⇒ θ=π/3例2. 一平面通过两点M 1(1,1,1)和M 2(0,1,-1)且垂直于平面x +y +z =0,求它的方程. 解:设所求平面的一个法向量为 n ={A ,B ,C }.由n ⊥M 1M 2=(-1,0,-2) ⇒ -A -2C =0 由n ⊥(1,1,1)⇒ A +B +C =0 ⇒ A =-2C ,B =C ,代入点法式方程:A (x -1)+B (y -1)+C (z -1)=0消去C 得所求方程为:2x -y -z =03. 点到平面的距离例3.设P 0(x 0,y 0,z 0)是平面Ax +By +Cz +D =0外一点,求P 0到这平面的距离. 解:在平面上任取一点P 1(x 1,y 1,z 1),并作一法向量n ={A ,B ,C }.则所求距离:d =│Prj n P 1P 0│. 又设e n 为与n 方向一致的单位向量, 则有:Prj n P 1P 0= P 1P 0•e n而e n =(222CB A A ++,222CB A B ++,222CB AC ++)P 1P 0=(x 0-x 1,y 0-y 1,z 0-z 1)由于: Ax 1+By 1+Cz 1+D =0, 所以:Prj n P 1P 0=222000CB A DCz By Ax +++++即:222000CB A DCz By Ax d +++++=例1.求点(2,1,1)到平面x +y -z +1=0的距离解: d =222)1(11|1121121|-+++⨯-⨯+⨯=3作业:高等数学练习册C 习题三十八教学后记:教学参考书: 《高等数学》 北京大学数学科学部编 《高等数学典型题精解》 陈兰祥编《高等数学》 黄立宏 廖基定主编 复旦大学出版社 《高等数学》 同济大学应用数学系主编《高等数学》 同济大学应用数学系主编(本科少学时类型) 复习参考题:求经过点)1,1,1(1p 和)2,2,2(2p 且与平面0=-+z y x 垂直的平面的方程.讲授内容:§7-6空间直线及其方程教学目的与要求:1、 掌握空间直线的一般方程、对称式方程和参数方程.并会根据相关条件求直线的方程2、 理解两直线夹角的概念,会求两直线的夹角.3、 掌握两直线平行垂直的充分必要条件.4、 理解直线与平面夹角的概念,掌握直线与平面垂直平行的充分必要条件.5、 掌握用平面束方程的解题方法.教学重难点: 重点――空间直线方程的三种形式及其求法.难点――熟知向量的概念和运算.教学方法:讲授法 教学建议:平面束方程的解题方法,在求平面、直线方程中有时很有意义,可多举例说明. 学时: 2学时 教学过程:一、 空间直线的方程 1、空间直线的一般方程定义:方程组⎩⎨⎧=+++=+++0222111D z C y B x A D z C y B x A 叫做空间直线的一般方程或面交式方程.2、空间直线的对称式方程1).方向向量:与已知直线平行的非零向量. 2).直线的对称式方程或点向式方程:设M 0(x 0,y 0,z 0)为直线L 上的已知点, M (x ,y ,z )为直线L 上的任一点. s =(m ,n ,p )为L 的方向向量.由于 M 0M ∥s ,即有:此方程称为直线的对称式方程或点向式方程直线L 的任一方向向量s 的坐标m ,n ,p 称为这直线的一组方向数,而向量s 的方向余弦叫做该直线的方向余弦.注:当m ,n ,p 中有一个为零时,如m =0,而n ,p ≠0时,则方程组为⎪⎩⎪⎨⎧-=-=-p z z ny y x x 0000当m ,n ,p 中有两个为零时,如m =n =0,而p ≠0时,则方程组为⎩⎨⎧=-=-0000y y x x 3、直线的参数方程由t pz z n y y m x x =-=-=-000得:称此方程组为直线的参数方程.例1. 对称式方程及参数方程表示直线⎩⎨⎧=++-=+++043201z y x z y x解:两平面的法向量分别为n 1={1,1,1}和n 2={2,1,-3},则s = n 1×n 2=312111-kj i令x =1,代入方程,求得直线上得一点: (1,0,-2) 对称式方程为:32141-+=-=-z y x 参数式方程为:⎪⎩⎪⎨⎧--=-=+=t z t y t x 3241 二、 两直线的夹角1、直线的夹角:两直线方向向量的夹角.(通常为锐角)2、设直线L 1和L 2的方向向量分别为s 1=(m 1,n 1,p 1),s 2=(m 2,n 2,p 2), 则其夹角为φ=(s 1^s 2)中的锐角.且有3、两直线相互垂直和平行的充分必要条件例2. 求直线L 1:13141x y z -+==-和L 2: 2221x y z+==--的夹角. 解: s 1=(1,-4,1),s 2=(2,-2,-1)⇒ cos φ=222222)1()2(21)4(1|)1(11)2()4(21|-+-+∙+-+-⨯++-⨯-+⨯=21⇒ φ=π/4.三、 直线与平面的夹角1、 线与平面的夹角当直线与平面不垂直时,直线与平面的夹角是指直线和它在平面上的投影直线的夹角 φ.(0≤φ<π/2)当直线与平面垂直时,规定直线与平面的夹角为π/2.设直线L 的方向向量为s =(m ,n ,p ),平面Π的法向量n =(A ,B ,C ),其夹角为φ,则 φ=|π/2-(s ^n )| 因此,sin φ=|cos(s ٨n )|且有2、 直线与平面相互垂直和平行的充分必要条件例3. 求过点(1,-2,4)且与平面2x -3y +z -4=0垂直的直线的方程.解: 所求直线的方向向量为: s =(2,-3,1)直线过点(1,-2,4)直线方程为:21-x =32-+y =14-z 四、 平面束解题方法平面束:通过定直线的所有平面.设直线 L 为⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 其中系数A 1,B 1,C 1和A 2,B 2,C 2不成比例,则过L的平面束方程为例4. 求直线1010x yz x y z +--=⎧⎨-++=⎩在平面x +y +z =0上的投影直线方程.解:设经过直线L : ⎩⎨⎧=++-=--+0101z y x z y x的平面束方程为 (x +y -z -1)+λ(x -y +z +1)=0, 即:(1+λ)x +(1-λ)y +(-1+λ)z +(-1+λ)=0由于此平面与已知平面垂直,所以:(1+λ)+(1-λ)+(-1+λ)=0 即有λ=-1代入平面束方程得投影平面的方程为y -z -1=0从而得投影直线l 的方程:⎩⎨⎧=++=--001z y x z y五、 杂例例5. 求与平面x -4z =3和2x -y -5z =1的交线平行且过点(-3,2,5)的直线方程. 解:s =n 1×n 2=512401---kj i=-(4i +3j +k )则所求直线方程为:153243-=-=+z y x例6. 求直线234112x y z ---==与平面2x +y +z -6=0的交点. 解: 直线的参数方程为: x =2+t , y =3+t , z =4+2t , 将其代入平面方程:⇒t =-1.将其代入直线方程得:交点坐标为:(1,2,2).例7. 求过点(2,1,3)且与直线11321x y z+-==-垂直相交的直线方程. 解:(法一)过点(2,1,3)作平面垂直于已知直线,则此平面的方程为3(x -2)+2(y -1)-(z -3)=0求已知直线与该平面的交点,将直线的参数方程x =-1+3t ,y =1+2t ,z =-t代入平面方程得t =3/7从而得交点(2/7,13/7,-3/7)于是所求直线的方向向量为s =(2/7-2,13/7-1,-3/7-3)=-6/7(2,-1,4)故所求直线的方程为:431122-=--=-z y x (法二)设所求直线的参数方程为x =mt +2,y =nt +1,z =pt +3, 由于所求直线与已知直线垂直,从而有: (m ,n ,p )⊥(3,2,-1),⇒3m +2n -p =0又由于所求直线与已知直线相交,故由两直线的参数方程有x =3t -1=mt +2, y =2t +1=nt +1, z =-t =pt +3⇒(m -3)t =-3,(n -2)t =0,(p +1)=-3显然t ≠0,从而解得:m =-4,n =2,p =-8,t =3/7故有所求直线的参数方程为: x =-4t +2,y =2t +1,z =-8t +3或者所求直线的方程为:431122-=--=-z y x . 例8. 求与已知直线L 1:351231x y z +--==及L 2:147510z y x =+=-相交且和直线L 3:137182-=-=+z y x 平行的直线L . 解(法一):将L 1与L 2都化为参数方程:L 1:⎪⎩⎪⎨⎧=+=-=1115332tz t y t x ; L 2:⎪⎩⎪⎨⎧=-=+=22274105tz t y t x 由于L 与L 1和L 2都相交且与L 3平行,则两交点对应坐标的差应与L 3的方向数成比例,即有:17)74()53(8)105()32(212121t t t t t t -=--+=+-- ⇒⎩⎨⎧=--=-123413362121t t t t 解得t 1=-25/2,由此得L 和L 1的交点为:x 1=-28,y 1=-65/2,z 1=-25/2故所求直线的方程为:12/2572/65828+=+=+z y x 解(法二)设直线经过点(a ,b ,c ),下面求点(a ,b ,c ) 由所求直线与L 3平行有:x =8t +a ,y =7t +b ,z =t +c ;由所求直线与L 1相交,即有t 1,满足8t 1+a =2t 1-3,7t 1+b =3t 1+5,t 1+c =t 1,⇒6t1=-3-a,4t1=5-b,c=0.⇒2a-3b=-21,c=0 (1)又由所求直线与L2相交,即有t2,满足:8t1+a=5t2+10,7t2+b=4t2-7,t2+c=t2,⇒3t2=10-a,3t2= -7-b,c=0.⇒a-b=17,c=0 (2) 由(1),(2)⇒a=72,b=55,c=0故所求直线的方程为:x=8t+72,y=7t+55,z=t.例9.求过直线3220260x yx y z-+=⎧⎨--+=⎩且与点(1,2,1)的距离为1 的平面方程.解:设过此直线的平面束方程为:(3x-2y+2)+λ(x-2y-z+6)=0 ⇒(3+λ)x-(2+2λ)y-λz+(2+6λ)=0,由点到平面的距离公式d=222)22()3()6 2(12)22(1)3(λλλλλλλ+++++ +∙-∙+-∙+=1 ⇒λ=-2,或λ=-3,故所求平面的方程为x+2y+2z-10=0, 或4y+3z-16=0.例10.求两直线L1:1011x y z-==和L2:212+=-=zyx的公垂线L的方程.解:公垂线的方向向量:s=s1×s2=(0,1,1)×(2,-1,0)=(1,2,-2) 过L与L1的平面法向量为:n 1= s ×s 1=(1,2,-2)×(0,1,1)=(4,-1,1)在直线L 1上取点(1,0,0),则过L 与L 1的平面方程为:4x -y +z -4=0过L 与L 2的平面法向量为:n 2= s ×s 2=(1,2,-2)×(2,-1,0)=(2,4,5)在直线L 2上取点(0,0,-2) 则过L 与L 2的平面方程为:2x +4y +5z +10=0于是公垂线的方程为:⎩⎨⎧=+++=-+-010542044z y x z y x 作业:高等数学练习册C 习题三十九 教学后记:教学参考书: 《高等数学》 北京大学数学科学部编 《高等数学典型题精解》 陈兰祥编《高等数学》 黄立宏 廖基定主编 复旦大学出版社 《高等数学》 同济大学应用数学系主编《高等数学》 同济大学应用数学系主编(本科少学时类型)复习思考题 :设12122:,21221:21zy x l z y x l =-=-++==-是两条异面直线,求 (1) 1l 与2l 的公垂线方程. (2) 1l 与2l 的距离.讲授内容:§7-7旋转曲面和二次曲面教学目的与要求:1、理解曲面与曲面方程间的关系,会用轨迹法求曲面的方程.2、掌握由平面曲线绕坐标轴旋转形成旋转曲面的方程的方法.3、理解柱面的概念,并会求柱面的方程.4、理解用截痕法,伸缩变形法讨论曲面形状的方法.5、掌握九种二次曲面的方程和大致形状.教学重难点:重点――旋转曲面、柱面方程的求法.难点――二次曲面的方程和大致形状.教学方法:讲授法教学建议:为使学生掌握二次曲面的方程和形状,讲清由平面曲线先经过旋转再伸缩变形的基本思想学时:2学时教学过程:一.曲面方程的概念1.曲面方程的定义:如果曲面S与三元方程F(x,y,z)=0 (1)满足(1)曲面S上任一点的坐标都满足方程(1);(2)不在曲面S上的点的坐标都不满足方程(1),那么,方程(1)叫做曲面S的方程;而曲面S叫做方程(1)的图形.例1.建立球心在点M0(x0,y0,z0)、半径为R的球面方程.解:设点M(x,y,z)是球面上的任意一点,则|M0M|=R,⇒(x-x0)2+(y-y0)2+(z-z0)2=R2例2.设有点A(1,2,3)和B(2,-1,4),求线段AB的垂直平分面的方程.解:设点M(x,y,z)在平分面上,则|AM|=|BM|,⇒(x-1)2+(y-2)2+(z-3)2=(x-2)2+(y+1)2+(z-4)2.⇒2x-6y+2z-7=0.例3.方程x2+y2+z2-2x+4y=0表示怎样的曲面.解: 将方程配方: ⇒(x-1)2+(y+2)2+z2=5.表示球心在(1,-2,0),半径为5的球.由此空间解析几何中关于曲面的讨论,有下列两个基本问题(2)已知一曲面作为点的几何轨迹时,建立这曲面的方程;(3)已知坐标x,y,和z间的一个方程时,研究这方程所表示的曲面的形状.例1、例2为问题(1),例3为问题(2).二.旋转曲面旋转曲面:一条平面曲线绕其平面上的一条直线旋转一周所成的曲面.这条定直线叫做旋转曲面的轴.设在yoz面上有一已知曲线C,它的方程为f(y,z)=0,将其绕z轴旋转一周,得到一曲面,其方程求法如下:设M 1(0,y 1,z 1)为曲线C 上的任一点,则有f (y 1,z 1)=0 (2)当曲线C 绕z 轴旋转时,点M 1也绕z 轴旋转到另一点M (x ,y ,z ), 此时z =z 1保持不变,且点M 到旋转轴的距离d =22y x +=|y 1| 将 z =z 1, y 1=±22y x + 代入(2)中,⇒f (±22y x +,z )=0这就是所求曲面的方程.同理,曲线C 绕y 轴旋转的旋转曲面方程为: f (y ,±22z x +)=0类似地有:曲线 C : f (x ,y )=0绕x 轴旋转的旋转曲面方程为: f (x , ±22z y +)=0绕y 轴旋转的旋转曲面方程为: f (±22z x +, y )=0曲线 C :f (x ,z )=0绕x 轴旋转的旋转曲面方程为: f (x , ±22z y +)=0绕z 轴旋转的旋转曲面方程为: f (±22y x +,z )=0例4.直线L 绕另一条与L 相交的直线旋转一周,所得旋转曲面叫做圆锥面.两直线的交点叫做圆锥面的顶点,两直线的夹角(0<α<π/2)叫做圆锥面的半顶角.试建立顶点在坐标原点O ,旋转轴为z 轴,半顶角为α的圆锥面的方程.解:在yoz 平面上,直线L 的方程为:z =y cot α,⇒ 旋转曲面的方程为:z =±22y x +cot α 或者 z 2=a 2(x 2+y 2), 其中,a =cot α例5. 将xoz 坐标面上的双曲线2222cz a x -=1分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解:绕x 轴旋转生成的旋转双叶双曲面: 22222c z y a x +-=1绕z 轴旋转生成旋转单叶双曲面: 22222cz a y x -+=1三、柱面柱面:平行于定直线并沿定曲线C移动的直线L形成的轨迹.定曲线C叫做柱面的准线, 动直线L叫做柱面的母线.例6.方程x2+y2=R2表示的曲面叫做圆柱面解: 准线是xoy平面上的圆x2+y2=R2,母线是平行于z轴的直线.例7.方程y2=2x表示的曲面叫做抛物柱面解:准线是xoy平面上的抛物线y2=2x,母线是平行于z轴的直线.一般地,在空间直角坐标系下,F(x,y)=0: 母线平行于z轴的柱面,其准线是xoy面上的曲线C: F(x,y)=0.F(x,z)=0: 母线平行于y轴的柱面,其准线是xoz面上的曲线C: F(x,z)=0.F(y,z)=0: 母线平行于x轴的柱面,其准线是yoz面上的曲线C: F(y,z)=0.平面为柱面.例如: 平面x -z =0表示:母线平行于y 轴,准线为xoz 平面上的直线:x -z =0.四、二次曲面二次曲面: 三元二次方程F (x ,y ,z )=0所表示的曲面.平面叫做一次曲面 二次曲面共九种.利用截痕法可以了解二次曲面的形状.1. 椭球锥面: 22222z by a x =+ 以平面z=t 截曲面:当t=0时,得一点(0,0,0).当t ≠0时,得平面z=t 上得椭圆: 2222)()(bt y at x +=1; 当|t|从大到小变为0时,椭圆从大到小收宿为一点,其图形为:平面z =t 于曲面F (x ,y ,z )=0的交线称为截痕.通过截痕的变化了解曲面形状的方法称为截痕法.下面用伸缩变形法讨论曲面的形状平面xoy 上的图形的伸缩变形:将平面上的点M (x ,y )变为点M ′(x ,λy ),此时点M (x ,y )的轨迹C 变为点M ′(x ,λy )的轨迹C ′,称将图形C 沿y 轴方向伸缩λ倍变成图形C ′.下面讨论C 于C ′的方程关系:设C 的方程为F (x ,y )=0,点M (x 1,y 1)∈C ,将M (x ,y )变为M ′(x 2,y 2),此时 x 2=x 1,y 2=λy 1⇒ x 1=x 2, y 1=λ1y 2 由 M (x 1,y 1)∈C ⇒ F (x 1,y 1)=0 ⇒ F (x 2,λ1y 2)=0 因此M ′(x 2,y 2)的轨迹C ′的方程为: F (x ,λ1y )=0. 例如将圆x 2+y 2=1沿y 轴方向伸缩ab 倍,则圆的方程变为:2222b y a x +=1,即图形由圆变为椭圆. 将圆锥面222a y x +=z 2沿y 轴方向伸缩ab 倍,则 圆锥面变为椭圆锥面: 22222z by a x =+2. 椭球面: 222222c z b y a x ++=1 将xoz 平面上的椭圆2222cz a x +=1绕z 轴旋转得 旋转椭球面:222a y x ++22c z =1, 再将旋转椭球面沿y 轴方向伸缩ab 倍,得 椭球面: 222222cz b y a x ++=1 当a =b =c 时,椭球面为球面: x 2+y 2+z 2=a 2.3. 单叶双曲面: 222222cz b y a x -+=1 将xoz 平面上的双曲线2222cz a x -=1绕z 轴旋转得 旋转单叶双曲面:222a y x +-22c z =1 再将旋转单叶双曲面沿y 轴方向伸缩ab 倍,得单叶双曲面: 222222cz b y a x -+=14. 双叶双曲面: 222222cz b y a x --=1 将xoz 平面上的双曲线2222cz a x -=1绕x 轴旋转得 旋转双叶双曲面:22a x -222c z y +=1 再将旋转双叶双曲面沿y 轴方向伸缩cb 倍,得 双叶双曲面: 222222cz b y a x --=15. 椭圆抛物面: 2222by a x +=z。
高等数学(黄立宏)(第三版)习题九课后答案
习题九1. 求下曲线在给定点的切线和法平面方程:(1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t =;(2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π4t =的切向量为 {}πππ,,,0,444T x y z a c ⎧⎫⎛⎫⎛⎫⎛⎫'''==-⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭当π4t =时, ,,222a b c x y z === 切线方程为2220a b c x y z a c---==-. 法平面方程为0()0.222a b c a c x y z ⎛⎫⎛⎫⎛⎫++-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 22022a c ax cz --+=.(2)联立方程组2226x y z x y z ⎧++=⎨++=⎩ 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得d d 2220d d d d 10d d y z x y z x xy z x x⎧+⋅+⋅=⎪⎪⎨⎪++=⎪⎩ 解得d d ,,d d y z x z x y x y z x y z--==--在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}. 故切线方程为121101x y z -+-==- 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得d d 22,21d d y zy m z x x ==- 于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为00000,112x x y y z z m y z ---==-法平面方程为000001()()()02m x x y y z z y z -+---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin 2t在相应点的切线垂直于平面20x y z ++=,并求相应的切线和法平面方程。
(完整版)高等数学第六版(同济大学)上册课后习题答案解析
高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。
解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。
证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。
3. 设映射f : X Y, A X, B X。
证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。
4。
设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。
证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学上(修订版)黄立宏(复旦出版社)习题六1. 指出下列各微分方程的阶数:(1)一阶 (2)二阶 (3)三阶 (4)一阶 2. 指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xy y y x '==;解:由25y x =得10y x '=代入方程得22102510x x x x ⋅=⋅=故是方程的解.(2)0,3sin 4cos y y y x x ''+==-;解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解.2(3)20,e x y y y y x '''-+== ;解:2222e e (2)e ,(24)e xxxxy x x x x y x x '''=+=+=++ 代入方程得 2e 0x≠. 故不是方程的解.12121212(4)()0,e e .x x y y y y C C λλλλλλ'''-++==+解:12122211221122e e ,e e xx x x y C C y C C λλλλλλλλ'''=+=+代入方程得1212122211221211221212e e ()(e e )(e e )0.x x x x x x C C C C C C λλλλλλλλλλλλλλ+-++++=故是方程的解.3. 在下列各题中,验证所给二元方程为所给微分方程的解:22(1)(2)2,;x y y x y x xy y C '-=--+=证:方程22x xy y C -+=两端对x 求导:220x y xy yy ''--+=得22x yy x y-'=-代入微分方程,等式恒成立.故是微分方程的解.2(2)()20,ln().xy x y xy yy y y xy '''''-++-==证:方程ln()y xy =两端对x 求导:11y y x y''=+ (*) 得(1)yy x y '=-.(*)式两端对x 再求导得22211(1)1y y x x y y ⎡⎤''+=-⎢⎥--⎣⎦将,y y '''代入到微分方程,等式恒成立,故是微分方程的解. 4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线:220(1),5;x x y C y =-==解:当0x =时,y =5.故C =-25故所求曲线为:2225y x -=21200(2)()e ,0, 1.x x x y C C x y y =='=+==解: 2212(22)e xy C C C x '=++当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =.故所求曲线为:2e xy x =. 5. 求下列各微分方程的通解:(1)ln 0xy y y '-=;解:分离变量,得d 1d ln y x y y x= 积分得11d ln d ln y x y x =⎰⎰ln ln ln ln y x c =+ ln y cx =得 e cxy =.(2)y '=解:分离变量,得=积分得=⎰得通解: .c -=-(3)(e e )d (e e )d 0x y x x y y x y ++-++=;解:分离变量,得 e e d d 1e 1ey yy xy x =-+ 积分得 ln(e 1)ln(e 1)ln yxc --=+- 得通解为 (e 1)(e 1)xy c +-=.(4)cos sin d sin cos d 0x y x x y y +=;解:分离变量,得cos cos d d 0sin sin x yx y x y+= 积分得 lnsin lnsin ln y x c +=得通解为 sin sin .y x c ⋅=(5)y xy '=;解:分离变量,得d d yx x y= 积分得 211ln 2y x c =+ 得通解为 2112e(e )x c y c c ==(6)210x y '++=;解: 21y x '=--积分得 (21)d y x x =--⎰得通解为 2y x x c =--+.32(7)4230x x y y '+-=;解:分离变量,得 233d (42)d y y x x x =+积分得 342y x x c =++ 即为通解.(8)e x y y +'=.解:分离变量,得 e d e d yxy x -=积分得 e d e d y x y x -=⎰⎰得通解为: ee yx c --=+.6. 求下列各微分方程满足所给初始条件的特解:20(1)e ,0x y x y y -='== ;解:分离变量,得 2e d e d yxy x =积分得 21e e 2yxc =+. 以0,0x y ==代入上式得12c =故方程特解为 21e (e 1)2yx=+. π2(2)sin ln ,e x y x y y y ='== .解:分离变量,得d d ln sin y xy y x= 积分得 tan2e x c y ⋅=将π,e 2x y ==代入上式得1c = 故所求特解为 tan 2e x y =.7. 求下列齐次方程的通解:(1)0xy y '-=;解:d d y y x x =+令 d d d d y y uu u xx x x =⇒=+ 原方程变为d xx= 两端积分得ln(ln ln u x c =+u cxy cx x =+=即通解为:2y cx =d (2)ln d y y xy x x =; 解:d ln d y y y x x x = 令y u x =, 则d d d d y uu x x x=+ 原方程变为d d (ln 1)u xu u x=-积分得 ln(ln 1)ln ln u x c -=+ln 1ln 1u cxycx x-=-= 即方程通解为 1ecx y x +=22(3)()d d 0x y x xy x +-=解:2221d d y y x y x y x xyx⎛⎫+ ⎪+⎝⎭== 令y u x =, 则d d d d y u u x x x=+ 原方程变为 2d 1d u u u x x u++= 即 d 1d ,d d u x x u u x u x== 积分得211ln ln 2u x c =+ 2122ln 2ln y x c x =+ 故方程通解为 22221ln()()y x cx c c ==332(4)()d 3d 0x y x xy y +-=;解: 333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭令y u x =, 则d d d d y u u x x x=+ 原方程变为 32d 1d 3u u u x x u ++= 即 233d d 12u x u u x=- 积分得 311ln(21)ln ln 2u x c --=+以y x代替u ,并整理得方程通解为 332y x cx -=. d (5)d y x y x x y+=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y u u x x x=+原方程变为 d 1d 1u uu x x u ++=- 分离变量,得 211d d 1u u x u x -=+积分得 211arctan ln(1)ln ln 2u u x c -+=+以y x 代替u ,并整理得方程通解为到 2arctan 22211e .()yxx y c c c +==(6)y '=解:d d yy x=即d d x x y y =+令x v y =, 则d d ,d d x v x yv v y y y==+, 原方程可变为d d vv yv y+=+ 即d d vyy=分离变量,得d y y=积分得ln(ln ln v y c =-. 即y v c+=2222121y v v c y yv c c⎛⎫=+- ⎪⎝⎭-= 以yv x =代入上式,得 222c y c x ⎛⎫=+ ⎪⎝⎭即方程通解为 222y cx c =+.8. 求下列各齐次方程满足所给初始条件的解:220(1)(3)d 2d 0,1x y x y xy x y =-+== ;解:22d d 3y y xx y x =-⎛⎫- ⎪⎝⎭令y ux =,则得 2d 2d 3u uu xx u +=-- 分离变量,得 233d d u xu u u x-=- 积分得 3ln ln(1)ln(1)ln u u u cx -+-++=即 231ln ln u c u x-=得方程通解为 223y x cy -= 以x =0,y =1代入上式得c =1. 故所求特解为 223y x y -=.1(2),2x x yy y y x='=+= . 解:设y ux =, 则d d d d y u u x x x=+原方程可变为 d d x u u x= 积分得21ln ln 2u x c =+. 得方程通解为 222(ln ln )y x x c =+ 以x =1,y =2代入上式得c =e 2.故所求特解为 222(ln 2)y x x =+.9. 利用适当的变换化下列方程为齐次方程,并求出通解:(1)(253)d (246)d 0x y x x y y -+-+-=解:设1,1x X y Y =+=+,则原方程化为25d 25d 2424YY X Y X YX X Y X--==++ 令 d 25d 24Y u uu u X X X u-=⇒+=+ 242d d 472Xu Xu u u +⇒-=+- 2222211(87)3ln d 247213d ln(472)224721114ln(472)d 262411141ln(472)ln ln 262u X u u u uu u u u u u uu u u u u c u +-⇒=-+-=-+-++-⎛⎫=-+-+-+ ⎪+-⎝⎭-=-+--++⎰⎰⎰26221623264223233416ln 3ln(472)ln ln ()241(472)2(41)(2)(41)(2),(u X u u c c c u u X u u c u X u u c X u u c c -⇒++-+==+-⇒+-⋅=+⇒-+=⇒-+==代回并整理得2(43)(23),(y x y x c c --+-== .(2)(1)d (41)d 0;x y x y x y --++-=解:d 1d 41y x y x y x --=-+- 作变量替换,令 1,0x X y Y Y =+=+=原方程化为 1d d 414YY X Y X Y X X Y X--=-=-++ 令Y uX =,则得2d 1d 14d 14d 14u u u u u X X X u X u-++=-⇒=-++分离变量,得 214d d 14u Xu u x+-=+ 积分得222211d(14)ln d 1421411arctan 2ln(14)22u X u u u u u c +=--++=-++⎰⎰ 即 22ln ln(14)arctan 2X u u c +++=22ln (14)arctan 2X u u c ⇒++=代回并整理得 222ln[4(1)]arctan.1yy x c x +-+=- (3)()d (334)d 0x y x x y y +++-=;解:作变量替换,v x y =+ 则d d 1d d y v x x =- 原方程化为 d 1d 34v vx v -=-- 11d 2(2)d 3434d d 2(2)31d d d 223ln(2)232ln(2)2,(2)v v x v v v x v v v x v v v x c v v x c c c -⇒=--⇒=-⇒+=-⇒+-=+⇒+-=+=⎰⎰⎰代回并整理得 32ln(2).x y x y c +++-=d 1(4)1d y x x y=+-. 解:令,u x y =- 则d d 1d d u y x x =- 原方程可化为 d 1d u x u=-分离变量,得 d d u u x =- 积分得2112u x c =-+ 2122u x c =-+故原方程通解为 21()2.(2)x y x c c c -=-+=10. 求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式d de e e e d e ()e e d xx x x x x x y x c x c x c -----⎰⎡⎤⎰⎡⎤==⋅+=+⋅+⎢⎥⎣⎦⎣⎦⎰⎰ 2(2)32xy y x x '+=++;解:方程可化为 123y y x x x'+=++ 由通解公式得11d d 22e (3) e d 12(3)d 132.32x x x x y x x c x x x x c x x c x x x-⎡⎤⎰⎰=++⋅+⎢⎥⎣⎦⎡⎤=++⋅+⎢⎥⎣⎦=+++⎰⎰ sin (3)cos e ;x y y x -'+=解: cos d cos d sin sin e e ().e e d x xx x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解: 22(4)d (4)d 22e e 4e d 4e d x xx x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-;解:方程可化为2d 12()d 2y y x x x x -=-- 11d d 222ln(2)2ln(2)3e 2(2)e d e 2(2)e d (2)2(2)d (2)(2)xx x x x x y x x c x x c x x x c x c x --------⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+⎣⎦⎡⎤=--+⎣⎦=-+-⎰⎰⎰22(6)(1)24.x y xy x '++=解:方程可化为 2222411x x y y x x '+=++ 222222d d 1123ln(1)224e ed 14e 4d 3(1)xxx x x x x x y x c x x c x x c x -++-+⎡⎤⎰⎰=+⎢⎥+⎣⎦+⎡⎤=+=⎣⎦+⎰⎰11. 求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰Q 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xx xy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-. 故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭. 12. 求下列伯努利方程的通解:2(1)(cos sin );y y y x x '+=-解:令121z yy --==,则有d d (12)(12)(cos sin )sin cos d d z zz x x z x x x x+-=--⇒-=- (1)d (1)d e (sin cos )e d e e (sin cos )d e sin xx x xx z x x x c x x x c c x ----⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+=-⎣⎦⎰⎰1e sin x c x y⇒=- 即为原方程通解.411(2)(12)33y y x y '+=-.解:令3d 21d z z y z x x -=⇒-=-.d de 21e (21)e d x x x z x c x x c -⎰⎡⎤⎰==--+-+⎢⎥⎣⎦⎰ 3(e 21)1x y c x ⇒--=即为原方程通解.13. 求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得213121cos 21sin 6y x x c y x x c x c '=-+=-++(2)e x y x '''=;解:积分得 1e d e e x x x y x x x c ''==-+⎰112212123(e e )d e 2e 1(e 2e )d (3)e 2x x x x xxxy x c x x c x c y x c x c x x c x c x c '=-+=-++=-++=--++⎰⎰ (3)y y x '''=+;解:令p y '=,则原方程变为d d 11,,e e 1e d xx x p p x p p x p c x x x c -⎰⎡⎤⎰''=+-===--+⎣⎦故 21121(e 1)d e 2x xy c x x c x x c =--=--+⎰.3(4)()y y y ''''=+;解:设y p '=, 则d d p y py''= 原方程可化为 3d d ppp p y=+ 即 2d (1)0d p p p y ⎡⎤-+=⎢⎥⎣⎦由p =0知y =c ,这是原方程的一个解. 当0p ≠时,22d d 1d d 1p p p y y p=+⇒=+ 1121arctan d ln sin()tan()p y c yx y c c y c ⇒=-'⇒==---⎰2212arcsin(e )(e )c x y c c c '∴=+=1(5);y x ''=解:11d ln y x c x x''==+⎰ 1121211(ln )d ln ln ((1))y c x x x c x c x x x c x c c c x ''=+=-++'=++=-+⎰(6)y ''=;解:1arcsin y x x c '==+112(arcsin )d arcsin .y x c x x x c x c =+=+⎰ (7)0xy y '''+=;解:令y p '=,则得1d d 00p x p p x p x'+=⇒+= 1ln ln ln p x c ⇒+=得 1c p x =故 112d ln cy x c c x x==+⎰.3(8)10y y ''-=.解:令p y '=,则d d p y py''=. 原方程可化为 33d 10,d d d py pp p y y y--==22221112221211211222d d 221().c p y p y c x xc x c c x c c y c x c --⇒=-+⇒=-+⇒=⇒±=⇒±=+⇒=+⇒-=+⎰14.求下列各微分方程满足所给初始条件的特解:311(1)10,1,0x x y y y y =='''+===;解:令y p '=,则d d py py''=, 原方程可化为 33d 11d d d p y pp p y y y⋅=-⇒=-2212121112221p y c p c y -⇒=+⇒=+由1,1,0x y y p '====知,11c =-,从而有2d y p y x x c '==⇒=±⇒=±+由1,1x y ==,得21c =m故 222x y x += 或y =.211(2)1,0,1x x x y xy y y ==''''+===;解:令y p '=,则y p '''=.原方程可化为 211p p x x'+= 11d d 11211e (ln )e d x x x x p x c x c xx -⎡⎤⎰⎰==++⎢⎥⎣⎦⎰ 则 11(ln )y x c x'=+ 以1,1x y '==代入上式得11c =则 1(ln 1)y x x'=+ 221ln ln 2y x x c =++当x =1时,y =0代入得20c =故所求特解为 21ln ln 2y x x =+. 2001(3),01x x y y y x =='''===+; 解:1arctan y x c '=+ 当0,0x y '==,得10c =222arctan d arctan d 11arctan ln(1)2x y x x x x x xx x x c ==-+=-++⎰⎰以x =0,y =0代入上式得20c = 故所求特解为 21arctan ln(1)2y x x x =-+. 200(4)1,1,0x x y y y y ==''''=+==;解:令p y '=,则p y '''=. 原方程可化为 21p p '=+211d d 1arctan tan()px p p x c y p x c =+=+'==+ 以0,0x y '==代入上式得1πc k =.2tan(π)d ln cos(π)y x k x c x k =+=-++⎰以x =0,y =1代入上式得21c = 故所求特解为ln 1cos(π)y x k =-++200(5)e ,0y x x y y y =='''===;解:令y p '=,则d d p y py''=. 原方程可化为 2d e d y ppy= 即 2d e d yp p y = 积分得221111e 222y p c =+ 221e y p c =+以0,0x y y '===代入上式得11c =-, 则p y '==2d arcsine y xx c -=±=+m 以x =0,y =0代入得2π2c =, 故所求特解为 πarcsin e 2yx -=+m 即πesin cos 2yx x -⎛⎫==± ⎪⎝⎭. 即lnsec y x =.00(6)1,2x x y y y =='''===.解:令d ,d py p y py'''== 原方程可化为 12d 3d pp y y= 123221d 3d 122p p y yp y c ==+以0,2,1x y p y '====代入得10c = 故 342y p y '==±由于0y ''=>. 故342y y '=,即34d 2d y x y=积分得 14242y x c =+ 以x =0,y =1代入得24c =故所求特解为 4112y x ⎛⎫=+ ⎪⎝⎭.15. 求下列微分方程的通解:(1)20y y y '''+-=;解得 121,2r r ==-故原方程通解为 212e e .x xy c c -=+(2)0y y ''+=;解:特征方程为 210r += 解得 1,2r i =± 故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x xx t t-+=;解:特征方程为 2420250r r -+= 解得 1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为 212e (cos sin )xy c x c x =+.(5)440y y y '''++=;解:特征方程为 2440r r ++= 解得 122r r ==-故原方程通解为 212e ()xy c c x -=+(6)320y y y '''-+=.解:特征方程为 2320r r -+= 解得 1,2r r ==1216. 求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+= 解得 121,3r r ==通解为 312e e x xy c c =+312e 3e x x y c c '=+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e xxy =+.00(2)440,2,0;x x y y y y y ==''''++===解:特征方程为 24410r r ++= 解得 1212r r ==-通解为 1212()ex y c c x -=+22121e 22xx y c c c -⎛⎫'=-- ⎪⎝⎭由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩ 故方程所求特解为 12(2)ex y x -=+.00(3)4290,0,15;x x y y y y y ==''''++===解:特征方程为 24290r r ++= 解得 1,225r i =-± 通解为 212e(cos5sin 5)xy c x c x -=+22112e [(52)cos5(52)sin 5]x y c c x c c x -'=-+--由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为 23e sin 5xy x -=.00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r += 解得 1,25r i =± 通解为 12cos5sin 5y c x c x =+125sin 55cos5y c x c x '=-+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩ 故方程所求特解为 2cos5sin 5y x x =+. 17. 求下各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=1211,2r r ∴=-=得相应齐次方程的通解为1212e e x xy c c -=+令特解为*e xy A =,代入原方程得2e e e 2e x x x x A A A +-=,解得1A =, 故*e xy =, 故原方程通解为 212e ee x xxy c c -=++.2(2)25521y y x x '''+=--;解:2250r r +=1250,2r r ==-对应齐次方程通解为 5212ex y c c -=+令*2()y x ax bx c =++, 代入原方程得222(62)5(32)521ax b ax bx c x x ++++=--比较等式两边系数得137,,3525a b c ==-=则 *321373525y x x x =-+故方程所求通解为 532212137e3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭.(3)323e x y y y x -'''++=;解:2320r r ++=121,2r r =-=-,对应齐次方程通解为 212e e x xy c c --=+令*()e xy x Ax B -=+代入原方程得(22)e 3e x x Ax B A x --++=解得 3,32A B ==- 则 *23e 32xy x x -⎛⎫=-⎪⎝⎭故所求通解为 22123ee e 32xx xy c c x x ---⎛⎫=++- ⎪⎝⎭.(4)25e sin 2x y y y x '''-+=;解:2250r r -+=1,212r i =±相应齐次方程的通解为12e (cos 2sin 2)x y c x c x =+令*e (cos 2sin 2)xy x A x B x =+,代入原方程并整理得4cos24sin 2sin 2B x A x x -=得 1,04A B =-=则 *1e cos 24x y x x =-故所求通解为 121e (cos 2sin 2)e cos 24xx y c x c x x x =+-.(5)2y y y x '''++=;解:2210r r ++=1,21r =-相应齐次方程通解为 12()e xy c c x -=+令*y Ax B =+代入原方程得2A Ax B x ++=得 1,2A B ==- 则 *2y x =- 故所求通解为 12()e2xy c c x x -=++-2(6)44e x y y y '''-+=.解:2440r r -+=1,22r =对应齐次方程通解为 212()e xy c c x =+令*22e xy Ax =代入原方程得121,2A A ==故原方程通解为 222121()ee 2xx y c c x x =++.18. 求下列各微分方程满足已给初始条件的特解:ππ(1)sin 20,1,1x x y y x y y =='''++===;解:特征方程为 210r += 得 1,2r i =± 对应齐次方程通解为 12cos sin y c x c x =+ 令*cos 2sin 2y A x B x =+代入原方程并整理得3cos23sin 2sin 2A x B x x --=-得 10,3A B ==故通解为 121cos sin sin 23y c x c x x =++.将初始条件代入上式得 11221121133c c c c -==-⎧⎧⎪⎪⇒⎨⎨-+==-⎪⎪⎩⎩故所求特解为 11cos sin sin 233y x x x =--+.200633(2)109e ,,77x x x y y y y y ==''''-+===.解: 21090r r -+=121,9r r ==对应齐次方程通解为 912e e x xy c c =+令*2e xy A =,代入原方程求得 17A =- 则原方程通解为 29121e e e 7xx x y c c =-++ 由初始条件可求得 1211,22c c ==故所求特解为 9211(e e )e 27x x xy =+-.*19. 求下列欧拉方程的通解:2(1)0x y xy y '''+-=解:作变换e tx =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d yy t-=特征方程为 210r -=121,1r r =-=故 12121e e tty c c c c x x-=+=+. 23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d ty y t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e ty A =为①的特解,代入①化简得941A A -= 15A =, *31e 5t y =故 223223121211e e e .55t t t y c c c x c x x --=++=++。