小学六年级上册数学知识点详细
六年级上册数学知识点(15篇)
![六年级上册数学知识点(15篇)](https://img.taocdn.com/s3/m/f9fd9449c950ad02de80d4d8d15abe23482f0331.png)
六年级上册数学知识点(15篇)六年级上册数学知识点1扇形统计图的意义:1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学广角——数与形:2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方。
位置与方向:1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东——西;南——北;南偏东——北偏西。
数学梯形面积与周长公式:梯形的面积公式:(上底+下底)×高÷2。
用字母表示:(a+b)×h÷2梯形的面积公式2:中位线×高用字母表示:l·h(l表示中位线长度)另外对角线互相垂直的梯形:对角线×对角线÷2梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。
数学分数的加减法知识点:1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
六年级数学上册知识点(通用16篇)
![六年级数学上册知识点(通用16篇)](https://img.taocdn.com/s3/m/8a6889e2d05abe23482fb4daa58da0116d171f73.png)
六年级数学上册知识点(通用16篇)六年级数学上册知识点第1篇分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b 六年级数学上册知识点第2篇第二单元位置与方向1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
六年级上册数学1到3单元知识点
![六年级上册数学1到3单元知识点](https://img.taocdn.com/s3/m/084059205bcfa1c7aa00b52acfc789eb172d9e3c.png)
六年级上册数学1到3单元知识点一、分数乘法。
1. 分数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少。
- 计算方法:用分子乘整数的积作分子,分母不变。
能约分的先约分再计算。
例如:(2)/(3)×3=(2×3)/(3) = 2。
2. 分数乘分数。
- 意义:表示求一个分数的几分之几是多少。
例如:(2)/(3)×(3)/(4)表示(2)/(3)的(3)/(4)是多少。
- 计算方法:用分子相乘的积作分子,分母相乘的积作分母。
例如:(2)/(3)×(3)/(4)=(2×3)/(3×4)=(1)/(2)。
3. 小数乘分数。
- 可以把小数化成分数,然后按照分数乘分数的方法计算;也可以把分数化成小数(分数能化成有限小数时),再按照小数乘法的方法计算。
例如:0.5×(2)/(3)=(1)/(2)×(2)/(3)=(1)/(3);或者(1)/(4)×0.8=(1)/(4)×(4)/(5)=(1)/(5)。
4. 分数乘法混合运算。
- 运算顺序与整数乘法混合运算顺序相同,先乘除后加减,有括号的先算括号里面的。
例如:(1)/(2)×( (2)/(3)+(3)/(4))=(1)/(2)×((8 +9)/(12))=(1)/(2)×(17)/(12)=(17)/(24)。
5. 整数乘法运算定律推广到分数乘法。
- 乘法交换律:a× b = b× a,对于分数乘法(2)/(3)×(3)/(4)=(3)/(4)×(2)/(3)。
- 乘法结合律:(a× b)× c=a×(b× c),如((1)/(2)×(2)/(3))×(3)/(4)=(1)/(2)×((2)/(3)×(3)/(4))。
(完整版)六年级数学上册重点知识归纳
![(完整版)六年级数学上册重点知识归纳](https://img.taocdn.com/s3/m/c471a5dfe518964bce847c23.png)
六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2、用数对表示位置时,一般先表示第几列,再表示第几行。
如数对(3,2)中的“3”表示第三列,“2”表示第二行。
3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。
第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
2、分数乘分数,应该分子乘分子,分母乘分母。
注意:能约分的可以先约分再乘。
注意:一个大于0的数乘大于1的数,积大于这个数。
一个大于0的数乘小于1的数,积小于这个数。
3、分数混合运算的顺序和整数的混合运算顺序相同。
(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。
4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。
6、乘积是1的两个数互为倒数。
求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。
注意:1的倒数是1,0没有倒数。
7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。
小学六年级上册数学各单元知识点
![小学六年级上册数学各单元知识点](https://img.taocdn.com/s3/m/8008dfeddc3383c4bb4cf7ec4afe04a1b071b0fc.png)
小学六年级上册数学各单元知识点小学六年级上册数学共有11个单元,每个单元的知识点如下:
1. 简便计算:
- 完全平方数的性质和判断
- 连加、连减、连乘、连除的简便计算法
- 等差数列的求和公式
2. 分数:
- 分数的认识和写法
- 分数的大小比较
- 分数的加法、减法和乘法
- 真分数和假分数的相互转化
3. 面积:
- 长方形、平行四边形以及三角形的面积计算
- 在已知面积的情况下确定一条边长
- 面积的单位换算
4. 方程:
- 列方程式解问题
- 正式列方程
- 一元一次方程的解法和验证
5. 除法的应用:
- 带余除法和不带余除法
- 小数的加减
- 小数的乘法和除法
6. 三角形:
- 角的概念和性质
- 直角三角形的判定和性质
- 同边角和同位角的概念
7. 数据的读取和分析:
- 数据的收集、整理和处理
- 条形图、折线图、饼图和表格的读取和分析
8. 同倍数和公倍数:
- 正整数的倍数和公倍数的概念
- 寻找两个数的最大公倍数
- 一些实际问题的应用
9. 商和余数:
- 余数、商和被除数的关系
- 商和余数的求法
- 余数的性质和应用
10. 直角和平行线:
- 直角和直角三角形的概念
- 平行线、交叉线和图形的性质
- 判断平行线和垂直线的方法
11. 小数:
- 小数的认识和读写
- 小数的加减法和乘法
- 小数的比较和化简
以上是小学六年级上册数学各单元的知识点。
这些知识点是学生在这个学期学习和掌握的内容,通过这些知识点的学习,学生可以提高数学运算能力和应用能力。
六年级数学上册全册知识点
![六年级数学上册全册知识点](https://img.taocdn.com/s3/m/fb23277c4a73f242336c1eb91a37f111f1850de3.png)
六年级数学上册全册知识点一、内容概括六年级数学上册的内容涵盖了数与代数、空间与几何、统计与概率等多个数学领域的知识点。
主要包括整数、小数、分数的认识与计算,比例与百分数,空间图形的认识与计算,图形的变换,以及简单的统计与概率知识等。
全册知识点按照学生的认知规律进行编排,从基础知识出发,逐渐提高难度,形成完整的知识体系。
也注重数学知识的实际应用,引导学生将数学知识应用于日常生活实际问题中,提高学生的数学应用能力。
在这一部分的学习过程中,学生需要掌握数的概念与运算、几何图形的理解以及概率与统计的基本应用,为将来的数学学习奠定坚实的基础。
二、数的认识与运算自然数的概念:我们生活中的数往往来源于自然物体的数量,包括如水果的数量、物体的长度等。
数学中把这些数量简化为抽象的自然数。
自然数包括正整数和零。
六年级学生应熟练掌握自然数的概念,理解其在实际生活中的应用。
整数的认识:整数包括正整数、零和负整数。
学生应进一步理解正负数的概念,了解负数的应用场景,例如温度、海拔等。
他们还应能够比较和排序整数,理解整数的相对大小关系。
数的运算:六年级学生应熟练掌握基本的四则运算(加、减、乘、除),并能解决一些复杂的运算问题。
他们还应理解分数和小数的概念,掌握分数和小数的运算方法,并能解决相关的实际问题。
混合运算也是六年级学生需要掌握的重要技能之一。
运算定律和性质:六年级学生应了解并掌握基本的运算定律,如加法交换律、乘法分配律等。
他们还应理解运算性质,如分数的通分和约分等。
这些定律和性质在解决复杂问题时非常重要。
六年级学生还应注意避免在运算过程中的计算错误。
在进行运算时,要认真审题、规范步骤和验算结果。
避免出现看错数字、符号错误等问题,以免影响结果的准确性。
培养一定的估算能力也是非常重要的,可以帮助我们快速判断计算结果是否有可能出错。
同时也有助于我们在日常生活中快速做出决策和判断。
1. 整数、小数、分数的认识与性质性质:整数具有封闭性,即两个整数的和或差仍为整数。
2024年小学六年级数学上册知识点汇总
![2024年小学六年级数学上册知识点汇总](https://img.taocdn.com/s3/m/c20f6c2e1611cc7931b765ce0508763231127421.png)
2024年小学六年级数学上册知识点汇总1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母o表示。
它到圆上任意一点的间隔都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的间隔就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r =8、轴对称图形:假设一个图形沿着一条直线对折,两侧的图形可以完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母c表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
新课标小学六年级数学上册知识点总结及复习要点
![新课标小学六年级数学上册知识点总结及复习要点](https://img.taocdn.com/s3/m/822224e90129bd64783e0912a216147916117e6a.png)
新课标小学六年级数学上册知识点总结及复习要点一、数与代数(一)分数与百分数1分数的性质定义:分数表示部分与整体的关系,其值由分子和分母共同决定。
性质:分子相同时,分母越大,分数越小;分母相同时,分子越大,分数越大。
此外,分数还有等值性质,即分子、分母可以同时乘以或除以同一个非零数,分数值不变。
例子:比较分数3/4和6/8。
虽然它们的分子和分母都不同,但通过等值性质,我们可以发现3/4=6/8,因为它们都可以简化为3/4。
2分数的运算加减法则:同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按同分母分数相加减的法则进行计算。
乘除法则:分数乘以整数,分母不变,分子乘以整数;分数乘分数,用分子乘分子,分母乘分母;分数除以整数(0除外),等于分数乘以这个整数的倒数;分数除以分数,等于被除数乘以除数的倒数。
例子:计算1/2 + 1/3。
首先通分,得到3/6 + 2/6 = 5/6。
3百分数的理解与应用定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
性质:百分数可以方便地用于比较不同量纲的数据,如比较不同产品的合格率、增长率等。
转换:百分数可以方便地转换为小数和分数,反之亦然。
例如,25%等于0.25或1/4。
例子:某班有50名学生,其中40名通过了数学考试。
求该班的通过率。
根据百分数的定义,通过率= (通过的学生数/ 总学生数) ×100% = (40 / 50) ×100% = 80%。
(二)整数与小数1整数的性质定义:整数是包括正整数、零和负整数的数集。
运算:整数可以进行加、减、乘、除等基本运算,遵循相应的运算法则。
例子:计算3 + 5 - 2 = 6。
2小数的性质定义:小数是表示分数的一种形式,由整数部分和小数部分组成。
性质:小数可以表示分数和非整数的有理数,具有十进制的特点。
运算:小数可以进行加、减、乘、除等基本运算,需要注意小数点对齐和进位或退位。
小学数学六年级上册40个重要知识点归纳
![小学数学六年级上册40个重要知识点归纳](https://img.taocdn.com/s3/m/ed19d72ea7c30c22590102020740be1e650ecc65.png)
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
小学六年级上册数学知识点归纳
![小学六年级上册数学知识点归纳](https://img.taocdn.com/s3/m/3c7924e477eeaeaad1f34693daef5ef7ba0d12ed.png)
小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
六年级上册数学知识点大全
![六年级上册数学知识点大全](https://img.taocdn.com/s3/m/efc5cb19492fb4daa58da0116c175f0e7cd11988.png)
六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。
二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。
三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。
四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。
五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。
六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。
七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。
八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。
九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。
十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。
十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。
以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。
小学六年级上册数学各单元知识点
![小学六年级上册数学各单元知识点](https://img.taocdn.com/s3/m/c6089ec182d049649b6648d7c1c708a1284a0a0c.png)
小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。
小学六年级上册数学知识点总结归纳(绝对经典)
![小学六年级上册数学知识点总结归纳(绝对经典)](https://img.taocdn.com/s3/m/708ce8e177eeaeaad1f34693daef5ef7ba0d12f2.png)
小学六年级上册数学知识点总结归纳(绝对经典)第一单元:位置在数学中,我们经常需要描述物体的位置。
为了方便,我们引入了行和列的概念。
竖排叫做列,横排叫做行。
数对可以表示物体的位置,先表示列,再表示行。
例如,(7,9)表示第七列第九行。
如果两个数对前一个数相同,说明它们所表示物体位置在同一列上;如果后一个数相同,说明它们所表示物体位置在同一行上。
物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元:分数乘法分数乘法可以分为分数乘整数和分数乘分数两种情况。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如,6×1/2,表示:6个1/2相加是多少,还表示的6倍是多少。
一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如,6×2/5,表示:6的2/5是多少。
分数乘法的计算法则:整数和分数相乘,整数和分子相乘的积作分子,分母不变。
分数和分数相乘,分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
分数大小的比较:一个数(除外)乘以一个真分数,所得的积小于它本身。
一个数(除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(除外)乘以一个带分数,所得的积大于它本身。
在解决实际问题时,我们可以先找出含有分率的关键句,然后找出单位“1”的量,根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
最后根据已知条件和问题列式解答。
在乘法应用题中,我们需要注意概念,找到含有分数的关键句中的单位“1”,并注意“的”前“比”后的规则。
3.表示甲比乙多几分之几,是指甲比乙多的数占乙的几分之几,而甲比乙少几分之几,则是指甲比乙少的数占乙的几分之几。
在应用题中,比如小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,我们要求增产几分之几。
六年级上册全知识点
![六年级上册全知识点](https://img.taocdn.com/s3/m/3e215954ae1ffc4ffe4733687e21af45b307fe08.png)
六年级上册全知识点第一章:数与运算1. 十进制数十进制数是由0-9这10个数字组成的数,以10为基数。
这种数是我们日常生活中使用最广泛的数。
2. 加法和减法加法是指将两个或多个数相加,得到一个和;减法是指从一个数中减去另一个数,得到一个差。
3. 乘法和除法乘法是指将两个或多个数相乘,得到一个积;除法是指将一个数分成若干等份,得到一个商。
4. 分数分数由一个整数除以另一个整数得到,由分子和分母构成。
分子表示被分成的份数,分母表示每份的数量。
5. 小数小数是分数的一种特殊形式,分母为10的幂。
6. 乘方与开方乘方是指一个数自身乘以自身若干次,开方是指求一个数的平方根或立方根等。
第二章:图形与几何1. 点与线段点是一个位置,用小圆点表示;线段是由两个点确定的直线段,用A、B表示两个端点。
2. 直线、射线和线段直线是由无数个点无限延伸而成的;射线是由一个起点沿着一个方向延伸而成的;线段有两个端点,固定长度。
3. 角角由两条射线共同确定,两条射线的公共端点称为角的顶点。
4. 平行线和垂直线平行线是在同一平面内永不相交的直线;垂直线是与另一条线段或平面相交成直角的直线。
5. 三角形三角形是由三条线段组成的图形,包括直角三角形、等腰三角形和等边三角形等。
6. 四边形四边形是由四条线段组成的图形,包括矩形、正方形、平行四边形和菱形等。
第三章:分数的运算1. 分数的加减法分数的加法是指将两个分数相加,分母相同,分子相加;分数的减法是指将一个分数减去另一个分数,分母相同,分子相减。
2. 分数的乘法和除法分数的乘法是指将两个分数相乘,分子相乘,分母相乘;分数的除法是指将一个分数除以另一个分数,将除数的倒数乘以被除数。
3. 分数的化简和比较大小分数的化简是指将一个分数约分为最简形式;比较大小时可将分数转化为相同分母进行比较。
第四章:长方形和平行四边形1. 长方形的性质长方形有四个直角,对边相等,对角线相等,周长等于长和宽的两倍,面积等于长乘以宽。
小学数学六年级上册知识点
![小学数学六年级上册知识点](https://img.taocdn.com/s3/m/82b6b8665b8102d276a20029bd64783e08127d74.png)
小学数学六年级上册知识点一、分数1. 分数的基本概念- 定义- 分子、分母的意义2. 分数的加减法- 同分母分数相加减- 异分母分数的转换与加减3. 分数的乘除法- 乘法原理与计算方法- 除法原理与计算方法4. 分数的比较与排序- 大小比较- 分数的排序二、小数1. 小数的基本概念- 定义与组成- 小数与整数、分数的关系2. 小数的四则运算- 加减法- 乘除法3. 小数的应用- 货币计算- 测量与估算三、比例1. 比例的概念- 定义- 比例的基本性质2. 比例的应用- 比例式的解法- 比例在实际问题中的应用四、面积1. 平行四边形、三角形和梯形的面积公式 - 公式推导- 公式应用2. 面积的计算- 不规则图形的面积估算- 面积单位的换算五、体积1. 立体图形的认识- 长方体和立方体的特征2. 体积的计算- 长方体和立方体体积公式- 体积单位的换算六、数据的收集与处理1. 数据的收集- 调查方法- 数据的整理2. 数据的图表表示- 条形图、折线图和饼图的绘制3. 数据分析- 平均数、中位数和众数的计算- 数据的解释与应用七、初步的代数知识1. 用字母表示数- 字母在数学表达式中的作用2. 简易方程- 方程的概念- 一元一次方程的解法八、数学思维与问题解决1. 逻辑推理- 简单的逻辑推理题2. 问题解决- 数学问题的分析与解决策略请将以上内容复制到Word文档中,并根据实际需要进行格式设置,如添加页眉、页脚、目录、标题样式等,以确保文档的专业性和可读性。
您可以根据具体的教学大纲或课程要求,对上述内容进行适当的增删和调整。
小学六年级数学上册知识点总结
![小学六年级数学上册知识点总结](https://img.taocdn.com/s3/m/2a2790ddd1d233d4b14e852458fb770bf68a3b59.png)
小学六年级数学上册知识点总结一、数与运算1. 整数- 大数的读写与比较- 整数的四则运算- 整数的倍数与因数- 质数与合数- 奇数与偶数- 整数的性质和运算规律2. 分数- 分数的意义和性质- 真分数与假分数- 分数的四则运算- 分数与整数的互化- 分数的比较和排序- 混合数和带分数3. 小数- 小数的意义和性质- 小数的四则运算- 小数与整数、分数的互化- 用小数表示实际问题4. 比例与百分数- 比例的概念和基本性质- 比例式的解法- 百分数的意义和应用- 百分数与分数、小数的互化- 利率和利息的计算二、几何1. 平面图形- 平行线和垂线的性质- 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类- 圆的性质和圆周角2. 图形的变换- 平移、旋转和翻转的概念- 对称图形的识别和绘制3. 图形的测量- 周长和面积的计算(正方形、长方形、三角形、平行四边形、梯形、圆)- 体积的计算(长方体和立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制和解读2. 概率- 可能性的认识- 简单事件的概率计算四、解决问题1. 应用题- 解决与生活实际相关的数学问题- 分析问题和找出等量关系- 利用方程和不等式解决问题2. 数学思维- 逻辑推理和证明- 数学问题的多种解法五、综合实践1. 数学活动- 参与数学游戏和竞赛- 数学知识的综合运用2. 数学探究- 发现生活中的数学问题- 进行小组合作探究以上总结了小学六年级数学上册的主要知识点。
学生应通过练习和复习,确保对每个知识点都有深刻的理解和掌握。
教师和家长可以根据这份总结来辅导和检查学生的学习情况。
小学数学六年级上册知识点
![小学数学六年级上册知识点](https://img.taocdn.com/s3/m/3d422684c67da26925c52cc58bd63186bceb9290.png)
小学数学六年级上册知识点一、整数1. 整数的概念:整数包括正整数、负整数和0。
2. 整数的加减法:同号相加取其和,异号相加取其差,减法可以转化为加法运算。
3. 整数的乘法:同号相乘为正,异号相乘为负。
4. 整数的除法:正数除以正数等于正数,负数除以正数等于负数,0除以任何数等于0。
5. 整数的大小比较:可以通过绝对值的大小来判断整数的大小。
二、分数1. 分数的概念:分数由分子和分母组成,表示部分与整体的关系。
2. 分数的四则运算:分数的加减法需要找到相同的分母,乘法直接相乘分子和分母,除法转化为乘法运算。
3. 分数的化简:将分子和分母的公约数约分,使分数的值不变但形式更简单。
4. 分数的比较:可以通过找到相同的分母比较分子的大小来进行比较。
三、小数1. 小数的概念:小数是整数与分数的结合体,有限小数和无限循环小数两种形式。
2. 小数的读法和写法:小数点后的位数表示数值的大小,如0.5表示五分之一;小数点左边的数位表示整数部分。
3. 小数的大小比较:可以通过小数点后的位数的大小进行比较,位数多的小数一般更大。
4. 小数的四则运算:小数的加减法需要对齐小数点,乘法直接相乘各位数,除法转化为乘法运算。
四、面积和周长1. 面积的概念:表示二维图形所占的空间大小。
2. 周长的概念:表示二维图形边界的长度。
3. 矩形的面积和周长:矩形的面积等于长乘以宽,周长等于长和宽的两倍之和。
4. 三角形的面积:三角形的面积等于底乘以高的一半。
五、平方数和立方数1. 平方数的概念:一个数的平方等于它自己乘以自己,如4的平方是16。
2. 平方数的性质:平方数的个位数只可能是0、1、4、5、6、9。
3. 立方数的概念:一个数的立方等于它自己乘以自己再乘以自己,如2的立方是8。
4. 立方数的性质:立方数的个位数只可能是0、1、4、5、6、9。
六、运算顺序1. 加减乘除的顺序:先乘除后加减,同级按照从左到右的顺序计算。
2. 使用括号改变顺序:可以通过使用括号来改变运算的顺序,先计算括号内的部分。
小学六年级数学上册知识点归纳
![小学六年级数学上册知识点归纳](https://img.taocdn.com/s3/m/fcb5199648649b6648d7c1c708a1284ac8500527.png)
小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。
2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。
3. 分数:表示部分的数,如1/2、3/4、5/6等。
4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。
5. 百分数:表示百分之几的数,如20%、50%、80%等。
6. 四则运算:加法、减法、乘法、除法。
7. 混合运算:将四则运算按照一定的顺序进行计算。
二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。
2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。
3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。
三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。
2. 重量:表示物体的重量,单位有克、千克、吨等。
3. 容量:表示物体的容积,单位有毫升、升、立方米等。
4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。
5. 货币:表示货币的价值,单位有元、角、分等。
四、几何图形1. 点:没有大小和形状的物体。
2. 线:没有宽度和厚度的物体,可以无限延伸。
3. 面:由线段围成的封闭图形。
4. 三角形:由三条边组成的图形,有三个角和三个顶点。
5. 四边形:由四条边组成的图形,有四个角和四个顶点。
6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。
7. 正方形:四边相等且四个角都是直角的四边形。
8. 长方形:对边相等且四个角都是直角的四边形。
9. 平行四边形:对边相等且相邻两边平行的四边形。
10. 梯形:有一对边平行的四边形。
11. 菱形:四条边相等且对角线互相垂直的四边形。
12. 矩形:四个角都是直角的平行四边形。
13. 圆环:由两个同心圆组成的图形。
14. 扇形:由圆心和圆上两点组成的图形。
15. 椭圆:由两个焦点和两条准线组成的图形。
六年级上册数学知识点
![六年级上册数学知识点](https://img.taocdn.com/s3/m/6822bd4258eef8c75fbfc77da26925c52cc591f1.png)
六年级上册数学知识点一、分数乘法(一)分数乘法的意义1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如:$\frac{3}{5}×3$表示3 个$\frac{3}{5}$是多少。
2、一个数乘分数的意义就是求这个数的几分之几是多少。
例如:$\frac{3}{5}×\frac{1}{3}$表示$\frac{3}{5}$的$\frac{1}{3}$是多少。
(二)分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
能约分的先约分,再计算。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
能约分的先约分,再计算。
(三)分数乘法的解决问题1、求一个数的几分之几是多少,用乘法计算。
2、连续求一个数的几分之几是多少的问题,解题关键是找准每一步的单位“1”。
二、位置与方向(二)(一)确定位置的方法1、用上、下、前、后、左、右来确定位置。
2、用数对来确定位置,先列后行。
例如:(3,5)表示第 3 列第5 行。
(二)根据方向和距离确定物体的位置1、确定观测点。
2、测量出被观测物体与观测点之间的方向角。
3、测量出被观测物体与观测点之间的距离。
(三)描述简单的路线图1、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,描述到下一个目标所行走的方向和距离。
2、位置是相对的,观测点不同,方向和距离也会不同。
三、分数除法(一)分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(二)分数除法的计算法则除以一个不等于 0 的数,等于乘这个数的倒数。
(三)分数除法的解决问题1、已知一个数的几分之几是多少,求这个数,用除法计算。
2、已知比一个数多(或少)几分之几的数是多少,求这个数,用方程或除法计算。
四、比(一)比的意义两个数相除又叫做两个数的比。
(二)比的各部分名称在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学上册知识点圆的认识(一)1.圆中心的一点叫圆心,用O表示.一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.2.圆有无数条半径,有无数条直径.3.圆心决定圆的位置,半径决定圆的大小.圆的认识(二)4.把圆对折,再对折就能找到圆心.5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.圆的周长和半圆的周长:7.圆一周的长度就是圆的周长.半圆的周长等于圆周长的一半加一条直径。
8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14.9.C=πd或C=πr.10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4圆的面积11.用S表示圆的面积, r表示圆的半径,那么S=πr^2 S环=π(R^2-r^2)12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=40013.周长相等时,圆的面积最大.面积相等时,圆的周长最小.百分数的应用百分数的应用(四)14.利息=本金乘利率乘时间比的认识15.两个数相除,又叫做这两个数的比.比的后项不能为0.16.比的前项和后项同时乘上或除以一个相同的数(0除外).比值不变,这叫做比的基本性质.六年级全册数学知识点(整个小学阶段和中学都通用,比较重要)基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
仅供参考:【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。
问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。
问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。
有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
(例略)【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
它的解法显然可套用上述公式。
)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)***【植树问题公式】(1)不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)路长÷间隔长-1=棵数;路长÷间隔数=每个间隔长;每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:路长÷间隔数=棵数;路长÷间隔数=路长÷棵数=每个间隔长;每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:占地总面积÷每棵占地面积=棵数【求分率、百分率问题的公式】比较数÷标准数=比较数的对应分(百分)率;增长数÷标准数=增长率;减少数÷标准数=减少率。