本文介绍用ANSYS APDL命令流实现加载表面效应单元的任意方向荷载的相关内容
ansys workbench中apdl的用法
ANSYS Workbench中的APDL(ANSYS Parametric Design Language)是一种参数化设计语言,用于在ANSYS软件中自动化建模和求解过程。
以下是APDL的一些用法:
1. 创建模型:使用APDL可以创建各种类型的模型,包括结构、流体动力学、电磁等。
在创建模型时,可以通过定义参数、约束条件和载荷等来自动化建模过程。
2. 优化设计:APDL可以用于优化设计,通过调整参数、约束条件和载荷等,获得最佳的设计方案。
3. 自动化求解:使用APDL可以自动化求解过程,包括网格划分、求解设置、结果后处理等。
4. 批处理操作:通过APDL,可以对一组模型进行批处理操作,例如批量分析、批量结果后处理等。
5. 自定义功能:使用APDL可以自定义功能,例如创建自定义的命令流、宏等,扩展ANSYS软件的功能。
在使用APDL时,需要注意以下几点:
1. 学习APDL需要一定的编程基础和数学知识。
2. 在使用APDL之前,需要了解ANSYS软件的基本操作和功能。
3. 在编写APDL脚本时,需要注意语法错误和逻辑错误,并进
行充分的测试和验证。
4. 在使用APDL进行复杂模型的分析时,需要注意计算资源和内存的分配,以确保计算过程的稳定性和效率。
ansys零件受力计算图文教程及APDL命令流
ansys零件受力计算图文教程及APDL命令流目录图文教程 (2)附件 APDL命令流 (13)图文教程图1 选择单元类型图2 设定平面应力问题图3 设定材料属性图4 建立关键点图5作出圆弧图6建立其余的关键点和直线,用线围成面图7 复制并旋转、平移面得到另一个面图8 布尔运算图9删除多余的面图10设置材料,单元号图11设定单元尺寸图12划分网格图13约束左上销孔的全部位移图14 右下销孔施加均布压力载荷图15计算图16计算完成附件 APDL命令流finish/clear/prep7et,1,plane183keyopt,1,3,0mp,ex,1,30e6 !psi mp,prxy,1,0.27建模k,1,,1k,2,,-1k,3,,0.4k,4,,-0.4csys,1l,1,2l,3,4csys,0lsymm,x,allnummrg,allnumcmp,allldele,1,,,1k,,kx(1)+6,ky(1)k,,kx(2)+6,ky(2)l,1,5$l,5,6$l,6,2$l,2,4$l,1,3 al,3,4,7,8$al,1,2,5,6,7,8 wpoff,5cswplan,11,1agen,2,all,,,,90wpcsys,-1,0 csys,0 agen,,3,4,,,2,,,,1 aovlap,all adele,6,,,1 nummrg,all numcmp,all aesize,all,0.1 amesh,all约束dl,1,,alldl,3,,all加载lsel,s,,,9,11,2 sfl,all,pres,500 allsel,all计算/solusolvefinish。
使用 ANSYS 表面效应单元施加周向载荷的一个例子
使用ANSYS 表面效应单元施加周向载荷的一个例子 (续)
为了用表面效应单元施加环向载荷,需将表面效应单元的单元坐标系旋转到圆柱坐标系,为此,先选择所有表面效应单元:
然后将表面表面效应单元的坐标系旋转为局部圆柱坐标系。
操作过程如下:
在弹出对话框中,选择要修改的单元属性为Elem coord ESYS,然后输入局部圆
柱坐标系的编号11,再点击OK:
列出当前单元的属性,可以看到修改结果:
为了后面能够显示所施加的载荷,首先打开对于边界条件的显示功能:
然后在表面效应单元上施加环向压力,菜单路径:
Main Menu > Solution > Define Loads > Apply > Pressure > On Elements > Pick All
在弹出菜单中,选择常数载荷1000,LKEY (承受压力的单元面号) 暂选为2,点击OK 后查看载荷结果:
所施加的压力:可以看到对于柱面上的单元,压力是沿环向的,但是端面上的单元,压力并不是沿环向的:
下面重新对端面上的表面效应单元施加压力,选择LKEY 为 3:
点击OK 后,所显示的压力都是环向的:。
ANSYS命令流学习笔记18-表面效应单元
! ANSYS命令流学习笔记18-表面效应单元surface effect !学习重点:!1 表面载荷的施加当施加表面载荷时,在WorkBench中可以很方便地施加。
但其本质也是借助表面效应单元来完成的。
譬如当实体结构表面施加沿切向或者任何方向的均布载荷(甚至不均布?)时,都可以使用表面效应单元。
!2 表面效应单元的建立表面单元,意思就是要依附于现有单元的表面,利用现有节点形成单元,因此单元增加,而节点不增加。
单元通过制定坐标系方向等,施加不同方向的载荷。
!3 表面效应单元的典型应用目前可以使用的表面效应单元:对二维问题:SURF151和SURF153;对三维问题:SURF152和SURF154。
151和152为热表面效应单元,153和154为结构表面效应单元。
表面单元可以很好用,如下例子中的通过表面施加扭矩;总之就是定义与表面成各种方向力的载荷。
在热流问题也有广泛应用。
!问题描述! 在workbench中可以轻松实现其定义,根据图示边界条件,得出位移结果如右图。
这里把此问题转到APDL里运行。
并再熟悉一下接触设定。
(案例参考ansys官方教程,有点不同)!APDL命令:finish/clear/title,surf effect~parain,'2s','x_t' !导入当前路径下的2s.x_t文件,包括所有体面线。
实在不想在APDL 里建模了,这是在SCDM中建模导出的文件。
/facet,normal/replot !单位m、Pa!!!以上导入x_t模型et,1,solid185r,2real,2et,2,surf154mp,ex,1,2.1e11mp,prxy,1,0.3 !定义材料1为结构钢mshape,0,3Dmshkey,2esize,0.0005 !网格无关分析之后,选择该尺寸,因为接触存在,网格需要细分vsweep,all !划分网格!!!以上定义材料及划分网格!复习下接触,而且规则形状分开,方便简单划分网格r,3mat,1real,3et,3,targe170et,4,conta174keyopt,4,12,5 !bonded约束vsel,s,loc,z,0.04,0.05asel,s,loc,z,0.04type,3nsla,s,1esln,s,0esurf !根据线创建target170allselvsel,s,loc,z,0,0.04asel,s,loc,z,0.04type,4nsla,s,1esln,s,0esurf !根据线创建contact174!!!以上建立两个体之间的绑定接触!建立surf154单元,为3D面单元csys,1allselasel,s,loc,x,0.015 !切换到圆柱坐标系,方便选择圆周上节点nsla,s,1mat,1real,2type,2esurf!!!以上根据节点,生产surf154单元csys,0local,100,1,0,0,0esel,s,type, ,2emodify,all,esys,100allsel!!!以上建立局部圆柱坐标系,并将此坐标系定义为surf单元的单元坐标系finish/soluesel,s,type, ,2sfe,all,2,pres,,10e6 !施加面压力allselnsel,s,loc,z,0d,all,all !约束底面!!!以上施加边界条件allselsolve !计算finish!!!进入后处理/post1plnsol,u,sumplnsol,s,eqvfinish/eof。
anasys中apdl用法
anasys中apdl用法ANSYS APDL(ANSYS Parametric Design Language)是ANSYS的旧版软件中用于建模和分析的命令式语言。
APDL具有非常强大的功能,可以用于解决各种复杂的工程问题。
本文将一步一步回答关于APDL的一些常见问题,并介绍如何使用APDL进行建模和分析。
第一部分:APDL的基本概念和语法APDL是一种命令式语言,它使用文本命令来描述模型和分析操作。
APDL 的命令格式通常由命令名称和一些选项组成,这些选项被放在括号内或使用特殊的符号进行标记。
例如,下面是一个创建一个立方体模型的简单示例:! 创建一个立方体模型BLOCK 0 1 0 1 0 1在上面的例子中,命令“BLOCK”用于创建一个立方体,括号内的数字表示立方体的边界坐标。
APDL还提供了大量的命令用于定义材料、边界条件、加载和分析选项等。
这些命令都有特定的语法和选项,使用者可以根据具体的需求进行调整。
APDL还支持使用变量和循环等高级功能,以实现更复杂的模型和分析。
第二部分:APDL的建模功能APDL具有强大的建模功能,可以用于创建各种几何形状和结构。
下面列举了几个常见的建模命令:1. BLOCK:用于创建一个立方体或长方体模型。
2. CYLIND:用于创建一个圆柱体模型。
3. SPHERE:用于创建一个球体模型。
4. COMBIN:用于组合多个模型为一个整体。
这些命令的选项可以根据具体的需求进行调整,例如指定尺寸、位置和方向等。
在建模过程中,APDL还提供了一些辅助命令用于编辑和变换模型,如移动、旋转和缩放等。
第三部分:APDL的分析功能APDL可以用于进行各种工程分析,包括静态分析、动态分析、热传导分析等。
下面列举了几个常见的分析命令:1. SOLVE:用于求解线性方程组,得到模型的位移和应力等结果。
2. LOAD:用于定义加载条件,如施加力、约束和温度等。
3. POST1:用于后处理分析结果,包括位移、应力、应变和温度等。
ANSYS中的APDL命令
结合自身经验,谈ANSYS中的APDL命令(二)发表时间:2009-5-10 作者: 倪欣来源: e-works关键字: ANSYS APDL 命令流在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。
1.1 /prep7(进入前处理)定义几何图形:关键点、线、面、体(1).csys,kcnkcn , 0 迪卡尔坐标系1 柱坐标2 球4 工作平面5 柱坐标系(以Y轴为轴心)n 已定义的局部坐标系(2).numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstr(3).K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号(4).Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0” 如果附有节点及单元,则一起拷贝。
“1”不拷贝节点和单元imove:“0” 生成拷贝“1”移动原关键点至新位置,并保持号码,此时(itime,kinc,noelem)被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPE(5).A, P1, P2, ……… P18 由关键点生成面(6).AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向。
(线需在某一平面内坐标值固定的面内)(7).vsba, nv, na, sep0,keep1,keep2 用面分体(8).vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点(非公用)(9).vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove:0:拷贝体1:移动体(10).cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型(volu, area, line, kp, elem, node)(11).cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称1.2 定义几个所关心的节点,以备后处理时调用节点号。
ansys技巧总结_如何在管、梁单元上施加任意方向的风载荷
length=distnd(n1,n2) !单元长度
dx=abs(nx(n1)-nx(n2))
theta=acos(dx/length) !计算单元与X轴夹角
fnode=0.5*pa*length*d*sin(theta) !面载荷等效简化为节点载荷
*afun,deg
*do,i,1,20,1
esel,s,ename,,ipe16
*if,esel(i),eq,1,then
esel,,,,i,
*get,nreal,elem,i,attr,real
*get,d,rcon,nreal,const,1, !获得单元实常数
n1=nelem(i,1)
在实际工程中,特别是土木结构,常会遇到这一类的问题。
要合理的施加这类载荷,必须灵活应用APDL所提供的嵌入函数。
对于管、梁单元上所作用的风载荷,可以这样处理:
1、获得相应管、梁单元迎风面的投影长度,结合单元实常数即可得到投影面积;
2、继而将风载荷简化作用到节点上去。
pa=100 ! X方向风载荷面集度
f,n1,fx,fnode
f,n2,fx,fnode
*else
n1=0
n2=0
*endif
*enddo
ansysapdl约束施加原理
ansysapdl约束施加原理ANSYS APDL(ANSYS Parametric Design Language)是一种用于进行有限元分析的编程语言。
在ANSYS APDL中,可以通过施加约束来模拟真实工程中的各种限制条件。
本文将介绍ANSYS APDL中约束施加的原理和方法。
在有限元分析中,约束是模拟真实系统中的限制条件,如固定支撑、强制位移等。
在ANSYS APDL中,约束可以通过多种方式施加,包括固定边界条件、加载边界条件和接触边界条件等。
固定边界条件是最常见的约束方式之一。
它通过将某些节点或面固定在空间中的特定位置上来模拟物体的固定支撑。
在ANSYS APDL中,可以使用命令*BOUNDARY对节点或面施加固定边界条件。
例如,可以通过命令*BOUNDARY, type, node, , , , 1, 1, 1, 1将节点的三个位移方向固定。
加载边界条件是另一种常见的约束方式。
它通过施加外部载荷或位移来模拟物体受到的力或位移约束。
在ANSYS APDL中,可以使用命令*BOUNDARY对节点或面施加加载边界条件。
例如,可以通过命令*BOUNDARY, type, node, , , , 2, , , 3施加节点的z方向位移约束。
接触边界条件是模拟物体之间的接触行为的约束方式。
在ANSYS APDL中,可以使用命令*CONTACT对物体之间的接触行为进行建模。
通过指定接触对之间的摩擦系数、硬度等参数,可以模拟不同材料之间的接触行为。
例如,可以通过命令*CONTACT, type, node, , , , , , , , , friction_coefficient指定接触对之间的摩擦系数。
除了上述常见的约束方式外,ANSYS APDL还提供了许多其他约束方式,如对称约束、周期性约束等。
这些约束方式可以根据具体的工程问题进行选择和组合,以模拟真实系统中的各种限制条件。
在使用ANSYS APDL进行有限元分析时,正确施加约束是非常重要的。
本文介绍用ANSYS APDL命令流实现加载表面效应单元的任意方向荷载的相关内容
本文介绍用ANSYS APDL命令流实现加载表面效应单元的任意方向荷载的相关内容。
!用表面效应单元加任意方向的荷载finish/PREP7et,1,45 !定义实体单元solid45et,2,154 !定义三维表面效应单元KEYOPT,2,2,0 !指定表面效应单元的K2=0,所加荷载与单元坐标系方向相同KEYOPT,2,4,1 !指定表面效应单元的K4=0,去掉边中点,成为四结点表面单元block,-5,5,-5,5,0,5 !建实体模型mp,dens,1,2000mp,ex,1,10e9mp,prxy,1,0.2asel,s,loc,z,5.0,5.0 !选中实体上表面AATT, 1, , 2, 0, !指定实体上表面用154号单元MSHAPE,0,2DMSHKEY,1esize,,5amesh,all !对上表面划分网格allsel,allVATT, 1, , 1, 0 !指定实体用45号单元MSHAPE,0,3DMSHKEY,1vmesh,all/PSYMB,ESYS,1 !显示单元坐标系esel,s,type,,2 !选中实体上表面的表面效应单元以方便加荷载sfe,all,1,pres,,50 !在面内加Z向荷载,大小为50,荷载方向可通过值的正负控制sfe,all,2,pres,,100 !在面内加X向荷载,大小为100sfe,all,3,pres,,150 !在面内加Y向荷载,大小为150/psf,pres,,2,0,1 !以箭头方式显示所加荷载!如果已经知道荷载在整体坐标系内的方向失量为(0,1,1),可以用如语句加该方向的荷载sfe,all,5,pres,,100,0,1,1 !荷载值100后的三个数为方向失量allsel,alleplot。
ANSYS 中的表面效应单元
ANSYS 中的表面效应单元使用表面效应单元施加载荷* 有时,可能需要施加所使用单元不支持的表面载荷,例如:可能需要在实体结构单元上施加沿表面切向或任何方向的均布载荷;在热实体单元的表面上同时施加热流载荷和对流载荷,或者施加指定的辐射,等。
在这种情况,可以用表面效应单元覆盖需要施加载荷的表面并使用它们作为一个管道以施加所需的载荷。
* 目前可以使用的表面效应单元:对二维问题:SURF151和SURF153;对三维问题:SURF152和SURF154。
* 怎样施加如下的压力荷载:–像剪切荷载一样与表面相切的荷载?–像螺栓荷载一样在表面上变化的荷载?–像屋顶上冰载荷一样与面成一定角度的载荷?- 像水压一样的非均布压力载荷?* 表面效应单元为处理这些问题提供了有效的方法。
表面效应单元的特点:* 像“皮肤”一样覆盖在网格表面* 如同面载荷的管道* 很容易创建,一般操作过程如下:- 选择感兴趣表面上的节点;- 激活恰当的单元类型;- 执行 ESURF (或 Preprocessor > Create > Elements > Surf Effect > GenerlSurf > No Extra…);- 选择所有节点,定义 SURF 单元。
* 对 2-D 和 3-D 模型都有用:– SURF151 & 153 是线单元 (热和结构的),表示 2-D 模型的边界线。
– SURF152 & 154 是面单元 (热和结构的),表示 3-D 模型的边界面。
* 本节只讨论 SURF154,其它单元可同样处理。
SURF154 单元,详见参考手册中的描述* SURF154 使用不同的单元面号来接受不同类型的载荷。
* 面号在“Apply PRES on elems”对话框中:Solution > Difine Loads > Apply > Pressures > On Elements,如下所示。
ANSYS APDL命令流详解-1前言
2 Ux,Uy,
2+1 Uz Rotx, Roty,
2+1 Rotz
EPCSDF GB
EDGB
EDGB EPCS DGB
EDGB
具有塑性等功能
不 对 称 截 面 ,可 偏 移中心轴 拉压弯扭,常用3D 梁元
拉压弯及圣文南扭转; 开口或闭口截面
拉压弯扭,不对称截面, 可偏移中心轴,可释放节 点自由度,可采用梁截面
1.1ANSYS功能与软件结构
1.1.2 软件分析功能
结构分析、热分析、流体分析、电磁场分析、耦合场分析等。
结构分析有七种类型,功能如下: ⑴静力分析:用于求解静力载荷作用下结构的静态行为, 可以考虑结构的线性和非线性特性。非线性特性如大变 形、大应变、应力刚化、接触、塑性、超弹、蠕变等。 ⑵特征屈曲分析:用于计算线性屈曲荷载和屈曲模态。 非线性屈曲分析和循环对称屈曲分析属于静力分析类型, 不属于特征值屈曲分析类型。 ⑶模态分析:计算线性结构的固有频率和振型,可采用 多种模态提取方法。可计算自然模态、预应力模态、阻 尼复模态、循环模态等。
1.1ANSYS功能与软件结构
1.1.5 输入方式
命 令 流 方 式 是 融 GUI 方 式 、 APDL、UPFs、UIDL、 MAC,甚至TCL/TK于一个文本文件中,可通过/input 命令(或Utility Menu>File>Read Input From…)读入 并执行,也可通过拷贝该文件的内容粘贴到命令行中 执行。命令流方式可包含上述多种方式,例如仅仅将 命令罗列起来相当于命令方式,这对于初学者而言可 能更容易接受。 命令流方式的主要优点有: ①修改简单:不必考虑因操作错误造成模型的重大损 失,也不必考虑DB文件的重要性而不断保存;可以随 时修改参数进而改变几何模型和有限元模型等,一切 都变得那么简单和方便。
ANSYS APDL命令流建模及模态分析实例相关内容
本文介绍了轮毂的ANSYS APDL命令流建模及模态分析实例相关内容。
ANSYS命令流及注释五个辐条的轮毂!!初始化ANSYS环境!FINISH/CLEAR !清空内存/FILNAM,WHEEL5 !文件名/TITILE,WHEEL5 PARAMETER MODELING !工作名!!定义几何尺寸参数!R1=180R2=157R3=75R4=75R5=30R6=28R7=20R8=90R9=60S_HOLE=5TH1=48TH2=23TH3=11TH4=180TH5=40TH6=45TH7=105TH8=25TH9=15TH10=25TH11=13/VIEW,1,1,1,1 !改变视图/ANG,1/PNUM,LINE,1/PNUM,AREA,1/PNUM,VOLU,1/NUMBER,1!!关键点!/PREP7k,1,r5,r7,0k,2,r4-ky(1),ky(1),0k,3,r4,0,0k,4,r1,0,0k,5,kx(4),th5-th9,0k,6,r1-th8,ky(5),0k,7,kx(6),th4/2,0k,8,kx(7)+th11,ky(7)+th10,0 k,9,kx(8),th4-th3,0k,10,kx(4),ky(9),0k,11,kx(4),th4,0k,12,r2,ky(11),0k,13,kx(12),ky(8),0k,14,kx(7)-th3,ky(7),0k,15,kx(14),th5,0k,16,r3+r6,ky(15),0k,17,kx(3),r7+th1,0k,18,kx(1),ky(17),0k,19,kx(16),ky(17),0k,20,kx(2),0,0k,21,0,0,0k,22,0,th1+r7,0*ask,s_hole,'the number of hole',5 !宏!!创建轮毂面!lstr,1,2 !连接1,2关键点,形成直线larc,2,3,20,r7 !以20点为圆心r7为半径,2,3点为端点作弧线lstr,3,4lstr,4,5lstr,5,6lstr,6,7lstr,7,8lstr,8,9lstr,9,10lstr,10,11lstr,11,12lstr,12,13lstr,13,14lstr,14,15lstr,15,16larc,16,17,19,r6lstr,17,18lstr,18,1al,allcm,an-all,area !形成组件!!创建实体模型!allsel,allvrotat,an-all,,,,,,21,22,360,S_hole, !旋转拉伸形成体cm,v-an-all,volu!!减去孔洞!vsel,nonewpro,,-90, !绕Y轴转动工作平面cswpla,11,1,1,1csys,11wpoff,r8*sin(180/s_hole),r8*cos(180/s_hole)RPR4,3,-th5,th5/2,r9,, !创建三角形adele,96LFILLT,182,181,10, , !在直线182,181间形成半径10的圆角LFILLT,182,183,10, ,LFILLT,183,181,10, ,LARC,98,100,21,144,ldele,182asel,noneal,181,184,187,185,183,186 !连接各线形成面cm,sanjiao_hole,areavext,sanjiao_hole,,,0,0,th5,,,, !以th5为厚度形成体cm,v_hole,voluvgen,s_hole,all,,,,360/s_hole,,,0 !旋转拉伸形成s_hole个体cm,v-hole,voluvsel,allvsbv,v-an-all,v-hole !布尔运算减去体,形成孔洞cm,v-an-all,voluALLSEL,ALL!!定义单元属性!et,1,solid45mp,ex,1,71000 !铝合金材料特性mp,nuxy,1,0.33mp,dens,1,2720!!划分单元创建网格模型!SMRT,5 !自由网格划分MSHAPE,1,3DMSHKEY,0FLST,5,5,6,ORDE,2FITEM,5,11FITEM,5,-15CM,_Y,VOLUVSEL, , , ,P51XCM,_Y1,VOLUCHKMSH,'VOLU'CMSEL,S,_YVMESH,_Y1finish!!保存!saveAPLOT/SOLUFLST,2,5,5,ORDE,5 !约束固定FITEM,2,19FITEM,2,38FITEM,2,57FITEM,2,76FITEM,2,95/GODA,P51X,ALL,*DEL,_FNCNAME !函数加载*DEL,_FNCMTID*DEL,_FNC_C1*DEL,_FNCCSYS*SET,_FNCNAME,'jiazai'*DIM,_FNC_C1,,1*SET,_FNC_C1(1),5*SET,_FNCCSYS,11! /INPUT,111.func,,,1*DIM,%_FNCNAME%,TABLE,6,7,1,,,,%_FNCCSYS% !! Begin of equation: 1000*{X}/cos(180/s_hole)*SET,%_FNCNAME%(0,0,1), 0.0, -999*SET,%_FNCNAME%(2,0,1), 0.0*SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%*SET,%_FNCNAME%(4,0,1), 0.0*SET,%_FNCNAME%(5,0,1), 0.0*SET,%_FNCNAME%(6,0,1), 0.0*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 1000, 0, 0, 2 *SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, -1, 3, 2*SET,%_FNCNAME%(0,3,1), 0, -1, 0, 180, 0, 0, 17*SET,%_FNCNAME%(0,4,1), 0.0, -3, 0, 1, -1, 4, 17 *SET,%_FNCNAME%(0,5,1), 0.0, -1, 10, 1, -3, 0, 0 *SET,%_FNCNAME%(0,6,1), 0.0, -3, 0, 1, -2, 4, -1 *SET,%_FNCNAME%(0,7,1), 0.0, 99, 0, 1, -3, 0, 0 ! End of equation: 1000*{X}/cos(180/s_hole) FLST,2,3,1,ORDE,3 !确定加载点位置FITEM,2,37FITEM,2,54FITEM,2,354/GOF,P51X,FX, %JIAZAI%/STA TUS,SOLU !求解SOLVE/VIEW,1,1,1,1/ANG,1/REP,FAST/SOLUANTYPE,2 !模态求解MSA VE,0MODOPT,LANB,10EQSLV,SPARMXPAND,10, , ,1LUMPM,0PSTRES,0MODOPT,LANB,10,0,0, ,OFF/STA TUS,SOLUSOLVEFINISHSave模型图网格划分位移图应变图应力图应力模态(其中之一)。
ANSYS中的APDL命令总结
在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。
以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。
(1).Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneu(unselect)inve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元(2).Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值(3).Esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元type: S: 选择一组单元(缺省)R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item:Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号(4). mp, lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)c : 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数(5). 定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg(6). 根据需要耦合某些节点自由度cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotz ,allnode1-node17: 待耦合的节点号。
ansysapdl命令流输入方法
ansysapdl命令流输入方法ANSYS APDL命令流输入方法概述ANSYS APDL(ANSYS Parametric Design Language)是ANSYS软件中的一种命令流输入方法,它允许用户通过输入一系列的命令来定义模型、设置分析条件、运行分析和获取结果。
本文将介绍ANSYS APDL的基本输入方法和常用命令,帮助读者了解如何使用APDL进行工程分析。
ANSYS APDL使用命令流输入方法,即通过输入一系列的命令来完成模型定义、分析设置和结果获取。
用户可以将这些命令保存在一个文本文件中,然后通过ANSYS界面中的命令输入窗口或者批处理脚本来执行这些命令。
下面是一个简单的命令流输入示例:! 定义节点n,1,0,0n,2,1,0n,3,1,1n,4,0,1! 定义单元et,1,PLANE42r,1,0.1type,1mat,1real,1secnum,1secdata,1emodif,1,1e7! 定义边界条件d,1,1,ux,0d,2,2,ux,0d,3,2,uy,0d,4,1,uy,0! 施加荷载f,2,fx,1000! 求解solve! 输出结果finish在这个示例中,首先通过n命令定义了4个节点,然后通过et、r、type、mat、real等命令定义了一个平面应力单元,并给定了单元的材料属性和几何参数。
接着使用d命令定义了边界条件,限制了节点1和节点2的x方向位移为0,节点2和节点3的y方向位移为0。
然后使用f命令施加了一个1000N的水平力。
最后使用solve 命令求解模型,并使用finish命令结束分析。
常用命令ANSYS APDL提供了丰富的命令用于定义模型、设置分析条件和获取结果。
下面是一些常用的命令:1. n:定义节点,可以指定节点的坐标;2. et:定义单元类型,可以选择不同类型的单元,如平面应力单元、平面应变单元等;3. r:定义单元属性,如单元的厚度、截面积等;4. type:定义单元类型属性,如材料特性、几何特性等;5. mat:定义材料属性,如杨氏模量、泊松比等;6. real:定义实体特性,如单元类型、材料类型等;7. secnum:定义截面类型,如圆形、矩形等;8. secdata:定义截面参数,如半径、宽度、高度等;9. emodif:修改单元材料属性;10. d:定义边界条件,如位移约束、固支约束等;11. f:定义荷载,如力、压力等;12. solve:求解模型;13. finish:结束分析。
ansys apdl实例
ansys apdl实例ANSYS Parametric Design Language (APDL) 是一种强大的编程语言,用于创建复杂的有限元分析模型和执行高级分析任务。
下面是一个使用APDL 的案例,展示了如何使用它进行结构分析:案例描述:有一个悬臂梁,承受固定端部的垂直集中载荷。
要求使用APDL 建立模型,分析在不同集中载荷作用下悬臂梁的位移。
1.创建模型:首先,使用APDL 创建悬臂梁的几何模型。
可以使用命令流来完成,例如:bash复制代码/prep7BLC4,0,0,1,1MP,EX,1,200000MP,PRXY,1,0.3MAT1,1VMESH,ALL/solu这段代码使用了ANSYS 的标准前处理命令,创建了一个四边形薄片(BLC4),定义了材料属性(弹性模量MP,EX 和泊松比MP,PRXY),然后对模型进行网格划分(VMESH,ALL)。
2. 施加载荷和边界条件:在模型创建完成后,需要施加载荷和边界条件。
假设在固定端部施加垂直集中载荷,可以使用以下命令:bash复制代码/soluF,1,FY,-1000S,1,UY,0.0这段代码在固定端部施加了垂直向下大小为1000 N 的集中载荷(F,1,FY,-1000),并约束了该端的垂直位移(S,1,UY,0.0)。
3. 进行求解:完成载荷和边界条件的设置后,可以进行求解。
使用以下命令:bash复制代码/soluSOLVE4.结果后处理:求解完成后,需要查看和分析结果。
可以使用以下命令:bash复制代码/post1PLDISP,2FINISH这段代码显示了悬臂梁的位移等值线(PLDISP,2)。
ANSYS APDL命令流详解-11荷载及其施加
固定约束、支座 沉 降等
力、力矩等
施加在模型面上的分布力
压力、线荷载
施加体积荷载或场荷载
温度
施加物理惯性引起的荷载
从一种分析得到的结果,作 为另一种分析的荷载
重力加速度、角 速 度角加速度等
热分析的温度等
4.1 荷载及其施加---荷载
★荷载即可施加在几何模型(关键点、硬点、线、面、 体)上,也可施加在有限元模型(节点、单元)上, 或者二者混合使用。
2. 关键点自由度约束及相关命令
命令:DK,KPOI,Lab,VALUE,VALUE2,KEXPND,Lab2,Lab3,Lab4,Lab5,Lab6
KPOI---关键点编号,也可取ALL或元件名。
KEXPND---扩展控制参数。如为0则仅施加约束到关键点上的节
点;如为1则扩展到关键点之间(两关键点所连线)
★施加在几何模型上的荷载独立于有限元网格,不必 为修改网格而重新加载;
★施加在有限元模型上且要修改网格,则必须先删除 荷载再修改网格,然后重新施加荷载。
★不管施加到何种模型上,在求解时荷载全部转换 (自动或人工)到有限元模型上。
4.1 荷载及其施加---施加自由度约束
在结构分析中自由度共有7个,自由度的方向均依从节点坐 标系。约束可施加在节点、关键点、线和面上。
NODE---拟施加约束的节点号,其值可取ALL、组件名。 Lab---自由度标识符,如UX、ROTZ等。如为ALL,则为所有适宜的自由度。 VALUE---自由度约束位移值或表式边界条件的表格名称。 VALUE2---约束位移值的第二个数,如为复数输入时,VALUE为实部,而VALUE2为虚部。 NEND,NINC---节点编号范围和编号增量,缺省时NEND=NODE,NINC=1。 Lab2,Lab3,Lab4,Lab5,Lab6---其它自由度标识符,VALUE对这些自由度也有效。 各自由度的方向用节点坐标系确定,转角约束位移用弧度输入
在ANSYS中施加任意面、方向、变化载荷的方法
在任意面施加任意方向任意变化的压力在某些特殊的应用场合,可能需要在结构件的某个面上施加某个坐标方向的随坐标位置变化的压力载荷,当然,这在一定程度上可以通过 ANSYS表面效应单元实现。
如果利用 ANSYS的参数化设计语言,也可以非常完美地实现此功能,下面通过一个小例子描述此方法。
!!!在执行如下加载命令之前 ,请务必用选择命令 asel 将需要加载的几何面选择出来!!!finish/prep7et,500,shell63press=100e6amesh, allesla, snsla,s,1!如果载荷的反向是一个特殊坐标系的方向 ,可在此建立局部坐标系 ,并将 !所有节点坐标系旋转到局部坐标系下 .*get,enmax,elem,,num,maxdofsel,s,fx,fy,fzfcum,add !!! 将力的施加方式设置为 " 累加 ",而不是缺省的 " 替代 "*do,i,1,enmax*if,esel,eq,1,then*get,ae,elem,i,area! 此命令用单元真实面积,如用投影面积,请用下几条命令!*get,ae,elem,i,aproj,x ! 此命令用单元 X 投影面积,如用真实面积,请用上一条命令!*get,ae,elem,i,aproj,y ! 此命令用单元 Y投影面积!*get,ae,elem,i,aproj,z ! 此命令用单元 Z 投影面积xe=centrx !单元中心 X 坐标 (用于求解压力值 )ye=centry !单元中心 Y 坐标 (用于求解压力值 )ze=centrz !单元中心 Z 坐标 (用于求解压力值 )!下面输入压力随坐标变化的公式 ,本例的压力随 X 和 Y 坐标线性变化.p_e=(xe-10)*press+(ye-5)*pressf_tot=p_e*aeesel,s,elem,,insle,s,corner*get,nn,node,,countf_n=f_tot/nn*do,j,1,nnf,nelem(i,j),fx,f_n ! 压力的作用方向为X 方向!f,nelem(i,j),fy,f_n ! 压力的作用方向为 Y 方向!f,nelem(i,j),fz,f_n ! 压力的作用方向为 Z 方向*enddo*endifesla,s*enddoaclear,allfcum,repl !!! 将力的施加方式还原为缺省的"替代 "dofsel,allallsel说明:本信息在任意面施加任意方向任意变化的压力在某些特殊的应用场合,可能需要在结构件的某个面上施加某个坐标方向的随坐标位置变化的压力载荷,当然,这在一定程度上可以通过 ANSYS表面效应单元实现。
ANSYS在任意面施加任意载荷
ANSYS在任意面施加任意载荷【讨论】在任意面施加任意载荷(总结)一:关于压力的加载(感谢和aggie网友的探讨)加载过程在循环后进行,利用SFFUN命令把节点与节点压力相匹配。
缺点:每个节点需要匹配,导致数组维数太大。
如,下面指定节点1、2,3,4处的表面载荷值。
*DIM,ABC,ARRAY,4ABC(1)=10,20,30,40SFFUN,PRES,ABC(1)SF,ALL,PRES,100 !匹配后,还需加载则节点1处的压力值为110,节点2处压力载荷为120,依次类推。
Main Menu>Solution>Settings>Node Function命令用于把数组变量为节点加载。
在圆柱外表面0~180度之间加余弦分布载荷。
全部程序如下:/prep7*afun,deget,1,45mp,ex,1,2e11mp,prxy,1,0.3cyl4,,,0.5,,,,1smrtsize,1vsweep,all*get,etotnum,node,,count*dim,t1,array,etotnum,1,1csys,1*do,i,1,etotnum*if,ny(i),gt,0,then*if,ny(i),lt,180,then*if,nx(i),eq,0.5,thent1(i)=100*cos(ny(i))*elset1(i)=0*endif*endif*endif*enddosffun,pres,t1(1) !建立节点号与表面载荷的对应关系sf,all,pres,0 !加载二:关于力和位移的加载(这里转David2003网友的帖子,原贴由于设置积分限制,很多网友看不见,这里一并转来,做一个总结)在内孔120度范围内的面上加载与位置有关的面力,还有一部分施加了位移约束。
/prep7*afun,deget,1,45mp,ex,1,2e11mp,prxy,1,0.3wpave,0,0,0cyl4,0,0,1,360,1.5,360,0.5smrtsize,1vsweep,all*get,etotnum,node,,count*statusCSWPLA,11,1,1,1nrotat,allcscir,11,1*do,i,1,etotnum*if,ny(i),gt,0,then*if,ny(i),lt,60,then*if,nx(i),eq,1,thend,i,all,0*endif*endif*endif*enddo*do,i,1,etotnum*if,ny(i),gt,120,then*if,ny(i),lt,240,then*if,nx(i),eq,1,thenp=cos(ny(i))f,i,fx,p*endif*endif*endif*enddoeplot几点说明1:加载任意函数载荷时,由于有限元计算采取离散加载到结点的方法,使得加载数值在相邻结点之间以直线近似代替曲线函数。
ANSYS APDL命令汇总
ANSYS APDL命令汇总AA,P1,P2,P3,P4,P5,P6,P7,P8,P9此命令用已知的一组关键点点(P1~P9)来定义面(Area),最少使用三个点才能围成面,同时产生转围绕些面的线。
点要依次序输入,输入的顺序会决定面的法线方向。
如果超过四个点,则这些点必须在同一个平面上。
Menu Paths:Main Menu>Preprocessor>Create>Arbitrary>Through KPsABBR*ABBR,Abbr,String--定义一个缩略语.Abbr:用来表示字符串"String"的缩略语,长度不超过8个字符.String:将由"Abbr"表示的字符串,长度不超过60个字符.ABBRESABBRES,Lab,Fname,Ext-从一个编码文件中读出缩略语.Lab:指定读操作的标题,NEW:用这些读出的缩略语重新取代当前的缩略语(默认)CHANGE:将读出的缩略语添加到当前缩略语阵列,并替代现存同名的缩略语.Ext:如果"Fname"是空的,则缺省的扩展命是"ABBR".ABBSAVABBSAV,Lab,Fname,Ext-将当前的缩略语写入一个文本文件里Lab:指定写操作的标题,若为ALL,表示将所有的缩略语都写入文件(默认ADDadd, ir, ia,ib,ic,name,--,--,facta, factb, factc将ia,ib,ic变量相加赋给ir变量ir, ia,ib,ic:变量号name: 变量的名称ADELEAdele,na1,na2,ninc,kswp !kswp=0时只删除掉面积本身,=1时低单元点一并删除。
ADRAGAdrag, nl1,nl2,nl3,nl4,nl5,nl6, nlp1,nlp2,nlp3,nlp4,nlp5,nlp6 !面积的建立,沿某组线段路径,拉伸而成AFILLTAfillt,na1,na2,rad !建立圆角面积,在两相交平面间产生曲面,rad为半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文介绍用ANSYS APDL命令流实现加载表面效应单元的任意方向荷载的相关内容。
!用表面效应单元加任意方向的荷载
finish
/PREP7
et,1,45 !定义实体单元solid45
et,2,154 !定义三维表面效应单元
KEYOPT,2,2,0 !指定表面效应单元的K2=0,所加荷载与单元坐标系方向相同
KEYOPT,2,4,1 !指定表面效应单元的K4=0,去掉边中点,成为四结点表面单元
block,-5,5,-5,5,0,5 !建实体模型
mp,dens,1,2000
mp,ex,1,10e9
mp,prxy,1,0.2
asel,s,loc,z,5.0,5.0 !选中实体上表面
AATT, 1, , 2, 0, !指定实体上表面用154号单元
MSHAPE,0,2D
MSHKEY,1
esize,,5
amesh,all !对上表面划分网格
allsel,all
VATT, 1, , 1, 0 !指定实体用45号单元
MSHAPE,0,3D
MSHKEY,1
vmesh,all
/PSYMB,ESYS,1 !显示单元坐标系
esel,s,type,,2 !选中实体上表面的表面效应单元以方便加荷载
sfe,all,1,pres,,50 !在面内加Z向荷载,大小为50,荷载方向可通过值的正负控制sfe,all,2,pres,,100 !在面内加X向荷载,大小为100
sfe,all,3,pres,,150 !在面内加Y向荷载,大小为150
/psf,pres,,2,0,1 !以箭头方式显示所加荷载
!如果已经知道荷载在整体坐标系内的方向失量为(0,1,1),可以用如语句加该方向的荷载
sfe,all,5,pres,,100,0,1,1 !荷载值100后的三个数为方向失量
allsel,all
eplot。