多元函数微分法word版

合集下载

高等数学多元函数微分法

高等数学多元函数微分法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等数学多元函数微分法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第八章多元函数微分法及其应用第一节多元函数的基本概念教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。

教学重点:多元函数概念和极限,多元函数的连续性定理。

教学难点:计算多元函数的极限。

教学内容:一、区域邻域设是平面上的一个点,是某一正数。

与点距离小于的点的全体,称为点的邻域,记为,即=,也就是= {│}。

在几何上,就是平面上以点为中心、为半径的圆内部的点的全体。

区域设E是平面上的一个点集,P是平面上的一个点。

如果存在点的某一邻域,则称为的内点。

显然,的内点属于。

如果的点都是内点,则称为开集。

例如,集合中每个点都是1的内点,因此1为开集。

如果点的任一邻域内既有属于的点,也有不属于的点(点本身可以属于,也可以不属于),则称为的边界点。

的边界点的全体称为的边界。

例如上例中,1的边界是圆周和 =4。

设D是点集。

如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于D,则称点集D是连通的。

连通的开集称为区域或开区域。

例如,及都是区域。

开区域连同它的边界一起所构成的点集,称为闭区域,例如{│≥0}及{│1≤≤4}都是闭区域。

对于平面点集,如果存在某一正数,使得,其中是原点坐标,则称为有界点集,否则称为无界点集。

例如,{│1≤≤4}是有界闭区域,{│>0}是无界开区域。

二、多元函数概念在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下:例1 圆柱体的体积V和它的底半径、高之间具有关系。

《多元函数微分学》word版

《多元函数微分学》word版

第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有x y1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1x Z ∂∂+y 1y Z ∂∂=2yZ . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x x F x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0) 证明: (1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x x f x +()z ,y ,x kyf y +()z ,y ,x m zf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n k n k 21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:tu ∂∂=222x u a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22y u ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22y u ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂xu y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x .2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctgx y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求xdZ α; (2) 设Z=xy y x 2222e xyy x ++,求x Z ∂∂,y Z ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模.20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求:(1)grad r; (2)grad r1.23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23y x z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数; (6) u=f(x 2+y 2+x 2),所有二阶偏导数;(7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止);(2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤; (2) Z=22y x y x +-,(){}1y x y ,x ≤+; (3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1nn1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n1k k 0;x u (2) ∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f(a y k xh dt g(t)d n n n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求xk z h y g y f x e z d z c y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z)h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin xy ,试证 my y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0. 欢迎您的下载,资料仅供参考!。

高等数学讲义——多元函数微分法

高等数学讲义——多元函数微分法

x
(3)u z yx
z 6x2 y 2 ex y
(2) z x
1
1
y2 x2
(
y) x2
x2
y
y2
;
z x y x2 y2
(3) u z y x ln z y x ln y; u z y x ln z xy x1;
x
y
u y x z y x 1 z
例2
设f
(
x,
y)
xy x2
例3 设z f (x, y) x y ,

2z xy
,
2z yx
,
2z x 2
,
2z y 2
.
解 : z yx y1 , x z x y ln x, y
2 z y( y 1) x y2 x 2
2 z x y (ln x) 2 y 2
2 z x y1 yx y1 ln x 2 z
x2 y2 0 时
f x x, y
2x sin
x2
1
y2
2x x2 y2
c os x2
1
y2
f y x, y 2 y sin
x2
1
y2
2y x2 y2
c os x2
1
y2
lim
x, y 0,0
fx
x, y ,
lim
x, y 0,0
fy
x, y 不存在
fx
,
f

y
0,0 处不连续.
xy
yx
例4 证明u
1
满足拉普拉斯方程
x2 y2 z2
2u x 2
2u y 2
2u z 2

05第五讲多元微积分13页word

05第五讲多元微积分13页word

第五讲 多元微积分(上)考纲要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4..掌握多元复合函数一阶、二阶偏导数的求法.5.了解隐函数存在定理,会求多元隐函数的偏导数.6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.7.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 8.掌握二重积分的计算方法(直角坐标、极坐标). 一、多元微分学概念及其关系问题1 二元函数(,)f x y 在点00(,)x y 处有极限、连续、可偏导、可微、偏导数连续之间有何关系?答 首先要正确理解各概念.二元函数(,)f x y 在点00(,)x y 处的极限00lim (,)x x y y f x y A →→=表示(,)P x y 以任何方式趋近于000(,)P x y ,函数(,)z f x y =趋近于常数A .注:若找到两种不同趋近方式,使),(lim 00y x f y y x x →→存在,但两者不相等,或者找到一种趋近方式,使),(lim 00y x f y y x x →→不存在,则可断言),(y x f 在点),(000y x P 处极限不存在.如果0000lim (,)(,)x x y y f x y f x y →→=,则称函数(,)f x y 在点00(,)x y 处连续.二元函数),(y x f z =在点),(00y x 处对x 的偏导数0000000(,)(,)(,)limx x f x x y f x y f x y x∆∆∆→+-=;函数),(y x f z =在点),(00y x 处对y 的偏导数为0000000(,)(,)(,)limy y f x y y f x y f x y y∆∆∆→+-=.注: ),(00y x f x 实质上是一元函数0(,)z f x y =在点0x 处的导数x x dzdx =;00(,)y f x y 实质上是一元函数0(,)z f x y =在点0y 处的导数y y dz dy=.如果函数),(y x f z =在点),(y x 的全增量),(),(y x f y y x x f z -∆+∆+=∆可以表示为)(ρo y B x A z +∆+∆=∆,其中B A ,不依赖于y x ∆∆,而仅与y x ,有关,22)()(y x ∆+∆=ρ,则称函数),(y x f z =在点),(y x 可微分,y B x A ∆+∆称为函数),(y x f z =在点),(y x 的全微分,记为dz ,即dz =y B x A ∆+∆.若函数),(y x f z =在点),(y x 可微,则全微分z zdz dx dy x y∂∂=+∂∂. 二元函数(,)f x y 在点00(,)x y 处有极限、连续、可偏导、可微、偏导数连续之间的关系如图所示:例1.证明函数222222,0,(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点)0,0(处极限不存在、不连续,但偏导数存在且0)0,0()0,0(==y x f f .2.证明函数22220,(,)0,0x y f x y x y +≠=+=⎩在点)0,0(处连续、可偏导且0)0,0()0,0(==y x f f ,但不可微.3.证明函数222222221()sin ,0,(,)0,0.x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点)0,0(处连续、偏导数存在且0)0,0()0,0(==y x f f 、可微,但偏导数不连续.4. 设函数(,)f x y 在点00(,)x y 的两个偏导数都存在,则( ).【C 】 (A)(,)f x y 在点00(,)x y 连续 (B)(,)f x y 在点00(,)x y 可微(C)00lim (,)x x f x y →与00lim (,)y y f x y →都存在 (D)00lim (,)x x y y f x y →→存在5. 二元函数(,)f x y 在点(0,0)处可微的一个充分条件是( ).【C 】 (A )(,)(0,0)lim [(,)(0,0)]0x y f x y f →-=(B )0(,0)(0,0)lim0x f x f x→-=,且0(0,)(0,0)lim0y f y f y →-= (C)(,)lim0x y →=(D )0lim[(,0)(0,0)]0x x x f x f →-=,且0lim[(0,)(0,0)]0y y y f y f →-=问题2 如何求二元函数的极限(二重极限)?答 求二元函数的极限是一件困难的事情,读者只要会求一些简单的极限就可以了,求这些简单极限的主要依据是:⑴一元函数极限的四则运算和幂指运算法则对二元函数成立;⑵一元函数极限的某些结论(无穷小乘有界函数、两个重要极限)对二元函数成立; ⑶二元初等函数在其定义区域(包含在定义域内的区域或闭区域)内是连续的. 例 求下列极限:⑴2222001lim()sin x y x y x y →→++;⑵22200sin()lim x y x y x y →→+;⑶0x y →→;⑷22()lim ()e x y x y x y -+→+∞→+∞+;⑸100lim(1sin )xyx y xy →→+.二、偏导数和全微分的计算问题3 如何求初等函数的偏导数(全微分)?答 类似一元函数,对一个自变量求偏导数,其余的自变量看作常数. 例1.设arctan22()ey xz x y -=+,求dz 与yx z∂∂∂2(98-3)解 z zdz dx dy x y∂∂=+∂∂, arctan arctan arctan 2222212e ()e [()](2)e 1y yyx xxz y x x y x y y xx x---∂=++--=+∂+,arctan arctan arctan 2222112e ()e [](2)e 1y yyx xxz y x y y x y yx x---∂=++-⋅=-∂+, 故arctane[(2)(2)]y xdz x y dx y x dy -=++-,222arctan arctan arctan 222211e (2)e ()e 1y yyx x xz y xy x x y y x yx x y x---∂--=++-⋅=∂∂++. 2.设xyv y x u u z varctan ,ln,22=+==,求dz .【22ln ln v u xv yv dz y u dx x u dy x y u u ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦】问题4 如何求抽象复合函数的一、二阶偏导数?答 首先要正确理解和运用复合函数求导法则:设函数(,)u u x y =及(,)v v x y =都在点(,)x y 具有对x 和y 的偏导数,且函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 的两个偏导数存在,且可用下列公式计算x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂,yvv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 法则表明:复合函数对自变量求导必须通过所有中间变量. 然后要弄清函数、中间变量、自变量,正确使用导数记号. 例1.设),(v u f 有二阶连续偏导数,且)sin ,2(x y y x f z -=,求yx z∂∂∂2.解 【复合函数的二阶偏导数】122cos zf y xf x∂''=+∂, 21112221222[(1)sin ]cos cos [(1)sin ]zf f x xf y x f f x x y∂'''''''''=⋅-+⋅++⋅-+⋅∂∂ 2111222cos 2(2sin cos )sin cos x f f x y x f y x x f ''''''=⋅-+-+⋅. 注⑴1f '表示对第一个中间变量求导,12f ''表示先对第一个中间变量求导,再对第二个中间变量求导,其余记号有类似含义;⑵对中间变量的偏导数1f ',2f '仍然是两个中间变量的函数;⑶如果函数),(y x f z =的两个二阶混合偏导数x y z ∂∂∂2及y x z∂∂∂2在区域D 内连续,则在该区域内这两个二阶混合偏导数必相等.本题中1221f f ''''=,应该合并. 2.设),(v u f 有二阶连续偏导数,)(u g 有二阶连续导数,且(,)()yz f x xy g x=+,求yx z∂∂∂2. 解 【复合函数的二阶偏导数】122z yf yfg x x∂'''=+-∂, 21112221222110(0)()z f f x f y f f x g yg x y x x∂''''''''''''=⋅+⋅++⋅+⋅-+⋅∂∂ 12222231yxf f xyf g g x x''''''''=++--. 问题5 如何求隐函数的偏导数?答 求隐函数的偏导数的方法有: ⑴两边求导法;⑵公式法,使用时务必正确理解和运用隐函数求导公式: 设函数()y f x =由方程(,)0F x y =确定,则yx F F dx dy -=. 设函数(,)z f x y =由方程(,,)0F x y z =确定,则z x F F x z -=∂∂,zy F F y z-=∂∂. ⑶全微分法,使用时务必正确理解和运用全微分形式的不变性:无论是自变量还是中间变量,函数(,)z f u v =的全微分u v dz f du f dv =+. 例1. 设)(22y z y z x ϕ=+,ϕ可微,求y z ∂∂. 【2z z y y yz y ϕϕϕ'∂-=-'∂-】解 【隐函数的一阶偏导数,用公式或者用两边求导法】 方程为22(,,)()0z F x y z x z y yϕ=+-=,故2()122y zzy F z z y yy F yz y z y yϕϕϕϕϕϕ'--⋅-'∂-=-=-=-'∂-'-⋅. 2.),(v u f 有连续偏导数,函数(,)z z x y =由方程11(,)0f x zy y zx --++=所确定,证明z zxy z xy x y∂∂+=-∂∂. 证 【用公式法】方程为11(,,)(,)0F x y z f x zy y zx --=++=2121112()x z F f f x z zx F f y f x ---''+⋅-∂=-=-∂''⋅+⋅,2121112()y z F f y z f z y F f y f x ---''⋅-+∂=-=-∂''⋅+⋅,故 1112121112xf f x z f y z yf z z xy z xy x y f y f x----''''-+⋅+⋅-∂∂+==-∂∂''⋅+⋅. 3.设(,)y f x t =,而t 是由方程(,,)0F x y t =所确定的x ,y 的函数,其中f ,(1)F C ∈,求dydx. 解 【两个方程确定的隐函数,用全微分法】 取全微分法,得x t dy f dx f dt =+,0x y t F dx F dy F dt ++=,消去dt ,得x t t xt y tf F f F dy dx f F F -=+. 三、极值与最值问题6 如何求二元函数的极值?答 求二元函数),(y x f z =极值的步骤是:⑴解驻点方程(,)0,(,)0,x y f x y f x y =⎧⎪⎨=⎪⎩ 得驻点00(,)x y ;⑵求驻点处的二阶偏导数000000(,),(,),(,)xx xy yy A f x y B f x y C f x y ===;⑶判别:若20AC B ->,则00(,)f x y 是极值,且0A >时,00(,)f x y 是极小值,0A <时00(,)f x y 是极大值;若20AC B -<,则00(,)f x y 不是极值.例1.设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z = 的极值点和极值.(04-1)解 【隐函数的极值】方程两边对x 求导,得26220z zx y yz x x∂∂---=∂∂,⑴ 方程两边对y 求导,得6202220z zx y z yz y y∂∂-+---=∂∂,⑵ 令0zx ∂=∂,0z y ∂=∂,得30,3100,x y x y z -=⎧⎨-+-=⎩ 即3,,x y z y =⎧⎨=⎩ 代入方程0182106222=+--+-z yz y xy x ,解得9,3,3,x y z =⎧⎪=⎨⎪=⎩ 或者9,3,3,x y z =-⎧⎪=-⎨⎪=-⎩⑴式两边对x 求导,得22222222()20z z zy z x x x∂∂∂---=∂∂∂,⑴式两边对y 求导,得22622220z z z z z y z x x y y x x y ∂∂∂∂∂-----=∂∂∂∂∂∂∂, ⑵式两边对y 求导,得22222202222()20z z z z zy z y y y y y∂∂∂∂∂-----=∂∂∂∂∂, 将9,3,3,x y z ===0zx∂=∂,0z y ∂=∂代入,得22222(9,3,3)(9,3,3)(9,3,3)115,,,623zz z A B C xx y y ∂∂∂====-==∂∂∂∂ 2110,0366AC B A -=>=>,故点(9,3)是),(y x z z =的极小值点,极小值为(9,3)3z =类似可得点(9,3)--是),(y x z z =的极大值点,极大值为(9,3)3z --=-. 问题7 如何求条件极值? 答 求条件极值的步骤是:⑴先构造拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,其中λ为某一常数; ⑵解驻点方程(,)(,)0,(,)(,)0,(,)0.x x x y y y F f x y x y F f x y x y F x y λλϕλϕϕ=+=⎧⎪=+=⎨⎪==⎩ 得00(,)x y ;⑶求出相应的函数值00(,)f x y .注 这种方法称为拉格朗日乘数法,拉格朗日乘数法可推广到自变量多于两个的情形.例如:求函数(,,)u f x y z =在条件(,,)0x y z ϕ=,(,,)0x y z ψ=下的极值. 先构造拉格朗日函数12(,,,,)(,,)F x y z f x y z λλ=+12(,,)(,,)x y z x y z λϕλψ+,再解驻点方程,得可疑极值点的坐标.例1..求椭球面 1222222=++cz b y a x 的内接长方体的最大体积.解 设内接长方体位于第一卦限的顶点为(,,)x y z ,则它的长、宽、高分别为2x ,2y ,2z ,问题归结为求体积8V xyz =(0,0,0)x y z >>>在条件1222222=++cz b y a x 下的最大值. 构造拉格朗日函数:222222(,,,)8(1)x y z L x y z xyz a b cλλ=+++-解驻点方程组:222222222280,280,280,10,xy z x L yz a y L xz b z L yx c x y z L a b c λλλλ⎧=+=⎪⎪⎪=+=⎪⎨⎪=+=⎪⎪⎪=++-=⎩得唯一驻点:x y z ===,由实际意义知道,内接长方体的最大体积存在,其最大体积为max V ==2..已知曲线C :22220,3 5.x y z x y z ⎧+-=⎨++=⎩ 求曲线C 距离xoy 最远的点和最近的点.【(5,5,5),(1,1,1)--】问题8 如何求有界闭区域D 上连续函数的最值?答 由于有界闭区域D 上连续函数的最值一定存在,所以只要求出函数在D 的内部和D 的边界上可能取得最值的点,并求出这些点处的函数值,其中最大的就是最大值,最小的就是最小值.请读者结合下面的例子归纳出求有界闭区域D 上连续函数的最值的步骤.例 求二元函数)4(),(2y x y x y x f z --==在直线6=+y x ,x 轴和y 轴所围成的闭区域D 上的最大值与最小值.解 ⑴先求函数在D 内的驻点,解方程组⎪⎩⎪⎨⎧=---='=---='0)4(),(0)4(2),(222y x y x x y x f y x y x xy y x f yx 得区域D 内驻点)1,2(,且4)1,2(=f , ⑵再求D 的边界上的可能的最值点 在边界0=x 和0=y 上,0),(=y x f ; 在边界6=+y x (06)x <<上,x y -=6, 于是232()(,6)(6)(2)212(06)g x f x x x x x xx =-=--=-<<,由2()6240g x x x '=-=,得4x =,且(4)(4,2)64g f ==-, ⑶故4)1,2(=f 为最大值,64)2,4(-=f 为最小值. 四、二重积分问题9 叙述二重积分的定义和性质. 答 二重积分的定义、性质类似定积分. 例 1.设⎰⎰⎰⎰⎰⎰+=+=+=DDDd y x I d y x I d y x I σσσ2223222221)cos(,)cos(,cos 其中}1),{(22≤+=y x y x D ,则( ).(A)123I I I >>(B )321I I I >>(C )312I I I >>(D )213I I I >> (A ) 2.设(,)f x y 在区域D 上连续,00(,)x y 是D 的一个内点,r D 是以00(,)x y 为中心,以r 为半径的闭圆盘,则21lim (,)rr D f x y dxdy r π+→=⎰⎰ .3.设D 是平面有界闭区域,(,)f x y 与(,)g x y 都在D 上连续,且(,)g x y 在D 上不变号,证明:存在(,)D ξη∈,使得(,)(,)(,)(,)DDf x yg x y dxdy f g x y dxdy ξη=⎰⎰⎰⎰.问题10 将二重积分表为二次积分时,如何确定积分限?答 确定积分限是计算二重积分的关键,务必熟练掌握确定积分限的方法.若积分区域D 为x 型区域,将区域D 向x 轴投影,得a x b ≤≤,再对任一(,)x a b ∈,作平行于y 轴的直线,交D 的边界于12(,()),(,())x y x x y x ,得12()()y x y y x ≤≤,则21()()(,)(,)by x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰.若积分区域D 为y 型区域,将区域D 向y 轴投影,得c y d ≤≤,再对任一(,)y c d ∈,作平行于x 轴的直线,交D 的边界于12(,()),(,())y x y y x y ,得12()()x y x x y ≤≤,则21()()(,)(,)dx y cx y Df x y d dy f x y dx σ=⎰⎰⎰⎰.我们把直角坐标系中确定积分限的方法形象地称为“投影找区间,穿刺找线段”. 若利用极坐标计算二重积分,从极点引一条射线穿过区域D ,当这条射线在区域D 内旋转时,得αθβ≤≤,再对任一(,)θαβ∈,射线交D 的边界于12(,()),(,())r r θθθθ,得12()()r r r θθ≤≤,则()()21(cos ,sin )(cos ,sin )r r Df r r rdrd d f r r rdr βθαθθθθθθθ=⎰⎰⎰⎰.我们把极坐标系中确定积分限的方法形象地称为“旋转找区间,穿刺找线段”. 问题11 如何利用对称性计算二重积分? 答 利用对称性,可以简化二重积分的计算.⑴若区域D 关于x (或者y )轴对称,(,)f x y 关于y (或者x )是奇函数,则(,)0Df x y d σ=⎰⎰;⑵若区域D 关于x (或者y )轴对称,(,)f x y 关于y (或者x )是偶函数,则1(,)2(,)DD f x y d f x y d σσ=⎰⎰⎰⎰;⑶若区域D 关于x 轴和y 轴都对称,(,)f x y 关于y 和x 都是偶函数,则1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰;⑷若区域D 关于直线y x =对称(交换,x y ,区域D 不变),则(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰(交换被积函数中的,x y ,积分不变),特别地,()()DDf x d f y d σσ=⎰⎰⎰⎰.例1.设D 为以)1,1(),1,1(),1,1(---为顶点的三角形区域,1D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +=⎰⎰( ).【A 】(A) ⎰⎰1sin cos 2D ydxdy x . (B) ⎰⎰12D xydxdy(C) ⎰⎰+1)sin cos (4D dxdy y x xy (D) 02.设22{(,)4,0,0}D x y x y x y =+≤≥≥,()f x 为D 上的正值连续函数,,a b 为常数,则Dσ=( ).【D 】(A ) ab π (B)12ab π (C) ()a b π+ (D) 2a b π+ (C) ⎰⎰+1)sin cos (4D dxdy y x xy (D) 0问题12 如何计算二重积分? 答 计算二重积分的步骤是: ⑴画出积分区域D ; ⑵考察对称性; ⑶选择坐标系; ⑷选择积分次序; ⑸确定积分限(关键); ⑹表为二次积分; ⑺计算二次积分.注意:选择坐标系、积分次序的依据是被积函数和积分区域(积分的两要素):当积分时,可以考虑采用极坐标计算二重积分.例 1.计算⎰⎰-+=Dd y x I σ122,}10,10),{(≤≤≤≤=y x y x D . 314(-π) 2.设22{(,)0,0}D x y x y x y =+≤≥≥,22[1]x y ++表示不超过221x y ++的最大整数.计算二重积分22[1]Dxy x y dxdy ++⎰⎰.(05-1,38) 3.计算二重积分{}22max ,ex y Ddxdy⎰⎰,其中}10,10),{(≤≤≤≤=y x y x D .(02-1,e 1-)4.设D 是由3,x y x y ==在第一象限所围区域,求2e x Ddxdy ⎰⎰. (e 12-) 5.设函数2,(,)0,x y f x y ⎧=⎨⎩,,0,21else x y x ≤≤≤≤区域}2),{(22x y x y x D ≥+=, 求(,)Df x y dxdy ⎰⎰.(4920) 6..求221()2[1e]x y Dy x dxdy ++⎰⎰的值,其中D 由,1,1y x y x ==-=围成.(32-) 7..设二元函数2,1,(,)2,x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,)D f x y dxdy ⎰⎰,其中{}(,)2D x y x y =+≤.8.设闭区域{}22(,),0D x y x y y x =+≤≥,(,)f x y 为D 上的连续函数,且8(,)(,)Df x y f u v dudv π=⎰⎰,求(,)f x y .(02-4) 解 设(,)Df u v dudv a =⎰⎰,则8(,)af x y π=,8(,)DDDaa f x y dxdy dxdy π==-⎰⎰⎰⎰Da =-⎰⎰,cos3220001112(1cos )()26623a d rdr d ππθπθθθ==-=-⎰⎰⎰,42(,)()323f x y ππ=-. 问题13 如何交换积分次序?答 先根据积分限画出积分区域,再按另一次序确定积分限:“投影找区间,穿刺找线段”.例1.交换积分次序,=⎰⎰-221),(y y dx y x f dy .【2101(,)(,)x dx f x y dy f x y dy +⎰⎰⎰⎰】2.设()f x 为连续函数,1()()tty F t dy f x dx =⎰⎰,则(2)F '= . 【)2(f 】 问题14 如何交换坐标系?答 先根据积分限画出积分区域,再按另一坐标系确定积分限. 例 1.表为直角坐标下的二次积分,cos 20(cos ,sin )d f r r rdr πθθθθ=⎰⎰.【10(,)dx f x y dy ⎰⎰】2.表为极坐标下的二次积分,11112(,)(,)x xxdx f x y dy dx f x y dy +∞-+=⎰⎰⎰⎰ .【410cos sin (cos ,sin )x xd f r r rdr πθθθ+∞+⎰⎰】。

第二章 多元函数微分法及其应用 第三节 多元函数微分法

第二章 多元函数微分法及其应用 第三节  多元函数微分法
第三节
多元函数的微分法
第三节
第 八 章 多 元 函 数 的 微 分 法
多元函数微分法

复合函数微分法

隐函数微分法
-1-
第三节
多元函数的微分法

复合函数微分法
1 链式法则 定理 如果函数 u ( t ) 及 v ( t ) 都在点 t 在对应点 ( u , v ) 具有连续偏
第 八可导, 函数 z f ( u , v ) 章
yf 2 yz ( f 21 xyf
2
)
f 11 y ( x z ) f 12 xy zf 22 yf 2 .
- 18 -
例9

第 八 其中 f ( u ) 二阶可导。 章 y z f y f f x ( ) f 解 2 多 x x x 元 2 2 函 z y y y y y 数 ( 2 ) f 2 f ( 2 ) f 3 f 2 的 x x x x x x 微 2 z 1 z 1 分 f f f x 2 法 x y x y
多 在对应点( x , 元 函 z 数 的 x 微 分 z 法 y
y ) 的两个偏导数存在, 且可用下列公式计算
z u u x z u u y z v v x z v v y z w w x z w w y
u
z
xyv wFra bibliotek2t
f 23 )
f3
2 ln t t 2
t
( f 31
f 11
f 12
t 4 ln t
t
- 17 -
f 32
f 13
2 ln t t 1

多元函数微分法 (1)

多元函数微分法 (1)
第三节
多元函数微分学
1 多元函数的复合函数求导法则 2 全微分形式的不变性 3 隐函数微分法
一、链式法则
(1). z = f [ϕ ( x , y ),ψ ( x , y )]
定理7 设 u = ϕ ( x , y )和 v = ψ ( x , y )都在点(x,y)可偏导,而z=f(u,v) 在对应点(u,v)可微,则复合函数 z = f [ϕ ( x , y ),ψ ( x , y )]在 点(x,y)可偏导,且
∂z 0,求 ∂x .
2 2 2 F ( x , y , z ) x y z = + + − 4z, 解 令
则 Fx = 2 x , Fz = 2 z − 4, ∂z Fx x =− = , ∂x Fz 2 − z

∂z 由 F ( x + y + z , xy + yz + xz ) = 0 确定 z = z ( x , y ),求 . ∂x
z
u v w
x
y

x ∂z ∂z z = f ( x ϕ ( xy ) , x − y , ) , 设 求 , y ∂x ∂y
x 解 设 u = xϕ ( xy ) , v = x − y , w = , y
利用链式法则有 ∂z ∂u ∂v ∂w = f1 + f2 + f3 ∂x ∂x ∂x ∂x
u x v
推广: z = f ( u, v , w ), u = ϕ ( x ), v = ψ ( x ), w = h( x )
dz ∂f du ∂f dv ∂f dw = ⋅ + ⋅ + ⋅ dx ∂u dx ∂v dx ∂w dx du dv dw = f1 ⋅ + f2 ⋅ + f3 ⋅ dx dx dx

8.3 多元函数的微分法

8.3  多元函数的微分法

f 1 yx
y 1
2 x ( f 21 x ln x f 22 3 y )
(x
y 1
yx
y 1
ln x ) f1 yx 2 y 1 (ln x ) f 11
3 y 1
(3 y x
2x
y 1
ln x ) f12 6 xy 2 f 22
二 隐函数的微分法
解出
dy dx
,
dz dx
.
例11 设 y y ( x ), z z ( x ) 是由方程组
x2 y2 z2 1 2 x 3 y 3 z 6
所确定的隐函数,求
dy dx
,
dz dx
.
解 方程组两边对 x 求导得
dy dz 2 x 2 y dx 2 z dx 0 dy dz 23 3 0 dx dx
2
1 x

yx x y
2 2
,
所以
dy dx

Fx Fy

x y x y
.
F ( x, y, z ) 0
确定
z z ( x , y ), 求
z z , . x y
解法: 方程
F ( x, y, z ) 0
两边对 x 求导得
z x Fx Fz
Fx Fz
2
3
.
例10 设z z ( x , y ) 是由方程 z f ( x 2 y 3 z , xyz ) 所确定的隐函数,求
z z , . x y
解 令 F ( x , y , z ) f ( x 2 y 3 z , xyz ) z , 则

(完整word版)多元函数微分学及其应用归纳总结,推荐文档

(完整word版)多元函数微分学及其应用归纳总结,推荐文档

第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。

✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。

例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。

✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。

多元函数微分法及其应用.doc

多元函数微分法及其应用.doc

第八章多元函数微分法及其应用一、本章教学目标:1.使学生掌握多元函数的基本概念2.使学生掌握多元函数的微分求解关系3.使学生掌握多元函数各知识点之间的联系二、本章基本要求:1.使学生掌握多元函数连续的计算2.使学生掌握多元函数微分的计算三、本章各节的教学内容:第一节多元函数的基本概念教学内容:①平面点集,n维空间②多元函数的概念③多元函数的极限④多元函数的连续性第二节偏导数教学内容:①偏导数的定义及计算法②高阶偏导数第三节全微分教学内容:①全微分的定义②全微分在近似计算中的应用第四节多元复合函数的求导法则教学内容:①多元复合函数的求导法则第五节隐函数的求导法则教学内容:①一个方程的情形②方程组的情形第六节多元函数微分学的几何应用教学内容:①空间曲线的切线与法平面②曲面的切平面与法线第七节方向导数与梯度教学内容:①方向导数②梯度第八节多元函数的极值及其求法教学内容:①多元函数极值、最大值和最小值②条件极值,拉格朗日乘数法四、本章教学重点:1.使学生掌握多元函数的连续2.使学生掌握多元函数的微分3.使学生掌握多元函数微分学的应用五、本章教学内容的深化和拓宽:使学生深化对多元函数知识点间的联系六、本章教学方式:多媒体七、本章教学过程中应注意的问题:培养学生用发展变化的观点看待问题八、本章主要参考书目:1.同济大学数学教研室主编.1996年.北京:高等教育出版社2.华东师范大学数学系主编.1990年.北京:高等教育出版社3.惠淑荣主编.2002年.北京:中国农业出版社4.李喜霞主编.2003年.北京:中国农业出版社九、本章思考题:1.多元函数极限,连续,可微之间的关系2.多元函数求导的法则及应用3.多元函数微分学及应用§8-1多元函数的基本概念一、区域 1.邻域设0P 是XOY 平面上的一点,δ是一个正数,与点0P 的距离小于δ的点(,)P x y 的全体,称为点0P 的δ邻域。

记作()0,U P δ,即(){}00,U PP PP δδ=<,也就是 ()({}0,,U P x y δδ=<。

多元函数微分法及其应用第三节多元函数微分法

多元函数微分法及其应用第三节多元函数微分法

设函数 的单值连续函数
导数;
则方程组
且有偏导数公式 :
的某一邻域内可唯一确定一组 满足条件
u1(F,G)
u 1(F,G)y J(y,v)
v 1(F,G) 1
Fv
Fu Fv
Gv
Gu Gv
x
J(x,v) x J(u,x) 1 Fu Fu Fv Gu Gu Gv
v 1(F,G) 1
Fv
Fu Fv
y2 x3
f
z y
x1 x
f f
2z y2
1 x
f
x2
2z x2
y2
2z y2
y2 x
f
y2 x
f
0
2 全微分形式不变性
设函数 zf(u,v)具有连续偏导数, 如果 u,v 是自
变量, 则有全微分
dzzduzdv u v
当 u(x,y)、 v(x,y)时, 由于
dzxzdxyzdyu zu xvzxvdx
yexy 2 z ez z 0
x
x
z x
y e xy ez 2
xexy 2 z y
ez
z y
0
z x e xy y e z 2
dz(eyz ex2y)dx(exz ex2y)dy
xe
ye xy ez 2
,
e 2 . dz(eyzex2y)dx(exzex2y)dy
第三节 多元函数微分法
一 复合函数微分法 二 隐函数微分法
单击此处添加副标题
一 复合函数微分法
1 链式法则
定理 如果函数 u(t) 及 v(t)都在点 t
可导, 函数 zf(u,v)在对应点 (u,v) 具有连续偏

第八章 多元函数的微分法及其应用 练习题共7页word资料

第八章  多元函数的微分法及其应用  练习题共7页word资料

第8章 多元函数的微分法及其应用§8.1 多元函数的基本概念一、填空题1.已知22),(y x xyy x f -=+ ,则f(x,y)= 。

2.函数)1ln(4222y x y x Z ---=的定义域为 。

3.11lim0-+→→xy xy y x = 。

二、判断题1. 如果P 沿任何直线y=kx 趋于(0,0),都有A P f kxy x ==→)(lim 0,则A y x f y x =-→→)(lim 00。

( )2. 从0)0,(lim 0=→x f x 和2)2,(lim 0=→x x f x 知),(lim 0y x f y x →→不存在。

( )3. 下面定义域的求法正确吗?)ln(11),(y x y x y x f -+-+=解:012)2()1()2(0)1(01>-⇒+⎩⎨⎧>->-+x y x y x 所以定义域为x>1/2的一切实数。

三、选择题1. 有且仅有一个间断点的函数是( )(A )、x y (B )、)22ln(y x e x +- (C )、yx x+ (D )、arctanxy 2.下列极限存在的是( ) (A )、y x x y x +→→00lim(B )、y x y x +→→1lim 00 (C )、y x x y x +→→200lim (D )、y x x y x +→→1sin lim 00四、求下列函数的定义域,并画出定义域的图形。

1.y x y x z --+=112.221)ln(yx x x y z --+-=3.)]1)(9ln[(2222-+--=y x y x z 五、求下列极限,若不存在,说明理由。

1.22101lim y x xy y x +-→→2. 222200cos 1limy x y x y x ++-→→3.y x x y x +→→00lim§8.2 偏导数一、判断题1. 如果f(x,y)在(x 0,y 0) 处,xf ∂∂存在,则一元函数f(x,y 0)在(x,y 0)处连续。

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

第十七章多元函数微分学教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。

教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。

教学时数:18学时§1 可微性一.可微性与全微分:1.可微性:由一元函数引入. 亦可写为, 时.2.全微分:例1 考查函数在点处的可微性 . P107例1二.偏导数:1.偏导数的定义、记法:2.偏导数的几何意义: P109 图案17—1.3.求偏导数:例2 , 3 , 4 . P109—110例2 , 3 , 4 .例5. 求偏导数.例6. 求偏导数.例7. 求偏导数, 并求.例8. 求和.解=,=.例9证明函数在点连续, 并求和.证. 在点连续 .,不存在 .三.可微条件:1.必要条件:Th 1 设为函数定义域的内点.在点可微, 和存在, 且. ( 证) 由于, 微分记为.定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件, 但不充分.例10考查函数在原点的可微性 . [1]P110 例5 .2.充分条件:Th 2 若函数的偏导数在的某邻域内存在, 且和在点处连续 . 则函数在点可微 . ( 证) P111 Th 3 若在点处连续, 点存在,则函数在点可微 .证.即在点可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例11验证函数在点可微, 但和在点处不连续 . (简证,留为作业)证因此, 即,在点可微, . 但时, 有,沿方向不存在, 沿方向极限不存在; 又时,,因此, 不存在, 在点处不连续. 由关于和对称,也在点处不连续 .四.中值定理:Th 4 设函数在点的某邻域内存在偏导数 . 若属于该邻域, 则存在和, , 使得. ( 证) 例12设在区域D内. 证明在D内.五.连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1.可微性的几何意义:切平面的定义. P113.Th 5 曲面在点存在不平行于轴的切平面的充要条件是函数在点可微 . ( 证略)2. 切平面的求法: 设函数在点可微,则曲面在点处的切平面方程为(其中),法线方向数为,法线方程为.例13试求抛物面在点处的切平面方程和法线方程 . P115例63. 作近似计算和误差估计: 与一元函数对照, 原理 .例14 求的近似值. P115例7例15 应用公式计算某三角形面积 . 现测得,. 若测量的误差为的误差为. 求用此公式计算该三角形面积时的绝对误差限与相对误差限. P116.§2 复合函数微分法简介二元复合函数: .以下列三种情况介绍复合线路图;, ;.一.链导法则: 以“外二内二”型复合函数为例.Th 设函数在点D可微, 函数在点可微, 则复合函数在点可微, 且,. ( 证) P118称这一公式为链导公式 . 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”或“并联加,串联乘”)来概括 .对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数 . 但对外函数的可微性假设不能减弱.对外元, 内元, 有,.外元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数.例1. 求和. P120例1例2, . 求和.例3, 求和.例4设函数可微 ..求、和.例5用链导公式计算下列一元函数的导数:ⅰ> ; ⅱ> . P121例4例6设函数可微. 在极坐标变换下, 证明. P120例2 例7设函数可微, . 求证.二.复合函数的全微分: 全微分和全微分形式不变性 .例8. 利用全微分形式不变性求, 并由此导出和.P122 例5§3 方向导数和梯度一.方向导数:1.方向导数的定义:定义设三元函数在点的某邻域内有定义 .为从点出发的射线 . 为上且含于内的任一点, 以表示与两点间的距离 . 若极限存在, 则称此极限为函数在点沿方向的方向导数, 记为或、.对二元函数在点, 可仿此定义方向导数 .易见, 、和是三元函数在点分别沿轴正向、轴正向和轴正向的方向导数 .例1=. 求在点处沿方向的方向导数,其中ⅰ>为方向; ⅱ>为从点到点的方向.解ⅰ>为方向的射线为. 即. ,.因此,ⅱ>从点到点的方向的方向数为方向的射线为., ;.因此,2. 方向导数的计算:Th 若函数在点可微, 则在点处沿任一方向的方向导数都存在, 且++,其中、和为的方向余弦. ( 证) P125 对二元函数, +, 其中和是的方向角.註由++==, , , , , 可见, 为向量, , 在方向上的投影.例2 ( 上述例1 )解ⅰ>的方向余弦为=, =, =.=1 , =, =.因此, =++=.ⅱ>的方向余弦为=, =, =. 因此, =.可微是方向导数存在的充分条件, 但不必要 .例3 P126 .二. 梯度( 陡度):1. 梯度的定义: , , .|= .易见, 对可微函数, 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数, 梯度方向是函数变化最快的方向 . 这是因为|.其中是与夹角. 可见时取最大值, 在的反方向取最小值 .3. 梯度的运算:ⅰ> .ⅱ>(+) = +.ⅲ> () = +.ⅳ> .ⅴ> () = .证ⅳ> , ..§4 Taylor公式和极值问题一、高阶偏导数:1.高阶偏导数的定义、记法:例9 求二阶偏导数和. P128例1 例10 . 求二阶偏导数. P128例2 2.关于混合偏导数: P129—131.3.求含有抽象函数的二元函数的高阶偏导数: 公式, P131-132例11 . 求和. P132例34. 验证或化简偏微分方程:例12 . 证明+ . ( Laplace方程) 例13 将方程变为极坐标形式.解., , , ., ;因此, .方程化简为.例14试确定和, 利用线性变换将方程化为.解, .=+++==+2+.=+++==++.=++.因此,+ (+ . 令, 或或……, 此时方程化简为.二.中值定理和泰肋公式:凸区域 .Th 1 设二元函数在凸区域D 上连续, 在D的所有内点处可微 . 则对D内任意两点 D , 存在, 使.证令.系若函数在区域D上存在偏导数, 且, 则是D上的常值函数.二. Taylor公式:Th 2 (Taylor公式) 若函数在点的某邻域内有直到阶连续偏导数, 则对内任一点,存在相应的, 使证P134例1 求函数在点的Taylor公式( 到二阶为止) . 并用它计算P135—136例4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 P136例52.极值的必要条件:与一元函数比较 .Th 3 设为函数的极值点 . 则当和存在时, 有=. ( 证)函数的驻点、不可导点,函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实)二次型. 其矩阵为.ⅰ> 是正定的,顺序主子式全,是半正定的,顺序主子式全;ⅱ> 是负定的,, 其中为阶顺序主子式.是半负定的, .ⅲ> < 0时, 是不定的.充分条件的讨论: 设函数在点某邻域有二阶连续偏导数 . 由Taylor公式, 有++ .令, , , 则当为驻点时, 有.其中.可见式的符号由二次型完全决定.称该二次型的矩阵为函数的Hesse矩阵. 于是由上述代数准备, 有ⅰ> , 为( 严格) 极小值点;ⅱ> , 为( 严格) 极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .综上, 有以下定理 .Th 4 设函数在点的某邻域内有连续的二阶偏导数, 是驻点 . 则ⅰ> 时, 为极小值点;ⅱ> 时, 为极大值点;ⅲ> 时, 不是极值点;ⅳ> 时, 可能是极值点, 也可能不是极值点 .例3—7 P138—140 例6—10 .四.函数的最值:例8 求函数在域D = 上的最值 .解令解得驻点为. .在边界上, , 驻点为, ;在边界上, , 没有驻点;在边界上, , 驻点为, .又.于是,..[]。

第七章多元函数的微分法共26页word资料

第七章多元函数的微分法共26页word资料

第七章 多元函数的微分法前五章我们介绍了一元函数的极限,连续,导数和微分等基本概念.现在我们将把这些基本概念推广到依赖多个自变量的函数,即多元函数.本章主要讨论含两个自变量的函数即二元函数的情况.§7.1 多元函数的基本概念一、二元函数及其图形在自然现象中常遇到依赖于两个变量的函数关系,举例如下:例1 任意三角形的面积S 与底x 高y 有下列关系: S=)0,0(21>>y x xy底与高可以独立取值,是两个独立的变量(称为自变量)。

在它们的变化范围内,当的值取定后,三角形的面积就有一个确定的值与之对应。

例2 从物理学中知道,理想气体的体积V 与绝对温度T 、压强P 之间有下列关系: ),0,0(是常数R P T P RTV >>=T ,P 可以独立取值,是两个独立的变量,在它们的变化范围内,当T ,P 的值取定后,体积V 就有一个确定的值与之对应。

以上两个例子的具体意义虽然不同,但却具有一个共同的特征,抽去它们的共性,就得到二元函数的定义如下:定义1 设有三个变量x 、y 、z ,若对于变量x 、y 在各自变化范围内独立取定的每一组值,变量z 按照一定的规律,总有一个确定的值与之对应,则z 称为x 、y 的二元函数,记作z =f (x ,y )。

称x 、y 为自变量,z 为因变量。

自变量的变化范围称为函数的定义域。

当自变量x 、y 分别取值x 0、y 0时,因变量z 的对应值z 0称为函数z =f (x ,y )的当x =x 0, y =y 0时的函数值,记作z 0= f (x 0、y 0)。

类似地,可以定义三元函数以及三元以上的函数。

二元以及二元以上的函数都称为多元函数。

注意:二元函数的定义域通常是由一条或几条曲线所围成的平面区域,围成区域的曲线叫做该区域的边界。

不包括边界的区域叫做开区域,连同边界在内的区域叫做闭区域。

如果区域可延伸到无限远,称这区域是无界的。

多元函数微分学53738-32页精选文档

多元函数微分学53738-32页精选文档
内点、边界点、区域、聚点等概念也可定义.
(5)二元函数的定义
设 D是 平 面 上 的 一 个 点 集 , 如 果 对 于 每 个 点
P(x,y)D, 变 量 z按 照 一 定 的 法 则 总 有 确 定 的 值 和 它 对 应 , 则 称 z是 变 量 x,y的 二 元 函 数 , 记 为 zf(x,y)( 或 记 为 zf(P)) .
E
• •
y
连通的开集称为区域或开区域.
例如,{x (,y)|1x 2y24 }.
o
x
开 区 域 连 同 它 的 边 界 一 起 称 为 闭 区 域 . y
例如,{x (,y)|1x 2y24 }.
o
x
对于点集E 如果存在正K数,使一切点 PE 与 某 一 定 点 A间 的 距 离AP不 超 过K , 即 AP K 对一切PE 成立,则称 E 为有界点集,否 则称为无界点集.
说明: 内点一定是聚点;
边界点可能是聚点;
例 {x ( ,y )|0 x 2 y 2 1 }
(0,0)既是边界点也是聚点. 点集E的聚点可以属于E,也可以不属于E .
例如, {x ( ,y )|0 x 不属于集合.
例如, {x (,y)|x2y21 }
边界上的点都是聚点也都属于集合.
n维空间中两点间距离公式
设两点为 P(x1,x2,,xn),Q (y1,y2,,yn),
|P | ( y Q 1 x 1 ) 2 ( y 2 x 2 ) 2 ( y n x n ) 2 .
特殊地当 n1,2,3时,便为数轴、平面、
空间两点间的距离.
n维空间中邻域、区域等概念
邻域: U ( P 0 ,) P |P 0 | , P P R n

多元函数微分法(1)共34页文档

多元函数微分法(1)共34页文档
x 2 z y (f u u u y f u ) e y y f u e y f x u u y f x
于是
2w xz
f11 xfy 12 yf2 y(f2 z 1 x f2 ) y 2
f 1 y 1 ( x z ) f 1 x 2 2 z f 2 y y 2 f 2 .
例5 设 z f(u ,x ,y )u , xy ,e 其中f具有二阶连续偏导数,求 2z xy
解 x z fu u x fx fu e y fx
(3) 如果u(x, y)及v (x, y)都在点
(x, y)具有对x和y 的偏导数,且函数z f (u,v)在
对应点(u,v)具有连续偏导数,则复合函数
z f[(x, y),(x, y)]在对应点(x, y)的两个偏
导数存在,且可用下列公式计算
z z uz v,
z
z
u
z
v
.
x ux vx y uy vy
( x, y)的两个偏导数存在,且可用下列公式计算
z
z
u
z
v
z
w
,
x u x v x w x
z
z
u
z
v
z
w
.
y u y v y w y
ux zv
wy
特殊地 z f(u ,x ,y )其中 u(x,y)z
即 z f [( x ,y )x ,,y ]令,vx, w y,
u
x y
x y
v 1, w 0,
链式法则如图示
u
x
z
v
y
z x
z u
u z v , x v x
z z u y u y
z v
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.3 多元函数微分法一、复合函数微分法――链式法则模型1. ()()()z f u v u u x y v v x y ==,,,,=,z z u z z z u z x u x x y u y yνννν∂∂∂∂∂∂∂∂∂∂=⋅+⋅=⋅+⋅∂∂∂∂∂∂∂∂∂∂; 模型2. ()()u f x y z x y =,,,z=z ,x z y z uzf f xxu z f f yy∂∂⎧''=+⎪∂∂⎪⎨∂∂⎪''=+∂∂⎪⎩ 模型3. ()()()u f x y z y y x z x ===,,,,z()()x y z duf f y x f z x dx'''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,,u v u v u v w u vf f x x x wu v f f yy y w u vf f zz z ⎧∂∂∂''=+⎪∂∂∂⎪∂∂∂⎪''=+⎨∂∂∂⎪⎪∂∂∂''=+⎪∂∂∂⎩ 还有其他模型可以类似处理。

【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由下列两式确定2xye xy -=和0sin x zxt e dt t -=⎰,求dudx。

解 根据模型3. x y z du dy dz f f f dx dx dx'''=++ 由2xye xy -=两边对x 求导,得0xydy dy e y xy x dx dx ⎡⎤⎛⎫+-+= ⎪⎢⎥⎣⎦⎝⎭解出 dy ydx x=-(分子和分母消去公因子()1xy e -) 由0sin x zxte dt t -=⎰两边对x 求导,得()()sin 1x x z dz e x z dx -⎛⎫=- ⎪-⎝⎭解出 ()()1sin x e x z dzdx x z -=-- 所以 ()()1sin xe x z duf y f fdx x x y x z z⎡⎤-∂∂∂=-+-⎢⎥∂∂-∂⎣⎦ 【98】设1()()z f xy y x y xϕ=++,f ,ϕ具有二阶连续导数,则2________z x y ∂=∂∂。

答案:()()()yf xy x y y x y ϕϕ'''''++++注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和ϕ均为一元函数。

【05】设函数(,)()()()d x yx yu x y x y x y t t ϕϕψ+-=++-+⎰,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(A )2222u u x y ∂∂=-∂∂;(B )2222u u x y ∂∂=∂∂;(C )222u u x y y ∂∂=∂∂∂;(D )222u ux y x ∂∂=∂∂∂ 答案:B全微分形式不变性例:利用全微分形式不变性求sin uz e v =,u xy =,v x y =+的偏导数。

【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式22220z z x y ∂∂+=∂∂(1)验证()()0f u f u u'''+=;(2)若(1)0f =,(1)1f '=,求函数()f u 的表达式。

二、隐函数微分法隐函数存在定理1:设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,且00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点00(,)P x y 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =,它满足条件00()y f x =,并有d d x yF yx F =-。

隐函数存在定理2:设函数(,,)F x y x 在点000(,,)P x y z 的某一邻域内具有连续偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点000(,,)P x y z 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数(,)z f x y =,它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF z y F ∂=-∂。

隐函数存在定理3:方程组的情形1. 设()0F x y z ,,=确定()z z x y =,,则y x z z F F zz x F y F ''∂∂=-=-''∂∂;2. 确定()x x y z =,,则y z x x F F xx y F z F ''∂∂=-=-''∂∂; 3. 确定()y y z x =,,则x z y y F F yy z F x F ''∂∂=-=-''∂∂; 【05】设有三元方程ln 1xzxy z y e -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )(A )只能确定一个具有连续偏导数的隐函数(,)z z x y =;(B )可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y =; (C )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y =;(D )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =。

答案:D 【例2】设(),,u f x y z =有连续偏导数,(),z z x y =由方程xyzxe ye ze -=所确定,求du 。

解一 令(),,xyzF x y z xe ye ze =--得()1x x F x e '=+,()1yy F y e'=-+,()1z z F z e '=-+则用隐函数求导公式得1111x z y z x z F z x z y e e x F z y z --'∂+∂+=-==-'∂+∂+; 根据模型2.11x zx z x z u z x f f f f e x x z -∂∂+''''=+=+∂∂+11y zy z y z u z y f f f f e y y z -∂∂+''''=+=-∂∂+ ∴ 1111x z y z x z y z u u x y du dx dy f f e dx f f e dy x y z z --∂∂++⎛⎫⎛⎫''''=+=++- ⎪ ⎪∂∂++⎝⎭⎝⎭解二 在xyzxe ye ze -=两边求微分得()()()111x y z x e dx y e dy z e dz +-+=+解出()()()111x y zx e dx y e dy dz z e +-+=+ 代入 x y z du f dx f dy f dz '''=++()()()111x y x y z zx e dx y e dy f dx f dy f z e ⎡⎤+-+'''=++⎢⎥+⎣⎦合并化简也得1111x z y z x z y z x y du f f e dx f f e dy z z --++⎛⎫⎛⎫''''=+++ ⎪ ⎪++⎝⎭⎝⎭【例3】 已知0x y F z z ⎛⎫= ⎪⎝⎭,确定()z z x y =,其中()()F u v z x y ,,,均有连续偏导数,求证z z xy z x y∂∂+=∂∂。

证 ()()0x y F u v F G x y z z z ⎛⎫=== ⎪⎝⎭,,,,2211x u y v z u v x y G F G F G F F z zz z ⎛⎫⎛⎫'''''''===-+- ⎪ ⎪⎝⎭⎝⎭ ,  , 根据隐函数求导公式x u zu v G zF zx G xF yF ''∂=-='''∂+yv zu v G zF z y G xF yF ''∂=-='''∂+ 则得 z z xy z x y∂∂+=∂∂ 【99】设()y y x =,()z z x =是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求d d zx。

提示:方程形式(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档