福建省宁德市中考数学试卷(解析版)

合集下载

【免费下载】福建省宁德市中考数学试卷解析版

【免费下载】福建省宁德市中考数学试卷解析版

A.
B.
C.
考点:简单几何体的三视图. 分析:主视图是分别从物体正面看所得到的图形. 解答:解:从几何体的正面看所得到的形状是矩形,中间有一道竖直的虚线, 故选:D. 点评:本ห้องสมุดไป่ตู้考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. 9.(2013 宁德)如图所示的两圆位置关系是( )
A.黑(3,3),白(3,1) B.黑(3,1),白(3,3) C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案. 分析:首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可. 解答:解:A.当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错 误; B.当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确; C.当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;
A.40° B.60° C.80° D.100° 考点:相似三角形的性质. 分析:根据相似三角形的性质:对应角相等. 解答:解:∵△ABC∽CAED, ∴∠C=∠ADE=80°, 故选 C. 点评:本题考查了相似三角形的性质,题目比较简单. 8.(2013 宁德)如图所示的正三棱柱的主视图是( )
2013 年福建省宁德市中考数学试卷 一.选择题(本大题共 10 小题,每小题 4 分,满分 40 分,每小题只有一个正确答案)
1.(2013 宁德)﹣5 的绝对值是( )
A.5 B.﹣5 C. D.﹣
考点:绝对值. 分析:根据绝对值的性质求解.
解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选 A. 点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0 的绝对值是 0. 2.(2013 宁德)计算 a3a2 的结果是( ) A.2a5 B.a5 C.a6 D.a9 考点:同底数幂的乘法. 分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即可求得答案. 解答:解:a3a2=a5. 故选 B. 点评:此题考查了同底数幂的乘法.此题比较简单,注意掌握指数的变化是解此题的关键. 3.(2013 宁德)根据市委建设“六新大宁德”的目标,到 2017 年全市公路通车里程增加到 10500 千米,将 10500 用科学计数法表示为( ) A.10.5×103 B.0.105×105 C.1.05×104 D.1.05×105 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变 成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数; 当原数的绝对值<1 时,n 是负数. 解答:解:将 10500 用科学记数法表示为:1.05×104. 故选:C. 点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整 数,表示时关键要正确确定 a 的值以及 n 的值. 4.(2013 宁德)为了解某射击运动员的射击成绩,从一次训练中随机抽取了了该运动员的 10 次射击成绩, 纪录如下;8,9,8,8,10,9,10,8,9,10.这组数据的极差是( ) A.9 B.8.9 C.8 D.2 考点:极差. 分析:根据极差的定义即可求得答案. 解答:解:这组数据的最大数是 10,最小数是 8,

【真题】宁德市中考数学试题含答案解析(Word版)

【真题】宁德市中考数学试题含答案解析(Word版)

福建省宁德市中考数学试卷(解析版)一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂〕1.(4分)(•宁德)﹣3的绝对值是()A.3 B.C.D.﹣3【考点】15:绝对值.【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣3的绝对值是3.故选A.【点评】本题考查了绝对值,如果用字母a表示有理数,则数a 的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(4分)(•宁德)已知一个几何体的三种视图如图所示,则该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.3.(4分)(•宁德)如图,点M在线段AB上,则下列条件不能确定M是AB中点的是()A.BM=AB B.AM+BM=AB C.AM=BM D.AB=2AM【考点】ID:两点间的距离.【分析】直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.【解答】解:A、当BM=AB时,则M为AB的中点,故此选项错误;B、AM+BM=AB时,无法确定M为AB的中点,符合题意;C、当AM=BM时,则M为AB的中点,故此选项错误;D、当AB=2AM时,则M为AB的中点,故此选项错误;故选:B.【点评】此题主要考查了两点之间,正确把握线段中点的性质是解题关键.4.(4分)(•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.13【考点】K6:三角形三边关系.【专题】11 :计算题.【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.【解答】解:∵AB=5,AC=8,∴3<BC<13.故选D.【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.5.(4分)(•宁德)下列计算正确的是()A.﹣5+2=﹣7 B.6÷(﹣2)=﹣3 C.(﹣1)=1 D.﹣20=1【考点】1G:有理数的混合运算;6E:零指数幂.【专题】11 :计算题;511:实数.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣3,不符合题意;B、原式=﹣3,符合题意;C、原式=﹣1,不符合题意;D、原式=﹣1,不符合题意,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.(4分)(•宁德)如图所示的分式化简,对于所列的每一步运算,依据错误的是()A.①:同分母分式的加减法法则B.②:合并同类项法则C.③:提公因式法 D.④:等式的基本性质【考点】6B:分式的加减法.【分析】根据分式的加减法法则计算即可.【解答】解:①:同分母分式的加减法法则,正确;②:合并同类项法则,正确;③:提公因式法,正确,④:分式的基本性质,故错误;故选D.【点评】此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.7.(4分)(•宁德)某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变【考点】W7:方差;W1:算术平均数.【分析】根据平均数、方差的定义即可解决问题.【解答】解:由题意原来6位员工的月工资平均数为4500元,因为新员工的工资为4500元,所以现在7位员工工资的平均数是4500元,由方差公式可知,7位员工工资的方差变小,故选B.【点评】本题考查方差的定义、平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(4分)(•宁德)如图,直线ι是一次函数y=kx+b的图象,若点A(3,m)在直线ι上,则m的值是()A.﹣5 B.C.D.7【考点】F8:一次函数图象上点的坐标特征.【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.9.(4分)(•宁德)函数y=x3﹣3x的图象如图所示,则以下关于该函数图象及其性质的描述正确的是()A.函数最大值为2 B.函数图象最低点为(1,﹣2)C.函数图象关于原点对称D.函数图象关于y轴对称【考点】E6:函数的图象;P5:关于x轴、y轴对称的点的坐标;R6:关于原点对称的点的坐标.【专题】532:函数及其图像.【分析】观察函数图象,得出正确的表述即可.【解答】解:观察图形得:函数没有最大值,没有最低点,函数图象关于原点对称,故选C【点评】此题考查了函数的图象,关于x轴、y轴对称的点的坐标,以及关于原点对称的点的坐标,认真观察图形是解本题的关键.10.(4分)(•宁德)如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD【考点】KH:等腰三角形的性质.【分析】由三角形的外角性质、等腰三角形的性质得出选项A、B、C正确,选项D错误,即可得出答案.【解答】解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠AED=∠CDE+∠C,∴∠CDE+∠C+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,选项C正确;∵∠AED=∠ECD+∠CDE,∠ECD≠∠CDE,∴选项D错误;故选:D.【点评】本题考查了等腰三角形的性质、三角形的外角性质;熟练掌握等腰三角形的性质和三角形的外角性质是解决问题的关键.二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)(•宁德)9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为 1.37×1010光年.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:13 700 000 000=1.37×1010,故答案为:1.37×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(•宁德)一元二次方程x(x+3)=0的根是x=0或﹣3.【考点】A8:解一元二次方程﹣因式分解法.【专题】11 :计算题.【分析】利用分解因式法即可求解.【解答】解:x(x+3)=0,∴x=0或x=﹣3.故答案为:x=0或x=﹣3.【点评】此题主要考查了利用因式分解的方法解一元二次方程,解题的关键是熟练进行分解因式.13.(4分)(•宁德)若矩形的面积为a2+ab,长为a+b,则宽为a.【考点】4H:整式的除法.【分析】根据多项式除以多项式的运算法则计算即可.【解答】解:矩形的宽=(a2+ab)÷(a+b)=a,故答案为:a.【点评】本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.14.(4分)(•宁德)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.【考点】X6:列表法与树状图法.【专题】11 :计算题;543:概率及其应用.【分析】列表得出所有等可能的情况数,找出甲乙两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中甲乙两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,则P==,故答案为:【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.15.(4分)(•宁德)将边长为2的正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,当α最小时,点A运动的路径长为.【考点】O4:轨迹;R3:旋转对称图形.【分析】根据题意α最小值是60°,然后根据弧长公式即可求得.【解答】解:∵正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,α最小值是60°,∴点A运动的路径长==.故答案为.【点评】本题考查了旋转对称图形,主要考查了学生的理解能力和计算能力,题目是一道比较好的题目,解此题的关键是求出α的最小值.16.(4分)(•宁德)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC 向左平移n个单位,使点C落在该反比例函数图象上,则n的值为2.【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与图形变化﹣平移.【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数y=的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.【解答】解:∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数y=的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴y=,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为:2.【点评】本题考查了菱形的性质,平移的性质,用待定系数法求反比例函数的解析式等知识点,能求出C的坐标是解此题的关键.三、解答题(本大题有9小题,共86分.请在答题卞的相应位置作答)17.(8分)(•宁德)化简并求值:x(x﹣2)+(x+1)2,其中x=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题;512:整式.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=﹣2时,原式=8+1=9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(•宁德)已知:不等式≤2+x(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是否是该不等式的解.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)根据不等式的解的定义求解可得.【解答】解:(1)2﹣x≤3(2+x),2﹣x≤6+3x,﹣4x≤4,x≥﹣1,解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,∴a是不等式的解.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(8分)(•宁德)如图,E,F为平行四边形ABCD的对角线BD上的两点,AE ⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,即可证得∠ABE=∠CDF,则可证得△ABE≌△CDF,继而证得结论.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.20.(8分)(•宁德)小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意列出方程组,求出方程组的解即可得到结果.【解答】解:被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意得:,解得:,则“五一”前同样的电视每台2500元,空调每台3000元.【点评】此题考查了二元一次方程组的应用,弄清题中的等量关系是解本题的关键.21.(8分)(•宁德)某初中学校组织200位同学参加义务植树活动,每人植树的棵数在5至10之间.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是9棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11,正确的数据应该是12(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动200位同学一共植树多少棵?【考点】W4:中位数;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)乙组调查了30人,根据人数和下面的频率可得错误数据为11,应为12;(3)根据样本要具有代表性可得乙同学抽取的样本比较有代表性,再利用样本估计总体的方法计算即可.【解答】解:(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11,正确的数据应该是12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点评】此题主要考查了抽样调查,以及中位数,关键是掌握中位数定义,掌握抽样调查抽取的样本要具有代表性.22.(10分)(•宁德)如图,在边长为1的正方形组成的5×8方格中,△ABC 的顶点都在格点上.(1)在给定的方格中,以直线AB为对称轴,画出△ABC的轴对称图形△ABD.(2)求sin∠ABD的值.【考点】P7:作图﹣轴对称变换;T7:解直角三角形.【分析】(1)根据格点的特点作出点C关于直线AB的对称点D,连接AD,BD 即可;(2)根据格点的特点可知∠DBC=90°,再由轴对称的性质可知∠ABD=∠ABC=45°,据此可得出结论.【解答】解:(1)如图,△ABD即为所求;(2)由图可知,∠DBC=90°,∵点C与点D关于直线AB的对称,∴∠ABD=∠ABC=45°,∴sin∠ABD=sin45°=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.(10分)(•宁德)如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若BF=10,sin∠BDE=,求DE的长.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)先连接OD,根据∠ODB=∠DBE,即可得到OD∥AC,再根据DE⊥AC,可得OD⊥DE,进而得出直线DE是⊙O的切线;(2)先连接DF,根据题意得到∠F=∠BDE,在Rt△BDF中,根据=sinF=sin∠BDE=,可得BD=2,在Rt△BDE中,根据sin∠BDE==,可得BE=2,最后依据勾股定理即可得到DE的长.【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4.【点评】本题主要考查了切线的判定以及解直角三角形的运用,解决问题的关键是作辅助线,构造等腰三角形以及直角三角形,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.24.(13分)(•宁德)在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.【考点】LO:四边形综合题.【分析】(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;(2)先根据垂直的作法即可画出图形,判断出△ADE≌△CBF,得出CF=1,再判断出△AOB∽△DEA,即可得出OB=,即可得出结论;(3)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4.【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO ≌△ADE ,解(2)的关键是△ADE ≌△CBF 和△AOB ∽△DEA ,解(3)的关键是作出辅助线,是一道中考常考题.25.(13分)(•宁德)如图,抛物线l :y=(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线ι在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数ƒ的图象. (1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数ƒ的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数ƒ的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标;(2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.【考点】HF :二次函数综合题.【分析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数ƒ的值y 随x 的增大而增大(即呈上升趋势)的x 的取值; ②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE=2PD ,证明△PAD ∽△QAE ,则,得AE=2AD ,设AD=a ,根据QE=2FD列方程可求得a 的值,并计算P 的坐标;(2)先令y=0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.【解答】解:(1)①把A (1,0)代入抛物线y=(x ﹣h )2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ =2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了。

【真题】宁德市中考数学试题含答案解析(版)

【真题】宁德市中考数学试题含答案解析(版)

【真题】宁德市中考数学试题含答案解析(版)宁德市中考数学试题含答案解析一、选择题1. 某工厂用两种型号的机器加工产品,分别为A型和B型。

若只使用A型机器,加工一件产品需要12小时;若只使用B型机器,加工一件产品需要16小时;若同时使用A型和B型机器,加工一件产品需要8小时。

那么,在同样的条件下,同时使用2台A型机器和3台B型机器,加工3件产品需要多少小时?A. 33B. 24C. 22D. 15答案:B解析:设同时使用2台A型机器和3台B型机器加工3件产品需要的时间为t。

根据题意,可列出方程:2×12t + 16t = 3×8解得,t = 2因此,同时使用2台A型机器和3台B型机器,加工3件产品需要24小时。

2. 卡卡在超市购买了若干只眼睛彩球,其中3只是不同颜色的,其余的是红色的。

每只彩球塞在同样大小的盒子里。

已知卡卡用这些盒子可以摆出2个边长为6厘米的正方形,每个正方形上的盒子数量一样。

在这些彩球中,红色彩球的只数是蓝色彩球的2倍。

那么,红色彩球的总只数是多少?A. 36B. 30C. 18D. 12答案:A解析:设红色彩球的只数为x,则蓝色彩球的只数为2x。

根据题意,可列出方程:x + 2x + 3 = 12解得,x = 3因此,红色彩球的总只数为3 + 2×3 = 9 + 6 = 15.3. 小明投篮,在3分钟内射入2个篮球,这2个篮球的出手次序相同。

小明每次投篮有命中的可能性是80%,没有命中的可能性是20%。

在这次投篮中,最早投进的篮球与最后投进的篮球之间,连续的没有命中的次数正好是1次。

请问,在这3分钟内,小明一共进行了多少次投篮?A. 14B. 13C. 12D. 10答案:B解析:设连续没有命中的次数为n,则投进第一个篮球前有n次没有命中。

根据题意,可列出方程:0.2×0.8^n = 0.2^n–1×0.2×0.8化简得 4 = 5×0.8^n解得,n = 1因此,在这3分钟内,小明一共进行了2 + 2×1 + 1 = 5次投篮。

福建省宁德市2020年中考数学试卷(解析版)

福建省宁德市2020年中考数学试卷(解析版)

2020年福建省宁德市中考数学试卷、选择题(本大题共 10小题,每小题 4分,满分40分.每小题只有一个正确的选项,请用 2B铅笔在答题卡的相应位置填涂)3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法 表不为( )A. 0.47 X 108B. 4.7 X107C. 47X 107D. 4.7 X 1064 .已知袋中有若干个球,其中只有 2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是 则袋中球的总个数是( )4A. 2B. 4C. 6D. 85 .下列分解因式正确的是() A. - ma- m=-m (a-1) B. a 2-1=( a-1) 2 C. a 2-6a+9= (a - 3) 2D. a 2+3a+9= (a+3) 6 .如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )从正面看AS B.② C.③ D.④7 .如图,。

的半径为3,点A, B, C, D 在OO±, ZAOB=30 ,将扇形AOB 绕点。

顺时针旋转120° 后恰好与扇形CODt 合,则 标的长为( )1 . 2的相反数是() A. 2 B. - 2 C — 2 2.下列运算正确的是(A. a+a 2=a 3B. a 2?a 3=a 6D --2)C. a a =a 2D. (a=aA互^ B旦£ C 2兀D.基巴4 2 28.如图,已知△ ABC AB=AC将△ ABC管边BC翻转,得到的△ DBCf原△ ABC^成四边形ABDC则能直接判定四边形ABD境菱形的依据是()DA. 一组邻边相等的平行四边形是菱形8.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a- 5, a是方框①,②,③,④中的一个数,则数a所在的方框是()AS B.② C.③ D.④10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A「吃—”B^n -------- LJ——।-n 1 1 1*C 白 ViD D °二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ AD曰△ ABC;若/ADE=37 ,则/ B=:12 . 一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是 分. 13 .方程a_=-L 的解是2 式 x+114 .已知点A (1, yi ) , B (2, y2)是如图所示的反比例函数 y=2图象上两点,则yiy2 (填"“V" 或"=").15 .如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中/ 1的大小为16 .如图,在 Rt^ABC 中,/ BAC=90 , AB=4, AC=3,点 D> E 分别是 ARBC 边上(均不与端点重合), DG/ EF.将4BD 筮点D 顺时针旋转180° ,将^ CEF 绕点E 逆时针旋转180° ,拼成四边形 MGFN 则四边形 MGF 调长l 的取值范围是 .三、解答题(本大题共 9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作 图或添辅助线用铅笔画完,再用黑色签字笔描黑)17 .计算:'+ + (兀—3) 0— 2cos 30 ° .18 .解不等式 々-1W:—,并把解集在数轴上表示出来.2 3 -5 -4 -3 -2 -1 0 1 2 3 4 519 .如图,已知△ ABC^n△ DAE D 是 AC 上一点,AD=AB DE// AB, DE=AC 求证:AE=BC£AC 的中点,点G F 在20. (8分)某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a, b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.21.如图,在边长为1的正方形组成的6X5方格中,点A, B都在格点上.(1)在给定的方格中将线段AB平移到CD使得四边形ABDB矩形,且点C, D都落在格点上.画出四边形ABDC并叙述线段AB的平移过程;(2)在方格中画出△ ACD关于直线AD对称白勺/\ AED(3)直接写出AB与DE的交点P到线段BE的距离.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八. 甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的看,那么乙也共有钱48.问甲、乙两人各带了多少钱?23.如图,已知AB是。

精品解析:2024年福建省中考真题数学试题(解析版)

精品解析:2024年福建省中考真题数学试题(解析版)

数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是()A.3-B.0C.23D.【答案】D 【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2ππ等;开方开不尽的数;以及像0.1010010001....,等数.故选:D .2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为()A.696110⨯B.2696.110⨯ C.46.96110⨯ D.50.696110⨯【答案】C 【解析】【分析】根据科学记数法的定义解答,科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<∣∣为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.本题考查了科学记数法,熟悉科学记数法概念是解题的关键.【详解】469610 6.96110=⨯故选:C .3.如图是由长方体和圆柱组成的几何体,其俯视图是()A. B.C. D.【答案】C 【解析】【分析】本题考查了简单组合体的三视图,根据从上边看得到的图形是俯视图,可得答案.【详解】解:这个立体图形的俯视图是一个圆形,圆形内部中间是一个矩形.故选:C .4.在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为()A.30︒B.45︒C.60︒D.75︒【答案】A 【解析】【分析】本题考查了平行线的性质,由AB CD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD ,∴60CDB ∠=︒,∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒-∠-∠=︒,故选:A .5.下列运算正确的是()A.339a a a ⋅=B.422a a a ÷= C.()235a a = D.2222a a -=【答案】B 【解析】【分析】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,解题的关键是掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项运算法则.利用同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项计算后判断正误.【详解】解:336a a a ⋅=,A 选项错误;422a a a ÷=,B 选项正确;()236a a =,C 选项错误;2222a a a -=,D 选项错误;故选:B .6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】此题考查了树状图或列表法求概率,根据题意画出树状图,求和后利用概率公式计算即可.【详解】解:画树状图如下:由树状图可知,共有6种不同情况,和是偶数的共有2种情况,故和是偶数的概率是2163=,故选:B7.如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB 的中点,则ACM ∠等于()A.18︒B.30︒C.36︒D.72︒【答案】A 【解析】【分析】本题考查了切线的性质,三角形内角和以及等腰三角形的性质,根据C 为AB的中点,三角形内角和可求出1(18036)722OCA ∠=⨯︒-︒=︒,再根据切线的性质即可求解.【详解】∵72AOB ∠=︒,C 为 AB 的中点,∴36AOC ∠=︒∵OA OC =∴1(18036)722OCA ∠=⨯︒-︒=︒∵直线MN 与O 相切,∴90OCM ∠=︒,∴18ACM OCM OCA ∠=∠-∠=︒故选:A .8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是()A.()1 4.7%120327x += B.()1 4.7%120327x -=C.1203271 4.7%x=+ D.1203271 4.7%x=-【答案】A 【解析】【分析】本题主要考查了列一元一次方程,解题的关键是理解题意,找出等量关系,根据今年第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,列出方程即可.【详解】解:将去年第一季度社会消费品零售总额设为x 亿元,根据题意得:()1 4.7%120327x +=,故选:A .9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是()A.OB OD ⊥B.BOC AOB ∠=∠C.OE OF =D.180BOC AOD ∠+∠=︒【答案】B 【解析】【分析】本题考查了对称的性质,等腰三角形的性质等;A.由对称的性质得AOB DOC ∠=∠,由等腰三角形的性质得12BOE AOB ∠=∠,12DOF DOC ∠=∠,即可判断;B.BOC ∠不一定等于AOB ∠,即可判断;C.由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;D.过O 作GM OH ⊥,可得GOD BOH ∠=∠,由对称性质得BOH COH ∠∠=同理可证AOM AOH ∠=∠,即可判断;掌握性质是解题的关键.【详解】解:A. OE OF ⊥,90BOE BOF ∴∠+∠=︒,由对称得AOB DOC ∠=∠,点E ,F 分别是底边AB ,CD 的中点,OAB 与ODC 都是等腰三角形,12BOE AOB ∴∠=∠,12DOF DOC ∠=∠,90BOF DOF ∴∠+∠=︒,OB OD ∴⊥,结论正确,故不符合题意;B.BOC ∠不一定等于AOB ∠,结论错误,故符合题意;C.由对称得OAB ODC ≌,OE OF ∴=,结论正确,故不符合题意;D.过O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒ ,GOD BOH ∴∠=∠,由对称得BOH COH ∠∠=,GOD COH ∴∠=∠,同理可证AOM AOH ∴∠=∠,AOD BOC ∠∠∴+AOD AOM DOG =∠+∠+∠180=︒,结论正确,故不符合题意;故选:B .10.已知二次函数()220y x ax a a =-+≠的图象经过1,2a A y ⎛⎫⎪⎝⎭,()23,B a y 两点,则下列判断正确的是()A.可以找到一个实数a ,使得1y a >B.无论实数a 取什么值,都有1y a >C.可以找到一个实数a ,使得20y <D.无论实数a 取什么值,都有20y <【答案】C 【解析】【分析】本题考查二次函数的图象和性质,根据题意得到二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a-,再分情况讨论,当0a >时,当a<0时,1y ,2y 的大小情况,即可解题.【详解】解: 二次函数解析式为()220y x ax a a =-+≠,∴二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a -,当0a >时,02aa <<,∴21a y a a >>-,当a<0时,02aa <<,∴21a a y a -<<,故A 、B 错误,不符合题意;当0a >时,023a a a <<<,由二次函数对称性可知,20y a >>,当a<0时,320a a a <<<,由二次函数对称性可知,2y a >,不一定大于0,故C 正确符合题意;D 错误,不符合题意;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x =_____.【答案】()1x x +【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+12.不等式321x -<的解集是______.【答案】1x <【解析】【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解.【详解】解:321x -<,33x <,1x <,故答案为:1x <.13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是______.(单位:分)【答案】90【解析】【分析】本题考查了中位数的知识,解题的关键是了解中位数的求法,难度不大.根据中位数的定义(数据个数为偶数时,排序后,位于中间位置的数为中位数),结合图中的数据进行计算即可;【详解】解:∵共有12个数,∴中位数是第6和7个数的平均数,∴中位数是(9090)290+÷=;故答案为:90.14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为______.【答案】2【解析】【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到1HD DG ==,进而得到 DGH S ,同理可得12AHE EFB CGF S S S === ,最后利用四边形EFGH 的面积=正方形ABCD 的面积4-个小三角形面积求解,即可解题.【详解】解: 正方形ABCD 的面积为4,2AB BC CD AD ∴====,90D Ð=°, 点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,1HD DG ∴==,111122DGH S ∴=⨯⨯= ,同理可得12AHE EFB CGF S S S === ,∴四边形EFGH 的面积为1111422222----=.故答案为:2.15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为______.【答案】()2,1【解析】【分析】本题考查了反比例函数的性质以及勾股定理,完全平方公式的应用,先根据()1,2A 得出2k =,设()B n m ,,则2nm k ==,结合完全平方公式的变形与应用得出()()22332120m m m m m m+=-+=--=,,结合()1,2A ,则()21B ,,即可作答.【详解】解:如图:连接OA OB,∵反比例函数ky x=的图象与O 交于,A B 两点,且()1,2A ∴221kk ==,设()B n m ,,则2nm k ==∵OB OA ==∴2225m n +==则()2222549m n m n mn +=++=+=∵点B 在第一象限∴3m n +=把2nm k ==代入得()()22332120m m m m m m+=-+=--=,∴1212m m ==,经检验:1212m m ==,都是原方程的解∵()1,2A ∴()21B ,故答案为:()21,16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD ==______.(单位:N )(参考数据:sin400.64,cos400.77︒=︒=)【答案】128【解析】【分析】此题考查了解直角三角形的应用,求出40ADQ ∠=︒,130PDQ ∠=∠=︒,由AB QD ∥得到40BAD ADQ ∠=∠=︒,求出2sin 256F BD AD BAD ==⋅∠=,求出90160BDC ∠=︒-∠=︒在Rt BCD 中,根据2cos f CD BD BDC ==⋅∠即可求出答案.【详解】解:如图,∵帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,∴703040ADQ PDA PDQ ∠=∠-∠=︒-︒=︒,130PDQ ∠=∠=︒,∵AB QD ∥,∴40BAD ADQ ∠=∠=︒,在Rt △ABD 中,400F AD ==,90ABD Ð=°,∴2sin 400sin 404000.64256F BD AD BAD ==⋅∠=⨯︒=⨯=,由题意可知,BD DQ ⊥,∴190BDC ∠+∠=︒,∴90160BDC ∠=︒-∠=︒在Rt BCD 中,256,90BD BCD =∠=︒,∴21cos 256cos 602561282f CD BD BDC ==⋅∠=⨯︒=⨯=,故答案为:128三、解答题:本题共9小题,共86分。

2022年福建省宁德市中考数学一检试卷(解析版)

2022年福建省宁德市中考数学一检试卷(解析版)

2022年福建省宁德市中考数学一检试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(本大题共10小题,共40.0分)1.的相反数是A. B. C. D.2.下列运算正确的是A. B. C. D.3.如图是个相同的小正方体组合而成的几何体,它的俯视图是A.B.C.D.4.闽北某村原有林地公顷,旱地公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的,设把公顷旱地改造为林地,则可列方程为A. B.C. D.5.下列尺规作图,能判断是边上的高是A. B.C. D.6.如图,等边三角形中,,垂足为,点在线段上,,则等于A.B.C.D.7.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点不包括端点,过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为,则该直线的函数表达式是A.B.C.D.8.如图,在中,,,是线段上的动点不含端点、若线段长为正整数,则点的个数共有A. 个B. 个C. 个D. 个9.如图,在中,,,将折叠,使点落在边上的点处,为折痕,若,则的值为A. B. C. D.10.如图,在菱形中,,,菱形的一个顶点在反比例函数的图象上,则反比例函数的解析式为第2页,共26页A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.计算:______ .12.如图,中,,,是的中点,则______.13.把二次函数的图象向右平移个单位,再向下平移个单位,所得图象对应的函数解析式是______.14.如图,点,是双曲线上的点,分别过点,作轴和轴的垂线段,若图中阴影部分的面积为,则两个空白矩形面积的和为_____.15.如图,正方形的顶点、分别在轴、轴上,是菱形的对角线,若,,则点的坐标是_______16.如图,等腰中,,,点在线段上运动不与、重合,将与分别沿直线、翻折得到与,给出下列结论:;的大小不变;面积的最小值为;当点在的中点时,是等边三角形,其中所有正确结论的序号是______.三、计算题(本大题共1小题,共8.0分)17.计算:.四、解答题(本大题共8小题,共78.0分)18.解不等式组:第4页,共26页19.小梅家的阳台上放置了一个晒衣架如图,图是晒衣架的侧面示意图,,两点立于地面,将晒衣架稳固张开,测得张角,立杆,小梅的连衣裙穿在衣架后的总长度为,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由参考数据:,,20.如图,在矩形中,连接对角线、,将沿方向平移,使点移到点,得到.求证:≌;请探究的形状,并说明理由.21.已知正比例函数与反比例函数的图象在第一象限内交于点求,的值;在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答时的取值范围.22.国务院办公厅在年月日发布了中国足球发展改革总体方案,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图如图,请根据图中提供的信息,解答下列问题:被调查的学生共有______人.在扇形统计图中,表示“比较了解”的扇形的圆心角度数为______度;从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?第6页,共26页23.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按元千克的价格出售.设经销商购进甲种水果千克,付款元,与之间的函数关系如图所示.直接写出当和时,与之间的函数关系式;若经销商计划一次性购进甲,乙两种水果共千克,且甲种水果不少于千克,但又不超过千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额元最少?24.如图,矩形中,,,是边上一点,将沿直线对折,得到.当平分时,求的长;连接,当时,求的面积;当射线交线段于点时,求的最大值.25.已知抛物线与轴只有一个公共点.若抛物线与轴的公共点坐标为,求、满足的关系式;设为抛物线上的一定点,直线:与抛物线交于点、,直线垂直于直线,垂足为点当时,直线与抛物线的一个交点在轴上,且为等腰直角三角形.求点的坐标和抛物线的解析式;证明:对于每个给定的实数,都有、、三点共线.第8页,共26页答案和解析1.【答案】【解析】【分析】本题考查了相反数的知识,根据相反数的定义求解即可。

2022年福建省中考数学试卷(解析版)

2022年福建省中考数学试卷(解析版)

2022年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.(4分)(2022•福建)﹣11的相反数是()A.﹣11B.C.D.112.(4分)(2022•福建)如图所示的圆柱,其俯视图是()A.B.C.D.3.(4分)(2022•福建)5G应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G终端用户达1397.6万户.数据13976000用科学记数法表示为()A.13976×103B.1397.6×104C.1.3976×107D.0.13976×1084.(4分)(2022•福建)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.5.(4分)(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.B.C.D.π6.(4分)(2022•福建)不等式组的解集是()A.x>1B.1<x<3C.1<x≤3D.x≤37.(4分)(2022•福建)化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a48.(4分)(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F109.(4分)(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm10.(4分)(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB =60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.160二、填空题:本题共6小题,每小题4分,共24分。

2022年中考数学卷精析版——福建省宁德卷

2022年中考数学卷精析版——福建省宁德卷

2022年中考数学卷精析版——宁德卷〔本试卷总分值150分,考试时间120分钟〕一、选择题〔本大题共10小题,每题4分,总分值40分〕3.〔2022福建宁德4分〕2022年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗〞,预计可容纳80000人.将80000用科学记数法表示为【】A.80×103B.0.8×105C.8×104D.8×103【答案】C。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数〔含小数点前的1个0〕。

80000一共5位,从而80000=8×104。

应选C。

4.〔2022福建宁德4分〕以下事件是必然事件的是【】A.从一副扑克牌中任意抽取一张牌,花色是红桃B.掷一枚均匀的骰子,骰子停止转动后6点朝上C.在同一年出生的367名学生中,至少有两人的生日是同一天D .两条线段可以组成一个三角形 【答案】C 。

【考点】必然事件、随机事件和不可能事件。

【分析】根据必然事件、随机事件和不可能事件和意义作出判断:A .从一副扑克牌中任意抽取一张牌,花色是红桃,是随机事件;B .掷一枚均匀的骰子,骰子停止转动后6点朝上,是随机事件;C .在同一年出生的367名学生中,至少有两人的生日是同一天,是必然事件〔因为一年只有365天〕;D .两条线段可以组成一个三角形是不可能事件。

应选C 。

5.〔2022福建宁德4分〕以下两个电子数字成中心对称的是【 】 【答案】A 。

【考点】中心对称图形。

【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

福建省宁德市中考数学试卷(含答案)

福建省宁德市中考数学试卷(含答案)

福建省宁德市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确选项)1..2015的相反数是()A.B.﹣C.2015 D.﹣20152..2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A.63.6×104B.0.636×106C.6.36×105D.6.36×1063..下列计算正确的是()A.a2•a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=14..如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°5..下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落6..有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>07..一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定8..如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5D.5.59..一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7C.6D.510..如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)二、填空题(本大题共6小题,每小题4分,共24分)11..不等式2x+1>3的解集是.12..如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=度.13..一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是.14..一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.15..二次函数y=x2﹣4x﹣3的顶点坐标是(,).16..如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB 于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.三、解答题(本大题共9小题,共86分)17.计算:|﹣3|﹣(5﹣π)0+.18.化简:•.19.为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有人.20.如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.21.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?22.图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).24.已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A 的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.25.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.2018年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确选项)1..2015的相反数是()A.B.﹣C.2015 D.﹣2015考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2015的相反数是:﹣2015,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2..2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A.63.6×104B.0.636×106C.6.36×105D.6.36×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将636000亿用科学记数法表示为:6.36×105亿元.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3..下列计算正确的是()A.a2•a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=1考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:直接利用同底数幂的乘法运算法则和幂的乘方运算以及同底数幂的除法运算法则分别计算得出即可.解答:解:A、a2•a3=a5,正确;B、a2+a3无法计算,故此选项错误;C、(a3)2=a6,故此选项错误;D、a3÷a2=a,故此选项错误.故选:A.点评:此题主要考查了同底数幂的乘法运算和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法则是解题关键.4..如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°考点:平移的性质;平行线的性质.分析:根据平移的性质得出l1∥l2,进而得出∠2的度数.解答:解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.点评:此题主要考查了平移的性质以及平行线的性质,根据已知得出l1∥l2是解题关键.5..下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落考点:随机事件.分析:必然事件是指一定会发生的事件.解答:解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.故选:D.点评:本题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.6.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>0考点:数轴.分析:根据a,b两数在数轴的位置依次判断所给选项的正误即可.解答:解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.点评:考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.7..一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:先求出△的值,再判断出其符号即可.解答:解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选B.点评:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8..如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5D.5.5考点:平行线分线段成比例.分析:直接根据平行线分线段成比例定理即可得出结论.解答:解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选B.点评:本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.9..一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7C.6D.5考点:多边形内角与外角.分析:根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.解答:解:360°÷60°=6.故这个多边形是六边形.故选C.点评:本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.10..如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)考点:一次函数图象上点的坐标特征;等腰直角三角形.专题:规律型.分析:根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B2015的坐标.解答:解:∵OA1=1,∴点A1的坐标为(1,0),∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1),∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2=,∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得,B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B2015的坐标是(22014,22014).故选A.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题4分,共24分)11..不等式2x+1>3的解集是x>1.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,2x>3﹣1,合并同类项得,2x>2,把x的系数化为1得,x>1.故答案为:x>1.点评:本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12..如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=60度.考点:旋转的性质.分析:根据旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角,依此即可求解.解答:解:∵将△ABC绕点A按顺时针方向旋转60°得△ADE,∴∠BAD=60度.故答案为:60.点评:本题考查了旋转的性质,主要利用了旋转角的确定,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.13..一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是120.考点:中位数.分析:根据中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,进行求解即可.解答:解:按大小顺序排列为:100,100,120,125,135,中间一个数为120,这组数据的中位数为120,故答案为120.点评:本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.14..一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得两次摸出小球的数字和为偶数的情况,再利用概率公式即可求得答案.解答:解:如图所示,∵共有4种结果,两次摸出小球的数字和为偶数的有2次,∴两次摸出小球的数字和为偶数的概率==.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15..二次函数y=x2﹣4x﹣3的顶点坐标是(2,﹣7).考点:二次函数的性质.分析:先把y=x2﹣4x﹣3进行配方得到抛物线的顶点式y=(x﹣2)2﹣7,根据二次函数的性质即可得到其顶点坐标.解答:解:∵y=x2﹣4x﹣3=x2﹣4x+4﹣7=(x﹣2)2﹣7,∴二次函数y=x2﹣4x+7的顶点坐标为(2,﹣7).故答案为(2,﹣7).点评:本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式是解题的关键.16..如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB 于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=3.考点:反比例函数系数k的几何意义.分析:连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.解答:解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCB的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.点评:本题考查了矩形的性质、三角形面积的计算、反比例函数的图象与解析式的求法;熟练掌握矩形的性质和反比例函数解析式的求法是解决问题的关键.三、解答题(本大题共9小题,共86分)17.计算:|﹣3|﹣(5﹣π)0+.考点:实数的运算;零指数幂.分析:先根据绝对值,零指数幂,二次根式的性质求出每一部分的值,再代入求出即可.解答:解:原式=3﹣1+5=7.点评:本题考查了绝对值,零指数幂,二次根式的性质的应用,能求出每一部分的值是解此题的关键,难度适中.18.化简:•.考点:分式的乘除法.分析:先把分子分母分解因式,进一步约分计算得出答案即可.解答:解:原式=:•=.点评:此题考查分式的乘除法,把分子分母因式分解约分是解决问题的关键.19.为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共40人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为72度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有300人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据条形图可知喜欢“社科类”的有5人,根据在扇形图中占12.5%可得出调查学生数;(2)根据条形图可知喜欢“文学类”的有12人,即可补全条形统计图;(3)计算出喜欢“艺术类”的人数,根据总人数可求出它在扇形图中所占比例;(4)用该年级的总人数乘以“文史类”的学生所占比例,即可求出喜欢的学生人数.解答:解:(1)5÷12.5%=40(人)答:此次被调查的学生共40人;(2)40﹣5﹣10﹣8﹣5=12(人)(3)8÷40=20%360°×20%=72°答:扇形统计图中,艺术类部分所对应的圆心角为72度;(4)1200×=300(人)答:若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有300人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.考点:平行四边形的判定;勾股定理.专题:作图题.分析:(1)过A点作AB∥CD,切AB=CD,即可得到平行四边形ABCD,如图;(2)根据一组对边平行且相等的四边形是平行四边形进行证明.解答:(1)解:如图,四边形ABCD为平行四边形;(2)证明:∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形.点评:本题考查了平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.21.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?考点:一元一次方程的应用.分析:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x﹣2个,根据题意得出方程2x﹣2+x+5=57,解得即可.解答:解:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x﹣2个,根据题意得:2x﹣2+x+5=57,解得:x=18,∴2x﹣2=34,答:亚洲和欧洲的意向创始成员国各有34个和18个.点评:本题考查了一元一次方程的应用,根据题意找准相等关系是解题的关键.22.图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).考点:圆锥的计算;圆柱的计算;作图-三视图.专题:计算题.分析:(1)根据图2,画出俯视图即可;(2)连接EO1,如图所示,由EO1﹣OO1求出EO的长,由BC=AD,O为AD中点,求出OA的长,在直角三角形AOE中,利用锐角三角函数定义求出tan∠EAO的值,即可确定出∠EAO的度数.解答:解:(1)画出俯视图,如图所示:(2)连接EO1,如图所示:∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO===,则∠EAO≈26.6°.点评:此题考查了圆锥的计算,圆柱的计算,以及作图﹣三视图,俯视图即为几何体从上方看的视图.23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).考点:切线的判定;弧长的计算.分析:(1)根据圆周角定理可得∠ACB=90°,进而可得∠CBA+∠CAB=90°,由∠EAC=∠B可得∠CAE+∠BAC=90°,从而可得直线AE是⊙O的切线;(2)连接CO,计算出AO长,再利用圆周角定理可得∠AOC的度数,然后利用弧长公式可得答案.解答:解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠C BA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.点评:此题主要考查了切线的判定和弧长计算,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).24.已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A 的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.考点:二次函数综合题.分析:(1)直接将A,C点坐标代入抛物线解析式求出即可;(2)首先求出B点坐标,进而利用待定系数法求出直线BC的解析式,进而利用CO,BO 的长求出∠ABC的度数;(3)利用∠ACB=∠PAB,结合相似三角形的判定与性质得出BP的长,进而得出P点坐标.解答:解:(1)将点A的坐标(﹣1,0),点C的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)过点P作PD⊥x轴于点D,∵∠ACB=∠PAB,∠ABC=∠PBA,∴△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,则△BDP∽△BOC,故==,则==,解得:DP=BD=,∴DO=,则P(,﹣).点评:此题主要考查了相似三角形的判定与性质以及待定系数法求一次函数和二次函数解析式等知识,熟练应用相似三角形的判定方法得出△ABP∽△CBA是解题关键.25.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=30度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.考点:四边形综合题.分析:(1)根据直角三角形的中线等于斜边上的一半,即可得解;(2)延长MN交DC的延长线于点E,证明△MNB≌△ENC,进而得解;(3)NC和PN不可能相等,所以只需分PN=PC和PC=NC两种情况进行讨论即可.解答:解:(1)∵MP⊥AB交边CD于点P,∠B=60°,点P与点C重合,∴∠NPM=30°,∠BMP=90°,∵N是BC的中点,∴MN=PN,∴∠NMP=∠NPM=30°;(2)如图1,延长MN交DC的延长线于点E,∵四边形ABCD是菱形,∴AB∥DC,∴∠BMN=∠E,∵点N是线段BC的中点,∴BN=CN,在△MNB和△ENC中,,∴△MNB≌△ENC,∴MN=EN,即点N是线段ME的中点,∵MP⊥AB交边CD于点P,∴MP⊥DE,∴∠MPE=90°,∴PN=MN=ME;(3)如图2∵四边形ABCD是菱形,∴AB=BC,又M,N分别是边AB,BC的中点,∴MB=NB,∴∠BMN=∠BNM,由(2)知:△MNB≌△ENC,∴∠BMN=∠BNM=∠E=∠NCE,又∵PN=MN=NE,∴∠NPE=∠E,设∠BMN=∠BNM=∠E=∠NCE=∠NPE=x°,则∠NCP=2x°,∠NPC=x°,①若PN=PC,则∠PNC=∠NCP=2x°,在△PNC中,2x+2x+x=180,解得:x=36,∴∠B=∠PNC+∠NPC=2x°+x°=36°×3=108°,②若PC=NC,则∠PNC=∠NPC=x°,在△PNC中,2x+x+x=180,解得:x=45,∴∠B=∠PNC+∠NPC=x°+x°=45°+45°=90°.点评:本题主要考查了菱形的性质,以及直角三角形的性质,正确作出辅助线是解题的关键,有很强的综合性,要注意对等腰三角形进行分类讨论,注意认真总结.。

2024年福建宁德中考数学试题及答案(1)

2024年福建宁德中考数学试题及答案(1)

2024年福建宁德中考数学试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是( )A .3-B .0C .23D 2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110´B .2696.110´C .46.96110´D .50.696110´3.如图是由长方体和圆柱组成的几何体,其俯视图是( )A .B .C .D .4.在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD ^DE )按如图方式摆放,若AB P CD ,则1Ð的大小为( )A .30°B .45°C .60°D .75°5.下列运算正确的是( )A .339a a a ×=B .422a a a ¸=C .()235a a =D .2222a a -=6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A .14B .13C .12D .237.如图,已知点,A B 在O e 上,72AOB Ð=°,直线MN 与O e 相切,切点为C ,且C 为»AB 的中点,则ACM Ð等于( )A .18°B .30°C .36°D .72°8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是( )A .()1 4.7%120327x +=B .()1 4.7%120327x -=C .1203271 4.7%x=+D .1203271 4.7%x=-9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB V 与ODC V 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ^.下列推断错误的是( )A .OB OD ^B .BOC AOBÐ=ÐC .OE OF =D .180BOC AOD Ð+Ð=°10.已知二次函数()220y x ax a a =-+¹的图象经过1,2a A y æöç÷èø,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x = .12.不等式321x -<的解集是 .13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是 .(单位:分)14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O e 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为 .16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA Ð为70°,帆与航行方向的夹角PDQ Ð为30°,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD == .(单位:N )(参考数据:sin400.64,cos400.77°=°=)三、解答题:本题共9小题,共86分。

2023年福建省宁德市中考模拟数学试题(含答案解析)

2023年福建省宁德市中考模拟数学试题(含答案解析)

2023年福建省宁德市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________......点A 在数轴上的位置如图所示,将点A 向左移动3个单位长度得到点B ,则点B 表示的数是()A .4B .33-2-4.下列运算正确的是()A .2222a a -=B .()22ab 236a a a ⋅=844a a a ÷=5.下列四个点中,有三个点在同一反比例函数k则不在这个函数图象上的点是()A .()1,6B .1,122⎛- ⎝3,42⎛⎫ ⎪⎝⎭6.下列事件中,属于必然事件的是(A .打开电视机,正在播放新闻C .购买一张体育彩票,能够中奖A .甲的平均数大,甲的方差大A .9sin 2α+B .9tan 2α+C 9.为落实“数字中国”的建设工作,一市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的乙公司安装36间教室比甲公司安装相同数量的教室多用各安装多少间教室?设乙公司每天安装x 间教室,则列出的方程正确的是(A .363631.5x x-=B .36361.53x x ⨯=+C 10.五巧板是一种类似七巧板的智力玩具,它是由正方形分割而成.按如图方式分割的一幅五巧板,若从中拿走一块,使得剩下的四块板仍然能拼成一个正方形,则拿走的那块板的序号是()A .①B 二、填空题11.计算:()02-=__.12.将一副三角板按如图所示的位置摆放,若57α∠=︒,则β∠=______°.13.化简:111x x x -=--_____14.某校午托服务提供A 、B 两种午饭套餐供学生选择,每位学生只能从中任选一种,甲、乙两位同学都选中A 套餐的概率是15.如图,已知Rt ABC △,∠方向旋转得到ADE V ,点C 的对应点是点离等于______.16.已知抛物线22y x bx =-+的顶点为C ,交y 轴于点D 形,则b =______.三、解答题17.解不等式组:()342113x x x x<+⎧⎨-≤+⎩18.如图,在ABCD Y 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.19.若一组实数a ,b 满足:22a b b a -=-,则称这组数a ,b 为“和谐轮换数”.(1)下列两组数中,a ,b 是“和谐轮换数”的是______;(填序号)①3a =,4b =;②1a =,2b =-;(2)已知2a m =-,1b m =-,请说明a ,b 是“和谐轮换数”20.为了落实国家教育数字化战略行动的有关精神,某校组织全体学生参加“信息素养提升”知识竞赛.现从中随机抽取男、女学生各30名的成绩进行分析,并绘制成如下不完整的统计表和统计图.(数据分为4组:A 组:6070x ≤<,B 组:7080x ≤<,C 组:8090x ≤<,(1)尺规作图:在AC和等腰直角三角形;(保留作图痕迹,不写作法)(2)在(1)的条件下,若22.某市为助力新能源汽车产业的健康发展,打造新能源交通生态城市,近几年在全市范围内安装电动汽车充电桩.(1)求安装A 型充电桩和B 型充电桩的单价各是多少万元?(2)为适应电动汽车快速发展的需要,市政府计划2023年再安装A 、B 两种型号的充电桩共200个.考虑到充电容量等综合因素,决定安装A 型充电桩的数量不多于B 型充电桩的一半.在安装单价不变的前提下,当安装A 型充电桩多少个时,所需投入的总费用最少,最少费用是多少万元?23.如图,OM 为O 的半径,且3OM =,点G 为OM 的中点,过点G 作AB OM ⊥交O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求ADB ∠的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是O 的切线.24.如图1,点O 为矩形ABCD 对角线BD 的中点,直线EF 过点O ,分别交AD BC ,于点E ,F ,90EOB ∠<︒.将矩形ABCD 沿EF 折叠,点A 的对应点为点H ,点B 的对应点为点G ,GF 交BD 于点N ,交AD 于点P ,连接GD .(1)求证:AE CF =;(2)求证:GD EF ∥;(3)如图2,连接GO 交AD 于点M ,连接MN .判断GD MN ,和EF 的数量关系,并说明理由.25.已知抛物线()20y ax c a =+>与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点P .直线()0y kx b k =+≠经过点B ,与y 轴正半轴和抛物线分别交于C ,D两点.(1)如图1,当点P 的坐标为()0,1-,且PAB 的面积为1时,求该抛物线的表达式;(2)在(1)的条件下,若90DAC ∠=︒,求k 的值;(3)如图2,过点D 作DE x ⊥轴于点E .判断PAE △的面积与OBC △的面积之间的数量关系,并说明理由.参考答案:1.A【详解】根据概念,(-7的相反数)+(-7)=0,则-7的相反数是7.故选A .2.C【分析】根据中心对称的定义:将图形绕一点旋转180︒与原图形完全重合的图形叫中心对称图形,直接判断即可得到答案;【详解】解:由题意可得,A 选项不是中心对称图形,不符合题意;B 选项不是中心对称图形,不符合题意;C 选项是中心对称图形,符合题意;D 选项不是中心对称图形,不符合题意;故选C ;【点睛】本题考查中心对称的定义:将图形绕一点旋转180︒与原图形完全重合的图形叫中心对称图形.3.D【分析】根据数轴上点平移规律:左减右加,直接求取即可得到答案;【详解】解:由题意可得,∵点A 向左移动3个单位长度得到点B ,∴点B 代表的数字是:132-=-,故选D ;【点睛】本题主要考查数轴上点平移规律:左减右加.4.D【分析】根据合并同类项、积的乘方、同底数幂的乘法及除法运算依次判断即可.【详解】解:A 、2222a a a -=,选项计算错误,不符合题意;B 、()2224ab a b =,选项计算错误,不符合题意;C 、235a a a ⋅=,选项计算错误,不符合题意;D 、844a a a ÷=,选项计算正确,符合题意;故选:D .【点睛】题目主要考查合并同类项、积的乘方、同底数幂的乘法及除法运算,熟练掌握运算【点睛】本题考查正方形的分割图,一个正方形.一共有4种等可能结果,其中甲、乙两位同学都选中∴甲、乙两位同学都选中A 套餐的概率故答案为:14;【点睛】本题考查树状图法求概率,解题的关键是正确画出树状图.15.2【分析】根据旋转得到DAE ∠=的性质求解即可得到答案;【详解】解:∵ABC 绕点A 沿逆时针方向旋转得到∴DAE BAC ∠=∠,ADE ∠=∠∴DE AD ⊥,∵2BC =,边相等且平行是解题的关键19.(1)②(2)见解析【分析】(1)根据“和谐轮换数”的定义计算判断即可;(2)根据“和谐轮换数”的定义解答即可.【详解】(1)①当3a =,4b =时;22345a b -=-=,224313b a -=-=;∴3,4不是“和谐轮换数”;②当1a =,2b =-时;()22123a b -=--=,()22213b a -=--=;∴1,2-是“和谐轮换数”;故答案为:②;(2)∵2a m =-,1b m =-,∴()()22222144133a b m m m m m m m -=---=-+-+=-+.()()22221212233b a m m m m m m m -=---=-+-+=-+.∴22a b b a -=-.∴a ,b 是“和谐轮换数”.【点睛】本题是新定义问题,主要考查了整式的运算,正确理解“和谐轮换数”的定义、熟练掌握完全平方公式是解题的关键.20.(1)0.1;85(2)女生,见解析(3)1200名【分析】(1)用男生A 组的人数除以男生总人数即可得到对应得到频率,由题意得抽取的女生成绩的中位数是第15和16个数据的平均数即可得到答案;(2)分别计算出男生成绩和女生成绩的平均数即可得到结论;(3)用全校人数乘以此次抽取的男生和女生中成绩优秀的学生的百分比即可得到答案.∠由作图可知:EBD∥,DE BC∴∠=∠,EDB CBD∴∠=∠,EBD EDBBE DE∴=,∠+∠=90 ABD CBD∵点G 为OM 的中点,且∴1322OG OM ==,OA =∵AB OM ⊥,∴在Rt AOG △中,sin OAG ∠∴30OAG ∠=︒,又OA OB = ,∴30OAG OBG ∠=∠=︒,∴120AOB ∠=︒,∴1602ADB AOB ∠=∠=︒(2)证明:如图2,连接由对称可得GOE BOE ∠=∠∵BOE NOF ∠=∠,∴GOE NOF ∠=∠,由(2)知PEF PFE ∠=∠,即在MEO △和NFO △中,MEO NFO OE OF MOE NOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA MEO NFO ≌△△,∴ME NF =.∵PE PF =,∴PM PN =.∴PM PN PE PF=.∵∠=∠MPN EPF ,∴PMN PEF ∽△△,∴PMN PEO ∠=∠,∴MN EF ∥,∴DMN DEO DNM ∠=∠∠,∴DMN DEO ∽△△,∴DN MN DO EO=.∴()=---=-,OC k AM k k11=-点,0c B a ⎛⎫- ⎪ ⎪⎝⎭在直线y kx b =+上,∴0c k b a -+=,得c b k a=--,∴点C 的坐标为0,c C k a ⎛⎫-- ⎪ ⎪⎝⎭.∴c OB a =-,c OC k a=--,。

2022年福建省宁德市中考试题及参考答案

2022年福建省宁德市中考试题及参考答案

2022年福建省宁德市初中毕业、升学考试数学试题[参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 4422,,对称轴abx 2-=]〔重要提示〕 一、选择题〔本大题有10小题,每题4分,共40分〕 1.以下各数中,最小的实数是〔 〕. A.-3 B.-1 C.0 D.32.宁德市位于福建省东北部,有漫长的海岸线.据测算,海岸线总长约为878000米,用科学记数法表示这个数为〔 〕. ×106米×106米 C.878×103米×105米3.如图,AB ∥CD ,∠A =70°,那么∠1度数是〔 〕. A.70° B.100° C.110° D.130°4.小明五次立定跳远的成绩〔单位:米〕是:2.3,2.2,2.1,2.3, 2.0.这组数据的众数是〔 〕.A .2.2米B .2.3米C .2.18米D .0.3米 5.不等式025x >-的解集是〔 〕. A.25x <B.25x >C.52x <D.25-x < 6.如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中 反映出的两圆位置关系有〔 〕.A.内切、相交B.外离、相交C.外切、外离D.外离、内切 7.向如下列图的盘中随机抛掷一枚骰子,落在阴影区域的概率〔盘底 被等分成12份,不考虑骰子落在线上情形〕是〔 〕. A.61 B.41 C.31 D.21 8.如下列图零件的左视图是〔 〕.A. B. C. D.第7题图A BC D 1第3题图第8题图正面第6题图9.如果x =4是一元二次方程223a x x =-的一个根,那么常数a 的值是〔 〕. A.2 B.-2 C.±2 D.±410.如图,点A 的坐标是〔1,1〕,假设点B 在x 轴上,且△ABO 是 等腰三角形,那么点B 的坐标不可能...是〔 〕. A.〔2,0〕 B.〔21,0〕 C.〔2-,0〕 D.〔1,0〕二、填空题〔本大题有8小题,每题3分,共24分〕 11.计算:=-12________________.12.计算:()23m 3m 6-÷=________________.13.因式分解:92-x = ________________.14.如图是一副三角尺拼成图案,那么∠AEB =_________°. 15.蓄电池电压为定值,使用此电源时,电流I 〔安〕与电阻R 〔欧〕之间关系图象如下列图,假设点P 在图象上,那么I 与R 〔R >0〕的函数关系式是______________.16.如图,PA 切半圆O 于A 点,如果∠P =35°,那么∠AOP =_____°.17.用卡片进行有理数加法训练,李明手中的三张卡片分别是3-1、-2,刘华手中的三张卡片分别是2、0、-1抽取一张卡片,那么和为正数的概率是__________.18.如图,将矩形纸ABCD 的四个角向内折起,隙无重叠的四边形EFGH ,假设EH =3厘米,EF =4 B CADE第14题图I 〔安〕R 〔欧〕·P 〔3,12〕O 第15题图O PA第16题图 1 2 -1 y O1 xA第10题图第18题图F C A H DE G么边AD 的长是___________厘米. 三、解答题〔本大题有8小题,共86分〕19.〔此题总分值10分〕化简,求值:)8()32---x x x (,其中42-=x .解:20.〔此题总分值10分〕如图,E 是□ABCD 的边BA 延长线上一点,连接EC ,交AD 于F .在不添加辅助线的情况下,请找出图中的一对相似三角形,并说明理由. 解: 21.〔此题总分值10分〕“五一〞期间,新华商场贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了局部参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图.〔1〕补齐频数分布直方图;〔2〕求所调查的200人次摸奖的获奖率; 〔3〕假设商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元 22.〔此题总分值10分〕曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,篮板所在直线AD 和直杆EC 都与BC 垂直,BC =2.8米,CD =1.8米,∠ABD =40°,求斜杆AB 与直杆EC 的长分别是多少米〔结果精确到0.01米〕 解: 23.〔此题总分值10分〕在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P .⑴将图案①进行平移,使A 点平移到点E ,画出平移后的图案;⑵以点M 为位似中心,在网格中将图案①放大2倍,画出放大后的图案,并在放大后的图案中标出线段AB 的对应线段CD ;⑶在⑵所画的图案中,线段CD 被⊙P 所截得的弦长为______.〔结果保存根号〕24.〔此题总分值10分〕5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带着先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群众而耽误了1小时,随后,先遣分队将步行速度提高91,于13日23时15分赶到汶川县城.⑴设先遣分队从古尔沟到理县的步行平均速度为每小时x 千米,请根据题意填写下表:所走路程 〔千米〕 速度 〔千米/小时〕 时间〔小时〕A F DB C E M AEBP ① D C BA E购物券 人次 “五一〞大派送 为了回馈广阔顾客,本商场在4月30日至5月6日期间举办有奖购物活动.每购置100元的商品,就有一次摸奖的时机,奖品为: 一等奖:50元购物券二等奖:20元购物券 三等奖:5元购物券图1 图2⑵根据题意及表中所得的信息列方程,并求出先遣分队徒步从理县到汶川的平均速度是每小时多少千米 25.〔此题总分值12分〕如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE . ⑴求证:CE =CF ;⑵在图1中,假设G 在AD 上,且∠GCE =45°,那么GE =BE +GD 成立吗为什么 ⑶运用⑴⑵解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD 中,AD ∥BC 〔BC >AD 〕,∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长. 26.〔此题总分值14分〕如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全程用时8动,速度为每秒1厘米.设运动的时间为x 秒(80<x<米,△PCQ 的面积为y 2平方厘米.⑴求y 1与x 的函数关系,并在图2中画出y 1的图象;⑵如图2,y 2AC的长;⑶在图2中,点G 是x 轴正半轴上一点〔0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F .①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值. 解:参考答案:一、选择题1.A ;2.D ;3.C ;4.B ;5.A ;6.B ;7.C ;8.D ;9.C ;10.B.二、填空题11.21;12.-2m ;13()()33+-x x .;14.75;15.R I 36=;三、解答题19.解:)8()32---x x x ( =x x x x 89622+-+-图1=92+x . 当42-=x 时,原式=()1229422+=+-.20.答案不惟一,△EAF ∽△EBC ,或△CDF ∽△EBC ,或△CDF ∽△EAF . 假设△EAF ∽△EBC . 理由如下:在□ABCD 中,∵AD ∥BC ,∴∠EAF =∠B.又∵∠E =∠E ,∴△EAF ∽△EBC .21.解:⑴获得20元购物劵的人次:200-〔122+37+11〕=30〔人次〕. 补齐频数分布直方图,如下列图:⑵摸奖的获奖率:%39%1002078=⨯. ⑶675.6200501120305370122=⨯+⨯+⨯+⨯=x .6.675×2000=13350〔元〕估计商场一天送出的购物券总金额是13350元. 22.解:在Rt △BAD 中 ∵ABDB B =∠cos ,∴00.40cos 6.4cos ≈=∠=B DB AB 〔米〕. 在Rt △BEC 中, ∵CBEC B =∠tan ,∴35.240tan 8.2tan ≈⨯=∠⋅=B CB EC 〔米〕. 那么斜杆AB 与直杆EC 的长分别是2.35米和6.00米.23.解:⑴平移后的图案,如下列图;⑵放大后的图案,如下列图;⑶线段CD 被⊙P 所截得的弦长为32.24.解:⑴表中依次填入:x 30,x ⎪⎭⎫⎝⎛+911,x⎪⎭⎫ ⎝⎛+91160.⑵依题意,列出方程得219116030=⎪⎭⎫⎝⎛++x x . 解得:4=x .购物券人次30 MAE BP DC经检验,4=x 是所列方程的根.9409114=⎪⎭⎫ ⎝⎛+⨯.答:部队徒步从古尔沟到理县平均速度是每小时4千米,理县到汶川的途中平均速度分别是每小时940千米 25.⑴证明:在正方形ABCD 中,∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF . ∴CE =CF .⑵解:GE =BE +GD 成立. ∵△CBE ≌△CDF , ∴∠BCE =∠DCF .∴∠ECD +∠ECB =∠ECD +∠FCD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°. ∵CE =CF ,∠GCF =∠GCE ,GC =GC , ∴△ECG ≌△FCG . ∴EG =GF .∴GE =DF +GD =BE +GD .⑶解:过C 作CG ⊥AD ,交AD 延长线于G . 在直角梯形ABCD 中,∵AD ∥BC ,∠A =∠B =90°, 又∠CGA =90°,AB =BC , ∴四边形ABCD 为正方形. ∴AG =BC =12.∠DCE =45°,根据⑴⑵可知,ED =BE +DG . 设DE =x ,那么DG =x -4, ∴AD =16-x . 在Rt △AED 中,∵222AE AD DE +=,即()222816+-=x x .解得:x =10. ∴DE =10. 26.解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =x , ∴x y 231=. BCA D EG图象如下列图.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x , ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是〔4,12〕,∴12444212=⋅+⋅-k k . 解得23=k .那么点P 的速度每秒23厘米,AC =12厘米.方法二:观察图象知,当x=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得 12244=⨯k .解得23=k . 那么点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过〔0,0〕,〔4,12〕,〔8,0〕,∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x ,∴kx kx y 42122+-=. ②比较①②得23=k .那么点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差〔或△PDQ 面积〕.②由⑵得 x x y 64322+-=.〔方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=〕∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大.。

2024年福建省宁德市中考数学二检试卷+答案解析

2024年福建省宁德市中考数学二检试卷+答案解析

2024年福建省宁德市中考数学二检试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列实数中最小的是()A. B.0 C. D.72.如图,该几何体的主视图为()A. B. C. D.3.下列图案是中心对称图形的是()A. B. C. D.4.计算的结果是()A. B. C. D.5.如图,在▱ABCD中,,则的度数是()A.B.C.D.6.如图是某地未来一周内每天的最高气温变化图象,下列关于该地气温描述正确的是()A.中位数是B.平均数是C.众数是D.方差是317.在中,,若,,则AB的长为()A.5B.12C.13D.158.如图,点A,B,C在上,,则的度数是()A.B.C.D.9.如图,正比例函数的图象与反比例函数的图象相交于A,B两点.已知点A的横坐标是,则点B的坐标是()A.B.C.D.10.如图,将绕着点A顺时针旋转得到,点B的对应点D落在AC边上,且B,D,E三点共线,则下列结论错误的是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分。

11.若,则______.12.如图,直线AB,CD交于点O,,则______13.为提高学生护眼意识,某社区开展“护眼活动”.该社区有985名学生,如表是该社区随机抽取的100名学生左眼视力的检查结果,该调查方式是______填“普查”或“抽样调查”视力人数9151111视力人数131715914.一个多边形的每一个外角都是,这个多边形是______边形.15.如图,在等边三角形ABC中,D为AB的中点,于点E,,则AB的长是______.16.已知点,,在抛物线上.若点A在对称轴左侧,则,,的大小关系是______用“>”,“<”或“=”连接三、解答题:本题共9小题,共86分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题8分计算:18.本小题8分解方程组:19.本小题8分如图,点A,B,D在同一条直线上,,,求证:20.本小题8分先化简,再求值:,其中21.本小题8分概率课上,王老师拟用摸球游戏的方式,将一件礼品送给甲、乙两位同学中的一位.规则如下:在不透明的袋子中装有三个小球,其中一个红球,两个白球,这些小球除颜色外完全相同,摸到红球的同学获得礼品.现由甲、乙同学先后进行摸球摸出的球不放回,求甲、乙两位同学获得礼品的概率分别是多少?22.本小题10分为丰富校园生活,某校九年级开展篮球比赛活动.比赛得分规则:在3分线外投篮,投中一球可得3分;在3分线内含3分线投篮,投中一球可得2分;罚球投中一球可得1分.班球队在某场比赛中,上半场共投中12个球,其中投中5个2分球,所得总分为23分,问该球队上半场比赛罚球得分是多少?班球队预想在下半场比赛中投中12个球,若在没有罚球的情况下,且下半场所得总分不少于29分,则该班级下半场比赛中至少投中多少个3分球?23.本小题10分综合与实践:活动主题扇面制作活动情景如图1,扇面字画是一种传统的中国艺术形式,它将字和绘画结合在扇面上,形成一种独特的艺术风格.为了迎接我市传统民俗文化活动的到来,某班组织同学们开展扇面制作展示活动.如图2,扇面形状为扇环,且,,活动小组甲组乙组制作工具直尺、三角板、量角器、圆规、剪刀制作材料任务一:确定弦的长度.如图2,求所对弦AB 的长度.任务二:设计甲组扇面.如图3,已知甲组的圆形卡纸直径为请运用所给工具在中设计与图2相同的扇面,并标出相应数据.任务三:确定卡纸大小.如图4,乙组利用矩形卡纸EFGH ,恰好设计出与图2相同的扇面,求矩形卡纸的最小规格即矩形的边长24.本小题13分蹦床是一项运动员利用蹦床的反弹在空中表现杂技技巧的竞技运动,有“空中芭蕾”之美称.甲、乙两位蹦床运动员在某次训练过程中同时起跳,甲运动员着落蹦床后便停止运动,乙运动员着落蹦床后继续做放松运动,每次蹦床运动间隔停留时间忽略不计.图1是甲、乙两位运动员的运动高度与运动时间的二次函数图象,点A 的坐标为,点B 的坐标为,点D 的坐标为,且所有二次函数图象开口大小相同.求甲运动员在这次训练中运动的最大高度;图2是教练员观测到乙运动员在这次训练中,每次运动的最高点都在同一视线DE上,教练员的视线与水平线的夹角为①若甲、乙运动员在时运动高度相同,求直线DE的表达式;②当时,求乙在第二次蹦床运动中最大运动高度的取值范围25.本小题13分如图,在四边形ABCD中,,,点E在CD上,连接AE,过点D作于点F,连接将沿DF折叠使得点C的对应点H落在AB上,连接求证:;求的度数;若,试探究EG与AG的数量关系,并予以证明.答案和解析1.【答案】A【解析】解:,所给的实数中最小的是故选:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数负实数,两个负实数绝对值大的反而小.2.【答案】B【解析】解:从正面看易得,该几何体的视图为B,故选:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示.本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键.3.【答案】D【解析】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形.故选:根据中心对称图形的概念判断.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.【答案】A【解析】解:原式故选:根据同底数幂的乘法,底数不变指数相加,可得答案.本题考查了同底数幂的乘法,注意底数不变指数相加.5.【答案】B【解析】解:四边形ABCD是平行四边形,,故选:根据平行四边形的对角相等解答即可.此题考查平行四边形的性质,关键是根据平行四边形的对角相等解答.6.【答案】C【解析】解:根据折线图可知,每天的气温为:、、、、、、,A.将这组数由小到大排列为:29、30、31、31、31、32、32,中位数是31,故选项错误,不符合题意;B.平均数是,故选项错误,不符合题意;C.这组数的众数是,故选项正确,符合题意;D.这组方差为:,故选项错误,不符合题意;故选:根据折线图分别求出平均数、众数、中位数和方差进行判断即可.本题考查了折线图,平均数、众数、中位数、方差的计算,掌握折线图的特点,平均数、众数、中位数、方差的计算方法是关键.7.【答案】C【解析】解:在中,,,,由勾股定理得:;故选:在中,根据勾股定理求出AB即可.本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.8.【答案】D【解析】解:,,故选:利用圆周角定理进行计算,即可解答.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.9.【答案】C【解析】解:正比例函数的图象与反比例函数的图象相交于A,B两点,当时,,,点A、B关于原点的中心对称图形,点B坐标为故选:根据点点A的横坐标是,通过可以求出A点坐标,再根据反比例函数图象是关于原点的中心对称图形,从而得出B点坐标.本题考查了一次函数与反比例函数的交点问题,熟练掌握反比例函数图象是中心对称图形是解答本题的关键.10.【答案】A【解析】解:绕着点A顺时针旋转得到,,点A、E、C、B四点,,所以C选项不符合题意;,所以D选项不符合题意,绕着点A顺时针旋转得到,,,,所以B选项不符合题意,平分,只有时,即,,所以A选项符合题意.故选:先根据旋转的性质得到,则可判断点A、E、C、B四点,再根据圆内接四边形的性质可对C选项进行判断;根据圆周角定理可对D选项进行判断;接着根据旋转的性质得到,,利用圆周角定理和圆心角、弧、弦的关系可对B选项进行判断;由于AD平分,利用等腰三角形的三线合一,只有时,即,,从而可对A选项进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了四点共圆的判定与性质、圆周角定理.11.【答案】【解析】解:,故答案为:先把要求的式子化成,再代值计算即可.此题考查了比例的性质,解题的关键是把化成12.【答案】51【解析】解:,,故答案为:根据对顶角的定义即可作答.本题主要考查对顶角、邻补角,熟练掌握对顶角的性质是解题的关键.13.【答案】抽样调查【解析】解:该社区有985名学生,如表是该社区随机抽取的100名学生左眼视力的检查结果,该调查方式是抽样调查.故答案为:抽样调查.根据全面调查与抽样调查的特点进行判断.本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.14.【答案】十二【解析】解:一个多边形的每一个外角都是,它的边数是,即这个多边形是十二边形,故答案为:十二.根据多边形的外角和进行计算即可.本题考查多边形的外角和,此为基础且重要知识点,必须熟练掌握.15.【答案】20【解析】解:是等边三角形,,,,,,为AB的中点,,的长是20,故答案为:先利用等边三角形的性质可得,再根据垂直定义可得,从而利用直角三角形的两个锐角互余可得:,然后利用含30度角的直角三角形的性质可得,最后利用线段的中点定义可得,即可解答.本题考查了含30度角的直角三角形,等边三角形的性质,熟练掌握含30度角的直角三角形,以及等边三角形的性质是解题的关键.16.【答案】【解析】解:由题意,抛物线为,抛物线为,且抛物线开口向下.当时,y取得最大值为又A在对称轴左侧,又,,且,根据抛物线开口向下时,抛物线上的点离对称轴越近函数值越大,综上,故答案为:依据题意,由抛物线为,从而可得抛物线为,且抛物线开口向下,故当时,y取得最大值为,又A在对称轴左侧,则,可得,进而可得,又,,且,再根据抛物线开口向下时,抛物线上的点离对称轴越近函数值越大,即可判断得解.本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.17.【答案】解:【解析】首先计算负整数指数幂、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【答案】解:,①-②得:,,把代入②得:,方程组的解为:【解析】先把两个方程相减,消去x,求出y,再把y的值代入方程②,求出x即可.本题主要考查了解二元一次方程组,解题关键是熟练掌握解二元一次方程组的一般步骤.19.【答案】证明:在与中,,≌,,【解析】根据SAS证明与全等,进而利用全等三角形的性质解答即可.此题考查全等三角形的判定与性质,关键是根据SAS证明与全等解答.20.【答案】解:原式;当时,原式【解析】先通分算括号内的,把除化为乘,约分后将a的值代入计算即可.本题考查分式化简求值,解题的关键是掌握分式的基本性质,把所求式子化简.21.【答案】解:列表如下:*红白白红*红,白红,白白白,红*白,白白白,红白,白*共有6种等可能的情况数,其中甲获得礼品的情况数有2种,乙获得礼品的情况数有2种,则甲同学获得礼品的概率是,乙同学获得礼品的概率是【解析】根据题意列出图表得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.此题考查了列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:设该球队上半场比赛罚球得分是x分,则投中3分球的得分是分,根据题意得:,解得:答:该球队上半场比赛罚球得分是4分;设该班级下半场比赛中投中y个3分球,则投中个2分球,根据题意得:,解得:,的最小值为答:该班级下半场比赛中至少投中5个3分球.【解析】设该球队上半场比赛罚球得分是x分,则投中3分球的得分是分,根据该球队上半场共投中12个球,可列出关于x的一元一次方程,解之即可得出结论;设该班级下半场比赛中投中y个3分球,则投中个2分球,根据该球队预想在下半场所得总分不少于29分,可列出关于y的一元一次不等式,解之取其中的最小值,即可得出结论.本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出一元一次方程;根据各数量之间的关系,正确列出一元一次不等式.23.【答案】解:任务一:过点O作,交AB于点H,,,,,,,任务二:如图,是以直径为底边,底角为30度,由任务一可知,,取,以O为圆心,分别以OA、OC为半径画弧,即可得到扇面.任务三:如图所示:当与矩形两边相切时,过点A作,则矩形FGNM为最小规格矩形,,,,,,,当与矩形两边相切,最小规格矩形的边长为45cm、30cm,【解析】任务一:由弧AB所对的圆心角为,可得,求得,应用勾股定理求出AH,即可求解;任务二:以直径为底边,构造底角为30度的等腰三角形OAB,则得到的三角形和任务一三角形全等,再按要求取C点,再以O为圆心,分别以OA、OC为半径画弧,得到的扇面图形与图2相同;任务三:在HG上取一点O使,以O为圆心,OG为半径的圆与EF相切,此时B点与G点重合,在圆上取一点A,使,即可得到扇面.过点A作,则矩形FGNM为最小规格矩形,本题考查了垂径定理,含角的直角三角形,矩形的性质,解题的关键是:熟练掌握相关性质定理.24.【答案】解:乙运动员的第一次的运动高度与运动时间的二次函数图象经过点,点,点,设其解析式为:,,解得:,即乙运动员的第一次的运动高度与运动时间的二次函数解析式为:,所有二次函数图象开口大小相同.设,把点代入得:,解得:,,即,故甲运动员在这次训练中运动的最大高度是米,时间是秒;①当秒时,,即乙二次起跳中,当秒时,其高度,设乙二次起跳中的解析式为,将点和代入得:,解得:,即,,点,设直线DE解析式为,得:,解得:,设直线DE解析式为;②延长DE交x轴于K,过点D作轴;点D的坐标为,,,当时,,,点K的坐标为,直线,设乙二次起跳中的解析式为,把点代入得:,,,当时,,,当时,,,,整理得:,不合题意,舍去,,当,,,故,随n增大而增大;故乙在第二次蹦床运动中最大运动高度的取值范围大于或等于,小于【解析】根据点A的坐标为,点D的坐标为,可求出乙运动员的函数图象解析式;根据开口相同求出甲的解析式,进而求出最高点;①根据点At和甲、乙运动员在时运动高度相同,求出乙运动员的高度,再用待定系数法求出乙二次起跳中的解析式,即可得出顶点坐标;由点,点求出直线解析式;②先求出时直线DE的表达式,根据设乙二次起跳中的解析式为,乙在第二次蹦床运动中的抛物线经过点A的坐标为,得出解析式为,由顶点高于直线得出,得出最大运动高度的取值范围大于或等于,小于本题考查了二次函数与一次函数的综合应用,解题关键是根据点的位置正确求出函数解析式,利用顶点坐标的位置求出直线解析式.25.【答案】解:延长DF交CH于点K,由折叠性质可知:点C与点H是关于DF的对称,,即:又,即:,,;由折叠性质可知:,又,,,,,,即:,,,过点A作,垂足为Q,过D点作,垂足为N,交EA于M,连接HM,,,四边形AQCD是矩形,,矩形AQCD是正方形,,,即,,,,,,,,,,,设,,,,,,,,,,,,,,,,,即,,,,,≌,,,,【解析】由折叠的性质可知,进而即可判定;由折叠性质可知,又有,所以,,再由,即可计算,即得的度数;过点A作,垂足为Q,过D点作,垂足为N,交EA于M,连接HM,可得,再证明,和均是等腰直角三角形,设,可得,,,由,可求,从而解题.本题主要考查了四边形综合,正方形的判定与性质,折叠问题和解三角形,全等三角形的判定,.解题关键是利用构造直角三角形;由等角转换线段比表示线段长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年福建省宁德市中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a53.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108B.4.7×107C.47×107D.4.7×1064.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.85.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1)B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2 6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= °.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是分.13.方程=的解是.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1y2(填“>”,“<”或“=”).15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.18.解不等式﹣1≤,并把解集在数轴上表示出来.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.20.(8分)某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100 b21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.2016年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分析得出答案.【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算等知识,正确应用相关运算法则是解题关键.3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108B.4.7×107C.47×107D.4.7×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:47 000 000用科学记数法表示为4.7×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【考点】概率公式.【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故选D.【点评】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.5.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1)B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2【考点】提公因式法与公式法的综合运用.【分析】利用提取公因式或者公式法即可求出答案.【解答】解:(A)原式=﹣m(a+1),故A错误;(B)原式=(a+1)(a﹣1),故B错误;(C)原式=(a﹣3)2,故C正确;(D)该多项式不能因式分解,故D错误,故选(C)【点评】本题考查因式分解,注意应用公式法时,要严格按照公式进行分解.6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④【考点】简单组合体的三视图.【分析】根据题意得到原几何体的主视图,结合主视图选择.【解答】解:原几何体的主视图是:.故取走的正方体是①.故选:A.【点评】本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.【考点】弧长的计算.【分析】根据题意可得∠AOD=150°,然后再利用弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)进行计算.【解答】解:∵∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,∴∠AOD=120°+30°=150°,∴==,故选:B.【点评】此题主要考查了弧长计算,关键是掌握弧长计算公式.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形【考点】菱形的判定.【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【解答】解:如图所示;∵将△ABC延底边BC翻折得到△DBC,∴AB=BD,AC=CD,∵AB=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形;故选B.【点评】本题考查了菱形的判定和翻折变换的应用,解此题的关键是求出AB=BD=CD=AC,题目比较典型,难度不大.9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】先假定一个方框中的数为a,再根据日历上的数据规律写出其他方框中的数,相加是否得5a﹣5,即可作出判断.【解答】解:解法一:设中间位置的数为A,则①位置数为:A﹣7,④位置为:A+7,左②位置为:A﹣1,右③位置为:A+1,其和为5A=5a﹣5,∴a=A+1,即a为③位置的数;解法二:A、若方框①表示的数为a,则②a+6,③a+8,④a+14,A:a+7,则这5个数的和:a+a+8+a+6+a+14+a+7=5a+35,所以方框①表示的数不是a,B、若方框②表示的数为a,则①a﹣6,③a+2,④a+8,A:a+1,则这5个数的和:a+a﹣6+a+2+a+8+a+1=5a+5,所以方框②表示的数不是a,C、若方框③表示的数为a,则①a﹣8,②a﹣2,④a+6,A:a﹣1,则这5个数的和:a+a﹣8+a﹣2+a+6+a﹣1=5a﹣5,所以方框③表示的数是a,D、若方框④表示的数为a,则①a﹣14,③a﹣6,②a﹣8,A:a﹣7,则这5个数的和:a+a﹣14+a﹣6+a﹣8+a﹣7=5a﹣35,所以方框④表示的数不是a,故选C.【点评】本题是日历上的数,明确日历上的规律是关键:上下两数的差为7,左右两数的差为1;解答时要细心表示方框中的数,容易书写错误.10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【考点】数轴.【专题】数形结合.【分析】根据平均数为0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.【解答】解:因为三个数a、b、c的平均数是0,所以三个数中一定有一个正数和一个负数,若第三个数为负数,则两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离.故选D.【点评】本题考查了数轴:记住数轴的三要素:原点,单位长度,正方向.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= 37 °.【考点】相似三角形的性质.【分析】根据相似三角形的对应角相等,可得答案.【解答】解:由△ADE∽△ABC,若∠ADE=37°,得∠B=∠ADE=37°,故答案为:37.【点评】本题考查了相似三角形的性质,熟记相似三角形的性质是解题关键.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是9.1 分.【考点】中位数.【分析】先把数据按从小到大排列,然后根据中位数的定义求解.【解答】解:数据按从小到大排列为:8.7分,8.9分,9.1分,9.3分,9.3分的中位数为9.1分.故答案为9.1.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.方程=的解是x=1 .【考点】解分式方程.【专题】计算题.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,据此求出方程=的解是多少即可.【解答】解:去分母得:x+1=2x,解得x=1,经检验x=1是分式方程的解,∴方程=的解是x=1.故答案为:x=1.【点评】此题主要考查了解分式方程,要熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1>y2(填“>”,“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】先确定k的值为2,得在每一分支上,y随x 的增大而减小,通过判断x的大小来确定y 的值.【解答】解:∵k=2>0,∴在每一分支上,y随x 的增大而减小,∵1<2,∴y1>y2,故答案为:>.【点评】本题考查了反比例函数的增减性,当k>0时,在每一分支上,y随x 的增大而减小;当k <0时,在每一分支上,y随x 的增大而增大;本题也可以将x的值代入计算求出对应y的值来判断大小关系.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为108 °.【考点】多边形内角与外角.【专题】计算题;正多边形与圆.【分析】所求角即为正五边形的内角,利用多边形的内角和定理求出即可.【解答】解:∵正五边形的内角和为(5﹣2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108【点评】此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是≤l<13..【考点】旋转的性质;勾股定理;图形的剪拼.【分析】如图,连接DE,作AH⊥BC于H.首先证明GF=DE=,要求四边形MNFG周长的取值范围,只要求出MG的最大值和最小值即可.【解答】解:如图,连接DE,作AH⊥BC于H.在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵•AB•AC=•BC•AH,∴AH=,∵AD=DB,AE=EC,∴DE∥CB,DE=BC=,∵DG∥EF,∴四边形DGFE是平行四边形,∴GF=DE=,由题意MN∥BC,GM∥FN,∴四边形MNFG是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值=2×+2×=,当G与B重合时可得周长的最大值为13,∵G不与B重合,∴≤l<13.故答案为≤l<13.【点评】本题考查旋转变换、勾股定理、平行四边形的性质、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会取特殊点解决问题,属于中考常考题型.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂的意义和特殊角的三角函数值得到原式=2+1﹣2×,然后进行乘法运算后合并即可.【解答】解:原式=2+1﹣2×=2+1﹣=+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解不等式﹣1≤,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时×6得:3x﹣6≤14﹣2x,移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【考点】全等三角形的判定与性质.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理SAS证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(SAS),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.20.某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100 b【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据数据总数=代入计算,求出九年2班学生的人数;(2)a是D组的频数=百分比×总数;b是E组的频数=50﹣各组频数;(3)先计算优秀的百分比,再与80000相乘即可;(4)取的样本不足以代表全市总中学的总体情况.【解答】解:(1)17÷34%=50(人),答:九年2班学生的人数为50人;(2)a=24%×50=12,b=50﹣2﹣5﹣17﹣12=14,(3)E:14÷50=28%,(28%+24%)×80000=52×800=41600(人),答:估计该市本次测试成绩达到优秀的人数为41600人;(4)全市参加本次测试的中学生中,成绩达到优秀有56 320人;而样本中估计该市本次测试成绩达到优秀的人数为41600人,原因是:小明对第三中学九年2班全体学生的测试成绩取的样本不足以代表全市总中学的总体情况,所以会出现较大偏差.【点评】此题考查了数据的收集与整理,根据频数分布表和扇形统计图可以将大量数据分类,结果清晰,一目了然地表达出来,熟练掌握公式是做好本题的关键:数据总数=,各组频数和=总数据;属于基础题,比较简单.21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)、(2)根据题意作出图象;(3)建立坐标系,求出直线AB、DE所在直线解析式,再求出两直线交点坐标可得.【解答】解:(1)如图所示,将线段AB沿AC方向平移即可;(2)如图所示,△AED即为所求;(3)建立如图所示坐标系,设AB所在直线解析式为y=kx+b,将A(0,2)、B(4,0)代入,得:,解得:,∴AB所在直线解析式为y=﹣x+2,设DE所在直线解析式为y=mx+n,将点D(5,2)、E(1,0)代入,得:,解得:,∴DE所在直线解析式为y=x﹣,根据题意,,解得:,∴点E的坐标为(,),故AB与DE的交点P到线段BE的距离.【点评】本题主要考查平移变换和轴对称变换及两直线相交问题,建立坐标系后待定系数求函数解析式是解题的关键.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?【考点】二元一次方程组的应用.【分析】设甲原有x元钱,乙原有y元钱,根据题意可得,甲的钱+乙的钱的一半=48元,乙的钱+甲所有钱的=48元,据此列方程组,求解即可.【解答】解:设甲原有x元钱,乙原有y元钱,根据题意,得,解得:,答:甲、乙两人各带了36元和24元钱.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.【考点】切线的判定;圆周角定理;解直角三角形.【分析】(1)要证CE是⊙O的切线,只要证明∠OCE=90°,根据,∠CDB=45°,CE∥AB可以求得∠OCE=90°,从而可以解答本题;(2)要求⊙O的直径,根据CE∥AB,cos∠CED=,BD=6,可以求得AB的长,本题得以解决.【解答】(1)证明:连接BC、CO,如右图所示,∵AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°,∴∠COB=2∠CDB=90°,∵CE∥AB,∴∠COB+∠OCE=180°,∴∠OCE=90°,即CE是⊙O的切线;(2)连接AD,如右上图所示,∵CE∥AB,∴∠CED=∠ABD,∵cos∠CED=,BD=6,AB是⊙O的直径,∴∠ADB=90°,cos∠ABD=,∴,∴AB=18,即⊙O的直径是18.【点评】本题考查切线的判定、圆周角定理、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.【考点】四边形综合题.【专题】压轴题.【分析】(1)如图1,利用ASA证明△ABF≌△ADE,可以直接得出AE=AF;(2)如图2所示,如果AF=AE时,AE与AF不一定垂直;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,如图3,作辅助线,利用(1)的结论得:△ABF≌△ADE,得AE=AF,DE=BF,再证明AF=FG,利用等量代换和线段的和得出结论.②当E在CD的延长线上时,满足BG=DE+AE,③当E在DC的延长线上时,满足AE=DE+BG;同理分别得出相应结论.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠BAD=90°,∴∠ABF=∠ADC=90°,∠DAE+∠BAE=90°,∵AE⊥AF,∴∠EAF=90°,∴∠FAB+∠BAE=90°,∴∠DAE=∠BAF,∴△ABF≌△ADE,∴AE=AF;(2)若F是直线BC上一点,且AF=AE,则AF⊥AE;如图2所示,当AF=AE时,则AF与AE不一定垂直,所以“若F是直线BC上一点,且AF=AE,则AF ⊥AE“是假命题;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,理由是:如图3,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE,∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=BG+DE.②当E在CD的延长线上时,满足BG=DE+AE,理由是:如图4,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∠BAF=∠DAE,∵AG平分∠BAE,∴∠BAG=∠EAG,∴∠BAG﹣∠BAF=∠EAG﹣∠DAE,∴∠FAG=∠GAD,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=AF,∴BG=BF+FG=DE+AE;③当E在DC的延长线上时,满足AE=DE+BG,理由是:如图5,过A作AF⊥AE,与直线CB交于点F,同理得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=BG+DE.【点评】本题是四边形的综合题,考查了正方形、全等三角形的性质和判定;正方形的各边相等且每个角都等于90°,在全等的证明中常利用同角的余角相等证明两个角相等,这一方法要熟练掌握;对于第三问中线段的和差问题,常利用全等三角形对应边相等作等量代换,得出结论.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.【考点】二次函数综合题.【分析】(1)先根据抛物线的解析式求出抛物线与y轴的交点A的坐标,再根据点A,B到直线x=2的距离相等,求出点B的横坐标为4,因为B也在抛物线上,当x=4代入抛物线的解析式求出y的值,即是点B的坐标,再利用待定系数法求直线l2的表达式;(2)根据平移规律写出直线l3表达式,计算出直线l3与直线x=2的交点坐标(2,﹣1.5),根据二次函数和直线l3的解析式列方程组求出C、D两点的坐标,由中点坐标公式计算CD的中点坐标,恰好与直线l3与直线x=2的交点重合,所以直线x=2平分线段CD;(3)先设M(x1,y1),N(x2,y2),根据M、N是抛物线和直线y=3x+m的交点,列方程组得:x1+x2=﹣,由中点坐标公式列式可得结论.【解答】解:(1)当x=0时,y=3,∴A(0,3),∴A到直线x=2的距离为2,∵点A,B到直线x=2的距离相等,∴B到直线x=2的距离为2,∴B的横坐标为4,当x=4时,y=﹣×42+4+3=﹣1,∴B(4,﹣1),把A(0,3)和B(4,﹣1)代入y=kx+b中得:,解得:,∴直线l2的表达式为:y=﹣x+3;(2)直线x=2平分线段CD,理由是:直线l3表达式为:y=﹣x+3﹣=﹣x+0.5,当x=2时,y=﹣2+0.5=﹣1.5,,解得:或,∴C(﹣1,1.5)、D(5,﹣4.5),∴线段CD的中点坐标为:x==2,y==﹣1.5,则直线x=2平分线段CD;(3),ax2+(b﹣3)x+c﹣m=0,则x1、x2是此方程的两个根,。

相关文档
最新文档