备战中考数学一元二次方程(大题培优 易错 难题)附答案解析
中考数学培优 易错 难题(含解析)之一元二次方程含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.有一个人患了流感,经过两轮传染后共有36人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
【详解】
(1)设每轮传染中平均一个人传染了x 个人,根据题意得:
x+1+(x+1)x =36,
解得:x =5或x =﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
2.已知关于x 的一元二次方程()2
20x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m 的值及方程的另一个根.
【答案】(1)见解析;
(2) 即m 的值为0,方程的另一个根为0.
【解析】
【分析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=
21
m + ,2t=m,最终解出关于t 和m 的方程组即可.
备战中考数学一元二次方程组(大题培优)含答案解析
备战中考数学一元二次方程组(大题培优)含答案解析
一、一元二次方程
1.解方程:(x+1)(x ﹣3)=﹣1.
【答案】x 1x 2=1【解析】
试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.
试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2
=3,
解得:x 1,x 2=1
2.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;
(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;
(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54
a ≤(3)-4 【解析】
分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.
详解:(1)把a =﹣11代入方程,得x 2
﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣
4=0,∴x 1=﹣3,x 2=4;
(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得
54
a ≤
:; (3)∵12x x ,是方程的两个实数根,
2222
11221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.
∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴22
1122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22
中考数学培优 易错 难题(含解析)之一元二次方程组
中考数学培优 易错 难题(含解析)之一元二次方程组
一、一元二次方程
1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)1
2
k ≤;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2
121221,x x k x x k +=-=,列出等式,可得出k 的值.
试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12
; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤
1
2
,∴k =-3.
2.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1
%2
a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2
中考数学一元二次方程(大题培优)附答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.
【答案】 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.
【解析】
试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.
试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则
,(其中),当时,
,解这个方程,得,,∴应将之剪成12cm和28cm 的两段;
(2)两正方形面积之和为48时,,,
∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
2.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
中考数学一元二次方程组(大题培优易错难题)附答案解析
中考数学一元二次方程组(大题培优易错难题)附答案解析
中考数学一元二次方程组(大题培优易错难题)附答案解析
一、一元二次方程
1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?
【答案】经过2秒后△PBQ的面积等于4cm2.
【解析】
【分析】
作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=1
2
×PB×QE,有P、Q点的移动速
度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】
解:
如图,
过点Q作QE⊥PB于E,则∠QEB=90°.
∵∠ABC=30°,
∴2QE=QB.
∴S△PQB=1
2
PB?QE.
设经过t秒后△PBQ的面积等于4cm2,
则PB=6﹣t,QB=2t,QE=t.
根据题意,1
2
(6﹣t)?t=4.
t2﹣6t+8=0.
t2=2,t2=4.
当t=4时,2t=8,8>7,不合题意舍去,取t=2.
答:经过2秒后△PBQ的面积等于4cm2.
【点睛】
本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.
2.解方程:(x+1)(x﹣3)=﹣1.
【答案】x13x2=13
【解析】
试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.
试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x ﹣1)2=3,
解得:x1,x2=1
3.已知:关于x的方程x2-4mx+4m2-1=0.
中考数学一元二次方程组(大题培优 易错 难题)含详细答案
中考数学一元二次方程组(大题培优 易错 难题)含详细答案
一、一元二次方程
1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.
(1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值.
【答案】(1)12k ≤
;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤
12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,
∴k 1=1,k 2=-3.
∵k ≤12
,∴k =-3.
2.李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.
【答案】 (1) 李明应该把铁丝剪成12 cm 和28 cm 的两段;(2) 李明的说法正确,理由见解析.
【解析】
试题分析:(1)设剪成的较短的这段为xcm ,较长的这段就为(40﹣x )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm 2建立方程求出其解即可; (2)设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm 2建立方程,如果方程有解就说明李明的说法错误,否则正确.
中考数学培优 易错 难题(含解析)之一元二次方程含答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.
(1)求平均每次下调的百分率;
(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?
【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.
【解析】
【分析】
(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可.
【详解】
(1)设平均每次下调x%,则
7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去);
答:平均每次下调的百分率为10%.
(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.
2.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x 2﹣7x+10=0
a=1 b=﹣7 c=10
∵b 2﹣4ac=9>0
∴x=b 2a
-=732± ∴x 1=5,x 2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
备战中考数学一元二次方程组(大题培优 易错 难题)含答案解析
备战中考数学一元二次方程组(大题培优 易错 难题)含答案解析
一、一元二次方程
1.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1
%2
a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2
%23
a ,求a 的值.
【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】
(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;
(2)根据题意列出方程求解即可. 【详解】
(1)设销售A 品牌的建材x 件.
根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.
(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得
()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫
-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪
人教中考数学一元二次方程(大题培优 易错 难题)附答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.
①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;
②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.
【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣
32
,154) 【解析】
试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;
(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;
②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.
试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0
{3
12a b c c b a ++==-=-,解得:1
{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);
(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);
中考数学 一元二次方程组 培优 易错 难题练习(含答案)附答案
中考数学 一元二次方程组 培优 易错 难题练习(含答案)附答案
一、一元二次方程
1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)1
2
k ≤;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2
121221,x x k x x k +=-=,列出等式,可得出k 的值.
试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12
; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤
1
2
,∴k =-3.
2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点. (1)求k 的取值范围;
(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是3
2
-,求k 的值. 【答案】(1)k <-3
4
;(2)k=﹣1 【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.
试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-
中考数学一元二次方程(大题培优 易错 难题)
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.解下列方程:
(1)x 2﹣3x=1.
(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-=
= ;(2)12223,223y y =-+=-- 【解析】
试题分析:(1)利用公式法求解即可;
(2)利用直接开方法解即可; 试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,
∵b 2﹣4ac=13>0
∴
. ∴12313313,22
x x +-==. (2)(y+2)2=12, ∴或,
∴12223,223y y =-+=--
2.解方程:(2x+1)2=2x+1.
【答案】x=0或x=12
-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.
试题解析:∵(2x+1)2﹣(2x+1)=0,
∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,
则x=0或2x+1=0,
解得:x=0或x=﹣12
.
3.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.
(1)求a 的取值范围;
(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.
【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.
【解析】
【分析】
(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)
根据根与系数的关系可得x1+x2=﹣
2
6
a
a+
,x1x2=
6
a
a+
,由(x1+1)(x2+1)=x1x2+x1+x2+1=
备战中考数学一元二次方程(大题培优 易错 难题)及答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值.
【答案】(1)1
2
k ≤;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2
121221,x x k x x k +=-=,列出等式,可得出k 的值.
试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12
; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤
1
2
,∴k =-3.
2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数2
22(3)y x mx m =--+(m m 为常数).
(1)当m =0时,求该函数的零点;
(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且
12111
4
x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.
【答案】(1)当m =0
和 (2)见解析,
(3)AM 的解析式为1
12
y x =--. 【解析】 【分析】
人教备战中考数学一元二次方程(大题培优 易错 难题)附详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.解下列方程:
(1)x 2﹣3x=1.
(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-=
= ;(2)12223,223y y =-+=-- 【解析】
试题分析:(1)利用公式法求解即可;
(2)利用直接开方法解即可;
试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,
∵b 2﹣4ac=13>0
∴
. ∴12313313,22
x x +-==. (2)(y+2)2=12, ∴或,
∴12223,223y y =-+=--
2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.
(1)若方程有两个不相等的实数根,求k 的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.
【答案】(1)k >
34;(215 【解析】
【分析】
(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;
(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=522m n +,利用完全平方公式进行变形即可求得答案.
【详解】
(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,
∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,
∴k >34
;
(2)当k =2时,原方程为x 2-5x +5=0,
中考数学知识点过关培优 易错 难题训练∶一元二次方程及答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.
(1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值.
【答案】(1)12k ≤;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤
12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,
∴k 1=1,k 2=-3.
∵k ≤12
,∴k =-3.
2.解方程:(x+1)(x ﹣3)=﹣1.
【答案】x 1=1+3,x 2=1﹣3
【解析】
试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.
试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,
解得:x 1=1+3,x 2=1﹣3.
3.关于x 的方程(k -1)x 2+2kx+2=0
(1)求证:无论k 为何值,方程总有实数根.
(2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=
++ x 1+x 2,S 的值能为2吗?
若能,求出此时k 的值.若不能,请说明理由.
【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2.
【解析】
中考数学一元二次方程组(大题培优 易错 难题)及详细答案
中考数学一元二次方程组(大题培优易错难题)及详细答案
一、一元二次方程
1.已知:关于x的方程x2-4mx+4m2-1=0.
(1)不解方程,判断方程的根的情况;
(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2
【答案】(1) 有两个不相等的实数根(2)周长为13或17
【解析】
试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;
(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.
试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.
(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.
将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.
当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;
当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.
综上所述:此三角形的周长为13或17.
点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.
中考数学一元二次方程组(大题培优 易错 难题)附详细答案
中考数学一元二次方程组(大题培优 易错 难题)附详细答案
一、一元二次方程
1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数2
22(3)y x mx m =--+(m m 为常数).
(1)当m =0时,求该函数的零点;
(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且
12111
4
x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.
【答案】(1)当m =0
和 (2)见解析,
(3)AM 的解析式为1
12
y x =--. 【解析】 【分析】
(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2
-2mx-2(m+3),然后令y=0即
可解得函数的零点;
(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】
(1)当m =0
和
(2)令y=0,得△=
∴无论m 取何值,方程
总有两个不相等的实数根.
即无论m 取何值,该函数总有两个零点. (3)依题意有,
由
解得
.
∴函数的解析式为.
令y=0,解得
∴A(
),B(4,0)
作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以
3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?
(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
【答案】(1)PQ=62cm;(2)8
5
s或
24
5
s;(3)经过4秒或6秒△PBQ的面积为
12cm2.
【解析】
试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;
(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;
(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.
则根据题意,得
EQ=16-2×3-2×2=6(cm),PE=AD=6cm;
在Rt△PEQ中,根据勾股定理,得
PE2+EQ2=PQ2,即36+36=PQ2,
∴
cm;
∴经过2s时P、Q两点之间的距离是
;(2)设x秒后,点P和点Q的距离是10cm.
(16-2x-3x)2+62=102,即(16-5x)2=64,
∴16-5x=±8,
∴x1=8
5
,x2=
24
5
;
∴经过8
5
s或
24
5
sP、Q两点之间的距离是10cm;
(3)连接BQ.设经过ys后△PBQ的面积为12cm2.
①当0≤y≤16
3
时,则PB=16-3y,
∴1
2PB•BC=12,即
1
2
×(16-3y)×6=12,
解得y=4;
②当16
3
<x≤
22
3
时,
BP=3y-AB=3y-16,QC=2y,则
1 2BP•CQ=
1
2
(3y-16)×2y=12,
解得y1=6,y2=-2
3
(舍去);
③22
3
<x≤8时,
QP=CQ-PQ=22-y,则
1 2QP•CB=
1
2
(22-y)×6=12,
解得y=18(舍去).
综上所述,经过4秒或6秒△PBQ的面积为 12cm2.
考点:一元二次方程的应用.
2.已知关于x的方程230
x x a
++=①的两个实数根的倒数和等于3,且关于x的方程
2
(1)320
k x x a
-+-=②有实数根,又k为正整数,求代数式
2
2
1
6
k
k k
-
+-
的值.
【答案】0.
【解析】
【分析】
由于关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a的方程求出a,又由于关于x的方程(k-1)x2+3x-2a=0有实数根,分两种情况讨
论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.
【详解】
解:设方程①的两个实数根分别为x 1、x 2
则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩
=== , 由条件,知
12121211x x x x x x ++==3, 即33a -=,且94
a ≤, 故a =-1,
则方程②为(k -1)x 2+3x +2=0,
Ⅰ.当k -1=0时,k =1,x =23-,则22106
k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178
k ≤, 又k 是正整数,且k≠1,则k =2,但使2216
k k k -+-无意义. 综上,代数式2216
k k k -+-的值为0 【点睛】
本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,
3.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.
【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.
4.已知两条线段长分别是一元二次方程28120x x -+=的两根,
(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。 (3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2
)3)83
【解析】
【分析】