2020年研究生入学考试数学一试题含答案
2020年管理类联考数学真题解析(众凯MBA辅导)
法二:三角形面积可以用 S 1 a b sin c , SBDC
2
SABF
sin 600 sin 300
3 ,正确答案 E。 1
(如果会三角函数面积关系就非常容易,此方法送给数学稍微好一点的同学)
11、若数列 an 满足 a1 1, a2 2 ,若 a n2 a n1an (n 1, 2, 3...) ,a100 (
2.设集合 A x x a 1, x R , B x x b 2, x R ,则 A B 的充分必要条
件是( )。 A. a b 1 B. a b 1 C. a b 1 D. a b 1 【答案】A 【解析】集合 A: x a 1 1 x a 1 a 1 x a 1 ;
器人从节点 A 出发,随机走了 3 步,则机器人未达到过节点 C 的概率为( )。
A. 4
B. 11
9
27
C. 10 27
D. 19 27
E. 8 27
【答案】E 【解析】A 点出发有 3 种选择,到达二步时有 3 种选择,到达第三步时有 3 种选
择,所以分母:33 27 ,分子:A 点出发可以选择的方式有 2 种,到达 B 或者 D 8
y2 的最大值在点(2,4)
x y 2
取得 20,最小值在点(1,1)处取得 2。
法二:凡是求解集,求范围的一律代数做。取 x y 1 ,排除 DE;取 x 2; y 4 ,
排除 AC(因为此时 x2 y2 为最大值),正确答案 B。
法三:图形 x 2 y 2 2 是 x y 2 平移所得到。x y 2 的图形为正方形,
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2011-2020年近十年全国考研数学一试卷真题和答案解析(最新146页含书签导航)
dt
,则
2F x2
x0
.
y2
(12) 设 L 是柱面方程 x2 y2 1与平面 z x y 的交线,从 z 轴正向往 z 轴负向看去
为逆时针方向,则曲线积分 xzdx xdy y2 dz
L
2
.
(13) 若二次曲面的方程 x2 3y2 z2 2axy 2xz 2 yz 4 ,经过正交变换化为
2 (1, 2, 3)T , 3 (3, 4, a)T 线性表示. (I) 求 a 的值; (II) 将 1, 2 , 3 由1,2 ,3 线性表示.
(21)(本题满分 11 分)
1 1 1 1
A
为三阶实对称矩阵,
A
的秩为
2,即
r
A
2
,且
0 1
0 1
0 1
0 1
.
(I) 求 A 的特征值与特征向量;
f (x, y)dxdy a ,其中 D (x, y) | 0 x 1,0 y 1 ,
D
计算二重积分 I
xy
f
'' xy
(
x,
y)dxdy
.
D
(20)(本题满分 11 分)
设向量组1 (1, 0,1)T ,2 (0,1,1)T ,3 (1, 3, 5)T ,不能由向量组 1 (1,1,1)T ,
(7) 设 F1(x) , F2 (x) 为两个分布函数,其相应的概率密度 f1(x) , f2 (x) 是连续函数,
则必为概率密度的是( )
(A) f1(x) f2 (x) .
(B) 2 f2 (x)F1(x) .
(C) f1(x)F2 (x) .
(D) f1(x)F2 (x) f2 (x)F1(x) .
2020考研数学一真题参考2011答案解析
2020年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =----的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=-∑的收敛域为( )(A) (1,1]-. (B) [1,1)-. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设40ln sin I x dx π=⎰,4ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12P P . (B) 112P P -. (C) 21P P . (D) 121PP -. (6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x -'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ . (13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E XY = . 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x-→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x -=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++-=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xy DI xy f x y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)Tβ=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(I) 求A 的特征值与特征向量;(II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y 的概率分布分别为且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=-==,2222(2),2(2),2,y x y x y '''=-=-= 32333(3),3(3),6(3),y x y x y x '''=-=-=- 432444(4),4(4),12(4),y x y x y x '''=-=-=- (3)()y x P x ''=-,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=-∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=-∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂-''''==⋅=-=∂又22[(0)]ln (0)0,AC B f f ''-=⋅>故(0)1,(0)0f f ''>>. (4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以lnsin lncos lncot x x x <<. 故正确答案为(B).(5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP-=. 由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P -==.因此,121A P P -=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T 是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =-=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413-=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D).【解析】选项(D)1122()()()()f x F x f x F x dx +∞-∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞-∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞-∞⎡⎤=⎣⎦⎰12()()|F x F x +∞-∞=1=. 所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)【答案】(ln 1.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x -=.【解析】由通解公式得(cos )dx dxx y e e x e dx C --⎰⎰=⋅+⎰(cos )x e xdx C -=+⎰(sin )xe x C -=+.由于(0)0,y =故C =0.所以sin xy e x -=.(11)【答案】4. 【解析】2sin 1()F xyy x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂-⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +-=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdy ydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅-+-+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=--+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x-→+0ln(1)1lim[1].1x x x x e e →+--=2ln(1)limx x xx e →+-=22201()2lim x x x o x x x e→-+-=22201()2lim x x o x x e→-+=12e -=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ [][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+.因为 g(x) 在 x 1 可导,且为极值,所以 g(1) 0 ,则d2z dxdy|x1 y 1f1(1,1) f11(1,1) f12(1,1) .(17)(本题满分 10 分)【解析】显然 x 0 为方程一个实根.当 x 0 时,令 f x x k,arctan xf x arctanx1x x2 arctan x 2.令gxarctanx1x x2xR , gx1 1 x21 x2 x2x 1 x2 22x 2 1 x22 0,即 x R, g x 0.又因为 g 0 0 ,即当 x 0 时, g x 0 ; 当 x 0 时, g x 0 .当 x 0 时, f ' x 0 ;当 x 0 时, f ' x 0 .所以当 x 0 时, f x 单调递减,当 x 0 时, f x 单调递增又由 lim f x lim x k 1 k ,x0x0 arctan xlim f x lim x k ,xx arctan x所以当1 k 0 时,由零点定理可知 f x 在 (, 0) , (0, ) 内各有一个零点;当1 k 0 时,则 f x 在 (, 0) , (0, ) 内均无零点.综上所述,当 k 1时,原方程有三个根.当 k 1 时,原方程有一个根.(18)(本题满分 10 分)【解析】(Ⅰ)设fxln1 x,x0,1 n 显然f(x)在0,1 n 上满足拉格朗日的条件,f 1 n f0ln1 1 n ln1ln1 1 n 1 11 n, 0,1 n 所以 0,1 n 时,1 1 11 n1 11 n1 1 01 n,即:1 n 11 11 n1 n,n亦即:1 n 1ln1 1 n 1 n.结论得证. (II)设 an11 21 3 1 ln n n 1 ln n .nk 1 k先证数列an 单调递减. an1 an n1 k11 k ln n 1 n k 11 k ln nn1 1ln n n 11 n 1ln11 n ,利用(I)的结论可以得到1 n 1ln(1 1) n,所以1 n 1ln1 1 n 0得到an1an,即数列an 单调递减.再证数列an 有下界. ann k 11 k lnnn k 1ln 11 k lnn, nk 1ln1 1 k lnn k 1 k1 k ln 2 13 24 3n n1 lnn1, ann k 11 kln nn k 1ln 11 k lnnln n1 lnn0.得到数列an 有下界.利用单调递减数列且有下界得到an 收敛.(19)(本题满分 11 分)【解析】 I 1xdx01 0yf'' xy(x,y)dy1xdx01 0ydf' x(x,y) 1 0xdx yfxx,y |101 0f' x x,y dy 1xdx0f' x(x,1)1 0f' x(x,y)dy.因为f(x,1)0 ,所以f' x(x,1)0. I1xdx01 0f' x(x,y)dy1dy01 0xf' x(x,y)dx 1dy0 xf(x,y)|101 0f(x,y)dx1 0dy f(1,y)1 0f(x,y)dx fdxdy a . D(20)(本题满分 11 分)【解析】(I)由于1,2 ,3 不能由 1, 2 , 3 线性表示,对 (1, 2 , 3,1,2 ,3) 进行初等行变换:1 1 3 1 0 1 (1, 2 , 3,1,2,3) 1 2 4 0 1 31 3 a 1 1 51 1 3 1 0 1 1 1 3 1 0 1 011112 011112 . 0 2 a 3 0 1 4 0 0 a 5 2 1 0 当 a 5 时,r(1, 2 , 3) 2 r(1, 2, 3,1) 3 ,此时,1 不能由 1, 2 , 3 线性表示,故1,2 ,3 不能由 1, 2 , 3 线性表示.(II)对 (1,2 ,3, 1, 2 , 3 ) 进行初等行变换:1 0 1 1 1 3(1,2,3,1,2,3) 013124 1 1 5 1 3 5 1 0 1 1 1 3 1 0 1 1 1 3 013124 013124 0 1 4 0 2 2 0 0 1 1 0 2 1 0 0 2 1 5 0104210 , 0 0 1 1 0 2故 1 21 42 3 , 2 1 22 , 3 51 102 23 .(21)(本题满分 11 分) 1 1 1 1 【解析】(I)由于A 00 00 ,设11,0, 1T,21, 0,1T,则 1 1 1 1 A1,2 1,2 ,即 A1 1, A2 2 ,而 1 0,2 0 ,知 A 的特征值为 1 1, 2 1,对应的特征向量分别为 k11 k1 0 , k22 k2 0 .由于 r A 2 ,故 A 0 ,所以 3 0 .由于 A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设 3 0 对应的特征向量为3 x1, x2, x3 T ,则12TT33 0, 0,即 x1 x1 x3 x3 0, 0.解此方程组,得3 0,1, 0T ,故 3 0 对应的特征向量为 k33 k3 0 .(II) 由于不同特征值对应的特征向量已经正交,只需单位化:1 1 11 21, 0, 1T, 22 21 21, 0,1T,33 3 0,1, 0T . 1令Q1,2,3,则QTAQ 1 ,0 A QQT2 2 0 2 22 2 02 20 1 0 1120 2 2 2 000 12 222 02 2 02 22 2 02 220 2 02 20 000 12 2 2 2 0 0 0 10 0 010 .0 (22)(本题满分 11 分) 【解析】(I)因为 P X 2 Y 2 1 ,所以 P X 2 Y 2 1 P X 2 Y 2 0 .即 P X 0,Y 1 P X 0,Y 1 P X 1,Y 0 0 .利用边缘概率和联合概率的关系得到P X 0,Y 0 P X 0 P X 0,Y 1 P X 0,Y 1 1 ;3P X 1,Y 1 PY 1 P X 0,Y 1 1 ;3P X 1,Y 1 PY 1 P X 0,Y 1 1 .3即 X ,Y 的概率分布为X-101001/3011/301/3(II) Z 的所有可能取值为 1, 0,1 .PZ 1 PX 1,Y 1 1 .3PZ 1 PX 1,Y 1 1 .3PZ 0 1 PZ 1 PZ 1 1 .3 Z XY 的概率分布为Z-101P1/31/31/3(III)因为 XY Cov XY E XY E X E Y ,D(X ) D(Y )D(X ) D(Y )其中E XY E Z 1 1 0 1 1 1 0 , E Y 1 1 0 1 1 1 0 .3 333 33所以 E XY E X E Y 0 ,即 X ,Y 的相关系数 XY 0 .(23)(本题满分 11 分)【解析】因为总体 X 服从正态分布,故设 X 的概率密度为 f (x) x .(I) 似然函数1e , (x0 2 2)22 nn L( 2 ) f (xi; 2 ) [i 1i 11e ] (2 ) e (xi 0 2 2)22n 2; 12 2n( xi 0 )2i12 取对数: ln L( 2 ) n ln(2 2 ) n (xi 0 )2 ;2i1 2 2 求导:dln L( 2 ) d ( 2 )n 22n i 1(xi 0 )2 2( 2 )21 2( 2 )2n[(xi 0 )2 2 ] .i 1 令dln L( 2 ) d ( 2 )0 ,解得21 nn i 1( xi0 )2. 2 的最大似然估计量为 21 nn i 1(Xi 0 )2.(II) 方法 1: X i~N (0 , 2 ) ,令YiXi 0~N (0, 2 ) ,则 21 nnYi 2i 1. E( 2 )E(1 nn i 1Yi2 )E(Yi2 )D(Yi ) [E(Yi )]22. D( 2 )D( 1 nnYi2 )i 11 n2D(Y12 Y22 Yn2 )1 nD(Yi2 )1 n{E(Yi4)[E(Yi2 )]2}1 n(344)2 n4.方法 2: X i~ N (0, 2),则Xi 0 ~ N (0,1),得到 Yn i1 Xi 02 ~2n,即n 2Y Xi 0 2 . i 1E 2 1 nE n i1(Xi0)2 1E n 2Y 1 2E Y 1 2 n 2 .nn D 2 1 n2n D i1 ( Xi0)2 1 n2D 2Y1 n24D Y1 n24 2n2 n4.。
2020年考研数学一真题及答案解析
(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
2020考研数学一真题参考2004答案解析
2020年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线上与直线垂直的切线方程为__________ . (2)已知,且,则=__________ .(3)设为正向圆周在第一象限中的部分,则曲线积分的值为__________.(4)欧拉方程的通解为__________ . (5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=__________ .(6)设随机变量服从参数为的指数分布,则= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C) (D) (8)设函数连续,且则存在,使得(A)在(0,内单调增加 (B)在内单调减少 (C)对任意的有 (D)对任意的有ln y x =1=+y x (e )e x x f x -'=(1)0f =()f x L 222=+y x ⎰-L ydx xdy 2)0(024222>=++x y dx dyx dx y d x210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A B **2=+ABA BA E *A A E B X λ}{DX X P >+→0x dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβαγβα,,βγα,,γαβ,,αγβ,,()f x ,0)0(>'f 0>δ()f x )δ()f x )0,(δ-),0(δ∈x ()(0)f x f >)0,(δ-∈x ()(0)f x f >(9)设为正项级数,下列结论中正确的是(A)若=0,则级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则 (D)若级数发散, 则存在非零常数,使得(10)设为连续函数,,则等于 (A) (B) (C) (D) 0(11)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为(A)(B)(C)(D)(12)设为满足的任意两个非零矩阵,则必有 (A)的列向量组线性相关的行向量组线性相关 (B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关 (D)的行向量组线性相关的列向量组线性相关(13)设随机变量服从正态分布对给定的,数满足,若,则等于∑∞=1n n a n n na ∞→lim ∑∞=1n n a λλ=∞→n n na lim ∑∞=1n n a ∑∞=1n n a 0lim 2=∞→n n a n ∑∞=1n n a λλ=∞→n n na lim ()f x ⎰⎰=t ty dx x f dy t F 1)()()2(F '2(2)f (2)f (2)f -A A B B C =AQ C Q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110,A B =AB O A ,B A ,B A ,B A ,B X (0,1),N )10(<<αααu αα=>}{u X P α=<}{x X P x(A) (B)(C) (D)(14)设随机变量独立同分布,且其方差为 令,则(A) (B)(C) (D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设,证明.2αu 21α-u21α-u α-1u )1(,,,21>n X X X n .02>σ∑==ni i X n Y 1121Cov(,)X Y nσ=21Cov(,)X Y σ=212)(σnn Y X D +=+211)(σnn Y X D +=-2e e a b <<<2224ln ln ()eb a b a ->-(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)).100.66⨯=k(17)(本题满分12分)计算曲面积分其中是曲面的上侧.,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=∑)0(122≥--=z y x z(18)(本题满分11分)设有方程,其中为正整数.证明此方程存在惟一正实根,并证明当时,级数收敛.10n x nx +-=n n x 1α>1n n x α∞=∑(19)(本题满分12分)设是由确定的函数,求的极值点和极值.(,)z z x y =2226102180x xy y yz z -+--+=(,)z z x y =(20)(本题满分9分)设有齐次线性方程组试问取何值时,该方程组有非零解,并求出其通解.121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩a(21)(本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A a A(22)(本题满分9分)设为随机事件,且,令求:(1)二维随机变量的概率分布. (2)和的相关系数,A B 111(),(|),(|)432P A P B A P A B ===;,,0,1不发生发生A A X ⎩⎨⎧=.,,0,1不发生发生B B Y ⎩⎨⎧=(,)X Y X Y .XY ρ(23)(本题满分9分) 设总体的分布函数为其中未知参数为来自总体的简单随机样本,求:(1)的矩估计量. (2)的最大似然估计量X ,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββn X X X ,,,,121 >βX ββ2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2020年(数学一)全国硕士研究生招生考试真题(1)
z
=
x2 +
y2
的法向量是 n =
ìïï镲 睚 镲 镲 ïî
x x2 +
y2
,
y ,- 1üïï , x2 + y2 ïþ
则有
dydz x
=
x2 + y2
dzdx y
x2 + y2
=
dxdy -1
,即ìïïïïïïíïïïï?ïî ddyzddxz
= =
-
x dxdy x2 + y2
y dxdy
x2 y2
1 6
,1 12
处, AC
−
B2
=
3
0,
A
=1
0 ,从而函数在此处取
极小值,且
f
1 6
,1 12
=
−
1 216
.综上函数的极值为
f
1 6
,1 12
=
−
1 216
.
16
.计算曲线积分 I
=
L
4x − 4x2 +
y y
2
dx
+
x+ y 4x2 + y
dy ,其中
L
是
x2
+
y2
=
2 ,方向为逆时针方
答案:8. B
100
E
i =1
Xi
=
100 i =1
EX i
= 100
1 2
= 50
100
i =1
DXi
= 100
1 2
1 2
=
25
P
100 i =1
Xi 5
长沙理工大学研究生入学考试2018-2020高等数学真题汇编
间. (2 ) 伊, θ 有公共的特征向盘.
v y v v 4. (20 分〉设 是数域 F 上n维线性空间 的线性变换, kerf// = {αe I f/1忡忡。}为
v 的核, Im f/1 = {f// (α)| αEV}为
it �,重其火,警
2020年硕士研究生入学考试试题
考试科目:
高等代数
考试科目代码:�
注意:所有答案(含选择题、判断题、作图题等〉 一律答在答题纸上;写在试题纸上或 其他地点一律不给分.作图题可以在原试题图上作答,然后将图撕下来贴在答题纸上相
应位里。
-、计算题(共90分〉
I. ( 15 分)求多项式x,。 - 1 征复数范围内和在实数范围内的因式分解.
.. � J重 .:r.. � ,营
2018年硕士研究生入学考试试题
考试科目z 富警代监
考试科目代码: .Jl主Z
注意z所有答案〈含选择题、判断题、作图题等〉 一律答在答题纸上z写在试题纸上或 其他地点一律不给分.作图题可以在原试题图上作答,然后将圄撕下来贴在答题纸上相
应位置。
-、计算题〈共90分〉 1.在 R[x1 中定义内积为
町 = L(矶,句,吗),乌 = L俐,/32 ),求町+吨的维数,并求其一组基。(15分)
二、 证明题〈每小题 15 分, 共 60 分〉
1. 设A为n阶正定矩阵,B为nxm 实矩阵.证明:如果秩(B)=m ,则m阶实方阵·BT AB
必为正定矩阵。 2. 正交矩阵的实特征值只能是1或-1.
3. 证明z (f(功, g(x))=l 的克分必要条件是(f(x)g(x),f(x)+ g(x)) = 1 o
2020考研数学(一)答案解析
π
1
2
π
E ( XY ) E ( X sin X )2π
x sin x
dx
02x sin xdx
π
π
2
2
π
2
π
π
02xd cos x
x cos x|0202cos xdx
π
π
2
sin x|
π
2
.
02
π
π
9
故 cov( X , Y )2π0π2.
三、解答题
(15)(本题满分10分)
f ( x) 0.
x
x
综上,
f ( x )d x
f ( x ) af ( x)
lim
f
( x ) af ( x )
f (0) af (0)
am n.
0
0
x
2f
12.f(x,y)0xyext2dt,则
.
x y
(1,1)
(12)【答案】4e.
【解析】因为
2f
2f
,又
f
ex xy2xxex3y2,
x y
y x
x , y0,0x2y2
x , y0,0
x2y2
(4) 设R为幂级数anxn的收敛半径,r是实数,则
(
)
n1
(A)anrn发散时,
r
R.
n 1
(B)anrn发散时,
r
R.
n 1
(C)
r
R时,anrn发散.
n 1
(D)
r
R时,anrn发散.
n 1
(4)【答案】(A).
【解析】若anrn发散,则
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纨指定位置上.1- cos Jx _______ _ r > 0(1)若函数/(# = { ax在x连续,则b,x<Q(A) ab = g.(B) ab = —^.(C) ab = 0.(D) ab = 2.【答案】A【详解】由lim --=,_ = b,得出? = L.ax 2a 2(2)设函数可导,且—。
)>0则(A) /(1)>/(-1). (B) /⑴ </(T).© |/W|>|/(-l)|- ⑼ ]〃刈<|〃-1)卜【答案】C【详解】/(刈=[弓2r〉o,从而广(冷单调递增,尸⑴>(3)函数/。
,乂2)=犬〉+ ^在点(1,2,0)处沿着向量〃 =(1,2,2)的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D19【详解】方向余弦cosa = -,cos^ = cosy = §,偏导数f; = 2xy,f; = x\f! = 2z,代入 cos af; + cos /f: + cos yf;即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线y =H«)(单位:m/s),虚线表示乙的速度曲线〃=匕(。
(单位:in/s),三块阴影部分面积的数值一次为10, 20, 3,计时开始后乙追上甲的时刻记为(单位:s),则(A) r 0 =10. (B) 15<t 0 <20 . (C) 0 = 25. (D) t 0>25.【答案】C【详解】在。
=25时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设a 为〃维单位列向量,七为〃阶单位矩阵,则(A)七一勿肝不可逆. (B) E+aaT 不可逆. (C) E+2a«i 不可逆. (D)不可逆.【答案】A【详解】可设Q = (l,o,…,0)、则或/的特征值为L0,…,0,从而E —皿丁的特征值为 0』,…因此E —不可逆.101 fl 、2 0 , C= 2 0 J 1 2)(A)A 与C 相似,8与。
2020全国卷一数学
2020全国卷一数学题目一题目描述某大学计算机系有A、B、C三个班级,计算机系有男生30人,女生40人,其中A班级有男生12人,女生16人;B班级有男生10人,女生14人;C班级有男生8人,女生10人。
学校要求班级男女生比例保持一致,请你通过计算回答以下问题:1.总共有多少个班级?2.每个班级有多少个学生?3.每个班级男生和女生数分别是多少?解题思路根据题目所给的条件,我们可以计算出每个班级的学生总数,分别是A班级28人,B班级24人,C班级18人。
所以,总共有3个班级,每个班级分别有28、24和18个学生。
然后,再计算每个班级的男生和女生人数。
根据题目所给的条件,我们可以计算出A班级的男生和女生人数分别是12和16,B班级的男生和女生人数分别是10和14,C班级的男生和女生人数分别是8和10。
计算公式每个班级的学生总数:A班级(28人)、B班级(24人)、C班级(18人)每个班级的男生人数:A班级(12人)、B班级(10人)、C班级(8人)每个班级的女生人数:A班级(16人)、B班级(14人)、C班级(10人)运算过程总共有3个班级,每个班级分别有28、24和18个学生。
每个班级的男生和女生人数分别是A班级(12人/16人)、B班级(10人/14人)和C班级(8人/10人)。
结果1.总共有3个班级;2.每个班级分别有28、24和18个学生;3.每个班级的男生和女生人数分别是A班级:12人/16人,B班级:10人/14人,C班级:8人/10人。
题目二题目描述某超市进行618大促销,销售了许多商品,其中手机和电视销售额占据了销售总额的60%。
请计算以下问题:1.销售总额为多少?2.手机和电视的销售总额是多少?3.销售总额和手机、电视销售总额的比例是多少?解题思路根据题目所给的条件,我们可以计算出销售总额。
假设销售总额为100元,手机和电视销售额占据了销售总额的60%,那么手机和电视的销售总额为100 * 60% = 60元。
2020考研数学一真题及答案,最新数学考研真题
o\cP!
Ix, ,.,
-so
Sifc<!>(l),故选(B)
尽
二、填空题: 9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.
畸言 (9)
ln(l�x)] =
【答案】一 l
畸 ] 心 【解析】法]: 利用洛必达法则求解
I_ l
111(1 + x)-卢1
n(l +x)-ex +l
气 e"-1 ln(l+x)
常系数 C1 , C2 不同),故必有四E,f(x )=O, _杻凸f'(x)=O
(III)若 O<a<2, 则,l,=--2a+bi,,li=--2a -bi, 其中 b= 卢
f(x) 的通解具有 (C1 cos bx+C2 sinbx)e一 ,a/2 的形式,易知 f'(x) 也具有相同的形式(只有常系数 c1 , C2
(e" -l)·ln(l +x) = x➔0
X
x-x—2 +o(x2 )-[l +x+x—2 +o(x2 )] + l
=lim 2
2!
=-1
x--,O
ix= = (10)设 言
,则立2
l y= n(t+ 芦)
dx •='
【答案】一五
dy 【解析】
dy I+ t
空=心= 启
汇三
心
dt t十卢 t
t
心
(
丿、
(A)存在矩阵P, 使得 PA=B
(B)存在矩阵P, 使得 BP=A
(C) 存在矩阵P, 使得 PB=A
2020年数学一真题含答案
2020年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选选项前的字母填在答题纸指定的位置上.(1)当+0x →下列无穷小的阶最高的是().(A )2(1)dt xt e -⎰(B)(0ln 1dtx+⎰(C )sin 2sin dtxt ⎰(D)1cos 0-⎰【答案】(D )【详解】(A)22'20((1))1(0)xt x e dt e x x +-=-→⎰(B)3'2(ln(1)ln(1(0)x x x +=+→⎰(C)sin 2'220(sin )sin(sin )cos (0)xt dt x x x x +=→⎰(D).1cos '40()(0)x cx x -+=→⎰(2)函数()f x 在(1,1)-有定义,且0lim ()0x f x →=,则().(A)若0x →=,则()f x 在0x =可导;(B )若2()lim0x f x x →=,则()f x 在0x =可导;(C )若()f x 在0x =可导,则0x →=;(D )若()f x 在0x =可导,则20()lim0x f x x→=.【答案】(C )【详解】(A )反例()||f x x =(B )反例0,0()1,00,0x f x x x <⎧⎪==⎨⎪>⎩(D)反例2()f x x=(3)函数(,)f x y 在(0,0)可微,(0,0)0f =,(0,0)(,,1)f fn x y →∂∂=-∂∂非零向量α→与n →垂直,则()(A)(,)limx y →存在(B)(,)limx y →存在(C)(,)limx y →(D)(,)limx y →存在【答案】(A )【详解】因为(,)f x y 在(0,0)可微所以0x y →→''-⋅-⋅=又因为(,,(,))(,)x y n x y f x y x f y f f x y →''⋅=⋅-⋅-所以00x y →→''⋅-⋅-=从而00x y →→=即(,)lim 0x y →=,故选(A ).(4)设R 为幂级数nnn a x∞=∑收敛半径,r 为实数,则()(A )当220nn n ar∞=∑发散时,则||r R ≥(B )当220nnn ar ∞=∑收敛时,则||r R ≤(C )当||r R ≥时,则220nnn ar ∞=∑发散(D )当||r R ≤时,则220n nn ar ∞=∑收敛【答案】(D )【详解】由级数收敛半径的性质得D 正确。
2020数一证明题
2020数一证明题2020年数学一科的证明题有很多,以下是其中一道典型的题目:题目,设函数f(x)在区间[a, b]上连续,且在开区间(a, b)内可导,且f(a)=f(b)=0。
证明,存在ξ∈(a, b),使得f'(\xi)=-\frac{f(\xi)}{\xi}。
解答:首先,根据题目给出的条件,我们可以得知函数f(x)在区间[a, b]上满足罗尔定理的条件。
根据罗尔定理,如果一个函数在闭区间[a, b]上连续,在开区间(a, b)内可导,并且在区间的两个端点上取到相同的函数值,那么在开区间(a, b)内至少存在一点ξ,使得函数的导数等于零。
由于题目中给出f(a)=f(b)=0,我们可以得知函数f(x)在区间[a, b]的两个端点上取到相同的函数值。
因此,根据罗尔定理,存在ξ∈(a, b),使得f'(\xi)=0。
接下来,我们需要证明存在ξ∈(a, b),使得f'(\xi)=-\frac{f(\xi)}{\xi}。
由于题目中给出f(a)=f(b)=0,我们可以得知函数f(x)在区间[a, b]的两个端点上函数值为零。
根据介值定理,如果一个函数在闭区间[a, b]上连续,并且在区间的两个端点上取到不同的函数值,那么在开区间(a, b)内至少存在一点ξ,使得函数的函数值等于任意给定的值。
因此,我们可以得知存在ξ∈(a, b),使得f(\xi)=0。
结合前面得到的结论f'(\xi)=0,我们可以得到f'(\xi)=-\frac{f(\xi)}{\xi}。
综上所述,我们证明了存在ξ∈(a, b),使得f'(\xi)=-\frac{f(\xi)}{\xi}。
以上是对2020年数学一科证明题的一个示例解答。
在实际考试中,可能会有其他类型的证明题目,但是解题思路和方法大致相同,即根据已知条件运用数学定理和推理进行证明。
希望这个回答能够帮助到你。
2020年考研数学一真题(含完整答案)
x2
+
y2
=
2,方向为逆时针方向.
(17)
( 设数列 {an} 满足 a1 = 1,(n + 1)an+1 = n +
1 2
)
an.
证明:当
|x|
<
1
时,幂级数
∑∞
anxn
收敛,
n=1
并求其和函数.
√ (18) 设 Σ 为曲面 z = x2 + y2(1 ≤ x2 + y2 ≤ 4) 的下侧,f (x) 为连续函数. 计算
(5) 【答案】B 【解析】 矩阵A经初等列变换得到B,故存在初等矩阵P, (i= 1, 2,…,t)使
AP1P2 …P,= B
c 因P, 均可逆,故有A= BP, I…1'2 1 ri l'记p= 1�尸…P了P尸故应选 CB). (6) 【答案】
【解析】 由 直线标准方程知I八 心的方向向掀分别是a1= (a 1,b1,c1 ) T,az= (az,bz,Cz)T, 直线
P {X = 0} = P {X 的近似值为 ( )
=
1}
=
1 2
,Φ(x)
i=1
(A)1 − Φ(1).
(B)Φ(1).
(C)1 − Φ(0.2).
(D)Φ(0.2).
二、填空题
[
]
(9)
lim
x→0
1
ex−1 x =
−
1 ln(1+x)
√ t2 + 1,
=
(10)
设
y
=
ln(t
+
√ t2
+
1),
2020年中国科学院大学硕士学位研究生入学统一考试试题(数学与物理综合)
K
ÁKo©Š•150©§Ù¥êÆÜ©ÁK
O©Š•75©"
"
O©Š•75©§ÔnÜ©Á
êÆÜ©ÁK
‡È©£ 45©
©¤
~êaÚb:
2
x + k2
lim
− ax − b = 0.
x→+∞
x+1
1. (5©) k•¢~ꧦÑ÷veã^‡
2. (10©)
f ∈ C([a, b]), x1 , · · · , xn ∈ [a, b]. y²µ•3ξ ∈ [a, b]¦
ëY¼ê,Áy
Z
Z
1 T
1 x
f (s)ds =
f (s)ds.
lim
x→+∞ x 0
T 0
5. (10©)
D = (x, y) ∈ R2 | x2 + y 2 ≤ 1 ,OŽ
RR
-È©
(xy 2 + x2 )dxdy"
D
‚5“ê £ 30©
©¤
1. (10©) ?Øα
ÛŠž±e•§|k)§¿¦Ù)(18©)µ
(B) 长杆的转动惯量对运动的平衡作用;
(C) 长杆对风的平衡能力;
(D) 走钢丝者的体重加上长杆的重量,增加了运动的惯性。
2. 三个点电荷分别位于边长为的正三角形的三个顶点,它们的电荷量分别为, 2
和 − 4。真空介电常数为0 ,则这个系统的总静电能为(设相距无穷远时相互作用能
为零)
(A) −5 2 /20 ; (B) −5 2 /40 ; (C) −7 2 /40 ; (D) −7 2 /20 。
化而连续线性从1 变化到2 。内球带自由电荷。
2020考研数学一真题及答案解析
I xf xy 2x ydydz yf (xy) 2y xdzdx zf xy z dxdy
.
【详解】将曲面 Z x2 y2 向 xoy 面投影得 Dxy
Dxy 为1
x2
y2
4
,又
Z
' x
x x2
y2
,
Z
' y
y x2 y2
I
{[ xf
(
xy)
又 G(0) G(1) 0 ,从而 G(x) 0 ,即 f (x) Mx , 0 x 1 .
因此 f(1) M ,从而 M 0 .
综上所述,最终 M 0
(20)(本题满分 11 分)
设二次型
f
x1, x2
x12
4 x1x2
4 x22
经正交变化
x1 x2
Q
y1 y2
化为二次型
,
AC A
1
B2 =3>0 0
x y
1 6 1 12
,为极小值点
f (1 , 1 ) 1 极小值为 6 12 216
(16)(本题满分 10 分)
I
计算
L
4x 4x2
y y
2
dx
x y 4x2 y2
dy
,其中
L为
x2
y2
2
,方向为逆时针方向.
【详解】补曲线 L1 : 4x2 y2 2 ,逆时针方向
(C)3 可由1 ,2 线性表示
(D)1,2 ,3 线性无关
【答案】(C).
(7)
PA
PB
PC
1 4
,
P AB
0,
P AC
2020年全国硕士研究生入学统一考试数学(一)真题及解析
2020年全国硕士研究生入学统一考试数学(一)真题及解析(江南博哥)1 [单选题]当x→0+时,下列无穷小量中是最高阶的是( ).A.B.C.D.正确答案:D参考解析:A项,2 [单选题]设函数f(x)在区间(-1,1)内有定义,且,则( )A.B.C.D.正确答案:C参考解析:若f(x)在x=0处可导,则在x=0处连续,且f(0)=3 [单选题]设函数f(x,y)在点(0,0)处可微f(0,0)=0,且非零向量d与n垂直,则( ).A.B.C.D.正确答案:A参考解析:∵f(x,y)在(0,0)处可微f(0,0)=0,4 [单选题]设R为幂级数的收敛半径,r是实数,则( ).A.B.C.D.正确答案:A参考解析:由阿贝尔定理知,当收敛,5 [单选题]若矩阵A经初等列变换化成B,则( ).A.存在矩阵P,使得PA=BB.存在矩阵P,使得BP=AC.存在矩阵P,使得PB=AD.方程组Ax=0与Bx=0同解正确答案:B参考解析:∵矩阵A经初等列变换化成B,∴存在可逆矩阵P1,使得AP1=B,∴A=B,令P=∴A=BP,故选B项.6 [单选题]已知直线相交于一点,法向量,则( ).A.可由,线性表示B.可由,线性表示C.可由,线性表示D.,,线性无关正确答案:C参考解析:7 [单选题]设A,B,C为三个随机事件,P(A)=P(B)=P(C)=,P(AB)=O,P(AC)=P(BC)=1,则A,B,C中恰有一个事件发生的概率为( ).A.B.C.D.正确答案:D参考解析:8 [单选题]设X1,X2,…,X n为来自总体X的简单随机样本,其中P{X=0}=P{X=1}=,(x)表示标准正态分布函数,则利用中心极限定理可得的近似值为( ).A.1-(1)B.(1)C.1-(0.2)D.(0.2)正确答案:B参考解析:9 [填空题]参考解析:-1【解析】10 [填空题]参考解析:【解析】11 [填空题]若函数f(x)满足f”(x)+af’(x)+f(x)=0(a>0),且f(0)=m,f'(0)=n,则参考解析:n+am【解析】特征方程为λ2+aλ+1=0(a>0),设特征根为λ1,λ2,则λ1+λ2=-a,λ1λ2=1,特征辛艮λ1<0,λ2<0.12 [填空题]参考解析:4e【解析】13 [填空题]参考解析:a4-4a2 【解析】14 [填空题]设X服从区间(-)上的均匀分布,Y=sinX,则Cov(X,Y)=——.参考解析:【解析】15 [简答题]求函数f(x,y)=x3+8y3-xy的极值.参考解析:求一阶导数可得16 [简答题]计算曲线积分,其中L是x2+y2=2,方向为逆时针方向.参考解析:17 [简答题]设数列{a n}满足a1=1,(n+1)a n+1=(n+)an,证明:当|x|<1时,幂级数收敛,并求其和函数.参考解析:由(n+1)a n+1=(n+)a n,a1=1知a n>0,18 [简答题]设∑为曲面z=(1≤x2+y2≤4)的下侧,f(x)是连续函数,计算I=参考解析:19 [简答题]设函数f(x)在区间[0,2]上具有连续导数f(0)=f(2)=0,M=max{|f(x)|},x∈[0,2],证明:(Ⅰ)存在ξ∈(0,2),使得|f'(ξ)|≥M;(Ⅱ)若对任意的x∈(0,2),|f’(x)|≤M,则M=0.参考解析:(Ⅰ)由M=max{|f(x)|},x[0,2]知存在c∈(0,2),使|f(c)|=M.若c∈(0,1],由拉格朗日中值定理得至少存在一点∈(0,c),使(Ⅱ)若M>0,则c≠0,2.由f(0)=f(2)=0及罗尔定理知存在∈(0,2),使f’()=0.当/∈(0,c]时,于是2M<Mc+M(2-c)|=2M矛盾,故M=0.20 [简答题]设二次型f(x1,x2)=经正交变换化为二次型g(y1,y2)=,其中a≥b.(Ⅰ)求a,b的值;(Ⅱ)求正交矩阵Q.参考解析:(I)由题意可知Q T AQ=Q-1AQ=B,∴A相似于B,a≥b.∴a=4.b=1.(Ⅱ)∴A的特征值为0,5.当λ=0时,解(OE—A)x=0得基础解为当λ=5时,解(5E—A)x=0得基础解为又B的特征值也为0,5,当λ=0时,解(0E-B)x=0得当λ=5时,解(5E-B)x=0得对,单位化,得21 [简答题]设A为二阶矩阵,P=(,A),其中是非零向量且不是A的特征向量.(I)证明P为可逆矩阵;(Ⅱ)若A2+A-6=0,求P-1AP,并判断A是否相似于对角矩阵.参考解析:(I)因为≠0且不是A的特征向量,所以A≠,故与A线性无关,则r(,A)=2,则P可逆.(11)解法一因为A2+A-6=0,即A2=-A+6,解得=-3,2,所以A的特征值为-3,2.于是A可相似对角化.解法二P-1AP同解法一.由A2+A-6=0,得(A2+A-6E)=0,即(A+3E)(A-2E)=0,由≠0得(A2+A-6E)x=0有非零解,故|(A+3E)(A-2E)|=0,得|A+3E|=0或|A-2E|=0.若|A+3E|≠0,则(A一2E)=0,故A=2与题意矛盾,故|A+3E|=0,同理可得|A-2E|=0.于是A的特征值为-3,2,A有2个不同特征值,故A可相似对角化.22 [简答题]设随机变量X1,X2,X3相互独立,其中X1与X2均服从标准正态分布,X3的概率分布为P{X3=0}=P{X3=1}=,Y=X3X1+(1-X3)X2.(Ⅰ)求二维随机变量(X1,Y)的分布函数,结果用标准正态分布函数(x)表示;(Ⅱ)证明随机变量Y服从标准正态分布.参考解析:(I)F(x,y)=P{x,≤x,Y≤y}若x>y,则P{X1≤x,X1≤y|X3=1}=P{X1≤y}=(y),23 [简答题]设某种元件的使用寿命T的分布函数为其中0,m为参数且大于零.(Ⅰ)求概率P{T>t}与P{T>s+t|T>s},其中s>0,t>0;(Ⅱ)任取n个这种元件做寿命试验,测得它们的寿命分别为t1,t2,…,t n,若m已知,求的最大似然估计值.参考解析:。
2020考研数学一真题参考1999答案解析
2020年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分。
把正确答案填写在题中横线上。
)(1) 2011lim tan x x x x →⎛⎫-=⎪⎝⎭ (2) 20sin()x d x t dt dx-=⎰ (3) 2"4xy y e -= 的通解为y =(4) 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是(5) 设两两相互独立的三事件A , B 和C 满足条件:1,()()(),2ABC P A P B P C φ===<9(),16P A B C ⋃⋃=则()P A =二、选择题(本题共5小题,每小题3分,满分15分。
每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。
)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则 ( )(A) 当()f x 是奇函数时,()F x 必是偶函数。
(B) 当()f x 是偶函数时,()F x 必是奇函数。
(C) 当()f x 是周期函数时,()F x 必是周期函数。
(D) 当()f x 是单调增函数时,()F x 必是单调增函数。
(2)设20()(),0x f x x g x x >=≤⎩其中()g x 是有界函数,则()f x 在0x =处 ( ) (A)极限不存在 (B)极限存在,但不连续 (C)连续,但不可导 (D)可导(3) 设011,02(),()cos ,,1222,12n n x x a f x S x a n x x x x π∞=⎧≤≤⎪⎪==+-∞<<+∞⎨⎪- <<⎪⎩∑其中102()cos ,(0,1,2,),n a f x n xdx n π==⋅⋅⋅⎰则52S ⎛⎫- ⎪⎝⎭等于 ( )(A)12 (B)12- (C)34 (D)34-(4)设A 是m n ⨯矩阵, B 是n m ⨯矩阵,则(A)当m n >时,必有行列式AB 0≠ (B)当m n >时,必有行列式AB 0= (C)当n m >时,必有行列式AB 0≠ (D)当n m >时,必有行列式AB 0=(5)设两个相互独立的随机变量X 和Y 分别服从正态分布N (0,1)和N (1,1),则(A) {}10.2P X Y +≤=(B) {}1P X+Y 1.2≤= (C) {}1P X-Y 0.2≤= (D) {}1P X-Y 1.2≤=三、(本题满分5分)设()y y x =,()z z x =是由方程()z xf x y =+和(,,)F x y z =0所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dz dx。
2020考研数学一真题
2020年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)当0x +→,下列无穷小量中最高阶的是(A )2(1)xt e dt -⎰(B)0ln(1xdt⎰(C )sin 20sin xt dt⎰.(D)1cos 0-⎰(2)设函数()f x在区间(1,1)-有定义,且0lim ()0x f x →=,则()(A )当x →=时,()f x 在0x =处可导(B )当x →=时,()f x 在0x =处可导(C )()f x 在0x =处可导时,0x →=(D )()f x 在0x =处可导时,x →=(3)(,)f x y 在()00,可微,(0,0)0f =,()''(0,0),,1x y n f f =-,非0向量n α⊥,则()(A )(,)limx y →存在(B )(,)limx y →存在(C )(,)limx y →存在(D )(,)limx y →存在(4)R 为1nnn a x∞=∑收敛,r 为实数,则()(A )221nnn ax∞=∑发散,则r R≥(B )221nnn ax ∞=∑收敛,则r R≤(C )r R≥,221nnn ax∞=∑发散(D )r R≤,则221nnn ax ∞=∑收敛(5)若矩阵A 由初等列变换为矩阵B ,则()(A )存在矩阵P ,使PA B =;(B )存在矩阵P ,使BP A =;(C )存在矩阵P ,使PB A =;(D )方程组0AX =与=0BX 同解;(6)已知22211113332322::x a y b z c l a b c x a y b z c l a b c ---==---==相交于一点,令i i i i a b c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1,2,3i =,则()(A )1α可由2α,3α线性表示(B )2α可由1α,3α线性表示(C )3α可由1α,2α线性表示(D )123,,ααα线性无关(7)()()()()()()121,0,41======BC P AC P AB P C P B P A P ,则C B A ,,恰好发生一个的概率为()(A )43(B )32(C )21(D )512(8)设为12100,,...,x x x 来自总体X 的简单随机样本,其中1{0}{1}2P x P x ====,()x Φ表示标准正态分布函数,则由中心极限定理可知,1001{55}i P x =≤∑的近似值为()(A )1(1)-Φ(B )(1)Φ(C )1(0.2)-Φ(D )(0.2)Φ二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.()011lim 1ln1x x e x→⎡⎤-=⎢⎥-+⎣⎦.(10)设(ln x y t ⎧=⎪⎨=⎪⎩,则221t d y dx ==.数()f x 满足()()()0f x af x f x '''++=()0a >,且()0f m=,()0f n'=,则()f x dx +∞=(12)设函数2dt,则()21,1f x y∂=∂∂.(13)行列式01101111011a a a a --=--.(14)已知随机变量X 服从区间,22ππ⎛⎫- ⎪⎝⎭上的均匀分布,sin Y X =,则(),Cov X Y =.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分)求函数()33,8f x y x y xy=+-的极值.(16)(本题满分10分)计算2222444L x y x yI dx dy x y x y -+=+++⎰,其中L 为222x y +=,方向为逆时针方向.(17)(本题满分10分)设数列{}na满足11a=,11(1)2n nn a n a+⎛⎫+=+⎪⎝⎭.证明:当1x<时幂级数1nnna x∞=∑收敛并求其和函数.(18)(本题满分10分)设∑为曲面224)z x y =≤+≤下侧,()f x 为连续函数.计算()[]()2()2I xf xy x y dydz yf xy y x dzdx zf xy z dxdy∑=+-+++++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰(19)(本题满分10分)设函数()f x 在[]0,2上具有连续导数.()()020f f ==,[](){}0,2max x M f x ∈=.证:(1)存在()0,2ξ∈使()f Mξ'≥(2)若对任意()0,2x ∈,()f x M'≤,则0M =.(20)(本题满分11分)设二次型()22121122,44f x x x x x x=-+经正交变化1122x yQx y⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭化为二次型()22121122,46g y y ay x x y=++,其中a b≥.(1)求a,b的值(2)求正交变换矩阵Q(21)(本题满分11分)设A 为2阶矩阵,(),P A αα=,其中α是非零向量且不是A 的特征向量.(1)证明P 为可逆矩阵.(2)若260A A ααα+-=,求1P AP -,并判断A 是否相似于对角矩阵.(22)(本题满分11分)设随机变量123,,X X X 相互独立,其中1X 与2X 均服从标准正态分布,3X 的概率分布为331{0}{1}2P X P X ====,3132(1)Y X X X X =+-。