关于石墨烯电池的调研报告范文
《2024年基于石墨烯的锂离子电池负极材料的研究》范文
《基于石墨烯的锂离子电池负极材料的研究》篇一一、引言随着科技的发展和社会的进步,能源问题已成为全球共同关注的焦点。
锂离子电池因其高能量密度、长寿命和环保等优点,被广泛应用于电动汽车、电子设备等领域。
然而,传统锂离子电池的负极材料存在着一些不足,如容量低、循环性能差等。
因此,开发新型高性能的锂离子电池负极材料具有重要意义。
近年来,基于石墨烯的锂离子电池负极材料因其独特的结构和性能受到了广泛关注。
本文将重点研究基于石墨烯的锂离子电池负极材料,分析其制备方法、性能及改进方向。
二、石墨烯的基本性质与结构石墨烯是一种由单层碳原子组成的二维材料,具有优异的导电性、导热性、机械强度和较大的比表面积。
这些特性使得石墨烯在锂离子电池负极材料中具有巨大的应用潜力。
石墨烯的片层结构可以为锂离子提供更多的嵌入位点,从而提高电池的容量。
此外,石墨烯的优异导电性有助于提高电池的充放电速率。
三、基于石墨烯的锂离子电池负极材料的制备方法1. 化学气相沉积法:通过在高温下使碳源气体分解,并在基底上沉积石墨烯。
该方法可以制备出高质量的石墨烯薄膜,但成本较高,生产效率较低。
2. 液相剥离法:利用溶剂剥离石墨得到单层或多层石墨烯。
该方法工艺简单,成本低,但产物中杂质较多,影响电池性能。
3. 化学氧化还原法:通过化学氧化天然石墨得到氧化石墨,再通过还原得到石墨烯。
该方法工艺成熟,可实现大规模生产。
四、基于石墨烯的锂离子电池负极材料的性能研究基于石墨烯的锂离子电池负极材料具有较高的理论容量和良好的循环性能。
在充放电过程中,锂离子可以在石墨烯片层间嵌入和脱出,从而实现能量的存储和释放。
此外,石墨烯的优异导电性有助于提高电池的充放电速率,降低内阻。
然而,在实际应用中,还需解决石墨烯材料的一些问题,如容量衰减、循环稳定性等。
五、性能改进措施及研究进展针对基于石墨烯的锂离子电池负极材料存在的问题,研究者们提出了多种改进措施。
1. 纳米结构化:通过制备具有特殊纳米结构的石墨烯材料,如三维网络结构、多孔结构等,提高材料的比表面积和嵌锂能力,从而提高电池性能。
石墨烯材料的电化学性能研究
石墨烯材料的电化学性能研究石墨烯作为一种新型的二维材料,具有独特的结构和性能,引起了广泛的研究兴趣。
在过去的几年里,科学家们对石墨烯材料的电化学性能进行了深入地研究,并取得了一系列重要的发现和突破。
本文将就石墨烯材料的电化学性能进行探讨,以期加深我们对石墨烯材料的认识。
首先,石墨烯材料具有优异的导电性能。
由于石墨烯只由一个碳原子层组成,因此它具有极高的电子迁移率和导电性。
研究表明,石墨烯的电子迁移率可以达到几千cm²/Vs,是传统的硅材料的数百倍以上。
这使得石墨烯成为一种极具潜力的导电材料,在电子器件和能源存储领域具有广阔的应用前景。
其次,石墨烯还具有良好的电催化活性。
石墨烯的独特结构和电子性质使其具有优异的催化性能,可以用于电催化反应。
研究表明,石墨烯可以作为电催化剂来催化氧还原反应、氢还原反应和氧气还原反应等重要的电化学反应。
这些电化学反应在能源转换和储存等方面具有重要的应用价值。
石墨烯材料的优异电催化活性使其成为一种理想的电催化剂,有望推动电化学领域的发展。
此外,石墨烯还展示出出色的超级电容性能。
超级电容器是一种能够实现高密度能量储存和高速充放电的电化学能量储存装置。
石墨烯作为超级电容器电极材料具有独特的优势。
研究表明,石墨烯电极具有高比电容和良好的循环稳定性。
这主要归功于石墨烯的大比表面积、极高的电导率和优异的化学稳定性。
因此,石墨烯在超级电容器领域具有广阔的应用前景。
另外,石墨烯还可以用于柔性电子器件。
柔性电子器件是一类可以与可弯曲、可拉伸等形变特性相适应的电子器件。
石墨烯由于其高柔韧性和柔性的基底材料特性,使得它成为一种理想的柔性电子器件材料。
研究表明,石墨烯可以用于制备柔性传感器、柔性显示器和柔性光电器件等。
这些柔性电子器件具有广泛的应用前景,可以应用于生物医学、智能穿戴设备和可穿戴电子等领域。
最后,尽管石墨烯材料的电化学性能已经有了很多突破和进展,但仍然存在一些挑战和问题。
以石墨烯作为氢燃料电池电极材料的性能研究
以石墨烯作为氢燃料电池电极材料的性能研究石墨烯作为一种具有高导电性和优异化学稳定性的新材料,近年来在氢燃料电池电极材料领域备受关注。
氢燃料电池作为一种清洁能源技术,具有高效、零排放等优点,但是其发展受限于电极材料的性能。
石墨烯作为一种具有独特结构和性质的材料,被认为能够改善氢燃料电池的性能,因此对石墨烯作为氢燃料电池电极材料的性能进行研究具有重要意义。
首先,石墨烯具有独特的二维结构和大表面积,这使得其具有优异的电导率和电化学活性。
研究表明,将石墨烯应用于氢燃料电池电极材料中能够提高电极的导电性能,减小电极极化现象,从而提高氢燃料电池的能量转化效率。
此外,石墨烯还具有高的比表面积和丰富的边缘活性位点,这些特性有利于提高氢在电极表面的吸附和解吸速率,从而提高氢氧化反应的速率和效率。
其次,石墨烯具有良好的化学稳定性和耐腐蚀性,这使得其在氢燃料电池中具有良好的长期稳定性。
传统的电极材料如铂往往会因为长期的氧化还原循环而失去活性,导致电极性能下降。
而石墨烯作为一种具有天然稳定性的材料,能够更好地抵抗这种氧化还原循环带来的影响,保持电极的稳定性和活性。
因此,石墨烯作为氢燃料电池电极材料能够延长电极的使用寿命,降低电极的维护成本,提高氢燃料电池的经济性和可靠性。
此外,石墨烯还具有良好的可制备性和可调控性,这使得其在氢燃料电池电极材料的研究中具有广阔的应用前景。
目前,研究者们通过不同的方法和工艺制备出了各种形态和结构的石墨烯材料,如石墨烯薄膜、石墨烯纳米片等。
这些石墨烯材料在氢燃料电池电极中的应用表明,石墨烯的形态和结构对其电极性能具有重要影响。
因此,未来可以通过调控石墨烯的形态和结构来进一步提高氢燃料电池的性能,实现更高效、更稳定的能量转化。
总结一下本文的重点,我们可以发现,石墨烯作为一种具有优异性能和独特结构的材料,在氢燃料电池电极材料中具有重要的应用前景。
通过对石墨烯作为氢燃料电池电极材料的性能进行深入研究,可以为氢燃料电池技术的发展提供重要的理论和实践基础,推动氢能产业的进一步发展。
石墨烯电池原理范文
石墨烯电池原理范文首先,石墨烯是一种单层的碳原子网络结构,具有优异的电导率、热导率和机械强度。
这些特性使得石墨烯成为一种理想的电池材料。
石墨烯电池通常由石墨烯作为电极材料和一些电解质组成。
石墨烯作为电极材料具有较大的表面积和高的电导率,能够提高电池的放电容量和充放电速率。
在充电时,电解质中的离子通过电极表面的孔隙进入石墨烯层,并以化学键的形式储存在石墨烯中。
这种储能过程称为吸附储能。
由于石墨烯的高表面积,其能够吸附更多的离子,在单位体积内储存更多的电荷。
在放电过程中,储存在石墨烯中的离子开始从石墨烯层中解离,回到电解质中,释放出储存的电荷。
在放电过程中,离子通过电解质和电极之间的离子传导路径迁移,并在电极表面的反应区域进行电荷交换。
这种储能和释放过程是可逆的,并且能够多次循环。
由于石墨烯的高导电性,离子在放电过程中能够快速地从电解质传导到石墨烯层,从而实现高速放电。
石墨烯电池的优势不仅仅体现在高能量密度和长循环寿命上,还包括快速充电的特性。
由于石墨烯层中储存的电荷能够快速地释放,并且离子能够快速地从电解质传导到电极表面,因此石墨烯电池的充电速率相对较高。
这使得石墨烯电池在需要快速储能和释放能量的应用中具有很大的潜力,比如电动车、移动设备等。
总而言之,石墨烯电池利用石墨烯作为电极材料,通过吸附储能和离子传导的机制,实现了高能量密度、长循环寿命和快速充电等优势。
虽然目前石墨烯电池的商业应用还面临一些挑战,比如制备技术、成本等方面的问题,但随着石墨烯材料的进一步研究和发展,相信石墨烯电池的应用前景将会越来越广阔。
石墨烯在锂离子电池中的应用研究
石墨烯在锂离子电池中的应用研究随着科技的发展和人们生活质量的不断提高,对电池能量密度、电池寿命和安全性的要求也越来越高。
而现在,石墨烯这种材料在锂离子电池中的应用研究,正在经历一波热潮。
一、石墨烯的介绍石墨烯是由单层碳原子构成的二维材料,它具有独特而优异的电学、热学、力学和光学性质。
它的导电性、导热性以及毒性不强使它成为最理想的电池材料之一,因为它可以显著提升电池的性能水平。
二、石墨烯在锂离子电池中的应用(一)提高电池能量密度石墨烯可以大大提高电池的能量密度,是因为它的独特结构可以使得锂离子能够更好地储存和释放。
而且,石墨烯具有优异的电导率,这也可以加快电池运作的速度,提高能量密度。
(二)延长电池寿命石墨烯作为电池导电模块的成分之一,可以防止电池内的能量损失,从而使电池寿命得到显著的延长。
同时,石墨烯还可以避免电池内部的极化现象和锂离子的“溢出”现象,确保电池的稳定性和长寿命。
(三)提高电池安全性石墨烯的强韧性和高温耐受性可以将电池内部的压力和温度控制在合理的范围内,从而提高电池的安全系数。
此外,石墨烯具有良好的高温抗氧化性能,可以防止电池内部物质的氧化腐蚀,从而避免电池的短路和爆炸等安全隐患。
三、展望石墨烯在锂离子电池中的应用前景虽然石墨烯在锂离子电池中的应用研究还没有完全成熟,但是已经被广泛认为是未来电池材料的翘楚。
据预测,在未来5年左右,石墨烯在电池领域的市场规模将达到数十亿美元,成为一个全新的产业增长点。
同时,石墨烯还有着广泛的其他应用领域,例如:医疗、环保、新材料等,因此,石墨烯可以作为一种新兴的产业,给人类社会带来更多的惊喜和发展可能性。
四、总结石墨烯因其独特的特性,在各个领域得到了广泛的研究和应用。
而在锂离子电池中的应用研究更是令人兴奋,这种材料能够为电池的能量密度、电池寿命和安全性提供更好的保障,未来的市场前景也十分广阔。
因此,我们有理由相信,石墨烯材料必将在锂离子电池领域内发挥更为重要和广泛的作用。
石墨烯市场研究报告(一)2024
石墨烯市场研究报告(一)引言概述:石墨烯是一种由碳原子组成的单层二维晶体材料,具有出色的导电性、导热性和机械性能,被广泛认为是21世纪最有前景的材料之一。
本文将对石墨烯市场进行深入研究,分析其当前发展状况、应用领域和未来趋势,旨在为行业从业者和投资者提供参考。
正文:1. 石墨烯市场概况1.1 石墨烯的定义和特性1.2 石墨烯的制备方法1.3 全球石墨烯市场规模和增长趋势1.4 石墨烯市场的主要参与者2. 石墨烯应用领域2.1 电子行业2.1.1 石墨烯在显示屏技术中的应用2.1.2 石墨烯在半导体器件中的应用2.2 能源行业2.2.1 石墨烯在锂离子电池中的应用2.2.2 石墨烯在太阳能电池中的应用2.3 材料科学领域2.3.1 石墨烯增强复合材料的应用2.3.2 石墨烯在传感器领域的应用3. 石墨烯市场的发展机遇3.1 政策支持和研发投入3.2 新兴应用领域的开拓3.3 多领域跨界合作的推动3.4 创新制造技术的推动3.5 环境保护和可持续发展的需求4. 石墨烯市场的挑战与风险4.1 石墨烯质量稳定性的提升4.2 大规模生产和商业化应用的难题 4.3 价格竞争与供应链的压力4.4 法规和标准的缺失4.5 技术转化和产业化的困难5. 石墨烯市场未来发展趋势5.1 产业链的完善和规模化生产5.2 多元化的应用领域和产品创新 5.3 国际合作和市场竞争的加剧5.4 技术进步和降低成本5.5 环保意识和可持续发展的重视总结:石墨烯作为一种具有巨大发展潜力的新材料,其市场在全球范围内不断扩大。
在未来,随着技术进步和市场需求的增长,石墨烯将在电子、能源、材料科学等多个领域发挥重要作用。
尽管面临着挑战与风险,但石墨烯市场的前景仍然非常广阔,需要行业从业者和投资者共同努力推动其发展。
石墨烯电池的研究与应用
石墨烯电池的研究与应用一、简介石墨烯是一种由碳原子组成的单层结构材料,具有非常显著的特性。
作为一种新型材料,石墨烯拥有优异的导电和导热性能,同时还具有超强的抗拉强度、刚度和韧性。
因此,石墨烯材料被广泛关注,并且应用范围也日益扩大。
其中,石墨烯电池在近年来成为研究的重点,同时也被认为是未来电池领域的有潜力的发展方向之一。
二、石墨烯电池研究的发展历程石墨烯电池的研究始于2009年,当时研究人员发现将石墨烯应用于电池领域可以提高电池容量、增强循环稳定性和延长电池寿命。
此后,石墨烯电池的研究得到了持续发展和探索。
近年来,研究人员通过不断改进制备技术,成功地制造出基于石墨烯的电池,包括锂离子电池、超级电容器和锂空气电池等。
三、石墨烯电池的应用1.锂离子电池锂离子电池是一种典型的电池类型。
在石墨烯电池中,石墨烯材料被用作电池的电极材料,将其与其他材料组合使用可以显著提高电池的质量和性能表现。
具体来说,石墨烯材料的高导电性和高比表面积可以提高电池的能量密度和功率密度。
此外,石墨烯材料的高化学稳定性和循环稳定性也为电池的长寿命提供了良好的保障。
2.超级电容器超级电容器是一种电能储存器件,它利用电场储存电能,具有充电速度快、能量密度高、循环寿命长等优点。
由于石墨烯的高导电性和高表面积,能够广泛应用于超级电容器中。
事实上,石墨烯电极的电容量可高达550 F/g,超过市场上普通电容器的容量,并且还具有快速充放电特性和长循环寿命。
因此,石墨烯超级电容器有着广阔的应用前景,如动力电子领域、储能系统等。
3.锂空气电池锂空气电池是一种新型电池技术,具有高能量密度、较低的成本和环保等优点。
石墨烯在锂空气电池中展现出了独特的优势。
通过将石墨烯与其他材料结合使用,可以提高电池的催化活性和稳定性,进而提高电池的能量密度和循环寿命等性能指标。
锂空气电池的应用极为广泛,如新能源汽车、智能手机和笔记本电脑等领域。
四、石墨烯电池的未来发展方向未来石墨烯电池的发展方向主要包括以下几个方面:1.石墨烯材料的制备技术目前石墨烯的制备仍然存在较高的制备成本和制备效率等问题。
石墨烯在电池中的应用要求与电化学性能研究
石墨烯在电池中的应用要求与电化学性能研究石墨烯是一种具有单层碳原子构成的二维材料,因其优良的导电性、热传导性和机械性能,在电池领域中具有广泛的应用前景。
石墨烯在电池中的应用主要包括锂离子电池、超级电容器和燃料电池等。
同时,研究石墨烯的电化学性能也是电池领域中的重要课题。
在石墨烯在电池中的应用方面,首先对石墨烯的质量和结构进行要求。
高质量的石墨烯是实现其优良电化学性能的基础,因此制备石墨烯的方法和材料选择十分重要。
传统的制备方法包括机械剥离、化学气相沉积和化学氧化还原等,然而这些方法往往存在着设备昂贵、工艺复杂和低产率的问题。
因此,寻找新的高效制备石墨烯的方法是一个研究热点。
同时,控制石墨烯的结构也是提高其电池性能的关键。
石墨烯的层数、形状和缺陷等结构特征都会影响其电化学性能,因此在石墨烯的制备过程中需要精确控制其结构。
其次,对石墨烯在电池中的性能进行要求。
石墨烯的优良导电性能使其成为一种理想的电极材料。
在锂离子电池中,石墨烯可以作为负极材料,具有高容量、长循环寿命和较低的电化学反应动力学等优势。
在超级电容器中,石墨烯的高表面积和优良导电性能有助于提高能量密度和功率密度。
在燃料电池中,石墨烯可以作为催化剂载体,提高催化剂的活性和稳定性。
因此,石墨烯在电池中的性能要求包括较高的比容量、良好的循环寿命和较低的电化学反应动力学。
最后,研究石墨烯的电化学性能是提高其在电池中应用的关键。
石墨烯的电化学性能主要包括离子和电子传导性能、比电容/容量和循环稳定性等。
离子和电子传导性能是石墨烯在电池中发挥优良性能的基础,可以通过表面修饰和组装等方法来提高。
比电容/容量是评价电池性能的重要指标,可以通过控制石墨烯的结构和表面官能团等方法来实现。
循环稳定性是评价电池循环寿命的主要指标,可以通过控制石墨烯的缺陷和结构稳定性等方法来提高。
综上所述,石墨烯在电池中的应用要求和电化学性能研究是电池领域中的热点课题。
通过对石墨烯质量和结构的精确控制,进一步研究石墨烯的电化学性能,有望实现石墨烯在电池领域中的广泛应用,为推动电池技术的发展做出重要贡献。
石墨烯研究报告
石墨烯研究报告石墨烯是一种由碳原子薄层构成的材料,具有许多独特的物理和化学性质,使其在电子学、电磁学、力学和光学领域中展现出重要的应用前景。
近年来,石墨烯的研究迅速发展,在各个领域中都取得了重要的成果和突破。
一、最新石墨烯研究成果1.提高石墨烯量子化合成效率的新方法石墨烯量子化合成是一种利用金属催化剂在气相中将碳原子聚集成石墨烯的方法。
由于石墨烯的高表面能和化学惰性,使其在制备过程中难以控制,从而导致反应产物不确定、量子化合成效率低下等问题。
为了解决这个问题,研究人员提出了一种新的方法——在反应过程中加入适量的乙烯,可以有效提高石墨烯的量子化合成效率。
根据发表在ACS Nano上的最新研究论文,使用这种新方法制备的石墨烯,结晶度更高、结构更完整,并具有更好的导电性能和可控性。
2.石墨烯在DNA纳米电子学中的应用DNA纳米电子学是一种与基因组学、纳米技术和电子学相关的交叉学科领域。
最近,研究人员发现,石墨烯可以用于制备DNA纳米电子学中的电极、传感器和探针等。
这是因为石墨烯具有高度可调控的电导性和相对稳定的生物相容性。
关于这一点,Research Fellow Krishnan Shrikanth博士在接受媒体采访时表示,“我们的研究解决了DNA转录的可控和准确性问题,同时也展现出石墨烯在基因测序、基因诊断和纳米药物递送中的潜力。
”3.利用石墨烯改善水氧化还原反应效率的新途径水氧化还原反应是一种非常重要的电化学反应,具有广泛的应用领域,如能源、环境和化学生产等。
由于石墨烯具有高表面积、良好的电化学特性和生物相容性等独特性质,近年来被广泛应用于水氧化还原反应中。
最近,研究人员发现,通过控制石墨烯与金属离子的相互作用,可以实现更高效的水氧化还原反应。
这种新途径将在开发新型电化学催化剂和改进电池和燃料电池等重要应用方面具有重要的作用。
二、石墨烯的应用前景石墨烯在电子学、电磁学、力学和光学领域中具有重要的应用前景,其中一些可能打破传统技术的局限。
石墨烯电池材料的制备与性能研究
石墨烯电池材料的制备与性能研究石墨烯是一种由单层碳原子组成的材料,具有高导电性和高度机械强度等优良性质,是目前材料领域研究的热点之一。
石墨烯材料在能量存储领域也有广泛的研究应用,其中在电池领域的应用备受关注。
本文将主要探讨石墨烯电池材料的制备与性能研究。
一、石墨烯电池材料的制备由于石墨烯的单层结构和极高的比表面积,使得其作为电极材料有着广阔的应用前景。
目前制备石墨烯材料有多种方法,如化学气相沉积法、机械剥离法、溶液剥离法等。
其中,化学气相沉积法制备的石墨烯材料在电极材料中的应用最为广泛。
化学气相沉积法主要是在惰性气体中将石墨烯材料进行热解或化学反应,然后将过程中产生的气体送入到基板表面得到石墨烯。
与其它方法相比,化学气相沉积法可以制备单晶质量高、具有工业化生产条件、可以控制多层石墨烯等收益。
在石墨烯材料的电池应用中,电化学沉积法也是石墨烯电池材料制备中的一种重要方法。
二、石墨烯电池材料的性能研究石墨烯电池材料具有极高的导电性和高比表面积,并有望替代传统锂离子电池中的石墨负极材料和传统电容器中的活性炭等材料。
石墨烯电池材料的优良性质赋予了其在储能方面有着较高的研究价值。
目前,石墨烯电池材料在超级电容器、铅酸电池、锂离子电池和锂硫电池等领域都有广泛的应用。
值得一提的是,在锂离子电池领域,石墨烯材料作为负极材料的电化学性能得到了很好的提升。
石墨烯电池材料的研究工作中,除了制备工艺,石墨烯材料在电池性能中的变化也是研究的重点之一。
一般来说,石墨烯材料的性能表现与其表面形态和结构密切相关,如石墨烯电池材料的比表面积影响其电容性能与能量密度,孔隙大小、密度等因素将影响这些材料的电荷传输和储存性能。
不仅如此,超级电容器中的石墨烯电池材料的电容性能也受到电解液的影响,这包括电解液的缓冲能力、离子浓度以及容积效应等。
三、未来展望石墨烯电池材料的制备和性能方面的研究将会是一个长期的过程。
随着对其导电性、比表面积和电化学性能等方面的深入研究,石墨烯材料在储能领域的应用将会越来越广泛。
石墨烯在锂电池中的应用研究资料
石墨烯在锂电池中的应用研究资料石墨烯是一种由碳原子构成的单原子厚的二维材料,具有良好的导电性、热导性和力学性能,因此在电池领域具有广阔的应用前景。
本文将从石墨烯在锂电池正负极材料以及电解液中的应用角度,综述石墨烯在锂电池中的研究进展。
一、石墨烯在锂电池正极材料中的应用研究锂离子电池的正极材料主要有锂钴酸盐(LiCoO2)、锂铁磷酸盐(LiFePO4)等。
石墨烯在锂电池正极材料中的应用主要体现在两个方面:增强材料的导电性和改善电化学性能。
1.增强材料的导电性:石墨烯具有优异的电导率,将其与正极材料进行复合可以显著提高其导电性能。
例如,将石墨烯与LiCoO2进行复合制备出的复合材料可以提高锂离子的扩散速率和材料的导电性能,从而提高了锂电池的放电容量和循环寿命。
2.改善电化学性能:石墨烯与正极材料之间的复合可以提高材料的电化学性能。
石墨烯不仅可以增加正极材料的导电性,还可以改善其电化学反应的动力学过程,减小锂离子的插入/脱出电阻。
因此,利用石墨烯与正极材料的复合可以提高正极材料的容量、循环寿命和功率密度。
二、石墨烯在锂电池负极材料中的应用研究锂离子电池的负极材料主要有石墨等。
石墨烯在锂电池负极材料中的应用主要体现在以下几个方面:提高材料的电子传导性、增加锂离子的扩散速率、改善循环稳定性以及抑制锂金属的钝化现象。
1.提高电子传导性:石墨烯与石墨等负极材料的复合可以提高材料的电子传导性,从而降低电阻,改善电池的功率输出性能。
2.增加锂离子的扩散速率:石墨烯具有二维结构,可以提供更多的锂离子插入位点,增加锂离子的扩散速率,提高电池的充放电速度。
3.改善循环稳定性:石墨烯与石墨等负极材料的复合可以形成更稳定的结构,抑制材料的体积膨胀,从而提高电池的循环寿命。
4.抑制锂金属的钝化:在锂金属负极中加入石墨烯可以改善锂电池的充放电性能,减少锂金属负极表面的簧曲现象,提高电池的循环寿命。
三、石墨烯在锂电池电解液中的应用研究1.增加电解液的导电性:将石墨烯引入锂离子电池的电解液中可以提高电解液的导电性,减小电池的内阻,提高电池的放电容量和功率密度。
石墨烯 深度研究报告
石墨烯深度研究报告【石墨烯深度研究报告】第一篇石墨烯是一种非常特殊的材料,由于其出色的性质,引起了广泛的关注和研究。
本文将深入探讨石墨烯的结构、性质以及应用领域。
首先,我们来介绍一下石墨烯的基本结构。
石墨烯由一个由碳原子构成的二维晶格组成,具有类似蜂窝状的结构。
每个碳原子都与周围三个碳原子形成共价键,因此石墨烯的结构非常稳定。
石墨烯的性质也非常引人注目。
首先,石墨烯是一种非常薄的材料,其厚度仅为一个碳原子的厚度。
此外,它具有出色的导电性和热导性,比铜导电性高约200倍,热导性高约100倍。
这使得石墨烯成为电子器件和热管理领域的理想材料。
此外,石墨烯还具有很高的强度和韧性。
尽管它只有一个原子的厚度,但石墨烯的强度比钢还要高。
这使得石墨烯在材料领域具有巨大的应用潜力,可以用于制作轻质而坚固的材料。
石墨烯的应用领域非常广泛。
首先,它在电子领域有着巨大的潜力。
石墨烯的高导电性使得它可以用于制作更小、更快的电子器件。
此外,石墨烯还可以用于制作柔性电子器件,如可弯曲的显示屏和智能穿戴设备。
同时,石墨烯还在能源领域有着广阔的应用前景。
由于石墨烯的热导性和高表面积特性,它可以用于制作高效的太阳能电池和催化剂。
此外,石墨烯还可以用于制作超级电容器,提供更高存储容量和更快充电速度。
另外,石墨烯在材料科学领域也有着巨大的潜力。
由于其强韧的特性,石墨烯可以用于制作高强度的复合材料,如碳纤维复合材料。
这种材料在航空航天和汽车工业中有着重要的应用。
总之,石墨烯作为一种新兴材料,在科学界引起了无尽的兴趣和研究。
它的独特结构和出色性质使得它在电子、能源和材料领域具有广阔的应用前景。
随着科技的发展,相信石墨烯的应用将会越来越广泛,为人们生活带来更多的便利和创新。
【石墨烯深度研究报告】第二篇虽然石墨烯具有很多出色的性质和广阔的应用前景,但它目前还面临一些挑战和限制。
本文将继续探讨石墨烯的制备方法、稳定性以及可能的解决方案。
首先,石墨烯的制备是一个较为复杂的过程。
石墨烯在锂离子电池中的应用研究
石墨烯在锂离子电池中的应用研究石墨烯是一种由碳原子构成的单层二维材料,具有优异的导电和导热性能,透明性强,并且具有强大的力学韧性。
这些特性使得石墨烯在科学研究和各种应用领域都备受关注。
近年来,石墨烯在锂离子电池领域的应用也越来越受到重视。
本文将介绍石墨烯在锂离子电池中的应用研究进展。
一、石墨烯作为锂离子电池的电极材料目前,石墨烯主要应用于锂离子电池的电极材料中。
众所周知,锂离子电池的电极材料主要分为负极材料和正极材料。
石墨烯作为电池负极材料,具有以下优点:1.高比表面积:石墨烯可以实现单层碳原子的紧密排列,形成大量的微小孔隙和高表面积,这不仅可以提高电极表面容量,而且可以增加锂离子的扩散速度,提高电池的性能。
2.良好的电导性:石墨烯具有高导电性,能够提供良好的电子传输和电荷存储,减少电极内阻,从而提高电池的输出功率。
3.优异的力学性能:石墨烯的组成结构可以保持相对稳定,即使在长时间循环充放电的过程中也能保持结构完整性,从而延长电池的使用寿命。
虽然石墨烯作为电极材料具有许多优点,但是它也面临着一些挑战。
例如,石墨烯的制备和应用成本较高,需要进一步降低成本才能实现大规模商业化应用。
二、石墨烯增强锂离子电池正极材料除了作为负极材料,石墨烯中的碳纳米管和颗粒可以作为锂离子电池正极材料的补充,以增加其性能。
石墨烯包覆的锂离子电池正极材料可以提高锂离子的扩散速度和电池的能量密度。
石墨烯与锂离子电池正极材料的结合还可以降低电极材料的体积变化率,延长电池的使用寿命。
三、未来展望目前,石墨烯在锂离子电池领域的研究还处于起步阶段。
随着石墨烯技术的不断发展和成熟,石墨烯在锂离子电池领域的应用前景非常广阔。
未来,石墨烯技术还有许多发展空间,例如开发更经济实用的制备方法,探索更广泛的应用领域。
总之,石墨烯在锂离子电池中的应用研究为电池的性能和寿命提供了新的提升方案。
虽然存在一些挑战和难点,但是未来的发展和探索将为锂离子电池技术的进一步提升提供新的解决方案。
《2024年基于石墨烯的锂离子电池负极材料的研究》范文
《基于石墨烯的锂离子电池负极材料的研究》篇一一、引言随着现代电子设备与电动汽车的飞速发展,锂离子电池作为一种高效的能源储存装置,其性能和成本的优化成为了研究的热点。
尤其是锂离子电池的负极材料,对电池的性能和成本起着决定性的作用。
近年来,基于石墨烯的锂离子电池负极材料因其卓越的电化学性能和成本效益受到了广泛关注。
本文将就基于石墨烯的锂离子电池负极材料的研究进行详细的探讨。
二、石墨烯的性质及其在锂离子电池中的应用石墨烯是一种由单层碳原子以蜂窝状排列构成的二维材料,具有优异的导电性、高比表面积、出色的机械强度和良好的化学稳定性。
这些独特的性质使得石墨烯成为锂离子电池负极材料的理想选择。
在锂离子电池中,石墨烯可以作为负极材料,其层状结构可以有效地吸附锂离子,提高电池的容量和循环性能。
此外,石墨烯的高导电性也有助于提高电池的充放电速率。
三、基于石墨烯的锂离子电池负极材料的研究进展1. 合成方法:目前,制备石墨烯基锂离子电池负极材料的方法主要包括化学气相沉积、还原氧化石墨烯以及热解碳化等方法。
这些方法各有优缺点,如化学气相沉积法可以制备出高质量的石墨烯,但成本较高;而还原氧化石墨烯法则可以大规模生产,但需要进一步优化以提高材料的电化学性能。
2. 改性研究:为了提高石墨烯基负极材料的电化学性能,研究者们进行了大量的改性研究。
例如,通过引入杂原子(如氮、硫等)对石墨烯进行掺杂,可以提高其电子传导能力和锂离子的吸附能力。
此外,还可以通过制备石墨烯与其他材料的复合材料,如石墨烯与金属氧化物、硫化物等复合,以提高材料的稳定性和容量。
3. 性能评价:研究者们通过一系列实验和理论计算,对基于石墨烯的锂离子电池负极材料的电化学性能进行了评价。
结果表明,这种材料具有高比容量、长循环寿命和良好的充放电速率等优点。
此外,与传统的碳基负极材料相比,石墨烯基负极材料在充放电过程中表现出更小的体积膨胀和更稳定的结构。
四、挑战与展望尽管基于石墨烯的锂离子电池负极材料取得了显著的进展,但仍面临一些挑战。
石墨烯行业调研报告
石墨烯行业调研报告石墨烯是由碳原子通过特定的制备方法形成的具有单层结构的二维材料。
由于其独特的物理、化学特性,石墨烯被广泛应用于电子、能源、生物医学和材料科学等领域。
本调研报告对石墨烯行业进行分析,总结其市场规模、应用领域和发展趋势。
首先,石墨烯市场规模逐年增长。
根据市场研究机构的数据显示,全球石墨烯市场规模从2017年的约2.5亿美元增长到2020年的约4.52亿美元,年复合增长率达到13.6%。
主要驱动市场增长的因素包括新能源技术的发展、电子产品的不断更新换代以及对高性能材料的需求。
其次,石墨烯应用领域广泛。
石墨烯在电子领域的应用是其最主要的市场,主要包括柔性电子、传感器、电池和超级电容器等方面。
此外,石墨烯还被广泛应用于能源领域,如太阳能电池、储能系统和燃料电池等。
在生物医学领域,石墨烯被用作药物输送、基因分析和组织修复的载体等。
此外,石墨烯还被应用于材料科学领域的纳米复合材料、涂层材料和增强材料等。
最后,石墨烯行业的发展趋势主要包括以下几个方面。
首先,石墨烯材料的合成技术将逐渐成熟,生产成本将降低,从而推动市场规模扩大。
其次,随着对石墨烯电子学、自旋电子学和谷子束学的深入研究,石墨烯在电子器件领域的应用有望实现突破。
此外,石墨烯的体系和二维材料的相互作用研究也将为新能源设备和传感器的研发提供新的思路和方法。
综上所述,石墨烯行业市场规模逐年增长,应用领域广泛。
在未来几年,石墨烯行业将进一步发展,合成技术逐渐成熟,应用领域不断扩展。
石墨烯作为一种具有巨大潜力的材料,在电子、能源、生物医学和材料科学等领域都有着广阔的发展前景。
石墨烯在电池领域的应用研究
石墨烯在电池领域的应用研究石墨烯是一种最近才被发现的材料,它的发现引起了科学界的广泛关注。
石墨烯是由碳原子构成的单层薄片,它具有极高的导电性、热导性和机械强度。
这些特性使得石墨烯在电池领域有着广泛的应用前景。
本文将从几个方面介绍石墨烯在电池领域的应用研究。
第一,石墨烯在锂离子电池中的应用。
锂离子电池是一种很常见的充电电池,它的电极材料通常是石墨或锂钴酸。
而石墨烯的导电性和机械强度都比石墨高很多,因此在锂离子电池中使用石墨烯作为电极材料,可以提高电池的能量密度和循环寿命,并且可以提高电池的充电速率。
此外,石墨烯还可以作为锂离子电池的电解液添加剂,可以减少电池的内阻,从而提高电池的效率。
第二,石墨烯在锂硫电池中的应用。
锂硫电池是一种新型高能量密度电池,但是它的循环寿命不够长,需要提高。
石墨烯可以作为锂硫电池的导电剂,可以提高电池的电导率,并且可以防止硫化锂和石墨烯之间的剥离,使得电池的循环寿命更长。
第三,石墨烯在超级电容器中的应用。
超级电容器是一种具有高能量密度和高功率密度的电池,它通常由两个电极和电解质构成。
石墨烯可以作为超级电容器的电极材料,可以提高电池的能量密度和功率密度,并且可以提高电池的循环寿命。
第四,石墨烯在柔性电池中的应用。
柔性电池是一种具有弯曲和弯折性的电池,对于可穿戴电子设备和智能手机等应用有着广泛的应用前景。
石墨烯具有极高的机械强度和柔性,非常适合用作柔性电池的电极材料。
总之,石墨烯在电池领域的应用研究有着很大的潜力。
未来,随着石墨烯制备技术的不断发展和完善,石墨烯在电池领域的应用将会得到更广泛的应用。
石墨烯在电池中的应用研究
石墨烯在电池中的应用研究导言随着人类社会对能源的需求不断增长,新能源的研发和利用成为全球范围内的大问题。
其中,电池作为储存电能的载体,一直是研究的热点之一。
而石墨烯作为新兴材料,其独特的结构和优异的物理、化学性质,使得其在电池领域受到了极大的关注。
本文详细介绍了石墨烯在电池中的应用研究。
第一章石墨烯基础知识1.1 石墨烯的定义石墨烯是一种由碳原子单层构成的二维结构材料。
其最基本的结构单元是六角形碳原子排列形成的网格结构,具有高度的机械强度、导电性、导热性和化学稳定性。
1.2 石墨烯的制备方法1.2.1 机械剥离法机械剥离法是最早发现的一种制备石墨烯的方法。
该方法通过用胶带将石墨薄片对折多次,从而将其分离成单层的石墨烯。
1.2.2 化学气相沉积法化学气相沉积法是一种通过将碳源分子输送到高温的基底表面上,使其在表面上形成石墨烯的方法。
1.2.3 液相剥离法液相剥离法则通过将石墨片浸泡在溶液中,利用超声波把单层的石墨烯分散在溶液中。
第二章 2.1 石墨烯在锂离子电池中的应用锂离子电池是目前应用最广泛的可充电电池。
石墨烯在锂离子电池中的应用主要集中在锂离子电池的负极材料上。
由于石墨烯的高导电性和高机械强度,作为锂离子电池负极材料的石墨烯可以提高电池的充放电性能、循环稳定性和使用寿命。
2.1.1 石墨烯负极的制备石墨烯负极的制备主要有两种方法,一种是将石墨烯与传统的锂离子电池负极材料(如石墨)混合使用;另一种是将石墨烯制备成薄膜,然后在金属箔上进行钝化处理后用作负极材料。
2.1.2 石墨烯负极材料的电化学性能石墨烯作为锂离子电池负极材料的电化学性能与传统的锂离子电池材料相比有所提高。
例如,石墨烯负极的承载能力和充放电效率均优于传统的石墨负极材料。
2.2 石墨烯在超级电容器中的应用超级电容器是一种新型的高功率储能装置,具有高速充放电、长寿命、高效率等特点。
而石墨烯由于其具有的高度的导电性和导热性,也被广泛应用于超级电容器中。
石墨烯在电池和储能领域的应用研究
石墨烯在电池和储能领域的应用研究近年来,石墨烯在电池和储能领域中的应用研究引起了众多科学家和工程师的兴趣。
作为一种新型的材料,石墨烯具有非常出色的性能,包括高导电性、高比表面积和极强的机械强度等。
这些特性使得石墨烯成为开发新型电池和储能器件的理想材料之一,加速了这一领域的发展进程。
一、石墨烯在电池领域的应用1、锂离子电池锂离子电池是现代电子设备和交通工具中最常用的电池类型之一。
石墨烯因其高导电性和高比表面积成为锂离子电池中的重要组成部分,可以用于改善电极材料的性能。
以石墨烯作为阳极材料可以提高电池的充电速度和循环寿命,同时降低电池的体积和质量。
2、超级电容器超级电容器是一种高效能量存储设备,具有高容量、高能量密度和高功率密度等特性。
石墨烯的高比表面积和高导电性使其成为超级电容器中的优秀材料。
研究表明,用石墨烯制备的超级电容器比传统的金属氧化物电极具有更好的电化学性能。
3、锂硫电池锂硫电池是一种新型高比能量密度的电池,可以用于电动汽车、军事设备等领域。
石墨烯在锂硫电池中的作用主要是作为导电剂和化学催化剂。
由于石墨烯的优良性能,锂硫电池中使用石墨烯导电剂可以提高电池的电化学性能,加快充电速度和循环寿命。
二、石墨烯在储能领域的应用1、太阳能电池板太阳能电池板是太阳能发电系统的核心部分,关系到整个系统的能量转换效率。
石墨烯在太阳能电池板中的作用主要是增加电池板的导电性能和光吸收能力。
用石墨烯材料改善太阳能电池板的结构可以提高太阳能电池板的能量转换效率,使得太阳能电池板更加实用和环保。
2、储能设备储能设备是指储存能量的器件,如电容器、电池和储能电池组等。
石墨烯作为一种优秀的导电材料,可以被用于储能器件中的电极材料。
石墨烯导电材料的应用可以在一定程度上提高储能器件的能量密度和功率密度,增加电池的循环寿命和充电速度。
总之,石墨烯在电池和储能领域的应用研究尚处于早期阶段,但研究成果已经取得了很多令人瞩目的成果。
石墨烯研究报告范文
石墨烯研究报告范文一、引言石墨烯是一种由单层碳原子构成的二维晶体材料,具有极高的强度、导电性和热导性等优异特性,因此在材料科学领域备受关注。
本报告旨在综述石墨烯的研究进展,并探讨其在电子学、光电子学、能源储存等方面的应用前景。
二、石墨烯的制备方法目前主要的石墨烯制备方法包括机械剥离、化学气相沉积和化学还原等。
机械剥离是最早发现的制备方法,通过用胶带从石墨材料上剥离,获得单层石墨烯。
化学气相沉积则是通过在金属衬底上加热石墨材料,使其分解并在金属表面生长成薄层石墨烯。
而化学还原法是通过将氧化石墨烯还原得到石墨烯。
不同的制备方法适用于不同应用场景,因此合理选择制备方法是石墨烯研究的重要一环。
三、石墨烯的电子学应用由于石墨烯具有优异的电导率和载流子迁移率,因此在电子学领域有着广泛的应用前景。
石墨烯晶体管可以用于替代传统的硅晶体管,在集成电路制造中具有更小的尺寸和更高的性能。
此外,石墨烯还可以用于制备柔性电子器件,通过将石墨烯薄膜与其他材料结合,制备可弯曲和可拉伸的电子产品,从而满足当前对柔性电子器件的需求。
四、石墨烯的光电子学应用石墨烯具有宽广的光学吸收范围和极高的吸收系数,因此在光电子学领域具有广泛的应用潜力。
将石墨烯作为太阳能电池的电子传输载流子材料,可以提高太阳能电池的效率。
此外,石墨烯还可以用于制备光电探测器和光调制器等光电器件,具有高速响应和宽频响特性,有望应用于光通信和光子计算等领域。
五、石墨烯的能源储存应用石墨烯在能源储存领域的应用也备受关注。
由于其高表面积和良好的电导率,可以用于制备超级电容器和锂离子电池等储能设备。
石墨烯超级电容器具有高能量密度和长循环寿命等优点,可用于电动汽车、电子设备等领域。
而石墨烯作为锂离子电池的负极材料,可以提高电池的容量和循环寿命,有望在能源储存领域产生重大突破。
六、结论石墨烯作为一种新兴的二维晶体材料,具有优异的物理和化学特性,广泛应用于电子学、光电子学和能源储存等领域。
石墨烯在锂电池中的应用研究
石墨烯在锂电池中的应用研究石墨烯是一种由碳原子组成的二维晶体材料,具有出色的导电性、热导性、机械强度和化学稳定性。
由于其优异的性能,石墨烯在各个领域都引起了广泛的研究兴趣。
在锂电池领域,石墨烯也被认为是一种有潜力的材料,可用于提高锂电池的性能和稳定性。
首先,石墨烯可以作为锂离子电池负极材料来替代传统的石墨材料。
石墨烯具有高电导率和大的比表面积,使其具有优异的电化学性能。
相比传统石墨材料,石墨烯具有更高的锂离子嵌入/脱嵌容量和更快的离子传输速率。
因此,利用石墨烯作为负极材料可以提高锂离子电池的容量和循环寿命。
其次,石墨烯可用作锂离子电池正极材料的添加剂。
石墨烯的加入可以改善正极材料的电化学性能,如提高材料的电导率、缓解电极材料和电解液之间的应力差异以及提高电极材料的稳定性。
同时,石墨烯还可以增加电极材料的比表面积,提供更多的嵌锂位点,从而提高锂离子电池的容量。
此外,石墨烯还可以用于改善锂离子电池的界面问题。
锂电池往往存在电解液和电极材料之间的界面问题,如电解液的溶解、电解液的浸润性和锂离子的扩散等。
石墨烯可以通过覆盖在电极表面来改善界面问题,形成稳定且一致的电解液/电极界面,提高电极材料和电解液的相互作用能力,从而提高锂离子电池的性能和稳定性。
总之,石墨烯在锂离子电池中具有广泛的应用研究前景。
通过利用石墨烯的优异性能,可以显著提高锂离子电池的容量、能量密度、循环寿命和安全性。
然而,目前还存在一些困难和挑战,如大规模制备石墨烯、石墨烯的稳定性和与锂离子电池体系中其他元素的相互作用等问题。
因此,需要进一步开展研究来解决这些问题,并将石墨烯应用于实际的锂离子电池系统中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于石墨烯电池的调研报告0引言《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。
为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。
1石墨烯简介石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。
石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈•海姆和康斯坦丁•诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。
石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ⋅/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ⋅/215000,又比纳米碳管或硅晶体高,而电阻率只约m ⋅Ω-810,比铜或银更低,为世上电阻率最小的材料。
因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。
由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。
特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。
其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。
特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。
[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。
特斯拉研究高能电池石墨烯或为理想材料这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。
所充电能量与普通锂电池的电能量相当。
更重要的是,石墨烯电池电极在经过1万次充放电之后。
能量密度并未出现明显损失。
这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在"1新闻方面首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报道,西班牙Graphenano公司和西班牙科尔瓦多大学合作研发的石墨烯电池,一次充电时间只需8分钟,可行驶1000公里。
它被石墨烯研究者称做‘超级电池’”并且中国石墨烯产业技术战略联盟秘书长李义春12月24日对21世纪经济报道记者称“我们现在还在了解情况,正在求证西班牙这种电池的具体情况,如果确认是这样的,那确实是革命性的变化出来了”;东莞市锂辉电池科技有限公司的一篇文章“解读美国Envia公司的新星画皮”更是揭露了“在Envia事件里,人性的贪婪自私和虚伪都暴露得淋漓尽致”;另外还查看了相关论坛,评论者对这则新闻的真实性表示怀疑,比如“8分钟?输入端至少得1000A,普通住宅都是32A 的电,很多老旧小区才10A,而且1000A需要的线难以想象”,但也不乏有支持者“理论到实践再到应用于社会,这只是一个时间上的问题”。
对于这则爆炸性的新闻的真实性我们无法真实,但是其可行性对石墨烯研究者以及电池研发者们确实提供了一个研究方向。
IT之家的一则消息,“使用石墨烯:5分钟即可充满电的超级充电宝”,此超级电容是由石墨烯作为最重要的组成材料而制成的。
但由于它是一个超级电容,因此Zap&Go在充满电后电量会慢慢流失,大约3天损失20%的电量。
作为急需之用,其发展前景还是很大的。
锂电池传统制造强国是日本和韩国,在石墨烯电池上他们也正在抢夺技术先机,韩国科学家早在去年11月就宣布,最新发明的石墨烯超级手机电池,可存储与传统电池等量的电量,但充电时间只需16秒。
李义春介绍说,目前国内对石墨烯电池的研究进展顺利,一些高校研发团队和深圳的企业进行合作,研究已经进入了中试阶段,“预计2015年上半年就可能实现量产,性能会有很多提升。
比如可以在不增加多少成本前提下,增加锂电池的充放电次数,提高电池安全性等。
”不过,据石墨烯电池研究人士透露,目前国内主要研究的是石墨烯运用到锂电池上,而非全新体系的“超级电池”,所以国内技术和超级电池有一定差距。
国家相关部门对此很重视,2015年出台的“十三五”新材料规划可能将石墨烯纳入其中。
[]中国粉体工业2文献方面为证实其可行性,于是我查阅了大量相关的文献并对文献内容进行了分析与整理。
特斯拉聚焦下一代电池革新石墨烯材料或成行业突破方向公开资料显示,近年来石墨烯等新型负极材料的研发与应用,开始受到业内的关注。
石墨烯是一种新型材料,是已知材料中最薄的一种。
由于它的电阻率低,电子迁移的速度极快,表面积大和电性能良好,被科学家认为是锂离子电池的理想电极材料。
研究证明,将石墨烯应用于锂离子电池负极材料中,可以大幅度提高负极材料的电容量和大倍率充放电性能。
石墨烯可阻止复合材料中纳米粒子的团聚,缓解充放电过程中的体积效应,延长材料的循环寿命。
粒子在石墨烯表面的附着,可减少材料形成SEI膜过程中与电解反应的能量损失。
刘重才,陈晓力.上海证券报2014-07-23香港理工大学的研究人员声称,他们研制成功一种新型的只依靠周围环境热量运行的石墨烯电池。
据说该装置能捕捉溶液中的离子热能,并将其转换成电能。
由于电子在石墨烯中以极高的速度运动,它们在碳基材料中的运动速度显然要比在离子溶液中快得多。
因此,被释放的电子自然更倾向于穿过石墨烯电路而不是溶液。
这就是该装置产生电压的原理将所制备的材料作为锂离子电池负极材料,用恒流充放电测试、循环伏安法、交流阻抗法等电化学测试手段综合考察了材料的电化学性能。
结果表明,所制备的材料表现出了良好的电化学性能,包含石墨烯的纳米复合结构材料能够提供缓冲层有效缓解活性材料的体积膨胀,防止活性材料粉化团聚,进而提供良好的电子接触性,延长电极材料的循环寿命。
石墨烯及其复合材料在锂离子电池中的应用(摘要)1.在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。
通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。
在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。
此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。
石墨烯可以更广泛地应用于改性其他负极材料,制备出电化学性能更加优异的石墨烯复合材料。
1.石墨烯在负极材料中的应用石墨烯作为负极材料的电化学性能在2003年已有理论方面的研究。
相比于其他碳,石墨材料,石墨烯是以单片层单原子厚度的碳原子无序松散聚集形成,这种结构有利于锂离子的插入,在片层双面都能储存锂离子,形成Li2C6结构理论容量(744mAh/g)明显提高。
研究者进一步通过分子轨道理论计算发现0.7nm石墨片层间距是储锂的最佳层间距。
此时锂离子以双层形式存储在石墨片层结构的空穴中,这种层间距也能有效防止电解质进入片层间,发生形成SEI膜的不可逆反应。
同时,石墨烯自然形成的皱褶表面也为锂离子提供了额外的存储空穴。
因此,石墨烯的微观形貌和结构很大程度上决定了石墨烯作为锂离子电池负极材料的电化学性能。
1.1石墨烯改性负极材料石墨烯可以更广泛地应用于改性其他负极材料,制备出电化学性能更加优异的石墨烯复合材料。
石墨烯复合材料的制备关键是使纳米颗粒均一分散在单层或多层石墨烯表面及层间其改性效果的好坏主要取决于两种材料的混合或复合效果。
以下分别分析和评述石墨烯在不同负极材料中的改性效果,以及不同石墨烯的掺杂方法对这些材料电化学性能的改善。
王等提出通过碳包覆合金-石墨烯复合材料以进一步改善纳米合金颗粒与石墨烯之间的导电性能。
获得的Sn-Sb合金纳米颗粒-氧化石墨烯在C2H2的气氛中以5000C烧制2h氧化石墨烯被还原,Sn-Sb合金作为催化剂促进C2H2的分解,在Sn-Sb纳米颗粒外形成碳包覆,碳包覆层厚度在5-10nm。
这层包覆能有效控制金属在充放电过程时的体积收缩膨胀效应,同时,碳的导电性能增强了金属和石墨烯之间的电子传输能力。
碳包覆后的Sn-Sb石墨烯复合材料的循环性能和倍率性能明显提高。
在2C和5C倍率充放电下,脱锂比容量能分别稳定保持在660-700mAh/g和400-450mAh/g。
相比于Sn-Sb/石墨烯复合材料的金属纳米颗粒(5-10nm),虽然碳包覆后的金属纳米颗粒变大(50-150nm),但材料的循环稳定性因碳包覆的作用有了明显提高,证明控制纳米颗粒的尺寸不是获得良好稳定性的唯一途径。
在制备石墨烯复合材料时不能为了提高材料的容量一味增加有更高理论容量的金属纳米颗粒的含量,这将会导致石墨烯在复合材料中不能起到结构支撑作用,引起材料的循环性能下降。
当两种材料比例适中时,两者间的协同作用达到最佳,复合材料兼具高比容量和良好循环稳定性。
但由于制备方法的差异,不同研究者发现的最佳复合比例不尽相同。
因此对协同效应机理的研究还需进一步深入。
1.2石墨烯改性硅基材料Wei等通过化学气相沉积法利用一维的碳纳米纤维和二维的石墨烯片层组装成新型的三维碳负极材料。
这种材料的微观多孔结构能有效缩短锂离子扩散距离,有利于锂离子和电子在材料中的快速储存和传输。
因此,这种复合材料有较高的可逆比容量667mAh/g,较好的循环性能和高倍率性能。
Yushun等采用气相沉积法在石墨烯片层表面形成连续的Si膜,然后在丙烯中高温处理材料,在材料表面形成碳包覆,在增强导电性的同时也可以防止硅的氧化。
这种复合材料具有由卷曲的二维纳米石墨烯片层组成的三维多孔颗粒结构,缓冲了Si充放电时的体积变化,且能形成稳定的SEI膜。
复合材料在1400mAh/g电流密度下有超过1000mAh/g的脱锂比容量,且循环稳定性好。
此外,石墨烯的高比表面积能有效提高Si在其表面的沉积速率,可以满足生产运用的要求。