单纯形法的基本思路和原理
单纯形法基本原理
否
含 有xa
是 无可行解
(a对ik
0 任一
j 0)
否
是 无界解
有某个 否 非基变量的
j 0
唯一 最优解
是
无穷多
最优解
循
环
停止
计 算 i
( bi alk
alk
0)
用 非 基 变 量xk 替 换 基 变 量xl
列出下一个 新单纯形表
单纯形法的进一步讨论-人工变量法 Page 17
解的判别: 1)唯一最优解判别:最优表中所有非基变量的检验数非零, 则线 规划具有唯一最优解。 2)多重最优解判别:最优表中存在非基变量的检验数为零, 则线则性规划具有多重最优解(或无穷多最优解)。 3)无界解判别:某个λk>0且aik≤0(i=1,2,…,m)则线性 规划具有无界解。 4)无可行解的判断:当用大M单纯形法计算得到最优解并 且存在Ri>0时,则表明原线性规划无可行解。 5)退化解的判别:存在某个基变量为零的基本可行解。
max Z 3 x1 4 x2
2x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为标准型,加入松驰变量x3、x4则标准型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
ቤተ መጻሕፍቲ ባይዱ
x
1
3x2
x4
30
x1
,
x2
,
x3
换
x3
x4
出
1
0
40 行
0
1
第三节 单纯形法
θi 32.5 40 25
5 7. 5
注意:单纯形法中, 注意:单纯形法中, 1.每一步运算只能用矩阵初等行 1.每一步运算只能用矩阵初等行 变换; 变换; 2.表中第3列的数总应保持非负 2.表中第 表中第3 (≥ 0); 3.当所有检验数均非正(≤ 0) 3.当所有检验数均非正 当所有检验数均非正( 得到最优单纯形表。 时,得到最优单纯形表。
8
1.初始单纯形表: 1.初始单纯形表: 初始单纯形表
CB XB b b1 b2 ┇ bm f
m
cn+1 xn+1 cn+2 xn+2 ┇ ┇ cn+m xn+m m -z
c1 x1 a11 a21 ┇ am1 σ1
… … … … ┇ … …
cn xn a1n a2n ┇ amn σn
m
cn+1 xn+1 1 0 ┇ 0 m 0
-z
15
在最优单纯形表中,非基变量的检验数不 在最优单纯形表中, 是正数,于是得到最优解为X 是正数,于是得到最优解为X*=(15,10,0,0,45)T 最优目标值为z =32500。注意到非基变量x 最优目标值为z*=32500。注意到非基变量x4 的检验数是0 如果选x 为进基变量, 的检验数是0,如果选x4为进基变量,迭代 还可以进行下去,但是最优值不会增大, 还可以进行下去,但是最优值不会增大, 而只有最优解改变,这就是多解的情况。 而只有最优解改变,这就是多解的情况。 下面再迭代一步,如表2 所示。 下面再迭代一步,如表2-9所示。
19
解:单纯形法求解过程如下表。 单纯形法求解过程如下表。
CB XB
0 0 0 -z 7 0 0 -z x1 x6 x7 x5 x6 x7
运筹学第五
第 六 次课 2学时本次课教学重点:单纯形法原理、基变换、最优检验 本次课教学难点:单纯形法原理、基变换、最优检验 本次课教学内容:第五章 单 纯 形 法§1 单纯形法的基本思路和原理一、 单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。
直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。
通过第二章例1的求解来介绍单纯形法:在加上松弛变量之后我们可得到标准型如下: 目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300, 2x1+x2+s2≤400, x2+s3≤250.xj ≥0 (j=1,2),sj ≥0 (j=1,2,3) 它的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛==100100101200111),,,,(54321p p p p p A其中pj 为系数矩阵A 第j 列的向量。
A 的秩为3,A 的秩m 小于此方程组的变量的个数n ,为了找到一个初始基本可行解,先介绍以下几个线性规划的基本概念。
二、基本概念基: 已知A 是约束条件的m ×n 系数矩阵,其秩为m 。
若B 是A 中m ×m 阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基。
基向量:基B 中的一列即称为一个基向量。
基B 中共有m 个基向量。
非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量。
基变量:与基向量pi 相应的变量xi 叫基变量,基变量有m 个。
非基变量:与非基向量pj 相应的变量xj 叫非基变量,非基变量有n -m 个。
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到了 ⎪⎪⎪⎭⎫ ⎝⎛=1010010113B 为A 的一个基,令这个基的非基变量x 1,s2为零,这时约束方程就变为基变量的约束方程:x2+s1≤300,x2=400, x2+s3=250.求解得到此线性规划的一个基本解:x1=0,x2=400,s1=-100,s2=0,s3=-150由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,s3≥0的约束条件,显然不是此线性规划的可行解,一个基本解可以是可行解,也可以是非可行解,它们之间的主要区别在于其所有变量的解是否满足非负的条件。
第5章-单纯形法
基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xm a x m ,m 1 m 1 a m ,n xn bm ,
x j 0. j 1, 2, , n
以下用 xii1,2, ,m表示基变量,用 x jj m 1 ,m 2 , ,n
表示非基变量。
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi ai,m1xm1ai,m2xm2 ai,nxn
i1
a1j
,cma2j
amj
c1,c2, ,cmpj
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。
单纯形法的基本原理
单纯形法的基本原理单纯形法是一种用于求解线性规划问题的数学方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。
在解决实际问题中,我们经常会遇到一些资源有限,而需要在这些资源限制下最大化或最小化某个指标的情况,这时就需要用到线性规划问题。
而单纯形法正是针对这类问题提出的一种高效的求解方法。
单纯形法的基本原理可以用几个关键步骤来概括。
首先,我们需要将线性规划问题转化为标准型,即目标函数为最大化,约束条件为等式的形式。
接着,我们需要找到一个初始可行解,这个可行解需要满足所有的约束条件。
然后,我们通过一系列的基本变量的替换,不断地移动解空间中的顶点,直到找到最优解为止。
在单纯形法中,我们需要利用单纯形表来进行计算。
单纯形表是一个表格,其中包含了目标函数、约束条件、基本变量等信息。
通过对单纯形表的不断变换和计算,我们可以逐步逼近最优解。
在每一步的计算中,我们需要选择一个入基变量和一个出基变量,通过一系列的行变换和列变换来更新单纯形表,直到找到最优解为止。
单纯形法的基本原理虽然看起来比较复杂,但实际上它是建立在一些简单的数学原理之上的。
通过对解空间中的顶点进行移动,我们可以逐步逼近最优解,这是单纯形法能够高效求解线性规划问题的关键所在。
在实际应用中,单纯形法已经被证明是一种非常有效的方法,它可以帮助我们在资源有限的情况下做出最优的决策。
总的来说,单纯形法是一种用于求解线性规划问题的高效方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。
通过对单纯形表的计算和变换,我们可以逐步找到最优解。
在实际应用中,单纯形法已经被广泛地应用于各个领域,它为我们解决资源有限的最优化问题提供了一个强大的工具。
希望本文对单纯形法的基本原理有所帮助,谢谢阅读!。
运筹学-第一章-单纯形法基本原理
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
运筹学单纯形法
单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4
3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1
线性规划中的单纯形法优化思路
线性规划中的单纯形法优化思路线性规划是一种优化问题的数学建模工具,通过数学模型的建立和求解,寻找使目标函数取得最大或最小值的变量取值。
而在线性规划中,单纯形法是一种经典的解法,通过迭代比较线性规划问题的可行解,逐步接近最优解的方法。
在本文中,将详细介绍单纯形法的优化思路。
1. 线性规划问题概述在介绍单纯形法之前,先了解线性规划问题的基本概念和常见形式。
线性规划问题由目标函数和约束条件构成,其中目标函数是一个线性函数,约束条件也是一组线性不等式或等式。
线性规划问题的求解目标是找到满足所有约束条件下使目标函数取得最优值的变量取值。
2. 单纯形法的基本思路单纯形法是一种通过不断迭代改进可行解来求解线性规划问题的方法。
其基本思路是从一个初等可行解开始,通过不断地迭代,每次选取一个更优的可行解,最终达到最优解。
3. 单纯形法的步骤3.1 初等可行解的选取单纯形法的第一步是选取一个初等可行解,该可行解必须满足所有约束条件,并且可以通过线性规划问题的约束条件和目标函数来确定。
3.2 进行单纯形表的构造单纯形表是单纯形法中的一种重要表格,通过将线性规划问题的约束条件和目标函数进行整理,能够更清晰地观察问题的结构和计算过程。
3.3 计算单纯形表中的优化函数值在单纯形表的基础上,通过计算表中各行最右侧的数值,可以得出当前目标函数的值,并判断是否满足最优解的条件。
3.4 确定进入变量和离开变量单纯形法中,每一次迭代都需要选择一个进入变量和一个离开变量来进行优化。
进入变量被选取为能够提高目标函数值最多的变量,而离开变量则是根据约束条件限制来确定的。
3.5 更新单纯形表通过选择好进入变量和离开变量后,需要对单纯形表进行更新,以得出下一次迭代的最优解。
3.6 终止条件的判断在每一次迭代过程中,都需要判断是否满足终止条件,即最优解的判断。
如果不满足终止条件,则继续进行下一次迭代,直到达到最优解。
4. 单纯形法的优化思路单纯形法的优化思路在于不断地找到使目标函数值更优的可行解,通过迭代的方式逐步接近最优解。
运筹学单纯形法各个步骤详解
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
运筹学教程 第五章 单纯形法(2表格形式)
r2 ÷ 6
b
15 24 5
x1 = 4 x2 = 0 x3 = 15 x4 = 0 x5 = 1
P P P P P 1 2 3 4 5
b
P 1
P2
P3
P4
P5
b
0 5 1 0 0 1 1/ 3 0 1 / 6 0 1 1 0 0 1
元数a 元数a21决定了从一个基可行解到相邻基可行解 的转移去向,取名主元 的转移去向,取名主元
§5.2单纯形法的表格形式
第3步:迭代。 步
1.确定入基变量 确定入基变量 2.确定出基变量 确定出基变量 3.用入基变量替换出基变量,得到一个新的基; 用入基变量替换出基变量, 用入基变量替换出基变量 得到一个新的基; 对应这个基可以找到一个新的基可行解; 对应这个基可以找到一个新的基可行解; 并画出一个新的单纯形表。 并画出一个新的单纯形表。
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
zj σj= cj -zj
? 0
z = c 3 × b1 + c 4 × b2 + c 5 × b3 = 0 × 15 + 0 × 24 + 0 × 5 = 0
§5.2单纯形法的表格形式
迭代 次数 基 x3 x4 0 x5 CB 0 0 0 x1 2 0 6 1 0 2 x2 1 5 2 1 0 1 x3 0 1 0 0 0 0 x4 0 0 1 0 0 0 x5 0 0 0 1 0 0 b 15 24 5 Z=0 比值 24/6 5
运筹学第2章 单纯形法
所有检验数 j 0 ,则这个基本可行解是最优解。
n
z z0 j x j
j m 1
m
j ciaij c j =CTBa j c j
i 1
m
m
z0 c j x j = cibi =CBT b
j 1
i 1
✓对于求目标函数最小值的情况,只需 σj≤0
0
XB
b
x1
-1 x5 0
0
0 x4 3
1
-3 0
0
00
x2
x3
x4
0
-2 0
2
-2 1
0 10
-1 bi/aik
x5
1
0
0
29 2020/3/4
2、无界解
在求目标函数最大值的问题中,所谓无界解是指在约束条件 下目标函数值可以取任意的大。
•存在着一个小于零的检验数,并且该列的系数向量的每个元素 都小于或等于零,则此线性规划问题是无界的,一般地说此类
2x1 x2 x3 x5 2
s.t. x1 2x2
x4
3
x1,
x2 , x3, x4 , x5 0
✓添加人工变量x5来人为的创造一个单位矩阵作为基 ✓M叫做罚因子,任意大的数。 ✓人工变量只能取零值。必须把x5从基变量中换出去,否 则无解。
cj
3
2
00
CB XB
2020/3/4
14
(2)出基变量和主元的确定——最小比值规则
min
bi aik
aik
0
bl alk
确定出基变量的方法:把已确定的入基变量在各约束方程中的正的系数
单纯形法原理
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
第三章2 单纯形法1
,可以构成基本矩
阵 (单位矩阵) 因而不需要加任何变量直接就能求出基本可行解。 ,
第二节 单纯形法
再看课本 20 页的例题 1,当化为标准型后,变量 x3 的系数列
0 向量为 1 1 , 所以只需要再构造出一个变量的系数列向量为 0
第二节 单纯形法
本节主要介绍单纯形法的计算步骤及线性 规划解的讨论方面的内容
一.单纯形法的基本思路 求出线性规划问题的初始基本可行解X(0),并充分 运用它提供的信息,编制初始单纯形表。 (0)是否最优?为此,需要建立一个判别标准。 判别X 如X(0)不是最优,就将一个基变量换出,将一个非 基变量换入,组成另一组基本可行解,迭代为另一张 单纯形表,使新的目标函数值较原有的为优。如此逐 步迭代,若问题有最优解,那么经有限次迭代就可求 出最优解。
只要有一个人工变量不 为零,目标函数将永远 不能求得最大值
xj ≥ 0 j=1,2,3,4,5,6
由人工变量 x5,x6 系数列向量构成的矩阵(单位矩阵)就是一个 满秩矩阵,以它为基本矩阵,x5,x6 为基变量求得的基本解为: (x1,x2, x3,x4, x5,x6)=(0, 0,0,0,2,5)
第二节 单纯形法
大家前面已经学过,化一般线性规划模型为标准型时,对“≤”约束 引入了松弛变量,松弛变量对应的系数列向量是非常特殊的。在课本例题2 中(16 页) 4,x5 是松弛变量,对应的系数列向量组成的矩阵为 0 1 ,由 ,x 文献(3)中的知识可知该矩阵是形式最简单的满秩矩阵(单位矩阵) ,因而 可以作为基本矩阵。 2.求基本解的方法: 令所有的非基变量全为零,就可以解出基变量的值。例 2 中由单位矩 阵解出的基本解为 x4= 100,x5 =120。此时,线性规划问题的基本解为: (x1,x2,x3,x4,x5)=(0,0,0,100,120) 非基变量 基变量
运筹学第2章单纯形法
① ② ③
-2X4+X5 =12
得到新的基本可行解 X1 =(0,6,8,0,12)T
(1)、决定进基变量:1=--3, X1进基 (2)、决定离基变量:最小比值规则来确定主 元与离基变量.
则Xl为进基变量。 MIN(8/1,-,12/3)=12/3 此时可以确定X5为离基变量
Z
X(0) =(0, 0, 10, 15 )T
Z0 =0
Z-30X1-20X2 =0 选中X1从0↗,X2 =0 X3=10-(-X1 )0
X4=15-(-3X1 )0 求X1, X1→+ ,Z→+
2.2.3 单纯形法计算之例
2-3 人工变量法 (Artificial Variable)
+1/2X4
+X5 =42 =6
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4
X1 -2/3X4+1/3X5=4 令X4 =X5 =0 X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2,
Z值不 再增大了,X值是最优基本解
5
=1,
* T * 即:X =(4,6) ,Z =42
检验数
当目标方程中基变量系数全为0时,非基 变量的系数可以作为检验当前的基本可 行解是否最优的标志,称之为检验数。
(2)、判定解是否最优 Z-3X1-5X2 =0 当X1从0↗或X2从0↗ Z从0↗ ∴ X0 不是最优解
(3)、由一个基可行解→另一个基可行解。 ∵ -5<-3 选X2从0↗,X1 =0 X3 =8 X4 =12-2X2 0 X2 12/2
N
沿边界找新 的基本可行解
结束
运筹学4单纯形法迭代原理
在引入人工变量后,与原先的约束方程不完全等价,为此, 需要在目标函数上做些“修正”——大M法或两阶段法
x1
x2
a1m1xm1 a1nxn b1 a2m1xm1 a2nxn b2
xm am x m1 m1 amnxn bm xj 0 ( j 1,2,,n)
非基变量取0,算出基变量,搭配在一起构成 初始基本可行解:
a2m1xm1 a2nxn b2
xm am x m1 m1 amnxn bm
xj 0 ( j 1,2,,n)
xik ai',mtxmt
若mt 0且pm' t 0
则该LP无最优解。
>
当
a' i,mt
0 时,为使
xikai',mtxmt 0,需要
最小比 值原则
xmt
xik a'
i,m t
x k 1 mt
x 从而, m t
最大可取到 m精i品i课n件 aix',mikt
a' i,mt
0
x
k l
a' l ,m t
Z
Z0 jxj
jm1
jm1
jm1
j精品课件检验数
n
Z Z0 jxj
m
其中 Z0 cibi',
i 1
jm1
j cj zj,
m
z j ciai'j
i 1
(1)最优性判别定理 j 0,jm1,..n.,
(2)有无穷多个“最优解”的判别 定理 j 0 且mt 0
精品课件
n
3、进行基变换
jm1
m
mn
n
cibi'
第五章 单纯形法
x4 0 1 0
x5 0 0 1
基变量
b
300 400 250
基向量
非基向量
0
对应基本解:(0,0,300,400,250)
一、问题的提出
基 B1=(p1 ,p2 ,p3) B2=(p1,p2 ,p4 ) B3=(p1 ,p2 ,p5) B4=(p1 ,p3 ,p4) B5=(p1 ,p3 ,p5) B6=(p1 ,p4 ,p5) B7=(p2 ,p3,p4) B8=(p2 ,p3,p5) 基向量 基变量 非基 向量 p4 ,p5 p3 ,p5 p3 ,p4 p2 ,p5 p2 ,p4 p2 ,p3 p1 ,p5 p1 ,p4 非基 变量 x4 ,x5 x3 ,x5 x3 ,x4 x2 ,x5 x2 ,x4 x2 ,x3 x1 ,x5 x1 ,x4 基本解 (75,250,-25,0,0) (50,250,0,50,0) (100,200,0,0,50) 不存在 (200,0,100,0,50) (300,0,0,-200,-50) (0,250,50,150,0) (0,400,-100,0,150) 是 否 是 否 是否可行 否 是 是 p1 ,p2 ,p3 x1 ,x2 ,x3 p1 ,p2 ,p4 x1 ,x2 ,x4 p1 ,p2 ,p5 x1 ,x2 ,x5 p1 ,p3 ,p4 x1 ,x3 ,x4 p1 ,p3 ,p5 x1 ,x3 ,x5 p1 ,p4 ,p5 x1 ,x4 ,x5 p2 ,p3 ,p4 x2 ,x3 ,x4 p2 ,p3 ,p5 x2 ,x3 ,x5
一、问题的提出
既然如此,如果我们在技术矩阵中取出三列, 组成一个可逆阵,令其余两列对应的变量为 零,则一定可以得到一个解。
一、问题的提出
单纯形法
z z0 j x j
j m 1
n(1.2.21)称 j ( j m 1 ,, n ) 为检验数。
定理1.2.1 设(1.2.17)和(1.2.21)是最大
化线性规划问题关于当前基本可行解x*的两个典式。
若关于非基变量的所有检验数σ j≤0成立,则当前
基本可行解x*就是最优解。 将σ j≤0称为最大化问题的最优性准则。显然, 对于最小化问题最优性准则应是σ j≥0。
30x1 + x3 = 160 - 20x2 5x1 = 15 - x2 - x4 (1.2.6) x1 + x5 = 4 进一步分析,用消元法将(1.2.6)中x1的系数列向量 (30,5,1)T 化成(1.2.3)中x4的系数矩阵(0,1,0)T
的形式。得到:
x3 = 70 - 14x2 + 6x4 x1 = 3 - 1/5x2 - 1/5x4
(b'1, b'2, … , b'm ,0 , …, 0)T是当前基本可行解。若有一个非
基变量xm+t的检验数σ
m+t>0,且xm+t对应的系数列向量
P'm+t=(a'1,m+t,a'2,m+t,„,a'm,m+t)中,所有分量a'i,m+t≤0,则该 线性规划问题具有无界解(或称无最优解)。
1.2.2 单纯形表
x2= 5 - 1/14x3 + 3/7x4
x1 = 2 + 1/70x3 - 2/7x4
(1.2.11)
x5 = 2 - 1/70x3+ 2/7x4
将(1.2.11)代入目标函数式,得到用非基变 量x 3
运筹学
运筹学第2章单纯形法 2.1 单纯形法的基本思想该方法简捷、规范,是举世公认的解决LP问,题行之有效单纯形法(Simplex Method)是美国著名运筹学家丹捷格(Dantzig)1947年首先提出的通用方法。
单纯形法不仅是解决LP问题的最基本的算法之一,而且成为解决整数规划和非线性规划某些算法的基础。
2、单纯形法的3种形式——方程组形式(代数形式)、表格形式、矩阵形式3、单纯形法的基本思路——基于LP问题的标准形,先设法找到某个基本可行解(称为初始基本可行解);开始实施从这个基本可行解向另一个基本可行解的转换,要求这种转换不仅容易实现,而且能改善(至少保持)目标函数值;继续寻找更优的基本可行解,进一步改进目标函数值。
当某一个基本可行解不能再改善时,该解就是最优解。
(或者是出现无可行解、无最优解、无穷多最优解的情况)2.1.1 方程组形式的单纯形法例1 一个企业需要同一种原材料生产甲、乙两种产品,它们的单位产品所需要的原材料的数量及所耗费的加工时间各不相同,获得的利润也不相同(如下表)。
请问,该企业应如何安排生产计划,才能使获得的利润达到最大?解:该问题的LP模型为:将该问题的LP模型化为标准形⎪⎩⎪⎨⎧≥≤+≤++=,1202410032..4621212121xxxxxxt sxxzm ax函数约束的增广矩阵为:很显然 R (A ) = R (A ,b )= 2 < 5,即该方程组有无穷多组解。
系数矩阵为:决策变量向量为:选取 为基,则 为基变量, 为非基变量令非基变量 ,则可以得到一基本 可行解为: 下面的计算都是以它为初始点逐次实施转换,故将其称为初始基本可行解。
此时,Z=0,其经济含义为:该企业没 有安排甲、乙两种产品的生产,当然也就没有利润可言。
条典☐ 初始基本可行解所对应的可行基是一个m 阶的单位阵; ☐ 目标函数表达式中所有的基变量的系数全部为0。
☐ 这是单纯形法所必需的!!! ☐ 分析目标函数表达式☐ 非基变量的系数都是正数,若将它们转换为基变量,目标函数值则就会可能增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 1 单纯形法的基本思路和原理
三、基变换 例题中 σ1,σ2>0,即该基本可行解不是最优解,需
进行基变换。
具体做法:更换可行基中的一个列向量,得到新的 可行基,求出新的基本可行解使目标函数值更优。
为了换基要确定换入变量---入基变量与换出变量--出基变量。
18
§ 1 单纯形法的基本思路和原理
非基 变量
与非基向量 pj 相应的变量 xj 叫非基变量,非基变量有n‒m 个。
7
§ 1 单纯形法的基本思路和原理
若在约束方程组系数矩阵中找到一个基,令其非 基变量为零,再求解该 m 元线性方程组可得到唯一 解,该解称之为线性规划的基本解。
此例题找到 A 的一个基 B3(可逆子阵):
1 1 0
20
§ 1 单纯形法的基本思路和原理
如何在求解以前来确定 出基变量,使得求出的 解是可行解?
21
§ 1 单纯形法的基本思路和原理
确定出基变量的方法如下: 把已确定的入基变量在各约束方程中的正系数除 其所在约束方程中的常数项,把最小比值所在的约束 方程中的原基变量确定为出基变量。 在下一步迭代的矩阵变换中可以确保新得到的 bj 值都≥0。
例题中找到一个初始可行基:
1 0 0
B2
0
1
0
0 0 1
目标函数为50x1+100x2,由于初始可行解中x1,x2 为 非基变量,所以此目标函数已经用非基变量表示了,无
需代换出基变量。各检验数为:
σ1=50,σ2=100,σ3=0,σ4=0,σ5=0
15
§ 1 单纯形法的基本思路和原理
5
§ 1 单纯形法的基本思路和原理
该线性规划问题的系数矩阵为:
1 1 1 0 0
A
(
p1 ,
p2
,
p3
,
p4
,
p5
)
2
1
0
1
0
0 1 0 0 1
其中 pj 为系数矩阵 A 第 j 列的向量.A 的秩为3,方程 组变量个数大于 A 的秩,从方程组的无数组解中找 一个初始可行解。
是
输出 最优解
是否为最优解
否
否
是 是否无最优解
终止
4
§ 1 单纯形法的基本思路和原理
一、找出一个初始基本可行解 下面通过第二章例1的求解来介绍单纯形法。 在加上松弛变量之后得到此线性规划的标准形式。
目标函数:max 50x1+100x2 约束条件:x1+x2+s1=300,
2x1+x2+s2=400, x2+s3=250, xi ≥0(i=1,2),sj≥0(j=1,2,3)。
11
§ 1 单纯形法的基本思路和原理
由于线性规划的标准型中要求 bj ≥0,若能找到一 个基是单位矩阵(各列向量顺序无关重要),例如:
0 0 1
1
0
0
0 1 0
所得基本解一定是基本可行解,解中的各个变量或 等于某个 bj 或等于零。
12
§ 1 单纯形法的基本思路和原理
第一次找到的可行基为单位矩阵(各列可以乱 序),称之为初始可行基,相应的基本可行解叫初始 基本可行解。
min bi/aij,其中aij > 0,对应的基变量为出基变量 基变量
22
§ 1 单纯形法的基本思路和原理
在本例题中约束方程为
x1 + x2 + s1 = 300,
2x1 + x2 + s2 = 400,
x2 + s3 = 250. 在第二步中已经知道 x2 为入基变量,把各约束方 程中 x2 的为正的系数除对应的常量,得
19
§ 1 单纯形法的基本思路和原理
2.出基变量的确定
确定入基变量后,需在原来的基变量 s1,s2,s3 中 选一个出基变量。若 s3 作为出基变量,则新的基变量为 x2,s1,s2 ,非基变量 x1=s3=0,方程组变为:
x2 + s1 = 300, x2 + s2 = 400, x2 = 250. 得基本解:x1=0,x2=250,s1=50,s2=150,s3=0。此解 满足非负条件,是基本可行解。
B3 1
0
0
1 0 1
令非基变量 x1=0 ,s2=0 , 约束方程变为基变量的方程。
8
§ 1 单纯形法的基本思路和原理
基变量的约束方程: x2+s1=300, x2 =400, x2+s3=250,
求解得到此线性规划的一个基本解: x1=0,x2=400,s1=−100,s2=0,s3=−150
6
§ 1 单纯形法的基本思路和原理
如何找初始基本可行解? 基本概念
基
Am×n 是约束条件系数矩阵,秩为 m。若 Bm×m 是 A 的子阵, 且可逆,称 B 为一个基。
基向量 基 B 中的一列即称为一个基向量。
非基 向量
在 A 中除了基 B 之外的一列称之为基 B 的非基向量。
基变量 与基向量 pi 相应的变量 xi 叫基变量,基变量有m个。
2.最优解判别定理 求最大目标函数的问题中,若某个基本可行解所有 检验数 σj ≤0,则该解是最优解。 通俗地解释最优解判别定理,设用非基变量表示的 目标函数如下所示:
z z0 j xj jJ
注:对于求目标函数最小值的情况,只需把σj ≤0改为σj ≥0。
16
§ 1 单纯形法的基本思路和原理
当所有的 x j ≥0,且σj ≤0,此时
分析目标函数:
j xj 0
jJ
z z0 j xj z0 (
s xs)(
t xt)
jJ
xs为基向量
xt 为非基向量
基变量均≥0,只有检验数都为0,才有σ s x s =0;非基变 量的检验数均 ≤0,只有非基变量都为0,才有σ t x t=0 。 此时目标函数才能取最大值z0。
求解得到新的基本可行解
x1=0,x2=250,s1=50,s2=150,s3=0. 24
§ 1 单纯形法的基本思路和原理
这时目标函数值为 50x1+100x2=50×0+100×250=25 000
显然比初始基本可行解 x1=0,x2=0,s1=300,s2=400, s3=250 时的目标函数值为 0 要好得多。
二、最优性检验 判断已求得的基本可行解是否是最优解。
1.最优性检验的依据——检验数 σj
目标函数
基变量&非基变量
约束等式中,非基变 量移到右边,用非基 变量表示基变量
目标函数
非基变量
则目标函数中变量系数即为其检验数,把 xi 的检验数 记为 σi。所有基变量检验数为0。
14
§ 1 单纯形法的基本思路和原理
9
§ 1 单纯形法的基本思路和原理
由于该基本解中 s1=−100,s3=−150 ,
不满足决策变量非负的约束条件,不是可行解。 满足非负条件的基本解叫做基本可行解,
并把这样的基叫做可行基。
10
§ 1 单纯形法的基本思路和原理
一般来说判断一个基是否是可行基,只有在求出 其基本解以后。
能否在求解之前,找到一个可行基呢? 也就是能否找到的一个基保证在求解之 后得到的解一定是基本可行解呢?
b1 300 300, b2 400 400, b3 250 250
a12 1
a22 1
a32 1
23
§ 1 单纯形法的基本思路和原理
b3
此时a32 最小,从而对应原基变量中 s3 为出基变 量,变换为 x2,s1,s2 为基变量,x1,s3 为非基变量。
令非基变量为零,得 x2 + s1 = 300, x2 + s2 = 400, x2 = 250.
下面再重新检验其解的最优性,若不是最优解还要 继续进行基变换,直至找到最优解,或者能够判断出 线性规划无最优解为止。
25
管理运筹学
第五章 单纯形法
北京理工大学 韩伯棠 教授
本章内容
1
2
单纯形法的表格形式
3
求目标函数值最小的线性规划问题的单 纯形表解法
4
几种特殊情况
2
本章内容
1
2
单纯形法的表格形式
3
求目标函数值最小的线性规划问题的单 纯形表解法
4
几种特殊情况
3
§ 1 单纯形法的基本思路和原理
单纯形法的基本思路:
选取可行域某顶点 (更优顶点)
本例中找到了一个基是单位矩阵:
1 0 0
B2
0
1
0
0 0 1
令其非基变量 x1=x2=0,得初始基本可ቤተ መጻሕፍቲ ባይዱ解:
x1=0,x2=0,s1=300,s2=400,s3=250
注:若找不到单位矩阵(各列可以乱序)的基作为初始可行基,
需要构造初始可行基。
13
§ 1 单纯形法的基本思路和原理
1.入基变量的确定
当某 σj>0 ,非基变量 xj 变为基变量,不取0值可使 目标函数值增大,故选基检验数大于0的非基变量换到基 变量中。
若有两个以上 σj>0,为使目标函数更大,一般选 σj 较大者的非基变量为入基变量。例题中 σ2=100 是最大的 非负检验数,故选 x2 为入基变量。
max σj ,其中 σj>0,对应的非基变量为入基变量 基变量