一元二次方程的应用(面积问题)

合集下载

九年级数学一元二次方程面积问题

九年级数学一元二次方程面积问题

九年级数学一元二次方程面积问题哎,大家好!今天咱们来聊聊九年级数学里的一个有趣的题目——一元二次方程在面积问题中的应用。

听起来是不是有点复杂?别担心,咱们慢慢讲,弄清楚了,你会发现这不比做家务复杂,绝对能搞定!1. 什么是一元二次方程?首先,我们得搞明白什么是一元二次方程。

别被这个名字吓着,其实它就是一种特殊的方程。

公式长这样:[ ax^2 + bx + c = 0 ]。

其中,( x ) 是未知数,( a )、( b )、( c ) 是常数。

简单来说,这就是一个二次方程,它的最高次数是二。

2. 面积问题的背景好了,咱们知道了什么是一元二次方程,接下来就是面积问题了。

要是你有点头绪,那就太棒了,因为很多数学问题都和实际生活中的问题有关呢!2.1 一道经典题目设想一下,你家有一个小花园,长方形的,长度是 ( x ) 米,宽度是 ( x + 2 ) 米。

现在你发现这个花园的面积是 60 平方米。

你需要找出这个花园的长度和宽度。

听着是不是有点儿挑战?别急,咱们一起来解决它!2.2 设立方程首先,根据面积公式,长方形的面积是长乘宽。

所以我们可以得到一个方程:[ x times (x + 2) = 60 ]。

把这个方程展开来,咱们就得到了:[ x^2 + 2x = 60 ]然后,把方程整理成标准的一元二次方程形式:[ x^2 + 2x 60 = 0 ]。

这下,咱们就有了一个典型的二次方程,可以用不同的方法来解它。

3. 解方程的技巧3.1 因式分解法最简单的方法就是因式分解。

我们要找两个数,它们的乘积是 60,和是 2。

这两个数是 10 和 6。

所以,我们可以把方程分解成:[ (x + 10)(x 6) = 0 ]。

这样,解这个方程就非常简单了。

我们得到两个解:[ x + 10 = 0 quad text{或者} quad x 6 = 0 ]。

也就是:[ x = 10 quad text{或} quad x = 6 ]。

一元二次方程的应用——面积问题

一元二次方程的应用——面积问题
所以此方程没有实数解. 答:长22cm的铁丝不能围成面积是32cm2的矩形.
(3)设围成的矩形一边长为xcm,那么另一边长 为(11-x)cm, 矩形的面积为:
x (11 x ) x 2 11x ( x 2 11x ) 11 2 11 2 2 x 11x ( ) ( ) 2 2 11 2 121 ( x ) 2 4 11 2 ( x ) 0 即最大值为0 2 121 x (11 x )的最大值为 4 121 2 答:用这根铁丝围成的矩形最大面积是 4 cm
例3 学校要建一个面积为150平方米的长方形自行车棚,
为节约经费,一边利用18米长的教学楼后墙,另三边 利用总长为35米的铁围栏围成,求自行车棚的长和宽.
练习三
问题 :一根长22cm的铁丝 (1)能否围成面积是30cm2的矩形. (2)能否围成面积是32cm2的矩形?并说明理由. (3)用这根铁丝围成的矩形最大面积是多少?
200cm2
20-2x
30-2x
例2.在一块宽20m、长32m的矩形空地上,修筑
宽相等的三条小路(两条纵向,一条横向,纵向 2 与横向垂直),剩下的部分建成面积为570 m 花 坛,问小路的宽应是多少?
练习二:1.如图,在一块长为92m,宽为60m的 矩形耕地上挖三条水渠,水渠的宽都相等,水 渠把耕地分成面积均为885m2的6个矩形小块, 水渠应挖多宽?

找出相等关系.
例1:
如图,小明把一张边长为10cm的正方形硬纸板 的四周剪去一个同样大小的正方形,再折合成 一个无盖的长方形盒子。如果要求长方体的底 2 面面积为 正方形硬纸板面积的一半, 81cm , 那么剪去的正方形边长为多少?
边长2=面积

一元二次方程解决面积问题

一元二次方程解决面积问题

一元二次方程解决面积问题面积问题在数学中广泛存在,而解决这类问题时,一元二次方程是一个重要的工具。

一元二次方程是一个带有一个未知数的二次方程,通常写作ax² + bx + c = 0,其中a、b和c是已知常数,且a不等于0。

当涉及到面积问题时,我们可以利用一元二次方程来求解。

例如,考虑一个长方形的问题:给定长方形的宽度x,其长度为(3x + 4)。

我们希望求解这个长方形的面积。

首先,我们需要确定长方形的面积公式。

长方形的面积等于长度乘以宽度,即A = x(3x + 4)。

然后,我们将这个面积公式转化为一个一元二次方程。

展开表达式,我们得到A = 3x² + 4x。

现在,我们要解决的问题是找到一个x的值,使得面积A达到最大或最小。

我们可以利用一元二次方程的特性来求解这个问题。

一元二次方程的图像是一个抛物线,对于正系数a,抛物线开口向上。

因此,当a大于0时,抛物线的最小值出现在顶点处。

通过求解一元二次方程的顶点,我们可以找到长方形的最大或最小面积。

一元二次方程的顶点的x坐标由公式x = -b/2a给出。

对于我们的长方形问题,a = 3,b= 4,所以x = -4/(2*3)。

计算得出x = -2/3。

将这个值代入原方程,我们可以计算出面积A的最小值或最大值。

这样,我们就可以通过求解一元二次方程来解决长方形的面积问题。

一元二次方程在解决面积问题以及其他数学问题中具有广泛的应用。

通过灵活运用一元二次方程的特性,我们能够解决各种各样的面积问题。

一元二次方程应用__图形面积问题

一元二次方程应用__图形面积问题

练习:如图,小华从市场上买回一块矩形铁皮,他将此 矩形铁皮的四个角落各剪去一个边长为1m的正方形后, 剩下的部分刚好能围成一个容积为15m³的无盖长方体箱 子,且此长方体箱子的底面长比宽多2m。已知购买这种 铁皮每平方米需20元,算一算小华购回这张矩形铁皮共 花了多少钱?
解:设无盖长方体箱子宽x米,则长(x 2)米
解:设金色纸边的宽为xcm,则挂图长为 (80+2x)cm、宽为(50+2x)cm
由题意得:(80 2x)(50 2x) 5400
4x2 260x 1400 0
整理得: x2 65x 350 0
(x 5)(x 70) 0 x1 5, x2 70(不合题意舍去 ) 故金色纸边的宽为5cm.
(1)
解2:解1计算时分块较多,还要注意重叠部分要减去。 我们可以利用图形的平移,对图形进行重新整理,如右图。
解:设图中道路的宽为x米, 由题得:(32 x)(20 x) 540
整理得: x2 52 x 100 0 (x 2)(x 50) 0
解得:x1 2, x2 50(不合题意,舍去 ) 故道路宽为 2米.
变式2: 如图,在一块长92m,宽60m的矩形耕地上挖 三条水渠,水渠的宽度都相等。水渠把耕地分成面 积均为885m2的6个矩形小块,水渠应挖多宽?
解:设水渠宽为x米,
根据题意得: (92 2x)(60 x) 8856
整理得:x2 106 x 105 0
(x 1)(x 105) 0
x1 1, x2 105(不合题意,舍去 ) 故水渠应挖1m宽.
由题: x( x 2) 1 15
则矩形铁皮面积为: (5 2)(3 2) 35(平方米)
整理得: x2 2x 15 0

12.解一元二次方程的实际应用——面积问题

12.解一元二次方程的实际应用——面积问题

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试
x
35-2x 当x=7.5时,35-2x=20>18,因此不合题意,舍去;
当x=10时,35-2x=15. 答:鸡场的长、宽分别为15米、10米.
例2 某校为了美化校园,准备在一块长32米,宽20米的长方形场地四周修
筑等宽的道路,中间的矩形部分作草坪, 若草坪的面积为540米2,求图中道路 的宽是多少? x x 32-2x 20-2x x x 解:设草坪四周道路的宽为x米, 则草坪的长为(32-2x)米,宽为(20-2x)米.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
高考总分:711分 毕业学校:北京八中 语文139分 数学140分
英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出

一元二次方程应用题面积问题

一元二次方程应用题面积问题

一元二次方程应用题面积问题1. 引言:面积问题的迷人世界大家好!今天咱们聊聊一元二次方程中的面积问题。

别急着皱眉头,这个话题其实特别贴近咱们的生活,学会了,能让你在解答一些日常问题时得心应手。

比如说,买草坪、规划花园、甚至是设计墙面装饰,这些都能用到哦!2. 面积问题的基础:概念简述2.1 什么是面积问题?说白了,面积问题就是要求你计算一个区域的大小。

在几何中,咱们经常需要找出矩形、三角形或者其他形状的面积。

那一元二次方程为什么会出现在这个问题里呢?好问题!因为有些面积计算需要用到二次方程来解决。

2.2 为什么用一元二次方程?一元二次方程,看起来有点复杂,但其实就是形如 ( ax^2 + bx + c = 0 ) 的方程。

它能帮我们解决一些涉及面积的实际问题,比如说,计算一个长方形的面积,特别是当这个长方形的边长变化时,就需要用到这样的方程了。

3. 实际例子:如何应用一元二次方程解决面积问题。

3.1 示例一:草坪面积假设你想在家里的花园里铺草坪,花园的长度是 ( x ) 米,宽度比长度少 5 米。

那么,花园的宽度就是 ( x 5 ) 米。

你知道草坪的面积是 84 平方米。

我们可以用一元二次方程来找出长度和宽度。

首先,面积 ( A ) = 长度 ( times ) 宽度。

根据题意,有:[ A = x times (x 5) = 84 ]。

简化一下,得到方程:[ x^2 5x = 84 ]接着,把 84 移到方程的另一边:[ x^2 5x 84 = 0 ]现在咱们可以用因式分解法或者求根公式来解这个方程。

因式分解的话,我们可以得到:[ (x 9)(x + 4) = 0 ]。

从中可以得到 ( x = 9 ) 或 ( x = 4 )。

因为长度不能是负数,所以我们取 ( x = 9 ) 米。

这样,花园的宽度就是 ( 9 5 = 4 ) 米。

3.2 示例二:墙面装饰再来一个例子,假如你要装饰一面墙,墙的高度比宽度多 2 米,装饰的总面积是60 平方米。

一元二次方程应用题

一元二次方程应用题

解 :设 x后 s , P的 CD 面 P A t积 面 BC 是 积 ,根 的 据 ,得 一
1(8x)6(x)1186.
A
2
22
整理得:
x21x42 40.
P
8cm
解这个方程,得:
x12;x21(2 不合 ,舍 题 )去 .意 C
B Q
答 :2s后 ,PC 的 D面P积 tAB 是 面 C积的 . 一 6cm 半
降价前 降价后
44 44—x
20 20+5x
40×20 1600
(2)由题意可得方程:____(_4_4__—__x_)_(_2_0__+_5_x__)_=_1_6__0_0____
(3)若将“每件降价1元”改写为“每件降价0.5元”,又可以得到什么方程?
(44—x)(20+2×5x)=1600
2、新华商场销售某种冰箱,每台进价为2500元.市 场调研表明:当销售价为2900元时,平均每天能售 出8台;而当销价每降低50元时,平均每天能多售4 台.商场要想使这种冰箱的销售利润平均每天达到 5000元,每台冰箱的定价应为多少元?
2900-x-2500
5000
(2)由题意可得方程:______________________________
3、某商场将进货价为30元的台灯以40元售出,平均 每月能售出600个,调查表明,这种台灯的售价每上 涨1元,其销售量就减少10个,为了实现平均每月 10000元的销售利润,这种台灯的售价应为多少?这 时应至少进台灯多少?
2. 某农场要建一个长方形的养鸡场,鸡场的一 边靠墙(墙长25m),另外三边用木栏围成,木栏 长40m.
解:(1)设养鸡场的宽为xm,根据题意得

一元二次方程的应用-面积专题

一元二次方程的应用-面积专题

一元二次方程的应用-面积专题1.如图,某景区想在一个长40m,宽32m的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为21140m,如果横向小桥的宽为xm,那么可列出关于x的方程为______________________.(方程不用整理)2.如图,利用一面墙(墙的长度不限),用长为19m的篱笆围一个留有1m宽门的矩形养鸡场,怎样围可以使养鸡场的面积为250m?设矩形与墙平行的边长为xm,则根据题意可以列出的方程为___________________.(化成一般形式)3.如图,某小区计划在一个长为32m,宽为20m矩形场地ABCD上修建同样宽的小路,其余部分种草,若使草坪面积为2540m,求路的宽度?4.如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a 米)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为x 米,则a = (用含x 的代数式表示);(2)若塑胶运动场地总占地面积为2430平方米.请问通道的宽度为多少米?5.如图,一农户要建一个矩形猪舍,猪舍的一边利用现有的住房墙,另外三边用25m 长得建筑材料围成,为方便进出,在垂直于住房墙的一边留一个小门.(1)如果住房墙长12米,门宽为1米,所围矩形猪舍的长、宽分别为多少时,猪舍面积为280m ?(2)如果住房墙长12米,门宽为1米,当AB 边长为多少时,猪舍的面积最大?最大面积是多少?(3)如果住房墙足够长,门宽为a 米,设AB x =米,当6.57x 剟时,猪舍的面积S 先增大,后减小,直接写出a 的范围.6.某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(平面图如图ABCD所示).由于地形限制,三级污水处理池的长、宽都不能超过16米.如果池的外围墙建造单价为每米400元,中间两条隔墙建造单价为每米300元,池底建造单价为每平方米80元.(池墙的厚度忽略不计)(1)当三级污水处理池的总造价为47 200元时,求池长x;(2)如果规定总造价越低就越合算,那么根据题目提供的信息,以472 00元为总造价来修建三级污水处理池是否最合算?请说明理由.7.(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是25400cm,设金色纸边的宽为xcm,求满足x的方程.8.我们用一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就可以做成一个没有盖的长方体盒子,如图①所示.用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成如图②所示的底面积为21500cm的没有盖的长方体盒子,想一想,应该怎样求出截去的小正方形的边长?探索:若设小正方形的边长为xcm,那么这个盒子底部的长及宽分别为cm和cm,根据题意,可得一元二次方程为,整理成一般形式是.9.如图,某农场有一道长16米的围墙,计划用40米长的围栏靠墙围成一个面积为120平方米的长方形养鸡场,为了方便饲养又用围栏隔出一个储物间,在墙的对面开了两个1米宽的门,求围成长方形养鸡场宽AB的长度.10.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27 米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1 米宽的门(不用木栏),建成后木栏总长57 米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).288m,求a的值.(2)若饲养场的面积为2(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?。

一元二次方程方程的应用面积问题

一元二次方程方程的应用面积问题

一元二次方程方程的应用面积问题一元二次方程是数学中的重要概念,它在现实生活中有着丰富的应用。

其中之一就是在解决面积问题时发挥作用。

从简到繁,本文将深入探讨一元二次方程在面积问题中的应用,以便读者能够更深入地理解这一概念。

一、一元二次方程的基本概念在深入讨论一元二次方程在面积问题中的应用之前,我们先来复习一下一元二次方程的基本概念。

一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\) 和 \(c\) 分别是一元二次方程的系数,而 \(x\) 则是未知数。

通过求解一元二次方程,我们可以得到该方程的根,从而找到方程所代表的数学意义。

二、一元二次方程在面积问题中的应用1. 求矩形的面积假设矩形的长为 \(x+3\),宽为 \(x-1\),我们希望求解这个矩形的面积。

根据矩形面积的计算公式 \[面积 = 长 \times 宽\]我们可以建立一个关于矩形面积的一元二次方程,通过求解这个方程,就可以得到这个矩形的面积。

2. 求三角形的面积假设有一个底边长为 \(x+2\),高为 \(2x-1\) 的三角形,我们可以利用一元二次方程来求解这个三角形的面积。

根据三角形面积的计算公式\[面积 = \frac{底边 \times 高}{2}\]我们可以建立一个关于三角形面积的一元二次方程,通过求解这个方程,就可以得到这个三角形的面积。

3. 求圆的面积对于圆的面积问题,我们需要利用一元二次方程的相关知识进行转化。

假设一个圆的半径为 \(x+1\),我们希望求解这个圆的面积。

根据圆的面积公式 \[面积 = \pi \times 半径^2\]我们可以建立一个关于圆面积的一元二次方程,通过求解这个方程,就可以得到这个圆的面积。

三、总结与回顾通过以上的例子,我们可以看到一元二次方程在面积问题中的广泛应用。

无论是矩形、三角形还是圆,我们都可以利用一元二次方程来求解其面积,这为我们在实际生活中的计算提供了便利。

一元二次方程应用题面积问题

一元二次方程应用题面积问题

例子三
如果花坛的面积为40平方 米,求出花坛的长度和宽 度。
常见面积问题的总结
1 房屋面积
如何利用一元二次方程 计算房屋的面积?让我 们总结一下。
2 花坛面积
通过一元二次方程解决 花坛面积的问题有哪些 常见方法?我们来一起 回顾一下。
3 其他应用题
一元二次方程在其他面 积问题中还有哪些实际 应用?让我们一起探索。
结论和要点
通过本次讲座,我们了解了一元二次方程在面积问题中的应用。我们学习了一元二次方程的定义和公式, 探讨了解决面积问题的步骤,并举例演示了实际应用。希望这些知识能够帮助你在日常生活中解决面积 问题。
一元二次方程是形如ax^2 + bx + c = 0的代数方程,其中a、b、c是已知常数,x是未知数。解一元二次 方程可以使用二次方程的公式:x = (-b ± √(b^2 - 4ac)) / 2a。
应用题面积问题的例子
假设我们想计算一个长方形花坛的面积。已知花坛的一条边长为x米,另一条边长为x + 2米。如何利用 一元二次方程来解决这个问题呢?让我们看一下具体的例子。
一元二次方程应用题面积 问题
欢迎来到本次讲座!今天我们将探讨一元二次方程在面积问题中的应用。让 我们一起享受这个令人兴奋且具有挑战性的话题吧!
问题背景
在实际生活中,我们经常遇到需要计算面积的问题,例如房屋面积、花坛面 积等。那么,如何利用一元二次方程来解决这类问题呢?让我们一起探索吧!
一元二次方程的定义和公式
解决面积问题的步骤
1
步骤二
面积:A = 长 × 宽。
3
步骤一
假设花坛的长度为x米,宽度为x + 2 米。
步骤三
将面积公式代入一元二次方程:x(x + 2) = A。

一元二次方程的应用(面积问题)

一元二次方程的应用(面积问题)

变式:一块长方形铁皮的长是宽的两倍,四个角各截 去一个正方形,制成高是5cm,容积是500cm3的无盖长 方体容器,求这块铁皮的长和宽. 2xcm 高 长 xcm 宽 那么制成的长方体容器底面的宽是 (x-10)cm, ; 长是(2x-10)cm. .
如图宽为50cm的矩形图案由10个全等的小长方形拼成, 则每个小长方形的面积为?
墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎
么设计?
练习:用20cm长的铁丝能否折成面积为30cm2的矩形, 若能够,求它的长与宽;若不能,请说明理由. 20 解:设这个矩形的长为xcm,则宽为 ( x ) cm, 2 20 2 x 10 x 30 0 x( x) 30
例2:如图长方形鸡场,一边靠墙(墙的长度为18m), 另外三边用篱笆围成。篱笆总长为35m (1)当所围的面积为150m2,则长方形鸡场的长和宽分 别是多少? (2)能够围成160m2的鸡场吗?
变式:如图,有长为24米的篱笆,一面利用墙(墙的最大可用 长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃 的宽AB为x米,面积为S米2, (1)用x表示S;(2)如果要围成面积为45米2的花圃,AB的长 是多少米?(3)能围成面积为48平方米的花圃吗?.
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
练习:如图,用长为18m的篱笆(虚线部分),两面靠
例1:某校为了美化校园,准备在一块长32米,宽20米的 长方形场地上修筑若干条道路,余下部分作草坪,并请 全校同学参与设计,现在有两位学生各设计了一种方案 (如图),根据两种设计方案各列出方程,求图中道路的 宽分别是多少?使图(1),(2)的草坪面积为540米2.

一元二次方程应用题(面积问题)课件

一元二次方程应用题(面积问题)课件
一元二次方程应用题(面积问题)ppt 课件
目录
• 引言 • 一元二次方程基础知识 • 面积问题概述 • 一元二次方程在面积问题中的应用 • 案例分析 • 练习与巩固
01
引言
课程目标
掌握一元二次方程的 基本概念和解题方法 。
提高解决实际问题的 能力和数学应用能力 。
理解面积问题的实际 意义和数学模型。
圆面积问题案例
总结词
圆面积问题是一元二次方程应用题中的常见题型,主要考察圆的半径和面积的计算。
详细描述
圆面积问题通常涉及到一元二次方程的求解,需要找到圆的半径,进而计算出面积。例如,一个圆的 半径为x,面积为A,则A=π×x^2。根据题目条件,可以建立一元二次方程求解x,进而得到面积A。
06
练习与巩固
03
面积问题概述
面积问题的定义
面积问题
面积问题主要研究平面图形的大小, 通常涉及到几何图形的形状、大小和 位置关系。
面积计算公式
面积计算公式是解决面积问题的关键 ,例如矩形面积=长x宽,三角形面积 =底x高/2等。
面积问题的常见类型
01
02
03
04
矩形和长方形
涉及到长、宽、周长和面积的 计算。
在面积问题中,常常需要通过设立一元二次方程来求解未知数,例如在
矩形和三角形问题中,常常需要设立一元二次方程来求解长度或高度。
03
解一元二次方程的方法
解一元二次方程的方法有多种,包括公式法、配方法、因式分解法和二
次函数图像法等。在解决面积问题时,需要根据具体情况选择合适的方
法来求解一元二次方程。
04
三角形
涉及到底、高、周长和面积的 计算。
圆形和球体

一元二次方程应用题(面积问题)

一元二次方程应用题(面积问题)

162
162
64 (1) 解:设水渠的宽为xm,列方程得:
64 (2)
(162—2x)(64-4x)=9600,解得 x1 =1,x2 =96 (不合题意,舍去)。答:水渠的宽为1m.
练习4:在一块长16米、宽12米的矩形荒地上, 建造一个花园,使花园的所占面积为荒地面积的 一半。你能给出设计方案吗?
生活有关一元二次方程ຫໍສະໝຸດ 利润问题例4:百佳超市将进货单价为40元的商品按50元出售时,能卖 500个,已知该商品要涨价1元,其销售量就要减少10个,为 了赚8000元利润,售价应定为多少,这时应进货为多少个?
分析:设商品单价为(50+x)元,则每个商品得利润[(50+x) —40]元, 因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少 10 x个,故销售量为(500 —10 x)个,根据每件商品的利润×件数 =8000,则应用(500 —10 x)· [(50+x) —40]=8000
1 2
解:设道路宽为x米,则
其中的 x=35超出了原矩形的宽,应舍去. 答:道路的宽为1米.
练习:(探究性题)一块矩形耕地大小尺寸如图( 1) 所示,要在这块土地上沿东西和南北方向分别挖2条 和4条小渠,如果小渠的宽相等,而且要保证余下的 耕地面积为9600 m2 ,那么水渠应挖多宽?
分析:这类问题的特 点是,挖渠所占面积 只与挖渠的条数和渠 道的宽度有关,而与 渠道的位置无关,为 了研究问题方便可分 别把东西和南北方向 的渠道移动到一起 (最好靠一边),如 图(2)所示。那么 剩余可耕的长方形土 地的长为(1622x)m, 宽为(64-4x)m
16米 16米
12米
花园
12米

面积问题一元二次方程公式

面积问题一元二次方程公式

面积问题一元二次方程公式摘要:1.一元二次方程面积问题背景介绍2.一元二次方程面积问题公式推导3.实例解析一元二次方程面积问题4.解题步骤与技巧总结正文:一、一元二次方程面积问题背景介绍在数学领域,一元二次方程是常见的代数方程之一。

其在实际生活中的应用广泛,特别是在几何领域。

一元二次方程面积问题是指,给定一个一元二次方程,如何求解其对应的图形面积。

这个问题在数学建模、工程技术等领域具有重要意义。

二、一元二次方程面积问题公式推导为了解决一元二次方程面积问题,我们需要先了解一元二次方程的一般形式:ax + bx + c = 0根据求根公式,我们可以得到方程的两根:x1, x2 = (-b ± √(b - 4ac)) / 2a我们知道,一元二次方程的图形是一个抛物线。

抛物线的面积可以通过以下公式计算:面积= 1/2 × 抛物线顶点横坐标× 抛物线长度而抛物线长度可以通过以下公式求得:抛物线长度= 2 × √(a + b) / a将求根公式和抛物线长度公式代入面积公式,我们可以得到一元二次方程面积问题的公式:面积= 1/2 × (-b ± √(b - 4ac)) × √(a + b) / a三、实例解析一元二次方程面积问题例如,给定一元二次方程:y = x - 2x - 3我们可以先求解方程的根:x1 = 3,x2 = -1然后,计算抛物线顶点横坐标:顶点横坐标= -b / (2a) = -(-2) / (2 × 1) = 1接下来,计算抛物线长度:抛物线长度= 2 × √(a + b) / a = 2 × √((1) + (-2)) / 1 = 2 × √(1 + 4) = 2 × √5最后,代入面积公式计算面积:面积= 1/2 × (3 + √5) × √(1 + 4) / 1 = 1/2 × (3 + √5) × √5四、解题步骤与技巧总结1.熟练掌握一元二次方程的求根公式;2.了解抛物线的性质,熟练运用抛物线长度和顶点横坐标的计算公式;3.将求得的顶点横坐标、抛物线长度代入面积公式进行计算;4.注意在计算过程中使用正确的数值和符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
这里a=1,b=-10,c=30,
b2 4ac (10)2 4 1 30 20 0
此方程无解. 所以用20cm长的铁丝不能折成面积为30cm2的矩形.
例4:如图,一块长和宽分别为60厘米和40厘米的长方 形铁皮,要在它的四角截去四个相等的小正方形,折 成一个无盖的长方体水槽,使它的底面积为800平方厘 米.求截去正方形的边长。
练习:如图是宽为20米,长为32米的矩形耕地,要修筑 同样宽的三条道路(两条纵向,一条横向,且互相垂直), 把耕地分成六块大小相等的试验地,要使试验地的面积 为570平方米,问:道路宽为多少米?
例2:要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积 是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如 何设计四周边衬的宽度? 分析:这本书的长宽之比是9:7,依题 央的矩形两边之比也为9:7
分析:这本书的长宽之比是9:7,正中央的矩 形两边之比也为9:7,由此判断上下边衬与 左右边衬的宽度之比也为9:7
解:设上下边衬的宽为9xcm,左右边衬宽为7xcm
3 依题意得 (27 18 x)(21 14 x) 27 21 4 63 3 解方程得 x 4
左右边衬的宽度为:
21 7 x 2
21 7
3 3 2 42 21 3 1.4 2 4
例2:要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积 是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如 何设计四周边衬的宽度?
变式:一块长方形铁皮的长是宽的两倍,四个角各截 去一个正方形,制成高是5cm,容积是500cm3的无盖长 方体容器,求这块铁皮的长和宽. 2xcm 高 长 xcm 宽 那么制成的长方体容器底面的宽是 (x-10)cm, ; 长是(2x-10)cm. .
如图宽为50cm的矩形图案由10个全等的小长方形拼成, 则每个小长方形的面积为?
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
练习:如图,用长为18m的篱笆(虚线部分),两面靠
墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎
么设计?
练习:用20cm长的铁丝能否折成面积为30cm2的矩形, 若能够,求它的长与宽;若不能,请说明理由. 20 解:设这个矩形的长为xcm,则宽为 ( x ) cm, 2 20 2 x 10 x 30 0 x( x) 30
例3:如图长方形鸡场,一边靠墙(墙的长度为18m), 另外三边用篱笆围成。篱笆总长为35m (1)当所围的面积为150m2,则长方形鸡场的长和宽分 别是多少? (2)能够围成160m2的鸡场吗?
变式:如图,有长为24米的篱笆,一面利用墙(墙的最大可用 长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃 的宽AB为x米,面积为S米2, (1)用x表示S;(2)如果要围成面积为45米2的花圃,AB的长 是多少米?(3)能围成面积为48平方米的花圃吗?.
1.直角三角形的面积公式是什么? 一般三角形的面积公式是什么呢? 2.正方形的面积公式是什么呢? 长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.平行四边形的面积公式是什么?
5.圆的面积公式是什么?
例1:某校为了美化校园,准备在一块长32米,宽20米的 长方形场地上修筑若干条道路,余下部分作草坪,并请 全校同学参与设计,现在有两位学生各设计了一种方案 (如图),根据两种设计方案各列出方程,求图中道路的 宽分别是多少?使图(1),(2)的草坪面积为540米2.
央的矩形两边之比也为9:7
解:设正中央的矩形两边分别为9xcm,7xcm
3 依题意得 9 x 7 x 27 21 4 3 3 3 3 x x (不合题意, 舍去) 解得 1 2 2 2
故上下边衬的宽度为:
27 9 x 2 27 9 3 3 2 54 27 3 1.8 2 4
相关文档
最新文档