(完整版)实验一锯齿波同步移相触发电路实验

合集下载

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一西门子TCA785集成触发电路实验

一、实验目的

(1)加深理解锯齿波集成同步移相触发电路的工作原理及各元件的作用。

(2)掌握西门子的Tca785集成锯齿波同步移相触发电路的调试方法。

二、实验所需挂件及附件

三、实验线路及原理

单相集成锯齿波同步移相触发电路的内部框图如图3-3所示。

Tca785集成块内部主要由“同步寄存器”、“基准电源”、“锯齿波形成电路”、“移相电压”和“锯齿波比较电路”和“逻辑控制功率放大”等功能块组成。

同步信号从TCA785的第5脚输出,“过零检测”部分对同步电压信号进行检测,当检测到同步信号过零时,信号送“同步寄存器”。

“同步寄存器”输出控制锯齿波发生电路,锯齿波的斜率大小由第9脚外接电阻和10脚外接电容决定;输出脉冲宽度由12脚外接电容的大小决定;14、15脚输出对应负半周和正半周的触发脉冲,移相控制电压从11脚输入。

图3-3 Tca785内部框图

典型应用电路如下图所示:

图3-4 Tca785锯齿波移相触发电路原理图

电位器RP1主要调节锯齿波的斜率,电位器RP2则调节输入的移相控制电压,脉冲从14、15脚输出,输出的脉冲恰好互差180O,可供单相整流及逆变实验用,各点波形请参考图3-5。

图3-5 单相集成锯齿波触发电路的各点电压波形(α=900)电位器RP1、RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

四、实验内容

(1)Tca785集成移相触发电路的调试。

(2)Tca785集成移相触发电路各点波形的观察和分析。

锯齿波同步移相触发电路实验

锯齿波同步移相触发电路实验

锯齿波同步移相触发电路实验

一、实验实训目的

1.加深理解锯齿波同步移相触发电路的工作原理和各元件的作用。

2.掌握锯齿波同步移相触发电路的调试步骤和方法。

二、实验实训设备

DJK01电源控制屏 1块

DJK03 晶闸管触发电路 1块

双踪示波器 1台

万用表 1块

三、实验实训线路及原理

实验原理如图5-56所示。其原理参看教材相关的内容。

图5-56 锯齿波同步移相触发电路原理图

四、实验实训内容及步骤

1.按图接好线后,接通电源,用示波器观察各观察孔的电压波形,并与理论波形比较。

1)同时观察1、2孔的电压波形,了解锯齿波宽度和1孔电压波形的关系。

2)观察3~5孔电压波形和输出电压U g的波形,记下各波形的幅值与宽度,并比较3孔电压U3与5孔电压U5的对应关系。

2.调节触发脉冲的移相范围。将控制电压U ct调至零(调电位器RP1 ),用示波器观察1孔电压U1和U5的波形,调节偏移电压U b(即调节RP2)使α=180º,其波形如图5-57 所示。

3.调节U ct(调节RP1),使α=60º,观察并记录面板上观察孔1~5及输出脉冲电压波形,标出其副值与宽度并记录在表5-2中(可在示波器上直接读出,读数时应将示波器的“V/cm”和“t/cm”的旋钮放置在校准位置,以防读数误差)。

表5-2

U1U2U3U4U5U g 幅值

(V)

宽度

(ms)

图5-57 锯齿波同步触发电路移相范围

五、实验实训注意事项

1.观察输出脉冲电压U g时,应将输出端G、K分别接到晶闸管的门极和阴极,否则,无法观察到U g波形。

2.第3点没有波形时,请调节RP2、RP3。

锯齿波同步移相触发电路

锯齿波同步移相触发电路

锯齿波同步移相触发电路

锯齿波同步移相触发电路是一种可以将锯齿波信号同步移相的电路,用于电子电路中的时间控制和频率合成等应用场合。在实际应用中,同步移相电路可以广泛应用于信号调制、时钟生成、频率合成等领域。

同步移相电路的基础构成包括锯齿波产生电路、比较器、相位延迟器、运算放大器和电位器等组成部分。其中,锯齿波产生电路用于产生基准时钟信号,比较器用于检测参考信号和基准时钟信号之间的时间差,相位延迟器用于控制信号的相位,运算放大器用于放大电路信号,电位器用于调节信号幅度。

在同步移相电路中,电位器是调节信号幅度的主要的调节器件。通常将电位器分别放置在反相器和非反相器之间,以控制信号的幅度。当电位器的阻值大于一定值时,信号将被反相,当阻值小于一定值时,信号被非反相。

同步移相电路的工作原理非常简单,它利用锯齿波同步移相电路来控制不同信号的相位,实现信号的合成。当锯齿波的上升沿来临时,比较器将发送一个脉冲信号,通过相位延迟器产生相位偏移信号,从而改变信号的相位。通过这种方式,可以实现对信号的同步移相,从而实现频率合成和信号调制等应用。

电力电子技术实验

电力电子技术实验

电力电子技术实验

实验一锯齿波同步移相触发电路及单相半波可控整流

一.实验目的

1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。

4.了解续流二极管的作用。

二.实验内容

1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

3.单相半波整流电路带电阻性负载时特性的测定。

4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。

三.实验线路及原理

锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。

四.实验设备及仪器

1.教学实验台主控制屏

2.NMCL—33组件

3.NMCL—36组件

4.NMEL—03组件

5.NMCL—31A组件

6.双踪示波器(自备)

7.万用表(自备)

五.实验方法

1.将NMCL-36面板上左上角的同步电压输入接MEL—002T的U、V端。

2.三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv=220v,用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现

平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围

将NMCL—31A的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压U b(即调RP),使α=180O。

电力电子技术实验报告解答

电力电子技术实验报告解答

实验一锯齿波同步移相触发电路实验

一、实验目的

(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

(2)掌握锯齿波同步移相触发电路的调试方法。

三、实验线路及原理

锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。

四、实验内容

(1)锯齿波同步移相触发电路的调试。

(2)锯齿波同步移相触发电路各点波形的观察和分析。

五、预习要求

(1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相

触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。

(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。

六、思考题

(1)锯齿波同步移相触发电路有哪些特点?

(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?

(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?

七、实验方法

(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一西门子TCA785集成触发电路实验

一、实验目的

(1)加深理解锯齿波集成同步移相触发电路的工作原理及各元件的作用。

(2)掌握西门子的Tca785集成锯齿波同步移相触发电路的调试方法。

二、实验所需挂件及附件

三、实验线路及原理

单相集成锯齿波同步移相触发电路的内部框图如图3-3所示。

Tca785集成块内部主要由“同步寄存器”、“基准电源”、“锯齿波形成电路”、“移相电压”和“锯齿波比较电路”和“逻辑控制功率放大”等功能块组成。

同步信号从TCA785的第5脚输出,“过零检测”部分对同步电压信号进行检测,当检测到同步信号过零时,信号送“同步寄存器”。

“同步寄存器”输出控制锯齿波发生电路,锯齿波的斜率大小由第9脚外接电阻和10脚外接电容决定;输出脉冲宽度由12脚外接电容的大小决定;14、15脚输出对应负半周和正半周的触发脉冲,移相控制电压从11脚输入。

图3-3 Tca785内部框图

典型应用电路如下图所示:

图3-4 Tca785锯齿波移相触发电路原理图

电位器RP1主要调节锯齿波的斜率,电位器RP2则调节输入的移相控制电压,脉冲从14、15脚输出,输出的脉冲恰好互差180O,可供单相整流及逆变实验用,各点波形请参考图3-5。

图3-5 单相集成锯齿波触发电路的各点电压波形(α=900)电位器RP1、RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

四、实验内容

(1)Tca785集成移相触发电路的调试。

(2)Tca785集成移相触发电路各点波形的观察和分析。

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一西门子TCA785集成触发电路实验

一、实验目的

(1)加深理解锯齿波集成同步移相触发电路的工作原理及各元件的作用。

(2)掌握西门子的Tca785集成锯齿波同步移相触发电路的调试方法。

二、实验所需挂件及附件

三、实验线路及原理

单相集成锯齿波同步移相触发电路的内部框图如图3-3所示。

Tca785集成块内部主要由“同步寄存器”、“基准电源”、“锯齿波形成电路”、“移相电压”和“锯齿波比较电路”和“逻辑控制功率放大”等功能块组成。

同步信号从TCA785的第5脚输出,“过零检测”部分对同步电压信号进行检测,当检测到同步信号过零时,信号送“同步寄存器”。

“同步寄存器”输出控制锯齿波发生电路,锯齿波的斜率大小由第9脚外接电阻和10脚外接电容决定;输出脉冲宽度由12脚外接电容的大小决定;14、15脚输出对应负半周和正半周的触发脉冲,移相控制电压从11脚输入。

图3-3 Tca785内部框图

典型应用电路如下图所示:

图3-4 Tca785锯齿波移相触发电路原理图

电位器RP1主要调节锯齿波的斜率,电位器RP2则调节输入的移相控制电压,脉冲从14、15脚输出,输出的脉冲恰好互差180O,可供单相整流及逆变实验用,各点波形请参考图3-5。

图3-5 单相集成锯齿波触发电路的各点电压波形(α=900)电位器RP1、RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

四、实验内容

(1)Tca785集成移相触发电路的调试。

(2)Tca785集成移相触发电路各点波形的观察和分析。

电力电子报告

电力电子报告

专业:电气工程及其自动化班级:电气10-3班

姓名:

学号:

指导老师:

实验日期:2013年6月25日

1

实验一锯齿波同步移相触发电路实验一.实验目的

1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。2.掌握锯齿波同步触发电路的调试方法。

无三相调压器,直接合上主电源。以下均同

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围

将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图2-2所示。

图2-2 脉冲移相范围

调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。

4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。

用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。

六.实验报告

1.整理,描绘实验中记录的1、2、3、4、5、6各点的波形,并标出幅值与宽度。

答:“1”孔(上)、“2”孔(下)波形:“3”孔波形(上)、“2”孔(下):

实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波

实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波

实验一锯齿波同步移相触发电路实验

一.实验目的

1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容

1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理

锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。

四.实验设备及仪器

1.教学实验台主控制屏

2.NMCL—33组件

3.NMCL—05E组件或NMCL—36组件

4.NMEL—03组件

5.二踪示波器

6.万用表

五.实验方法

1.将NMCL-05E面板上左上角的同步电压输入接机柜可调电源的U、V端。

2.合上主电路电源开关,并打开NMCL31A面板上方的低压电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围

将NMCL—31面板上的Ug端连接到NMCL-05E面板上的Ug端,调节NMCL-31面板上的的Ug输出电压调至0V,即将控制电压U ct调至零,并把S1和S2拨打正给定。用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压U b(即调RP1,RP2),使α=180O。

调节NMCL—31的给定电位器RP1,增加U ct,观察脉冲的移动情况,要求U ct=0时,α=180O,U ct=U max时,α=30O,以满足移相范围α=30O~180O的要求。

《锯齿波同步移相触发电路实验》

《锯齿波同步移相触发电路实验》

《锯齿波同步移相触发电路实验》

一、实验目的:

1. 理解锯齿波同步移相触发电路的原理;

2. 了解同步移相电路的特点和应用;

3. 熟悉实验器材的使用方法和实验方法。

二、实验原理:

同步移相电路是一种基本的信号处理电路,它是通过传输器件(如锯齿电压发生器,正弦波振荡器等)得到的两路同频信号对位移相,然后再将其中一路信号经过级联电路滤掉高频成分,剩下低频分量,然后再通过运算放大器输出到驱动器驱动被驱动器件,实现对被驱动器件进行同步控制的电路。在同步移相电路中,特别常用的是锯齿波同步移相触发电路,其基本原理如下:

锯齿波同步移相触发电路是用来控制脉冲宽度调制(PWM)的主要电路,它主要由一个锯齿波信号发生器、一个变压器和一个运算放大器组成。

锯齿波发生器产生的锯齿波,经过变压器的变换,使其输出信号与控制信号同步。

运算放大器将两路输入信号相减,再放大,从而得到控制信号,控制脉冲的宽度。

三、实验器材:

锯齿波信号发生器、示波器、数字万用表、电源、电容、电阻等。

四、实验步骤:

1. 准备实验器材,给锯齿波信号发生器和示波器供电。

2. 将锯齿波信号发生器连接到示波器,观察其输出波形是否为锯齿波。

3. 在示波器上调节触发电平,使锯齿波稳定地显示。

4. 观察变压器的接线方式,并将其连接到运算放大器的输入端。

5. 利用电容和电阻配置同步移相滤波电路,将锯齿波信号和控制信号按同频率输入至运算放大器的输入端。

6. 通过示波器观察输出脉冲波形是否符合预期。

五、实验结果与分析:

1. 实验中锯齿波同步移相触发电路工作正常,输出脉冲波形均符合预期。

锯齿波同步移相触发电路

锯齿波同步移相触发电路

四、实验内容 1.当α = 30°、45°、60°、90°、130°时,Uct 的值
α Uct/V 30° 7.01 45° 6.38 60° 6.00 90° 4.39 130° 3.15
2.观察并记录α = 60°时图 1 中①②③④⑤⑥的波形
已知①为 uTS ②为 uQ ③为 ub3 ④为 ub4 ⑤为 ub5 ⑥为 uC5 观察到的波形如下:










五、实验总结 1.总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?
调节 RP 改变偏移电压 Up 的大小从而改变 α;移相范围的大小与 RP1、Uct 有关。
2.如果要求 Uct=0 时,α=90°,应如何调整?
调节 RP1 使 Uct 为 0,然后调节 RP 改变偏移电压 Up,同时观察示波器中①和⑥的波 形,使得⑥的波形在脉冲上升沿时对应①的正弦波为负半周的最大值。
实验一
一、实验目的
锯齿波同步移相触发电路
1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 二、实验设备与仪器 1.教学实验台主控制屏 2.NMCL—33 组件 3.NMCL—05(A)组件或 NMCL—36 组件 4.NMEL—03 组件 5.NMCL—31A 组件 6.双踪示波器、万用表 三、实验线路与原理

实验 锯齿波同步移相触发电路实验

实验  锯齿波同步移相触发电路实验

实验三锯齿波同步移相触发电路实验一.实验目的

1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容

1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理

锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。

四.实验设备及仪器

1.教学实验台主控制屏;

2.NMCL—33组件;

3.NMCL—05(A)组件或NMCL—36组件;

4.NMEL—03组件;

5.NMCL—31A组件;

6.二踪示波器(自备);

7.万用表(自备)。

五.实验方法

1.将NMCL-05(A)面板上左上角的同步电压输入接NMCL—002的U、V端,“触发电路选择”拨向“锯齿波”。

2.三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv=220v,并打开MCL—05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围

将NMCL—31A的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压U b(即调RP),使α=180O。

调节NMCL—31A的给定电位器RP1,增加U ct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=U max时,α=30O,以满足移相范围α=30O~180O的要求。

#电力电子技术实验一、二、三

#电力电子技术实验一、二、三

实验一 锯齿波同步触发电路实验

、实验目的

1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2、掌握锯齿波同步移相触发电路的调试方法。 、实验主要仪器与设备:

锯齿波同步移相触发电路的原理图如图 1-1 所示。锯齿波同步移相触发电路由同步检 测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子 技术教材中的相关内容。

1-1 锯齿波同步移相触发电路原理图

图 1-1 中,由 V 3、VD 1、VD 2、C 1 等元件组成同步检测环节,其作用是利用同步电压

U T 来控制锯齿波产生的时刻及锯齿波的宽度。由 V 1、V 2 等元件组成的恒流源电路,当 V 3

截止时,恒流源对 C 2充电形成锯齿波;当 V 3 导通时,电容 C 2通过 R 4、V 3 放电。调节电位 器 RP 1 可以调节恒流源的电流大小,从而改变了锯齿波的斜率。控制电压 U ct 、偏移电压 U b 和锯齿波电压在 V 5 基极综合叠加,从而构成移相控制环节, RP 2、RP 3 分别调节控制电压

U ct 和偏移电压 U b 的大小。 V 6、 V 7构成脉冲形成放大环节, C 5 为强触发电容改善脉冲的

沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2 所示。本装置有两路锯齿波同步移相触发电路,I 和II ,在电路上完全一样,只是锯齿波触发电路II 输出的触发脉冲相位与I 恰好互差180°,供单相整流及逆变实验用。

电位器RP1、RP2、RP3 均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

(完整版)实验一锯齿波同步移相触发电路实验

(完整版)实验一锯齿波同步移相触发电路实验

实验一锯齿波同步移相触发电路实验

一.实验目的

1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容

1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理

锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材。

四.实验设备及仪器

1.NMCL系列教学实验台主控制屏

2.NMCL-32组件和SMCL-组件

3.NMCL-05组件

4.双踪示波器

5.万用表

五.实验方法

图1-1 锯齿波同步移相触发电路

1.将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。

2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,‘7’端地。

3.合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。观察“3”~“5”孔波形及输出电压UG1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

4.调节脉冲移相范围

将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观

察U

1电压(即“1”孔)及U

5

的波形,调节偏移电压Ub(即调RP2),使α=180°。

调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180°,Uct=Umax时,α=30°,以满足移相范围α=30°~180°的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一锯齿波同步移相触发电路实验

一.实验目的

1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容

1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理

锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材。

四.实验设备及仪器

1.NMCL系列教学实验台主控制屏

2.NMCL-32组件和SMCL-组件

3.NMCL-05组件

4.双踪示波器

5.万用表

五.实验方法

图1-1 锯齿波同步移相触发电路

1.将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。

2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,‘7’端地。

3.合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。观察“3”~“5”孔波形及输出电压UG1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

4.调节脉冲移相范围

将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观

察U

1电压(即“1”孔)及U

5

的波形,调节偏移电压Ub(即调RP2),使α=180°。

调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180°,Uct=Umax时,α=30°,以满足移相范围α=30°~180°的要求。

5.调节Uct,使α=60°,观察并记录U1~U5及输出脉冲电压U

G1K1,U

G2K2

波形,并标出其幅值与宽度。

用双踪示波器观察U

G1K1和U

G3K3

的波形,调节电位器RP3,使U

G1K1

和U

G3K3

间隔180°。

六.实验报告

1.整理,描绘实验中记录的各点波形。1孔波形

2孔波形

3孔波形

4孔波形

5孔波形

锯齿波波形(下)

二、调节脉冲移相范围

2孔波形

UG1KI波形和UG2K2波形

UG1K1波形和UG3K3波形

2.总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?

调节电位器RP2,改变偏移电压Ub,从而改变α。

移相范围与电位器RP1,Uct的大小等参数有关

3.如果要求Uct=0时,α=90°,应如何调整?

将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观察

U 1电压(即“1”孔)及U

5

的波形,调节偏移电压Ub(即调RP2),使α=90°

4.讨论分析其它实验现象。

实验中一时无法观察到脉冲UG1K1和UG3K3的波形,后发现由于脉冲UG1K1和UG3K3输出端有电容影响,故观察输出脉冲电压波形时,需将输出端UG1K1和UG3K3分别接到晶闸管的门极和阴极,才能观察到正确的脉冲波形。七.注意事项

(1)双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

2)由于正弦波触发电路的特殊性,我们设计移相电路的调节范围较小,如需将α

调节到逆变区,除了调节RP1外,还需调节RP2电位器。

(3)由于脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则无法观察到正确的脉冲波形。

相关文档
最新文档