高考数学2009年高考试题——数学(全国卷I)(文)
2009年湖北省 高考理科数学试题(真题与答案解析)
2009年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1、已知{|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R ==+∈==+-∈是两个向量集合,则P Q =IA .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕} 2.设a 为非零实数,函数11(,)1ax y x R x ax a-=∈≠-+且的反函数是 A 、11(,)1ax y x R x ax a -=∈≠-+且 B 、11(,)1ax y x R x ax a+=∈≠--且 C 、1(,1)(1)x y x R x a x +=∈≠-且 D 、1(,1)(1)xy x R x a x -=∈≠-+且3、投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni )(n-mi)为实数的概率为A 、13 B 、14 C 、16 D 、1124. 函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π5. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.18A .24B .30C .36D6.设22212012212) (2)n n n n n x a a x a x a x a x --+=+++++(,则22024213521lim[(...)(...)]n n n a a a a a a a a -→∞++++-++++=A. -1B. 0C. 1D.27. 已知双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是A. 11,22K ⎡⎤∈-⎢⎥⎣⎦B. 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C. ,22K ⎡∈-⎢⎣⎦D. 2,,22K ⎛⎡⎫∈-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭8. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用。
2009年高考全国卷I数学(文)试题及参考答案
2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一.选择题(1)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(2)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈(B )f(2x)=ln2lnx(x>0)(C)f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(3)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41(4)如果(m 2+i)(1+mi)是实数,则实数m=(A )1(B )-1 (C )2 (D )-2(5)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(6)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43 (C )42 (D )32(7)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是 (A )16 π (B )20π (C )24π (D )32π (8)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(9)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0,如果平面向量b 1、b 2、b 3满足|b i |=2|a i |,且a i 顺时针旋转30︒后与同向,其中i=1、2、3,则(A )-b 1+b 2+b 3=0 (B )b 1-b 2+b 3=0 (C )b 1+b 2-b 3=0 (D )b 1+b 2+b 3=0(10)设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=(A )120 (B )105 (C )90 (D )75(11)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2(C )355cm 2(D )20cm 2(12)设集合I={1,2,3,4,5},选择I 的两个非空子和B ,要使B 中的最小的数大于A 中最大的数,则不同的选择方法共有(A )50种 (B )49种(C )48种 (D )47种第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
09年全国高考数学试题——全国卷1(理科)含答案
09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
2009年高考试题——(辽宁卷)数学理(全解析)
2009年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,kkn kn n P k C Pp k n -=-=其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|35},{|55}M x x N x x =-<≤=-<<,则集合M N ⋂=(A ){|55}x x -<< (B ){|35}x x -<< (C ) {|55}x x -<≤ (D ) {|35}x x -<≤ (1)B 解析:M N ⋂={|35}x x -<<。
(2) 已知复数12z i =-,那么1z=()55A + ()55B - 12()55C i + 12()55D i - (2)D 解析:111212,125iz i i z-=+==+。
(3)平面向量a 与b 的夹角为060, (2,0),||1a b ==,则|2|a b +=(B) (C)4 (D)12 (3)B 解析:1cos ,2a b <>=,||2a =,||1b =,222(2)44a b a ab b +=++ 144214122=+⨯⨯⨯+=,|2|a b +=(4) 若圆C 且与直线0x y -=和40x y --=都相切,圆心在直线0x y +=,则圆Cx y23-O 2π712π1112π的方程为(A )()22(1)12x y ++-=(B )22(1)(1)2x y -++= (C )22(1)(1)2x y -+-=(D )()221(1)2x y +++=(4) B 解析:(法一)设圆心为(,)a a -,半径为r ,|r ==,∴1,a r = (法二)由题意知圆心为直线0x y -=、40x y --=分别与直线0x y +=的交点的中点, 交点分别为(0,0)、(2,-2),∴圆心为(1,-1。
2009年全国统一高考真题数学试卷(文科)(全国卷ⅰ)(含答案解析版)
2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.47.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.412.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是(写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.【考点】GE:诱导公式.【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣【考点】GP:两角和与差的三角函数.【专题】11:计算题.【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案.【解答】解:∵tana=4,cotβ=,∴tanβ=3∴tan(a+β)===﹣故选:B.【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中β角的余切值,根据同角三角函数的基本关系公式,求出β角的正切值是解答本题的关键.5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.4【考点】4R:反函数.【专题】11:计算题.【分析】将x=1代入即可求得g(1),欲求f(1),只须求当g(x)=1时x的值即可.从而解决问题.【解答】解:由题令1+2lgx=1得x=1,即f(1)=1,又g(1)=1,所以f(1)+g(1)=2,故选:C.【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力.7.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°【考点】9S:数量积表示两个向量的夹角.【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形.【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等∴、可构成菱形的两条相邻边,∵∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120°,故选:B.【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体.9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n ﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=24.【考点】83:等差数列的性质.【分析】先由S9=72用性质求得a5,而3(a1+4d)=3a5,从而求得答案.【解答】解:∵∴a5=8又∵a2+a4+a9=3(a1+4d)=3a5=24故答案是24【点评】本题主要考查等差数列的性质及项与项间的内在联系.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于16π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4.∴S=4πR2=16π.球故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是①或⑤(写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理.【专题】11:计算题;15:综合题;16:压轴题.【分析】先求两平行线间的距离,结合题意直线m被两平行线l1与l2所截得的线段的长为,求出直线m与l1的夹角为30°,推出结果.【解答】解:两平行线间的距离为,由图知直线m与l1的夹角为30°,l1的倾斜角为45°,所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°.故填写①或⑤故答案为:①或⑤【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题.【分析】设{a n}的公差为d,数列{b n}的公比为q>0,由题得,由此能得到{a n},{b n}的通项公式.【解答】解:设{a n}的公差为d,数列{b n}的公比为q>0,由题得,解得q=2,d=2∴a n=1+2(n﹣1)=2n﹣1,bn=3•2n﹣1.【点评】本小题考查等差数列与等比数列的通项公式、前n项和,基础题.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】12:应用题.【分析】根据题意,记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5),(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案.【解答】解:记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5).(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A3•A4+B3•B4,由于各局比赛结果相互独立,故P(A)=P(A3•A4+B3•B4)=P(A3•A4)+P(B3•B4)=P(A3)P(A4)+P(B3)P (B4)=0.6×0.6+0.4×0.4=0.52.(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3•A4+B3•A4•A5+A3•B4•A5,由于各局比赛结果相互独立,故P(H)=P(A3•A4+B3•A4•A5+A3•B4•A5)=P(A3•A4)+P(B3•A4•A5)+P(A3•B4•A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题.【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程.【解答】解:(Ⅰ)令f′(x)>0得或;令f′(x)<0得或因此,f(x)在区间和为增函数;在区间和为减函数.(Ⅱ)设点P(x0,f(x0)),由l过原点知,l的方程为y=f′(x0)x,因此f(x0)=f′(x0)x0,即x04﹣3x02+6﹣x0(4x03﹣6x0)=0,整理得(x02+1)(x02﹣2)=0,解得或.所以的方程为y=2x或y=﹣2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.。
2007年高考真题(全国卷1)(数学文)
2007年普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1. 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2. 每小题选出答案后 ,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是P ,那么 V =343R πn 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n p k C p p -=-(k=0,1,2,……,n )一、选择题(1)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂= A.∅B 。
1{|}2x x <C 。
5{|}3x x >D 。
15{|}23x x -<< (2)a 是第四象限角,12cos 13a =,则sin a =(A )513(B) 513-(C)512(D) 512-(3)已知向量a=(-5,6),b=(6,5),则a 与b(A )垂直 (B )不垂直也不平行 (C )平行且同向 (D )平行且反向(4)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(A )221412x y -=(B )221124x y -= (C )221106x y -=(D )221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有(A )36种(B )48种(C )96种(D )192种(6)下面给出的四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是(A )(0,2)(B )(-2,0)(C ) (0,-2)(D )(2,0)(7)如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B与AD 1所成角的余弦值为(A )15 (B ) 25(C ) 35(D ) 45(8)设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =(A (B )2 (C )(D )4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的(A )充要条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是(A )(,44ππ-) (B )(0,2π) (C )(3,44ππ) (D )(2π,π)(11)曲线2313y x x =+在点(1,43)处的切线与坐标轴围成的三角面积为(A )19 (B )29 (C )13 (D )23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是(A )4(B )(C )(D )82007年普通高等学校招生全国统一考试文科数学 第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2009年全国高考数学试题——安徽卷(文科)含答案
2009年普通高等学校招生全国统一考试(安徽卷)数学文科本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I卷注意事项:答题前,务必在试题卷,答题卡规定的地方填写自己的姓名,座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名,座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位2.答第I卷时、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮檫干净后,在选涂其他答案标号,3答第II卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整。
笔迹清晰,作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚,必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。
4考试结束,务必将试题卷和答题卡一并上交。
参考公式:如果事件A.B互斥,那么S表示底面积A表示底面的高P(A+B)=P(A)+P (B) 棱柱体积V S h=)棱维体积13V S h =一选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、i是虚数单位,i(1+i)等于(A)1+i (B)-1-i (C)1-i (D)-1+i解析:2(1)1i i i i i+=+=-+,选D(2)若集合A={x∣(2x+1)(x-3)<0},{5,B x N x+=∈≤则A∩B是(A){1,2,3,} (B) {1,2, } (C) {4,5} (D) {1,2,3,4,5}解析:1{|3}2A x x=-<<,{1,2,3,4,5}B=,∴{1,2}A B =选B(3)不等式组3434xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于(A).32(B).23(C).43(D).34解析:不等式表示的平面区域如图所示阴影部分△ABC由3434x yx y+=⎧⎨+=⎩得A(1,1),又B(0,4),C(0,43)鼎吉教育 遵循:“授人以鱼,不如授人以渔”的教育理念 秉承:以人为本,质量第一,突出特色, 服务家长◆ 以鲜明的教育理念启发人 ◆ 以浓厚的学习氛围影响人 第2页 ◆ 以不倦的育人精神感染人 ◆ 以优良的学风学纪严律人◆∴S △ABC=144(4)1233-⨯=,选C 。
高考数学2009年高考试题——数学(湖南卷)(文)
高考数学2009年普通高等学校招生全国统一考试(湖南卷)含答案 数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2log 【 D 】A . B.C. 12-D. 122. 抛物线2y =-8x 的焦点坐标是 【 B 】A .(2,0) B. (- 2,0) C. (4,0) D. (- 4,0) 3.设n s 是等差数列{n a }的前n 项和,已知1a =3,5a =11,则7s 等于 【 C 】 A .13 B. 35 C . 49 D . 634.如图1 D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 【 A 】A .AD + BE + CF=0 B .BD CE DF -+ =0C .AD CE CF +- =0D .BD BE FC --=0 图15.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 B 】 A .14 B. 16 C. 20 D. 486.平面六面体ABCD - 1A 1B 1C 1D 中,既与AB 共面也与1CC 共面的棱的条数为【 C 】 A .3 B. 4 C.5 D. 67.若函数y=f(x)导函数在区间[a,b ]是增函数,则函数y=f(x)在区间[a,b ]上的图象可能是(A )8. 设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数K ,定义函数{(),(),()()f x f x kk k f x kf x ≤>=取函数()2xf x -=。
当K =12时,函数()k f x 的单调递增区间为 【C 】 A (,0)-∞ B (0,)+∞ C (,1)-∞- D (1,)+∞二 填空题:本大题共七小题,没小题5分,共35分,把答案填在答题卡中对应题号后的横线上。
2009年高考数学试题(全国卷)
2009年普通高等学校招生全国统一考试一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 (4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D)345种(6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-2(10)已知二面角α-l -β为600 ,动点P 、Q 分别在面α、β内,P ,Q到α的距离为P 、Q 两点之间距离的最小值为(B)2 (C) (D)4(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则(A) ()f x 是偶函数 (B) ()f x 是奇函数(C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
2009年高考数学(文)试题及答案(四川卷)
2009年普通高等学校招生全国统一考试(四川卷)数学(文史类)一,选择题:(1) 设集合{}()(){}5,730S x x T x x x =<=+-<,则S T =(A) {x ∣-7<x <-5} (B) {x ∣3<x <5 }(C) {x ∣-5<x <3} (D) {x ∣-7<x <5}(2)函数12x y +=(x ∈R )的反函数是(A )21log y x =+(x >0) (B) 2log (1)x -(x >1)(C )21log y =-+ (x >0) (D) 2log (1)x +(x >-1)(3)等差数列}{n a 的公差不为零,首项1a =1,2a 是1a 和5a 等比中项,则数列}{n a 的前10项之和是(A )90 (B) 100 (C) 145 (D) 190(4)已知函数()sin()()2f x x x R π=-∈,下面结论错误的是(A )函数()f x 的最小正周期为2π(B) 函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 (C) 函数()f x 的图像关于直线0x =对称(D) 函数()f x 是奇函数(5)设矩形的长为a ,宽为b ,其比满足:0.618b a =≈,这种矩形给人美感,称为黄金矩形。
黄金矩形常应用于工艺品设计中。
下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是(A )甲批次的总体平均数与标准值更接近。
(B )乙批次的总体平均数与标准值更接近 (C )两个批次总体平均数与标准值接近程度相同(D )两个批次总体平均数与标准值接近程度不能确定(6)如图,已知六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA=2AB,则下列结论正确的是(A )PB ⊥AD(B )平面PAB ⊥平面PBC(C )直线BC//平面PAE (D )直线PD 与平面ABC 所成的角为045(7)已知a ,b ,c ,d 为实数,且c d >,则“a>b ”是“a c b d ->-”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 (8) 已知双曲线2211(0)2x b b -=>的左、右焦点分别为1F 、2F ,其一条渐进线方程为,y x =点0)p y 在该双曲线上,则12PF PF =A 12-B 2-C 0D 4(9) 如图,在半径为3的球面上有A.B.C 三点,90ABC ∠=,BA=BC ,球心O 到平面ABC 的距离是2,则B.C 两点的球面距离是 A 3π B π C 43π D 2π (10) 某企业生产甲、乙两种产品。
2009年普通高等学校招生全国统一考试大纲——数学(文)
2009年普通高等学校招生全国统一考试大纲——数学(文)(必修+选修Ⅰ)Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试要求《普通高等学校招生全国统一考试大纲(文科·2009年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。
2009年浙江高考理科数学卷(含详细答案解析)
绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科) 本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件,A B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 棱台的体积公式球的表面积公式 )(312211S S S S h V ++= 24S R π= 其中S 1、S 2分别表示棱台的上、下底面积,球的体积公式 h 表示棱台的高334R V π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,{|0}A x x =>,{|1}B x x =>,则UAB =( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >答案:B【解析】 对于{}1U C B x x =≤,因此UAB ={|01}x x <≤.2.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:C【解析】对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的 3.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +答案:D 【解析】对于2222(1)1211z i i i i z i+=++=-+=++ 4.在二项式251()x x-的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5答案:B【解析】对于()251031551()()1rrrr r r r T C x C x x--+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -=5.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30 B .45 C .60 D .90答案:C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,AE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则32AE a =,2a DE =,即有0tan 3,60ADE ADE ∠=∴∠=.6.某程序框图如图所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7答案:A【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.7.设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) A .3 B .4 C .5 D .6 答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现. 8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )答案:D【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π.9.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A 2 B 3 C 5 D 10答案:C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,5AB BC a b e =∴=∴=. 10.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈ 答案:C【解析】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x k x x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2009年高考全国卷I数学(文)试题及参考答案
三曹诗选短歌行 1曹 操 对酒当歌,人生几何?譬如朝露,去日苦多2。
概当以慷,忧思难忘。
何以解忧?唯有杜康3。
青青子衿,悠悠我心。
但为君故,沈吟至今4。
呦呦鹿鸣,食野之苹。
我有嘉宾,鼓瑟吹笙5。
明明如月,何时可掇?忧从中来,不可断绝6。
越陌度阡,枉用相存。
契阔谈咽,心念旧恩7。
月明星稀,乌鹊南飞。
绕树三匝,何枝可依8。
山不厌高,海不厌深,周公吐哺,天下归心9。
注释:1、这一篇似乎是用于宴会的歌辞。
属《相和歌〃平调曲》,其中有感伤乱离,怀念朋友,叹息时光消逝和希望得贤才帮助他建立功业的意思。
2、“对酒”四句,当,门当户对的“当”。
张正见《对酒》:“当歌对玉酒”。
几何,多少。
去日,过去的日子。
苦多,恨多。
这四句意思是,饮酒伴以高歌,人生的岁月能有多少啊?它好像清晨的露水,转眼消逝,作者深感人生短促,功业未成,过去了的日子已苦于太多了。
3、“慨当”四句,慨,慷,即慷慨。
这里形容歌声激昂不平,是“慷慨”一词的间隔用法。
忧思,一作“幽思”内心深处的思虑、心事。
何以,即以何,拿什么。
唯,只。
杜康,相传古代最初造酒的人。
这里作为酒的代称。
这四句意思是,慷慨高歌,激昂不平,但心中的忧虑仍难忘却。
拿什么来消除我的忧虑呢?只有把酒来喝。
4、“青青”四句,衿,衣领。
青衿是周朝学子的衣服。
悠悠,长远的样子。
这里形容思念连续不断。
这两句是《诗经〃郑风〃子衿》篇的原句,表示对贤才的思慕。
但,只。
君,指所思慕的贤才。
沈,通“沉”。
沉吟,犹“低吟”,低声吟味以思虑之。
这四句意思是,贤才隽士是我长久以来所思慕的,正是因为你们的缘故,所以我至今念念不忘。
5、“呦呦”四句,呦呦,鹿鸣的声音。
苹,艾蒿,草名。
嘉宾,上等客人。
瑟,笙,两种乐器名称。
“呦呦”四句是《诗经〃小雅〃鹿鸣》篇的原句。
《鹿鸣》篇本是宴宾客的诗,这里用以表示招纳贤才的意思。
6、“明明”四句,掇,同“缀”,停止,这四句意思是,如同那明洁的月亮,什么时候会停止它的运行呢?我出自内心的忧虑啊,也同样是不可断绝的。
2008年高考试题——数学文(全国卷1)
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 一、选择题1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( )A .B .C .D .A .30°B .45°C .60°D .120°5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .22ex -9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( ) A .6种 B .12种 C .24种 D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:2.第Ⅱ在试题卷上作答无效..........3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)CDE AB(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试文科数学参考答案又通过acosB=3知: cosB>0则cosB=53 sinB=54则a=5(2)由S=B sc sin 21得到C=5由cosB=acb c a 2222-+解得b=52 最后l =10+5218、解:(1)取BC 中点F ,连接DF 交CE 于点O∵AB=AC ∴AF ⊥BC又面ABC ⊥面BCDE ∴AF ⊥面BCDE ∴AF ⊥CEtan ∠CED=tan ∠FDC=22 ∴∠OED+∠ODE=90°∴∠DOE=90° 即CE ⊥DE ∴CE ⊥面ADF ∴CE ⊥AD(2)在面ACD 内过C 点作AD 的垂线,垂足为G∵CG ⊥AD CE ⊥AD ∴AD ⊥面CEG ∴EG ⊥AD则∠CGE 即为所求二面角CG=332=•AD CD AC DG=36EG=33022=-DG DFCE=6则cos ∠CGE=10102222-=•-+GE CG CE GE CG∴∠CGE=⎪⎪⎭⎫ ⎝⎛-1010arccos π 19、解:(1) a n+1=2a n +2nb n+1=b n +1则b n 为等差数列 b 1=1 b n =n a n =n2n-1(2)S n =1·20+2·21+……+(n-1)·2n-2+n ·2n-12S n =1·21+2·22+……+(n-1)·2n-1+n ·2n 两式相减,得:S n =n ·2n -1·20-21-……-2n-1=n ·2n -2n +1 2021、解:(1)f(x)=x 3+ax 2+x+1 求导:f(x)=3x 2+2ax+1当a2≤3时,△≤0,f(x)≥0 f(x)在R 上递增当a 2>3, f(x)=0 求得两根为x=332-±-a a即f(x)在递减,a a a a 递增,a a ,⎪⎪⎭⎫ ⎝⎛-+----⎪⎪⎭⎫ ⎝⎛---∞-33,3333222⎪⎪⎭⎫⎝⎛∞+-+-,a a 332递增 (2) 332---a a ≤32-332-+-a a ≥31-解得:a ≥47 且a 2>322、解:(1)设OA=m-d, AB=m ,OB=m+d 由勾股定理可得:(m-d)2+m 2=(m+d)2得:d=m 41tan ∠AOF=abtan ∠AOB=tan2∠AOF=34=OA AB由倍角公式:∴34122=⎪⎭⎫⎝⎛-a b a b解得:21=a b 则:离心率e=25 (2)过F 直线方程为y=)(c x ba--与双曲线方程12222=-by a x 联立将a=2b c=b 5代入,化简有:4=()]]4[)(1[||)(1212212212x x x x ba x xb a --+=-+将数值代入,有4=]5284)15532[(522b b -解得b=3最后求得双曲线方程为193622=-y x。
2009年全国高考数学(文科卷I)
试 题答 案 : D.
8 设 非零 向量a西c 足 I l . ,,满 a=
点 为 F 右 准 线 为Z 点A ∈Z 线 段 AF , , ,
IlIl +=, a西等于( b=c , bc则(,) a
试 题 答 案 :. B
)
交c 于点最 若蔚 =商 , 『 『 3 则 等于
今 年全 国高考试题数 学文科 卷的命制 , 符合 ( ( 大纲) 烤 试说 明) 考试 ) 和 ) 的规 定及要 求, 强调基础 , 绝大多数客观题以熟悉的面孔 出现 , 重在测试 同学们必备的数学基础 知识. H 10 8 }  ̄20 年试题 , " , 今年的试题难度略有 降低 , 同学们在答题过程 中暴露 出的 但 问题依然 不少 , 现就一些失分情 况与原因作… 析 , 谙《 并给出具体的应 对策略.
c.
4
4
的渐 近线 与 抛 物 线y x+ 相切 . 该 = 21 则 双 曲线 的离心率 等于 ( )
D.
4 4
个点( 两个 焦 点 、 四个 顶 点 )四 线( , 两
试题 答 案 : D.
条对称 轴 、 条准线 )两个三 角形 两 ,
( 中心、 一个焦点及短轴端点构成的
三 角 形和 椭 圆上 一 点 与两 个 焦 点构
项 和 为 . 已知a= , l3a+ 3 1 , 11b= ,3b= 7
乃-31 , { ,b} 5= 2 求 }{ 的通项公式.
失 分原 因 :1基 本 知 识 掌 握 不 () 熟 , 能用 等 比 、 不 等差 数 列 的 基本 量 来 表示 已知条件 . 进而列不 出方程组. () 2 将 : 代入 , 而并 没
l 2g (> )贝 1 + ( ) + lxx 0 , )g 1 等于 (
2009年高考试题——数学理(广东卷)解析版
2009年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 A. 3个 B. 2个 C. 1个 D. 无穷多个【解析】由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 2. 设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i = A. 8 B. 6 C. 4 D. 2 【解析】()a i =1=ni ,则最小正整数n 为4,选C.3. 若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,其图像经过点(,)a a ,则()f x =A. 2log xB. 12log x C.12xD. 2x 【解析】x x f a log )(=,代入(,)a a ,解得21=a ,所以()f x =12log x ,选B. 4.已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n + C. 2n D. 2(1)n - 【解析】由25252(3)nn a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-,选C.5. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是A. ①和②B. ②和③C. ③和④D. ②和④ 【解析】选D.6. 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为A. 6B. 2C. 25D. 27【解析】28)60180cos(20021222123=--+=F F F F F ,所以723=F ,选D.7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36种B. 12种C. 18种D. 48种【解析】分两类:若小张或小赵入选,则有选法24331212=A C C ;若小张、小赵都入选,则有选法122322=A A ,共有选法36种,选A.8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是 A. 在1t 时刻,甲车在乙车前面 B. 1t 时刻后,甲车在乙车后面 C. 在0t 时刻,两车的位置相同 D. 0t 时刻后,乙车在甲车前面【解析】由图像可知,曲线甲v 比乙v 在0~0t 、0~1t 与x 轴所围成图形面积大,则在0t 、1t 时刻,甲车均在乙车前面,选A.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 12题)9. 随机抽取某产品n 件,测得其长度分别为12,,,n a a a ,则图3所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”) 【解析】s =na a a n+⋅⋅⋅++21;平均数10. 若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则=a .【解析】)0,1(=+b a 或)0,1(-,则)1,1()1,2()0,1(-=--=a 或)1,3()1,2()0,1(-=---=a . 11.巳知椭圆G 的中心在坐标原点,长轴在x 3,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .【解析】23=e ,122=a ,6=a ,3=b ,则所求椭圆方程为193622=+y x . 12.已知离散型随机变量X 的分布列如右表.若0EX =,1DX =,则a = ,b = .【解析】由题知1211=++c b a ,061=++-c a ,1121211222=⨯+⨯+⨯c a ,解得125=a ,41=b . (二)选做题(13 ~ 15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)若直线⎩⎨⎧+=-=.2,21:1kt y t x l (t 为参数)与直线2,:12.x s l y s =⎧⎨=-⎩(s为参数)垂直,则k = . 【解析】1)2(2-=-⨯-k,得1-=k . 14.(不等式选讲选做题)不等式112x x +≥+的实数解为 .【解析】112x x +≥+2302)2()1(022122-≤⇔⎩⎨⎧≠++≥+⇔⎩⎨⎧≠++≥+⇔x x x x x x x 且2-≠x . 15.(几何证明选讲选做题)如图4,点,,A B C 是圆O 上的点, 且04,45AB ACB =∠=,则圆O 的面积等于 .【解析】解法一:连结OA 、OB ,则090=∠AOB ,∵4=AB ,OB OA =,∴22=OA ,则ππ8)22(2=⨯=圆S ;解法二:222445sin 420=⇒==R R ,则ππ8)22(2=⨯=圆S .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若10sin(),0102πθϕϕ-=<<,求cos ϕ的值. 解:(1)∵a 与b 互相垂直,则0cos 2sin =-=⋅θθb a ,即θθcos 2sin =,代入1cos sin 22=+θθ得55cos ,552sin ±=±=θθ,又(0,)2πθ∈,∴55cos ,552sin ==θθ. (2)∵20πϕ<<,20πθ<<,∴22πϕθπ<-<-,则10103)(sin 1)cos(2=--=-ϕθϕθ,∴cos ϕ22)sin(sin )cos(cos )](cos[=-+-=--=ϕθθϕθθϕθθ. 17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间]50,0[,]100,50(,]150,100(,]200,150(,]250,200(,]300,250(进行分组,得到频率分布直方图如图5.(1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7812557=,12827=,++3652182531825791251239125818253=++,573365⨯=) 解:(1)由图可知-=150x ++365218253(182********123150)9125818253⨯-=⨯++,解得18250119=x ;(2)219)5036525018250119(365=⨯+⨯⨯;(3)该城市一年中每天空气质量为良或轻微污染的概率为533652195036525018250119==⨯+⨯,则空气质量不为良且不为轻微污染的概率为52531=-,一周至少有两天空气质量为良或轻微污染的概率为7812576653)53()52()53()52(116670777=--C C .18.(本小题满分14分)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投zy xE 1G 1影为底面边界的棱锥的体积;(2)证明:直线⊥1FG 平面1FEE ; (3)求异面直线11E G EA 与所成角的正弦值.解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E DG Rt FG E Rt FG DE S S S ∆∆+= 221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FE FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥, 又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA,则62,cos 11=>=<EA G E EA G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ. 19.(本小题满分14分)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 解:(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上, ∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).(2)曲线22251:24025G x ax y y a -+-++=, 即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r由图可知,当20≤≤a 时,曲线22251:24025G x ax y y a -+-++=与点D 有公共点;当0<a 时,要使曲线22251:24025G x ax y y a -+-++=与点D 有公共点,只需圆心E 到直线:20l x y -+=的距离572||2|22|≤=+-=a a d ,得0527<≤-a ,则a 的最小值为527-. 20.(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Qm 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.解:(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=; 又()g x '的图像与直线2y x =平行 22a ∴= 1a = m x x m x x g ++=-++=∴21)1()(22, ()()2g x mf x x x x ==++, 设(),o o P x y ,则202020202)()2(||x m x x y x PQ ++=-+=当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m(2)由()()120my f x kx k x x =-=-++=(0≠x ),得()2120k x x m -++= ()* 当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2mx =-;当1k ≠时,方程()*有二解()4410m k ⇔∆=-->,若0m >,11k m>-, 函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;若0m <,11k m<-, 函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11综上,当1k =时, 函数()y f x kx =-有一零点2m x =-; 当11k m >-(0m >),或11k m<-(0m <)时, 函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11. 21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:1352112sin 1n n n n nx xx x x x x y --⋅⋅⋅⋅<<+. 解:(1)设直线n l :)1(+=x k y n ,联立0222=+-y nx x 得)22()1(2222=+-++n n n k x n k x k ,则)1(4)22(2222=+--=∆n n n k k n k ,∴12+=n n k n (12+-n n 舍去)22222)1(1+=+=n n k k x n n n,即1+=n n x n ,∴112)1(++=+=n n n x k y n n n (2)证明:∵121111111+=+++-=+-n n n n nx x nn∴nnn x x x x x x +-<⋅⋅⋅⋅⋅⋅⋅-1112531 由于nn n n x x n y x +-=+=11121,可令函数x x x f sin 2)(-=,则x x f cos 21)('-=,令0)('=x f ,得22cos =x ,给定区间)4,0(π,则有0)('<x f ,则函数)(x f 在)4,0(π上单调递减,∴0)0()(=<f x f ,即x x sin 2<在)4,0(π恒成立,又4311210π<≤+<n ,则有121sin 2121+<+n n ,即nn n n y x x x sin 211<+-.。
2009年全国统一高考数学试卷(理科)(全国卷一)及答案
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0} 4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选A2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选D4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选择C.5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选D6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选项为D7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选D.8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.4【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,∴AC=PD=2又∵当且仅当AP=0,即点A与点P重合时取最小值.故答案选C.11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选D12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2 C.D.3【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)(2009•全国卷Ⅰ)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是2715.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.三、解答题(共6小题,满分70分)17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.20.(12分)(2009•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】(1)由已知得=+,即b n=b n+,由此能够推导出所求的通+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.。
高考文科数学试题分类汇编复数精品
2009-20年高考文科数学试题分类汇编——复数一、选择题1.(20年广东卷文)下列n的取值中,使=1(i是虚数单位)的是()(A)n=2 (B)n=3 (C)n=4 (D)n=52.(2009浙江卷文)设z=1+i(i是虚数单位),则+z2=()(A)1+i(B)-1+i (C) 1-i (D)-1-i3.(2009山东卷文)复数等于()(A)1+2i(B)1-2i(C)2+i(D)2-i4. (2009安徽卷文)i是虚数单位,i(1+i)等于()(A)1+i (B)-1-i (C)1-i (D)-1+i5.(2009天津卷文)i是虚数单位,=()(A)1+2i (B)-1-2i (C)1-2i (D)-1+2i6. (2009宁夏海南卷文)复数=()(A)1 (B)-1 (C)i (D)-i7. (2009辽宁卷文)已知复数z=1-2i,则=()(A)+i(B)-i(C)+i(D)-i8.(2010湖南文数1)复数等于()(A) 1+i(B) 1-i (C)-1+i (D)-1-i9.(2010浙江理数)对随意复数z=x+(x R,y R),i为虚数单位,则下列结论正确的是()(A)-|=2y(B)z2=x2+y2(C)-|≥2x(D)≤+10.(2010全国卷2理数)复数()2=()(A)-3-4i(B)-3+4i(C)3-4i(D)3+4i11.(2010陕西文数)复数z=在复平面上对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限12.(2010辽宁理数(2))设a,b为实数,若复数=1+i,则()(A)a=,b=(B)a=3,b=1(C)a=,b=(D)a=1,b=313.(2010江西理数)已知(x+i)(1-i)=y,则实数x,y分别为()(A)x=-1,y=1 (B)x=-1,y=2(C)x=1,y=1 (D)x=1,y=214.(2010安徽文数(2))已知i2=-1,则i(1-i)=()(A)-i(B)+i (C)--i (D)-+i15.(2010浙江文数)设i为虚数单位,则=()(A)-2-3i (B)-2+3i(C)2-3i (D)2+3i16.(2010山东文数)已知=b+i(a,b R),其中i为虚数单位,则a+b=()(A)-1(B) 1 (C)2 (D) 317.(2010北京文数(2))在复平面内,复数6+5i,-2+3i 对应的点分别为A,B,若C为线段的中点,则点C对应的复数是()(A)4+8i (B)8+2i (C)2+4i (D)4+i18.(2010四川理数(1))i是虚数单位,计算i+i2+i3=()(A)-1 (B)1 (C)-i(D)i19.(2010天津文数)i是虚数单位,复数=()(A)1+2i (B)2+4i (C)-1-2i (D)2-i20.(2010天津理数)i 是虚数单位,复数=()(A)1+i (B)5+5i (C)-5-5i (D)-1-i21.(2010广东理数)若复数z1=1+i,z2=3-i,则z1·z2=()(A)4+2 i (B) 2+ i (C) 2+2 i (D)322.(2010福建文数)i是虚数单位,()4等于()(A)i (B)-i (C)1 (D)-123.(2010全国卷1理数(1))复数=()(A)i (B)-i(C)12-13i(D) 12+13i24.(2010山东理)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()(A)-1 (B)1 (C)2 (D)325.(2010安徽理数1)i是虚数单位,+3i) =()(A)-,12) I(B)+,12) i(C)+,6) i(D)-,6) i26. (20年北京理)复数=()(A)i (B)-i (C)--i (D)-+i27.(20年福建理)i是虚数单位,若集合S={-1,0,1},则()(A)i S(B)i2S(C)i3S(D)S28.(2010湖北理数)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()(A)E(B)F(C)G(D)H29.(20年安徽理(1))设i是虚数单位,复数为纯虚数,则实数a为()(A)2 (B)-2 (C)-(D)30.(20年福建文)i是虚数单位,1+i3等于()(A)i (B)-i (C)1+i (D)1-i31.(20年广东理1)设复数z满意(1+i)z=2,其中i为虚数单位,则Z=()(A)1+i (B)1-i (C)2+2i (D)2-2i 32.(20年广东文1)设复数z满意=1,其中i为虚数单位,则z=()(A)-i(B)i(C)-1(D)133.(20年湖北理1)i为虚数单位,则()2011=()(A)-i(B)-1(C)i(D)134.(20年湖南理1)若a,b R,i为虚数单位,且(a+i)i=b+i,则()(A)a=1,b=1(B)a=-1,b=1(C)a=-1,b=-1(D)a=1,b=-135.(20年江西理1)设z=i) ,则复数=()(A)-2-i(B)-2+i(C)2-i(D)2+i36.(20年江西文1)若(x-i)i=y+2i,x,y R,则复数x+=()(A)-2+i (B) 2+i (C)1-2i(D)1+2i37.(20年辽宁理1)a为正实数,i为虚数单位,||=2,则a=()(A)2 (B)(C)(D)138.(20年辽宁文2)i为虚数单位,+++=()(A)0 (B)2i(C)-2i(D)4i39.(20年全国Ⅰ理(1))复数的共轭复数是()(A)-i(B)i(C)-i(D)i40.(20年全国Ⅰ文(3))已知复数z=+i,(1-i)2) ,则=()(A)(B)(C)1 (D)241.(20年全国Ⅱ理(1))复数z=1+i,为z的共轭复数,则z-z-1=()(A)-2i(B)-i(C)i(D)2i42.(20年山东理)复数z=(i为虚数单位)在复平面内对应的点所在象限为()(A)第一象限(B)其次象限(C)第三象限(D)第四象限43.(20年四川理2)复数-i+=()(A)-2i(B)i(C)0 (D)2i44.(20年天津理1)i是虚数单位,复数=()(A)1+i(B)5+5i(C)-5-5i(D)-1-i45.(20年天津文1)i是虚数单位,复数()(A)1+2i(B)2+4i(C)-1-2i(D)2-i46.(20年浙江文)若复数z=1+i,i为虚数单位,则(1+i)z=()(A)1+3i(B)3+3i(C)3-i(D)347.(20年重庆理(1))复数=()(A)--i (B)-+i (C)-i(D)+i48.【2012安徽文1】复数z满意(z-i)i=2+i,则z=()(A)-1-i(B)1-I(C)-1+3i(D)1-2i49.【2012新课标文2】复数z=的共轭复数是()(A)2+i (B)2-i (C)-1+i (D)-1-i50.【2012山东文1】若复数z满意z(2-i)=11+7i(i为虚数单位),则为()(A)3+5i (B)3-5i (C)-3+5i(D)-3-5i51.【2012浙江文2】已知i是虚数单位,则=()(A)1-2i (B)2-i (C)2+i (D)1+2i52.【2012上海文】若1+i是关于x的实系数方程x2++c=0的一个复数根,则()(A)b=2,c=3(B)b=2,c=-1(C)b=-2,c=-1(D)b=-2,c=353.【2012辽宁文3】复数=()(A)-i (B)+i(C)1-i(D)1+i54.【2012江西文1】若复数z=1+i(i为虚数单位)是z的共轭复数,则z2+2的虚部为()(A)0 (B)-1 (C)1 (D)-255.【2012湖南文2】复数z=i(i+1)(i为虚数单位)的共轭复数是()(A)-1-i (B)-1+i (C)1-i (D)1+i56.【2012广东文1】设i为虚数单位,则复数=()(A)-4-3i(B)-4+3i(C)4+3i(D)4-3i57.【2102福建文1】复数(2+i)2等于()(A)3+4i (B)5+4i (C)3+2i (D)5+2i58.【2102北京文2】在复平面内,复数对应的点的坐标为()(A)(1 ,3)(B)(3,1)(C)(-1,3)(D)(3 ,-1)59.【2012天津文科1】i是虚数单位,复数i)=(A)1-i (B)-1+i(C)1+i(D)-1-i60.(20年辽宁卷(文))复数的z=i-1)模为()(A)(B),2)(C)(D)261.(20年课标Ⅱ卷(文))||=()(A)2(B)2 (C)(D)162.(20年北京卷(文))在复平面内,复数i(2-i)对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限63.(20年山东卷(文))复数z=(i为虚数单位),则=()(A)25 (B)(C)5 (D)64.(20年课标Ⅰ卷(文))=()(A)-1-i (B)-1+i(C)1+i (D)1-i65.(20年福建卷)复数z=-1-2i (i为虚数单位)在复平面内对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限66.(20年广东卷(文))若i(x+)=3+4i,x,y R,则复数x+的模是()(A)2 (B)3 (C)4 (D)567.(20年江西卷)复数z=i(-2-i)(i为虚数单位)在复平面内所对应的点在()(A)第一象限(B)其次象限(C)第三象限(D)第四象限68.(20年四川卷(文))如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()(A)A (B)B(C)C(D)D69.(20年浙江卷(文))已知i是虚数单位,则(2+i)(3+i)=()(A)5-5i (B)7-5i (C)5+5i (D)7+5i70.(20年安徽)设i是虚数单位,若复数a-(a R)是纯虚数,则a的值为()(A)-3 (B)-1 (C)1 (D)3二、填空题71.(2009江苏卷)若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1-z2)i的实部为.72.(2009福建卷文)复数i2(1+i)的实部是.73.(20年江苏3)设复数i满意i(z+1)=-3+2i(i是虚数单位),则z 的实部是74.(20年浙江理2)已知复数z=,其中i是虚数单位,则=.75.【2012湖北文12】若=a+(a,b为实数,i为虚数单位),则a+b=.76.【2012江苏3】设a,b为实数,a+=(i为虚数单位),则a+b的值为.77.【2012上海文1】计算:=(i为虚数单位)78.(20年湖南)复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于.79.(20年天津卷(文))i是虚数单位. 复数(3+i)(1-2i)= .80.(20年重庆卷(文))已知复数z=1+2i (i是虚数单位),则=.81.(20年上海卷(文科))设m R,m2+m-2(m2-1)i,是纯虚数,其中i 是虚数单位,则m=.82.(20年湖北卷(文))i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=.三、解答题83.(20年上海理19)已知复数z1满意(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.。
2009年江西高考理科数学卷(含详细答案解析)
绝密★启用前2009年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件互斥,那么球的表面积公式,A B()()()P A B P A P B +=+24S R π=如果事件,相互独立,那么 其中表示球的半径,A B R球的体积公式()()()P A B P A P B ⋅=⋅如果事件在一次试验中发生的概率是,那么A p 343V R π=次独立重复试验中恰好发生次的概率其中表示球的半径n k R()(1)kk n k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数为纯虚数,则实数的值为2(1)(1)z x x i =-+-x A .B .C .D .或1-011-1答案:A【解析】由 故选A210110x x x ⎧-=⇒=-⎨-≠⎩2.函数的定义域为y =A .B .C .D .(4,1)--(4,1)-(1,1)-(1,1]-答案:C 【解析】由.故选C 21011141340x x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<--+>⎩⎩3.已知全集中有m 个元素,中有n 个元素.若非空,则U =A B U ()()U U A B U ððA B I A B I 的元素个数为A . B .C .D .mn m n +n m -m n -答案:D【解析】因为,所以共有个元素,故选D [()()]U U U A B A B =I U ðððA B I m n -4.若函数,,则的最大值为()(1)cos f x x x =02x π≤<()f xA .1B .CD 212+答案:B【解析】因为==()(1tan )cos f x x x =+cos x x 2cos(3x π-当是,函数取得最大值为2. 故选B3x π=5.设函数,曲线在点处的切线方程为,则曲2()()f x g x x =+()y g x =(1,(1))g 21y x =+线在点处切线的斜率为()y f x =(1,(1))f A . B . C . D .414-212-答案:A【解析】由已知,而,所以故选A(1)2g '=()()2f x g x x ''=+(1)(1)214f g ''=+⨯=6.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若22221x y a b+=0a b >>1F x P 2F,则椭圆的离心率为1260F PF ∠=o ABC .D .1213答案:B【解析】因为,再由有从而可得B 2(,)b P c a -±1260F PF ∠=o232,b a a=c e a ==7.展开式中不含的项的系数绝对值的和为,不含的项的系数绝对值的(1)nax by ++x 243y 和为,则的值可能为32,,a b n A . B . 2,1,5a b n ==-=2,1,6a b n =-=-= C . D .1,2,6a b n =-==1,2,5a b n ===答案:D【解析】,,则可取,选D 5(1)2433n b +==5(1)322n a +==1,2,5a b n ===8.数列的通项,其前项和为,则为{}n a 222(cos sin )33n n n a n ππ=-n n S 30S A . B .C .D .470490495510答案:A【解析】由于以3 为周期,故22{cossin }33n n ππ-2222222223012452829(3)(6)(30)222S +++=-++-+++-+L 故221010211(32)(31)591011[(3)][9]25470222k k k k k k ==-+-⨯⨯=-+=-=-=∑∑选A9.如图,正四面体的顶点,,分别在两两垂直的三条射线,,上,ABCD A B C Ox Oy Oz 则在下列命题中,错误的为 A .是正三棱锥O ABC -B .直线∥平面OB ACD C .直线与所成的角是AD OB 45oD .二面角为D OB A --45oyxzOA B CD答案:B【解析】将原图补为正方体不难得出B 为错误,故选B10.为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,3集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为35A .B .C .D .3181338148815081答案:D【解析】故选D 5553(323)50381P -⨯-==11.一个平面封闭区域内任意两点距离的最大值称为该区域的“直径”,封闭区域边界曲线的长度与区域直径之比称为区域的“周率”,下面四个平面区域(阴影部分)的周率从左到右依次记为,则下列关系中正确的为1234,,,ττττ A . B .C .D .143τττ>>312τττ>>423τττ>>341τττ>>答案:C【解析】前三个区域的周率依次等于正方形、圆、正三角形的周长和最远距离,所以、1τ=、,第四个区域的周率可以转化为一个正六边形的周长与它的一对平行边之间2τπ=33τ=的距离之比,所以,选C 4τ=4231ττττ>>>12.设函数的定义域为,若所有点构成一()0)f x a =<D (,())(,)s f t s t D ∈个正方形区域,则的值为a A . B .C .D .不能确定2-4-8-答案:B【解析】,,,选B 12max ||()x x f x -==||a =4a =-︒︒绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效..........3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题(1)sin 585°的值为 (A) 22-(B)22(C)32- (D) 32 (2)设集合A={4,5,7,9},B={3,4,7,8,9},全集 =A B ,则集合C u (A B )中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个(3)不等式111x x +〈-的解集为 (A ){}}{011x x x x 〈〈〉 (B ){}01x x 〈〈(C ) }{10x x -〈〈 (D )}{0x x 〈 (4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713- (5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A )3 (B )2 (C )5 (D )6(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则(1)(1)f +g =(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D )345种 (8)设非零向量a b c 、、满足a b c ==,a +b =c ,则a b ,=(A )150° (B )120° (C )60° (D )30°(9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)34 (B) 54 (C) 74(D) 34(10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 (A)6π (B) 4π (C) 3π (D) 2π (11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离为3,Q 到α的距离为23,则P 、Q 两点之间距离的最小值为 (A )2 (B )2 (C )23 (D )4(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
若 3FA FB = ,则AF =(A)2 (B) 2 (C)3 (D) 32009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) (13)10()x y -的展开式中,73x y 的系数与37x y 的系数之和等于_____________. (14)设等差数列{}n a 的前n 项和为n S 。
若972S =,则249a a a ++=_______________. (15)已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M ,若圆M 的面积为3π,则球O 的表面积等于__________________. (16)若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是①15②30③45④60 ⑤75其中正确答案的序号是 。
(写出所有正确答案的序号)三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(注意:在试题卷上作答无效.........) 设等差数列{n a }的前n 项和为n s ,公比是正数的等比数列{n b }的前n 项和为n T , 已知1133331,3,17,12,},{}n n a b a b T S b ==+=-=求{a 的通项公式。
(18)(本小题满分12分)(注意:在试题卷上作答无效)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c.已知222a c b -=,且sin 4cos sin B A C =,求b.(19)(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,∠ABM=60。
()I 证明:M 是侧棱SC 的中点;()II 求二面角S AM B --的大小。
(20)(本小题满分12分)(注意:在试题卷上作答无效.........) 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。
假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。
已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率; (Ⅱ)求甲获得这次比赛胜利的概率。
(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数42()36f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,已知抛物线2:E y x=与圆222:(4)(0)M x y r r -+=>相交于A 、B 、C 、D 四个点。
(Ⅰ)求r 的取值范围(Ⅱ)当四边形ABCD 的面积最大时,求对角线AC 、BD 的交点P 的坐标。
2009年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 AADBCCDBDACA二、填空题(13)240- (14)24 (15)16π (16)①⑤ 三、解答题 (17)解:设{}n a 的公差为d ,{}n b 的公比为q由3317a b +=得212317d q ++= ① 由3312T S -=得24q q d +-= ② 由①②及0q >解得 2,2q d ==故所求的通项公式为 121,32n n n a n b -=-=⨯。
(18)解:由余弦定理得2222cos a c b bc A -=-又 222,0a c b b -=≠ 所以 2cos 2b c A =+ ①由正弦定理得 sin sin b B c C = 又由已知得sin 4cos sin BA C= 所以 4cos b c A = ②故由①②解得4b = 19.解法一:(1)作//ME CD 交于点E ,则//,ME AB ME SAD ⊥平面连接AE ,则四边形ABME 为直角梯形 作,MF AB ⊥垂足为F ,则AFME 为矩形()()2222,,2222,2ME x SE x AE ED AD x MF AE x FB x===+=-+==-+=-设则由()()2tan 602-232MF FB x x =⋅︒+=-,得解得:1x =即 11,2ME ME DC ==从而 所以M 为侧棱SC 的中点 (II )222,602,MB BC MC ABM AB ABM =+=∠=︒=∆又,所以为等边三角形又由(I )知M 为SC 中点2222,6,2,,90SM SA AM SA SM AM SMA ====+∠=︒故取AM 中点G ,连接BG ,取SA 中点H ,连接GH ,则,BG AM GH AM ⊥⊥ 由此知为BGH ∠二面角S-AM-B 的平面角 连接BH ,在BGH ∆中,22312223,,2222BG AM GH SM BH AB AH =====+=所以2226cos 23BG GH BH BGH BG GH +-∠==-⋅⋅ 二面角S-AM-B 的大小为6arccos 3⎛⎫- ⎪ ⎪⎝⎭解法二:以D 为坐标原点,射线DA 为x 轴正半轴,建立如图所示的直角坐标系D-xyz 设()()()2,0,0,2,2,0,0,0,2ABS 则(I)设(0)SM MC λλ=>,则22220,,,2,,1111M MB λλλλλ-⎛⎫⎛⎫= ⎪ ⎪++++⎝⎭⎝⎭又(0,2,0),,60AB MB AB ==︒故,cos60MB AB MB AB =⋅︒即()222422=2++111λλλ-⎛⎫⎛⎫ ⎪ ⎪+++⎝⎭⎝⎭解得1SM MC λ==,即所以M 为侧棱SC 的中点。
(II)()()2110,1,1,2,0,0,222M AAM G ⎛⎫⎪ ⎪⎝⎭由得的中点,,()()331,,,0,1,1,2,1,1222GB MS AM ⎛⎫=-=-=- ⎪ ⎪⎝⎭又0,0GB AM MS AM ⋅=⋅=所以,GB AM MS AM ⊥⊥因此,GB MS <>等于三角形S-AM-B 的平面角6cos ,3GB MS GB MS GB MS⋅<>==-⋅20.解:记i A 表示事件:第i 局甲获胜,i 3,4,5= j B 表示事件:第j 局乙获胜,j=3,4 (I )记A 表示事件:再赛2局结束比赛3434A A A B B =⋅+⋅由于各局比赛结果相互独立,故34343434()()()()P A P A A B B P A A P B B =⋅+⋅=⋅+⋅3434()()()()0.60.60.40.40.52P A P A P B P B =+=⨯+⨯=(II)记B 表示事件:甲获得这次比赛的胜利因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =⋅+⋅⋅+⋅⋅ 由于各局比赛结果相互独立,故34345345()()()()P B P A A P B A A P A B A =⋅+⋅⋅+⋅⋅34343345()()()()()()()()0.60.60.40.60.60.60.40.60.648P A P A P B P A P A P A P B P A =++=⨯+⨯⨯+⨯⨯=(21)解:(1)366'()464()()22f x x x x x x =-=+-当6(,)2x ∈-∞-和6(0,)2x ∈时,'()0f x <; 当6(,0)2x ∈-和6(,)2x ∈+∞时,'()0f x > 因此,()f x 在区间6(,)2-∞-和6(0,)2是减函数, ()f x 在区间6(,0)2-和6(,)2+∞是增函数。