《计算物理》第三章习题参考答案

合集下载

大学物理3章答案-7页精选文档

大学物理3章答案-7页精选文档

第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。

已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。

求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。

解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。

当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。

解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

计算物理学练习题及参考解答

计算物理学练习题及参考解答

如图第一项限中单位正方形内投点在圆内的概率即为单位圆面积的四分之一。
2 数学方程: 4 dx1 dx2 (1 x12 x2 )

1
0

1
0
算法框图: 产生随机点 (ξ, η) M 个; 统计其中满足条件 2 2 1 的点的个数 N; 计算π值 4 N / M 。 Matlab 程序:P=4/100000*length(find(sum(rand(2,100000).^2)<1))
F ( x ) pi 。
xi x
在区间[0,1]上取均匀分布的随机数ξ,判断满足下式的 j 值:
F ( x j 1 ) F ( x j )
则抽样值η为 x j ,η分布符合分布函数 F(x)的要求为。 25、试述连续分布的随机变量的变换抽样法。 答:设连续型随机变量η的分布密度函数为 f ( x ) 。要对满足分布密度函数 f(x)的随机变量η 抽样较难时 可考虑通过其它已知函数的抽样来得到。考虑变换

!输出 avu,du1,du2,del 100 open(12,file='out.dat') write(12,1000) Nt,Ng,Nf,Ns,dx,avu,du1,du2,del close(12)
5
1000 format(4i10,5f15.4) end 计算距离的函数子程序 function dist(x,y,z) dist=sqrt(x*x+y*y+z*z) return end ! 计算权重的函数子程序 subroutine weight(x,f) dimension x(6) r1=dist(x(1),x(2),x(3)) r2=dist(x(4),x(5),x(6)) f=exp(-3.375*(r1+r2)) return end ! 梅氏游动一步的子程序 subroutine walk(RND,dx,x) dimension x(6),x0(6) call weight(x,f0) do 10 i=1,6 x0(i)=x(i) call random(RND) ! 存旧 10 x(i)=x(i)+dx*(RND-0.5) ! 生新 call weight(x,f) call random(RND) if(f.ge.f0*RND) goto 30 !游动 do 20 i=1,6 20 x(i)=x0(i) !不动 30 return End 29.有限差分法 答:微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来 代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数 来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件 就近似地代之以代数方程组,即有限差分方程组 ,解此方程组就可以得到原问题在离散点上的近似解。 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 30.采用有限差分法求解微分方程时可以用直接法、随机游走法和迭代求解法。其中迭代法被广泛采用, 有直接迭代法、高斯-赛德尔迭代法和超松弛迭代法。 !

第三章 大学物理作业答案

第三章 大学物理作业答案


所以质点下落时一部分的重力势能转化为弹性势 能并且相对于同一个 弹性势能大于重力势能, 所以 v比悬线为非弹性是的速度要小
第四次作业 习题答案
4.4. 一半径为R的铅制球体中有一位于球体表面与 中心之间的空洞,如图所示. 设铅球未挖空前的质 量为M",试求这一中空的铅球与球外一质量为M的 质点之间的引力;该质点位于铅球和空洞的连心线 上,与铅球的中心距离为D.
习题答案
2.2一自由落体在最后1S内通过了其全程距离的 一半. 试求出该落体下落的距离及所用时间
设该落体下落的距离为h,所用的时间为t 由题意可知


所以
2.3一钢球从一建筑物的屋顶由静止开始自由下 落. 建筑物内一观察者站在高度为1.3 M的窗前 ,发现钢球从窗的最上端落至最下端用了1/8S. 钢球继续下落,2.0 S后,与水平地面发生完全 弹 性碰撞并上升至窗的最下端,试求该建筑物 的高度
4.5 得
周 期
设 150 0圈 后 损 失 的 机
4.5
结合(A)中公式可求得 D. 平均周长
E. 平均阻力
F. 不守恒, 变化2%
4.7. 考虑两个具有相等质量M的卫星A和B, 它 们在相同的轨道R上环绕地球运动, 但是方向相 反,故它们在某个时候将发生碰撞(如图). (A)用 G、M 、M和R,求出碰撞前两个卫星及地球的 总 能量EA + EB;(B)若碰撞是非弹性的,并且碰撞 碎片依旧聚集在一起(即质量变为2M),求碰撞后 的总机械能;(C)描述碰撞后碎片的运动. 由题意可知
由题意可知
所以
因为
,
,
所以
, 质点在垂直于F方向上的
当x=l 时 质 点 在 垂加直速于度F方向上的加速度应该是无限

马文淦《计算物理学》习题

马文淦《计算物理学》习题

第 6 页,共 7 页
H 0 ( x ) = 1, H1 ( x ) = x , = H n +1 ( x ) 2 x H n ( x ) − 2n H n −1 ( x ). (7)Mathematica 语言编写一个从某点出发求多元函数的局部极小或极大 值的程序包。 (8)用 Mathematica 语言编写一个程序包,它能实现平面图形的(a)平 移, (b)旋转, (c)对 x 坐标轴的反射。
第三章、Monte Carlo 方法的若干应用(习题)
(1)利用 Monte Carlo 方法计算三维、四维、五维和六维空间的单位半径 球的体积。 (2)利用分布密度函数 f ( x ) = A e − x 做重要抽样来求积分,并分析误差与 投点数的关系。
I =∫
+∞ 0
x 5/2 e − x d x.

j =1
l
1 π4 ≥ ξ , 1 j4 90
然后置 x = −
1 ln(xxxx 2 3 4 5 ) ,其中 ξi 为 [0,1] 区间均匀分布的伪随机数。 L (11)对正则高斯分布抽样: ( x − µ )2 1 = p( x ) d x exp − d x. 2 σ 2 σ 2p (12)Gamma 函数的一般形式为 = f ( x) d x an x n −1 e − ax d x ( x ≥ 0) ( n − 1)!
第四章、有, 数值求解正方形场域 ( 0 ≤ x ≤ 1,
的拉普拉斯方程:
∇2ϕ ( x, y ) = 0; ( x,0) ϕ = ( x,1) 0, ϕ= (0, y ) ϕ= (1, y ) 1. ϕ=
(2)用有限差分法发展一个程序,数值求解极坐标下的泊松方程:

(完整版)大学物理学(课后答案)第3章

(完整版)大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。

3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。

3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。

由于作匀速圆周运动,因此合外力不为零。

答案选C。

3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。

由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。

(计算物理学)第3章物理学中定积分的数值计算方法

(计算物理学)第3章物理学中定积分的数值计算方法

辛普森法则
总结词
详细描述
公式表示
辛普森法则是另一种改进的数值积分 方法,通过将积分区间划分为若干个 小的子区间,然后在每个子区间上取 一个点,并使用这些点的函数值来近 似积分值。
辛普森法则是基于梯形法的改进,它 使用了更多的点来近似函数曲线。具 体来说,它在每个子区间上取两个点 (即区间的端点和中点),然后使用 这两个点的函数值来计算该子区间的 近似面积。将这些近似面积相加,即 可得到定积分的近似值。
几何意义
定积分表示曲线与x轴所夹的面积,即原函数曲线与x轴、 x=a、x=b所围成的区域面积。
定积分的性质
线性性质
∫baf(x)dx+∫baf(x)dx=∫baf(x)+f (x)dx
区间可加性
∫caf(x)dx=∫baf(x)dx+∫caf(x)dx
常数倍性质
k∫baf(x)dx=k∫baf(x)dx
感谢您的观看
THANKS
误差分析
梯形法误差主要来源于对曲线的近似,当梯形 越多,近似程度越高,误差越小。
适用范围
适用于被积函数在积分区间上变化较小的情形。
辛普森法则的误差分析
辛普森法则的基本思想
将积分区间分成若干个小区间,每个小区间上用抛物线代替曲线, 然后求抛物线面积之和。
误差分析
辛普森法则误差主要来源于对曲线的近似,当抛物线越多,近似程 度越高,误差越小。
形等。
计算体积
02
定积分可以用来计算三维物体的体积,例如长方体、球体、圆
柱体等。
计算长度
03
定积分可以用来计算曲线或曲面的长度,例如圆的周长、椭圆
的弧长等。
在物理学中的应用
01

大学物理课后习题答案第三章

大学物理课后习题答案第三章

第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22= (3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。

大学物理课后习题答案第三章

大学物理课后习题答案第三章

第三章狭义相对论3.1地球虽有自转,但仍可看成一较好的惯性参考系,设在地球赤道和地球某一极(例如南极)上分别放置两个性质完全相同的钟,且这两只钟从地球诞生的那一天便存在.如果地球从形成到现在是50亿年,请问那两只钟指示的时间差是多少?[解答]地球的半径约为R = 6400千米 = 6.4×106(m), 自转一圈的时间是T = 24×60×60(s) = 8.64×104(s), 赤道上钟的线速度为v = 2πR/T = 4.652×102(m·s -1).将地球看成一个良好的参考系,在南极上看赤道上的钟做匀速直线运动,在赤道上看南极的钟做反向的匀速直线运动.南极和赤道上的钟分别用A 和B 表示,南极参考系取为S ,赤道参考系取为S`.A 钟指示S 系中的本征时,同时指示了B 钟的运动时间,因此又指示S`系的运动时.同理,B 钟指示S`系中的本征时,同时指示了A 钟的反向运动时间,因此又指示S 系的运动时.方法一:以S 系为准.在S 系中,A 钟指示B 钟的运动时间,即运动时 Δt =50×108×365×24×60×60=1.5768×1016(s).B 钟在S`中的位置不变的,指示着本征时Δt`.A 钟的运动时Δt 和B 钟的本征时Δt`之间的关系为,可求得B 钟的本征时为,因此时间差为=1.898×105(s). 在南极上看,赤道上的钟变慢了.方法二:以S`系为准.在S`系中,B 钟指示A 钟的反向运动时间,即运动时 Δt`=50×108×365×24×60×60=1.5768×1016(s).A 钟在S 中的位置不变的,指示着本征时Δt .B 钟的运动时Δt `和A 钟的本征时Δt 之间的关系为,可求得A 钟的本征时为,因此时间差为=1.898×105(s). 在赤道上看,南极上的钟变慢了.[注意]解此题时,先要确定参考系,还要确定运动时和本征时,才能正确引用公式. 有人直接应用公式计算时间差,由于地球速度远小于光速,所以计算结果差不多,但是关系没有搞清.从公式可知:此人以S 系为准来对比两钟的时间,Δt `是B 钟的本征时,Δt 是A钟的运动时,而题中的本征时是t ∆=21`[1()]2vt t c∆=∆≈-∆21`()2v t t t c∆-∆≈∆`t ∆=21[1()]`2vt t t c∆=∆-∆21`()`2v t t t c∆-∆≈∆``t t t ∆-∆=∆2211[1()]``()`22v vt t t c c≈+∆-∆=∆未知的.也有人用下面公式计算时间差,也是同样的问题.3.2一个“光钟”由两个相距为L 0的平面镜A 和B 构成,对于这个光钟为静止的参考系来说,一个“滴答”的时间是光从镜面A 到镜面B 再回到原处的时间,其值为.若将这个光钟横放在一个以速度行驶的火车上,使两镜面都与垂直,两镜面中心的连线与平行,在铁轨参考系中观察,火车上钟的一个“滴答”τ与τ0的关系怎样?[解答]不论两个“光钟”放在什么地方,τ0都是在相对静止的参考系中所计的时间,称为本征时.在铁轨参考系中观察,火车上钟的一个“滴答”的时间τ是运动时,所以它们的关系为3.3在惯性系S 中同一地点发生的两事件A 和B ,B 晚于A 4s ;在另一惯性系S`中观察,B 晚于A 5s 发生,求S`系中A 和B 两事件的空间距离?[解答]在S系中的两事件A 和B 在同一地点发生,时间差Δt = 4s 是本征时,而S`系中观察A 和B 两事件肯定不在同一地点,Δt ` = 5s 是运动时,根据时间膨胀公式,即,可以求两系统的相对速度为v = 3c /5.在S`系中A 和B 两事件的空间距离为 Δl = v Δt ` = 3c = 9×108(m).3.4一根直杆在S 系中观察,其静止长度为l ,与x 轴的夹角为θ,S`系沿S 系的x 轴正向以速度v 运动,问S`系中观察到杆子与x `轴的夹角若何?[解答]直杆在S 系中的长度是本征长度,两个方向上的长度分别为l x = l cos θ和l y = l sin θ. 在S`系中观察直杆在y 方向上的长度不变,即l`y = l y ;在x 方向上的长度是运动长度,根据尺缩效应得因此,可得夹角为.3.5S 系中观察到两事件同时发生在x 轴上,其间距为1m ,S`系中观察到这两个事件间距离是2m ,求在S`系中这两个事件的时间间隔.[解答]根据洛仑兹变换,得两个事件的空间和时间间隔公式`t t t ∆-∆=-∆2211[1()]()22v vt t t c c≈+∆-∆=∆002L cτ=v vvτ=`t ∆=5=`x l l =``tan `y xl l θ==21/2`arctan{[1(/)]tan }v c θθ-=-.(1)由题意得:Δt = 0,Δx = 1m ,Δx` = 2m .因此.(2)由(2)之上式得它们的相对速度为(3)将(2)之下式除以(2)之上式得, 所以10-8(s). [注意]在S `系中观察到两事件不是同时发生的,所以间隔Δx` = 2m 可以大于间隔Δx =1m .如果在S `系中观察到两事件也是同时发生的,那么Δx`就表示运动长度,就不可能大于本征长度Δx ,这时可以用长度收缩公式3.6 一短跑运动员,在地球上以10s 的时间跑完了100m 的距离,在对地飞行速度为0.8c 的飞船上观察,结果如何?[解答]以地球为S 系,则Δt = 10s ,Δx =100m .根据洛仑兹坐标和时间变换公式,飞船上观察运动员的运动距离为≈-4×109(m).运动员运动的时间为≈16.67(s).在飞船上看,地球以0.8c 的速度后退,后退时间约为16.67s ;运动员的速度远小于地球后退的速度,所以运动员跑步的距离约为地球后退的距离,即4×109m .3.7已知S`系以0.8c 的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为x 1 = 20m ,x 2 = 40m ,t 1 = 4s ,t2 = 8s .求S`系中测得的这两件事的时间和空间间隔.[解答]根据洛仑兹变换可得S`系的时间间隔为≈6.67(s).空间间隔为`x∆=2`t ∆=`x ∆=2`t ∆=v =2``t v x c∆=-∆`t ∆==`x ∆=∆`x =2`t =`x ∆==2`t ∆=100.8100/0.6c-⨯=2``21t t -=840.8(4020)/0.6c---=≈-1.6×109(m).3.8 S 系中有一直杆沿x 轴方向装置且以0.98c 的速度沿x 轴正方向运动,S 系中的观察者测得杆长10m ,另有一观察以0.8c 的速度沿S 系x 轴负向运动,问该观察者测得的杆长若何?[解答]在S 系中的观测的杆长Δl = 10m 是运动长度,相对杆静止的参考系为S `,其长度是本征长度,根据尺缩效应= 50.25(m).另一参考系设为S ``系,相对S 系的速度为v 20 = -0.8c .在S ``系观察S`系的速度为= 0.99796c . 在S ``系观察S`系中的杆的长度是另一运动长度= 3.363(m).[注意]在涉及多个参考系和多个速度的时候,用双下标能够比较容易地区别不同的速度,例如用v10表示S `相对S 系的速度,用v 12表示S `系相对S``系的速度,因此,尺缩的公式也要做相应的改变,计算就不会混淆.3.9 一飞船和慧星相对于地面分别以0.6c 和0.8c 速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?[解答]两者相撞的时间间隔Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c 运动的系统的本征时,根据时间膨胀公式,可得时间间隔为.3.10在太阳参考系中观察,一束星光垂直射向地面,速率为c ,而地球以速率u 垂直于光线运动.求在地面上测量,这束星光的大小与方向如何.[解答]方法一:用速度变换.取太阳系为S 系,地球为S`系.在S 系中看地球以v = u 运动,看星光的速度为 u x = 0,u y = c .星光在S`系中的速度分量为星光在S`系中的速度为,即光速是不变的.星光在S`系中与y `轴的夹角,即垂直地面的夹角为.方法二:用基本原理.根据光速不变原理,在地球的S`系中,光速也为c,当地球以速度v = u 沿x 轴运动时,根据速度变换公式可得星光的速度沿x`轴的分量为u y ` = -u ,所以星光速度沿y`轴的分量为``21x x -=40200.8(84)0.6c --⨯-=l l ∆=∆`l∆==102012210201/v v v v v c-=-0.98(0.8)10.98(0.8)c c --=--``l l ∆=∆t ∆=`t ∆=∆`21/x x x u vu u u v c -==--`21/yx u u u v c =-=`u c ==``arctanarctan y u u θ==`y u ==从而可求出星光速度垂直地面的夹角为. [注意]解题时,要确定不同的参考系,通常将已知两个物体速度的系统作为S 系,另外一个相对静止的系统作为S`系,而所讨论的对象在不同的参考系中的速度是不同的.3.11一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算得的二倍时,其速度是多少?[解答](1)粒子的非相对论动能为E k = m 0v 2/2,相对论动能为E`k = mc 2 – m 0c 2, 其中m 为运动质量.根据题意得,设x = (v/c )2,或平方得1 = (1 – x 2)(1 - x ),化简得x (x – x -1) = 0.由于x 不等于0,所以:x 2 –x -1 = 0. 解得取正根得速率为= 0.786c .(2)粒子的非相对论动量为:p = m 0v ,相对论动量为:,.很容易解得速率为:= 0.866c .3.12.某快速运动的粒子,其动能为4.8×10-16J ,该粒子静止时的总能量为1.6×10-17J ,若该粒子的固有寿命为2.6×10-6s ,求其能通过的距离.[解答]在相对论能量关系E = E0+ E k 中,静止能量E 0已知,且E 0= m 0c 2,总能量为,, 由此得粒子的运动时为.,解得速率为```arctan x y u u θ==m =22200m c m v =1x =+1(1x =+x =v =`p mv ==02m v =2v =22E mc ===00kE E E +=0`kE E t t E +∆==∆00kE E E =+粒子能够通过的距离为= 24167.4(m).3.13 试证相对论能量和速度满足如此关系式:[证明]根据上题的过程已得E = E 0+ E k 代入公式立可得证.3.14静止质子和中子的质量分别为m p = 1.67285×10-27kg ,m n = 1.67495×10-27kg ,质子和中子结合变成氘核,其静止质量为m 0 = 3.34365×10-27kg ,求结合过程中所释放出的能量.[解答]在结合过程中,质量亏损为 Δm = m p + m n - m 0 = 3.94988×10-30(kg), 取c = 3×108(m·s -1),可得释放出的能量为ΔE = Δmc 2 =3.554893×10-13(J). 如果取c = 2.997925×108(m·s -1),可得释放出的能量为 ΔE = 3.549977×10-13(J).v =l v t c t ∆=∆=∆8310 2.610-=⨯⨯⨯vc =v =。

计算物理学(刘金远)第-3-章-函数近似方法(课后习题及答案)

计算物理学(刘金远)第-3-章-函数近似方法(课后习题及答案)

第3章函数近似方法(习题及答案)§3.1插值法【3.1.1】已知sin()x 在030,45,60的值分别为1/2,分别用一次插值和二次插值求0sin(50)近似值。

【3.1.2】误差函数的数据表:x 0.460.470.480.49…f(x)0.48465550.49374520.50274980.5116683…利用二次插值计算:(1)(0.472)f ;(2)()0.5,?f x x ==【3.1.3】【3.1.4】已知列表函数x -101y-15-5-3给出二次插值函数【解】0(0)(1)1()(1)(10)(11)2x x l x x x --==-----;1(1)(1)()(1)(1)(01)(01)x x l x x x +-==--++-2(1)(0)1()(1)(11)(10)2x x l x x x +-==++-2153()(1)5(1)(1)(1)22L x x x x x x x =--+-+--【3.1.5】已知,3)9(,2)4(==f f 用线性插值计算)5(f ,并估计误差。

【解】取插值节点014, 9x x ==,两个插值基函数分别为)9(51)(1010--=--=x x x x x x l )4(51)(0101-=--=x x x x x x l 故有565)4(53)9(52)()()(11001+=-+--=+=x x x y x l y x l x L 2.25655)5()5(1=+=»L f 误差为)(2)95)(45(!2)()5(2x x f f R ¢¢-=--¢¢=【3.1.6】已知(1)2,(1)1,(2)1f f f -===,求()f x 的二次拉格郎日插值多项式【解】22(1)(2)(1)(2)(1)(1)()21(11)(12)(11)(12)(21)(21)1(38)6x x x x x x L x x x --+-+-=++----+-+-=-+【3.1.7】求经过(0,1),(1,2),(2,3)A B C 三点的二次拉格郎日插值多项式【解】22(1)(2)(0)(2)(0)(1)()123(01)(02)(10)(12)(20)(21)1(343)2x x x x x x L x x x ------=++------=-+【3.1.8】编写拉格朗日三点插值程序,绘出)cos(x y =在[p ,0]区间的插值曲线,将[p ,0]区间8等份(9个插值点),由插值函数取25个点绘出插值曲线。

2017-2018学年高中物理 第三章 牛顿运动定律 3.4 牛顿第三定律练习1(含解析)教科版必修1

2017-2018学年高中物理 第三章 牛顿运动定律 3.4 牛顿第三定律练习1(含解析)教科版必修1

3.4 牛顿第三定律一、选择题(本题共8小题,每小题5分,共40分)1.关于作用力和反作用力,下列说法正确的是( )A.作用力和反作用力一定同时存在B.作用力和反作用力一定是大小相等、方向相反、沿一直线的两个力C.作用力与反作用力的作用效果可以相互抵消D.由于作用力与反作用力分别作用在两个物体上,因而两者的作用效果不可能抵消解析:作用力和反作用力具有等大、同性质且共线等特点,但两个力作用在两个不同物体上,因而不能平衡,作用效果也不能抵消,故A、B、D正确。

答案:ABD2.关于作用力与反作用力,正确的说法是( )A.一对作用力和反作用力性质相同,总是同时产生,同时变化,同时消失B.某物体若只受一个力的作用,说明可以只有作用力,而没有反作用力C.凡是大小相等,方向相反,作用在同一物体上的两个力必定是一对作用力和反作用力D.一对作用力和反作用力的合力为零解析:一对作用力与反作用力具有同时性,即它们同时产生,同时变化,同时消失,A 对,B错。

大小相等、方向相反,作用在同一物体上的两个力为一对平衡力,C错。

一对作用力与反作用力分别作用在两个物体上,它们不能求合力,D错。

答案:A3.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动。

假定两板与冰面间的动摩擦因数相同。

已知甲在冰上滑行的距离比乙远,这是由于( )A.在推的过程中,甲推乙的力小于乙推甲的力B.在推的过程中,甲推乙的时间小于乙推甲的时间C.在刚分开时,甲的初速度大于乙的初速度D.在分开后,甲的加速度的大小小于乙的加速度的大小解析:作用力、反作用力总是等大、反向,且同时产生、同时消失、作用时间相等,故A、B错;对两小孩分开后应用牛顿第二定律得μmg=ma,所以a=μg,因为两板与冰面间的动摩擦因数相同,故加速度相同,D错;分开后,甲、乙都做匀减速运动直到停下,由2ax =v2得,因x甲>x乙,所以v甲>v乙,C对。

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

第三章动量守恒定律和能量守恒定律3-1 力)SI (12i F t =作用在质量kg 2=m 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A )m/s kg 54⋅-i (B )m/s kg 54⋅i(C )m/s kg 27⋅-i (D )m/s kg 27⋅i [B] 解:以该物体为研究对象,由质点动量定理⎰⎰=⎪⎪⎭⎫ ⎝⎛==-=∆30300354d 12d i i F p p p t t t又00=p 故()-13s m kg 54⋅⋅=i p3-2 一个质点同时在几个力作用下的位移为:)SI (654k j i r +-=∆ 其中一个力为恒力)SI (953kj i F +--=,则此力在该位移过程中所作的功为(A )67J (B )91J(C )17J (D )-67J [A] 解:()()k j i k j i r F 654953+-⋅+--=∆⋅=A(J) 675425-12=++=3-3 对质点组有以下几种说法: ①质点组总动量的改变与内力无关 ②质点组总动能的改变与内力无关 ③质点组机械能的改变与保守内力无关 在上述说法中:(A )只有①是正确的 (B )①、③是正确的 (C )①、②是正确的(D )②、③是正确的 [B] 解:由于质点组内力冲量的矢量和为零,所以质点组总动量的改变与内力无关。

由于质点组内力功的代数和不一定为零,由动能定理K E A A ∆=+内外,质点组总动能的改变可能与内力相关。

,由功能原理E A A ∆=+非保内外,质点系机械能的改变与保守内力无关。

3-4 质点系的内力可以改变(A )系统的总质量(B )系统的总动量(C )系统的总动能(D )系统的总角动量 [C] 解:由质点系动量定理、角动量定理和动能定理k t t t t E A A t t ∆=+∆=⋅∆=⋅⎰⎰内外外外2121d d LM p F可知质点系内力只能改变系统总动能而不影响其总动量和总角动量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差为
V { A} E{( A A ) 2 } E{ A2 2 A A A } =E{ A}2 A A2 A
2 2
2
2 另一方面,设 V ( Ai ) A , i 1, , N , 则有
1 V { AN } 2 N
2 1 A 2 V { Ai } 2 N A N N i 1 N
(vi vi 1 ) min{1,
e

( xi i )2 2

e min{1, e

xi 2 2
}
(2 xi i i 2 ) 2
}
judge: 2 (xi xi 1 ), if it's true, i 1 xi 1 xi i , then goto ii ) and walk for the next step xi 1 xi 2 ; if not, goto ii) and walk for the step xi xi 1 again. iiii ). ={0 ,1 , ,i , , N }, f (i ) Ae

i ). i [0,1], (i ) 1, i 1, , n; ii ). 首先对偏倚密度函数 g ( x) e x 抽样: F1 ( x) e x dx 1 e x ,
0 x
set i F1 (i ) i ln i ; iii ). 求出f ( x) f (i ) f ( x) 在各抽样点的值: g ( x)
tan(1 ) tan(n 2 ) tan(n 1 )
2 2 xn xn 1 2 2 2 xn xn 1 x2
x1
,
xn 2 xn . xn 1
,
其中, n 1 [0, 2 ], 1, 2, , n 2 [0, ].
由此得所求的伪随机数序列
cos 1 1 2 max(1 , 2 , , n ) , f n ( ) sin n .
具体地,
1 cos 1 1 2 max(1 , 2 , 3 , 4 ) , f 4 (1 ) sin 4 1 ; 2 cos 1 1 2 max(1 , 2 , 3 ) , f3 (2 ) sin 3 2 ; 3 cos 1 1 2 max(1 , 2 ) , f 2 (3 ) sin 2 3 ; 4 cos 1 1 21 , f1 (4 ) sin 4 .
当 N 足够大时,有 lim V ( AN ) V ( A), 即
N
A2 A
2
2 A
N

1 . N
2
4. 解:由于 f (v) f (v) ,故先讨论 f (v) Cv 2 e v , v 0 ,并设 C 0, 0.
i ). 选择初始位置:0 v0 ii ). 1 [0,1], (1 ) 1, def. step i 1 [0, ); 1
[1] see the reference from http://wapedia.mobi/en/N-sphere
2. 解: MC 计算步骤:

x
0
5/2 x
e dx f ( x)dx
0 0


f ( x) x e dx f ( x)e x dx, f ( x) x5/2 . e x 0
Vn
R
0 1 0


2
dVn
n 2 0 n 1 0
解析地,n-维欧几里得空间球得体积为
Vn Cn Rn , Cn
2
n ( 1) 2
n
.
5 R , V6 R. 3 2 15 6
0 1 x 1, ( x) (1 x )
2 2 n 1 2
( y ) y n 1 , y [0,1]
用第一类舍选法抽样,可得
y max(1 , 2 , , n ), x cos 1 2 max(1 , 2 , , n ).

d cos ( cos ) cos (h( )) h( ) d , x [1,1];
(x) (1 x 2 )
n 1 2
其中, cos 1 x g ( x),
g 1 ( ) cos h( ).
首先可以产生满足 ( x) 分布的伪随机数序列,为此,我们注意到
引入 6 个均匀分布的伪随机数 , 1,2,3,4,5 [0,1], 使得
r , f (r ) 1; f5 (5 ) 1; 5 25 ,
对于 f n ( ) sin n , n=1,2,3,4 ,由
f n ( ) 1 cos 2
n 1 2
i ). 选择初始位置:0 x0 0, f max ( x0 ) A, A 0; ii ). 1 [0,1], (1 ) 1, def. step i 1 [0, ); iii ). 2 [0,1], ( 2 ) 1, 引入过渡概率:
5 5 f (i ) i 2 ( ln i ) 2 ; g (i )
5 1 n iiii ). { ln i , i 1, , n}, I= ( ln i ) 2 . n i 1
3. 解:函数 A(u ) 的期望值定义为
E{ A} A(u )dG (u ) A


i2 2
.
第三章《蒙特卡罗方法的若干应用》习题参考答案
1. 解:一般地[1],首先定义 n-维欧几里得空间球坐标 r ,为此,引入 1 个径向 坐标,n-1 个角坐标。以 xi 表示笛卡尔坐标,则 x1 r cos(1 ), x2 r sin(1 ) cos(2 ), x3 r sin(1 ) sin(2 ) cos(2 ), xn 1 r sin(1 ) sin(n 2 ) cos(n 1 ), xn r sin(1 ) sin(n 2 ) sin(n 1 ). 反变换
n-维欧几里得空间球体积元由下列 Jacobian 变换得出
dVn det
( xi ) drd1d2 dn 1 (r , j )
=r n 1 sin n 2 (1 ) sin n 3 (2 ) sin(n 2 )drd1d2 dn 1
而 n-维欧几里得空间球得体积由下列积分给出
dV6 f 2 (2 ) f3 (3 ) f 4 (4 ) f5 (5 )drd1d2 d3 d4 d5
其中,
f (r ) 1, f 4 (1 ) sin 4 (1 ), f 3 (2 ) sin 3 (2 ), f 2 (3 ) sin 2 (3 ), f1 (4 ) sin(4 ), f5 (5 ) 1.

, f max (v0 )
C

e 1 ;
iii ). 2 [0,1], ( 2 ) 1, 引入过渡概率:
(vi vi 1 ) min{1,
C (vi i ) 2 e ( vi i ) Cvi2 e vi
2
2
2
}
v i (2 vii i 2 ) min{1, i } e v i judge: 2 (vi vi 1 ), if it's true, i 1 vi 1 vi i , then goto ii ) and walk for the next step vi 1 vi 2 ; if not, goto ii) and walk for the step vi vi 1 again. iiii ). ={0 ,1 , ,i , , N }, Mathematica plotting program: ListLinePlot[{{0 , f (0 )}, ,{ N , f ( N )}}], 其中N 为投点数。 5. 解:Metropolis 方法可以对无法归一化的分布密度函数进行抽样。
对于用 MC 方法计算多维球体积,可以参照多维独立随机变量分布情形抽 样。下面以六维为例说明之。 n 6, R 1, 六维球体积元
dV6 sin 4 (1 ) sin 3 (2 ) sin 2 (3 ) sin(4 )drd1d2 d3d4 d5
其中, r [0,1], 1,2,3,4 [0, ], 5 [0, 2 ] . 改写上述体积元
相关文档
最新文档