2021年高中数学.5圆锥曲线的共同性质

合集下载

高中数学第二章圆锥曲线与方程2.5圆锥曲线的共同性质111数学

高中数学第二章圆锥曲线与方程2.5圆锥曲线的共同性质111数学

的坐标为 321,2.
12/10/2021
第十七页,共二十一页。
名师解题
求相关动点的轨迹方程
求以 y 轴为左准线,且过定点(3,2)的离心率为12的动椭 圆左顶点的轨迹方程.
[解] 设动椭圆左顶点的坐标为(x,y),因椭圆的 y 轴为准线,
离心率为12,故左焦点的坐标为23x,y.
12/10/2021
12/10/2021
第九页,共二十一页。
用圆锥曲线的统一定义求轨迹(guǐjì)方程
已知动点 M(x,y)到点 F(2,0)与到定直线 x=8 的距离 之比为12,求点 M 的轨迹. (链接教材 P47 例 1) [解] 由题意得 x|-x-282+| y2=12,整理得1x62+1y22 =1. 故点 M 的轨迹为中心在原点,焦点为(±2,0),准线为 x=±8 页,共二十一页。
解决此类问题常用两种方法:(1)直译法,即依据已知条件直接写出动点
坐标满足的等式,整理得方程;(2)依据定义先判断(pànduàn)轨迹形状,再
由几何性质得方程.
12/10/2021
第十一页,共二十一页。
1.已知圆锥曲线的一个焦点是 F(1,0),对应准线 l:x=-1, 且曲线过点 M(3,2 3),求圆锥曲线的方程. 解:∵MF= 3-12+2 3-02=4, 点 M 到准线 l 的距离为 d=|3-(-1)|=4, ∴MF=d,且点 F 不在 l 上, 即圆锥曲线是抛物线,其顶点在原点,焦点为 F(1,0). 由p2=1 得 p=2.故此圆锥曲线的方程是 y2=4x.
的距离和它到一条定直线l(F不在定直线l上)的距离的比是一个常数e(e>0),则动点P的轨迹是圆锥曲线.。 求相关动点的轨迹方程

圆锥曲线的统一性质

圆锥曲线的统一性质

圆锥曲线的统一性质: 石家庄第一中学 冯伟冀 1. 第二定义的统一性圆的准线在∞,0=e . 2. 极坐标方程的统一性3. 曲线上一点光学性质的统一性椭圆:点光源在一个焦点上,光线通过另一个焦点。

双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。

抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。

具体应用:探照灯4. 一般弦长公式具有统一性 5. 过焦点弦长公式具有统一性 6. 过曲线上一点切线方程的统一性 7. 直径所对周角之斜率乘积的统一性 8. 焦点弦端点切线的交点轨迹的统一性9. 过焦点且和焦点弦垂直的的直线和焦点弦端点切线的关系统一性 10. 过非等轴双曲线曲线上一点做互相垂直弦共有的性质 11. 过曲线上一点做倾斜角互补直线所成弦而具有共有的性质 12. 内部焦点弦被焦点分成两个焦半径倒数和为定值 13. 圆锥曲线内部外部点代入方程后不等式符号的统一性14. 过同一焦点两任意焦点弦AB 和CD ,AC 和BD 交点轨迹统一 15. 任意一弦BA 延长交准线于E ,则FE 平分BFA 外角16. 任意一弦BA 延长交准线于E ,则FE 平分BFA 外角,又任意一弦AN 延长交准线于Q ,则FQ 平分BFA 外角后得到EFQ 是直角17. 过一个焦点交圆锥曲线于MN ,做MN 的垂直平分线交轴与P 则离心率等于2PF/MN 18. 二次曲线和二次曲线交于两点AB ,联立两方程消X 得0)(=Y H ,消Y 得0)(=X G 则AB 为端点的圆的方程就是0)()(=+Y H X G (必须先保证X 和Y系数相同)19. 若有弦AB,AB 中点为),(00.y x P 则弦AB 方程为 0)2,2(),(00=---y y x x f y x f20. 圆锥曲线通径长统一为定值ep 221. 利用统一的圆锥曲线方程中判别式可以判断曲线类型22. F 是焦点,E 是F 对应准线L 和轴交点AD 垂直L ,BC 垂直L 则有BD 、AC 同时平分线段EF (一组关系)23. F 是焦点,E 是F 对应准线L 和轴交点AB 是过焦点F 的弦,BC 平行FE ,N是线段EF 的中点,则BC 和AN 交点C 在准线L 上24 F 是焦点,E 是F 对应准线L 和轴交点,B 是圆锥曲线上一点,C 在L 上,BC 平行FE ,N 是线段EF 中点,则直线BF 和CN 的交点A 恰在圆锥曲线上25过圆锥曲线准线L 上一点做圆锥曲线的两条切线MA 、MB 则切点弦必过焦点F 且和MF 垂直(一组关系)25 F 是焦点,过曲线上一点P 的切线与相应于焦点F 的准线交于Q ,则PFQ 是直角 26 点P 在圆锥曲线上时过P 的切线方程和点P 不在曲线上的切点弦方程一致27 截圆锥得到圆锥曲线的统一性:用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。

高中数学 第2章 圆锥曲线与方程 2.5 圆锥曲线的共同性

高中数学 第2章 圆锥曲线与方程 2.5 圆锥曲线的共同性

跟踪训练 1 已知 A,B 是椭圆ax22+295y2a2=1 上的点,F2 是椭圆的右焦点, 且 AF2+BF2=85a,AB 的中点 N 到椭圆左准线的距离为32,求此椭圆方程.
解答
类型二 圆锥曲线统一定义的应用 命题角度 1 求有关最值问题 例 2 已知 A(4,0),B(2,2)是椭圆2x52+y92=1 内的两个点,M 是椭圆上的动点. (1)求 MA+MB 的最大值和最小值;
解答
反思与感悟 (1)在此类题中,若用一般弦长公式,而不用统一定义,计 算起来则复杂一些. (2)对于圆锥曲线焦点弦的计算,利用统一定义较为方便.
跟踪训练 3 已知椭圆的一个焦点是 F(3,1),相应于 F 的准线为 y 轴,l 是过点 F 且倾斜角为 60°的直线,l 被椭圆截得的弦 AB 的长是156,求椭 圆的方程.
解答
命题角度2 焦点弦问题 例3 椭圆C的一个焦点为F1(2,0),相应准线方程为x=8,离心率e=12 . (1)求椭圆的方程; 解 设椭圆上任一点P(x,y), 由统一定义得 x|-8-2x2|+y2=12, 两边同时平方,得 4[(x-2)2+y2]=(8-x)2,化简得1x62 +1y22 =1.
则点 M 的轨迹为2x52 +y92=1.( × )
题型探究
类型一 已知准线求圆锥曲线的方程 例 1 双曲线的中心在原点,焦点在坐标轴上,两准线间的距离为 4,且 经过点 A(2 6,3),求双曲线的方程.
解答
反思与感悟 (1)在此类题中,两准线间的距离是一个定值2ca2,不论双曲 线位置如何,均可使用. (2)已知准线方程(或准线间距离)求圆锥曲线方程,该条件使用方法有两个: ①利用统一定义,②直接列出基本量 a,b,c,e 的关系式.

圆锥曲线的共同性质

圆锥曲线的共同性质
(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,b),求b的取值范围.
审题破题(2)直接利用判别式和根与系数的关系确定k的范围;(3)寻找b和k的关系,利用(2)中k的范围求解.
解(1)设双曲线方程为 - =1 (a>0,b>0),
由已知,得a= ,c=2,b2=c2-a2=1,
故双曲线方程为 -y2=1.
A. + =1B. + =1
C. + =1D. + =1
答案D
解析设A(x1,y1)、B(x2,y2),
所以 运用点差法,
所以直线AB的斜率为k= ,
设直线方程为y= (x-3),
联立直线与椭圆的方程得(a2+b2)x2-6b2x+9b2-a4=0,
所以x1+x2= =2;
又因为a2-b2=9,解得b2=9,a2=18.
代入椭圆方程,
消去y化简得7x2-16x+4=0,解得x=2或x= .
由点P在椭圆上得点P ,
此时直线PA1的斜率k= .
数形结合可知,直线PA1斜率的取值范围是 .
4.椭圆 + =1的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是________.
答案3
解析直线x=m过右焦点(1,0)时,△FAB的周长最大,由椭圆定义知,其周长为4a=8,此时,|AB|=2× = =3,∴S△FAB= ×2×3=3.
|x2-x1|= ,
|y2-y1|= .
②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).
(2)弦的中点问题
有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.
3.圆锥曲线中的最值
(1)椭圆中的最值

圆锥曲线的一个统一性质

圆锥曲线的一个统一性质

圆锥曲线的一个统一性质
圆锥曲线是一种特殊的曲线,它的性质与普通的曲线有很大的不同。

它有一个共同的特性,即它们的线段是圆滑的,没有折点。

圆锥曲线的一个统一性质是它的曲线是由椭圆的切线组成的。

椭圆的切线是由两个相交的椭圆组成的,它们相交点的坐标是(
0,0),切线的形状是一条抛物线,抛物线的方程式是
y=ax^2+bx+c。

这里a,b,c分别是抛物线的系数,x是抛物线的参数。

圆锥曲线的参数是一条椭圆的参数,参数是由两个圆组成的,一个圆在x轴上,另一个圆在y轴上。

圆锥曲线的方程式是x^2/a^2+y^2/b^2=
1,这里a和b是圆锥曲线的参数。

圆锥曲线的另一个统一性质是它的切线是一条直线。

这个直线的方程是y=mx+c,m是直线的斜率,c是直线的截距。

圆锥曲线的切线斜率m可以由方程式算出,m=2ax+b。

圆锥曲线的另一个统一特性是它的曲线是完整的,没有折点,也就是说它们是平滑的。

这是由于圆锥曲线的方程式是一
个二次方程,它的解是一个完整的曲线,没有折点,没有断点,也就是说它是一个完整的曲线。

总之,圆锥曲线有几个统一性质,它的曲线是由椭圆的切线组成的,它的切线是一条直线,它的曲线是完整的,没有折点,也没有断点,这也是它的一个重要特性。

这些特性使得圆锥曲线在几何图形中有着重要的作用,并且在工程学、物理学、数学等领域都有着重要的应用。

4.2圆锥曲线的共同性质

4.2圆锥曲线的共同性质
x a
2 2
图形
焦点坐标
( c, 0)
准线方程
x a
2

y b
2 2
1
(a b 0)
2 2 2 2
c
y a

x b
1
(0, c )
y
a
2
(a b 0)
c
x a
2 2

y b
2 2
1
( c, 0)
x
a
2
(a 0, b 0)
c
y a
2 2
x 4
2

y 3
2
1 上运动,求|PA|+2|PB|的
最小值。
P C
A
·
O
·
· B
课堂小结
1.圆锥曲线的统一定义 2.求点的轨迹的方法 3.数形结合的思想
1( a 0 , b 0 )
a
所以点P的轨迹是焦点为(-c,0),(c,0),实轴长、 虚轴长分别为2a,2b的双曲线.
可知,椭圆、双曲线、抛物线有共同性质为:
平面内到一定点F 与到一条定直线l 的距离之比为常数 e 的点的轨迹: ( 点F 不在直线l 上) 当 0< e <1 时, 点的轨迹是椭圆. 当 e >1 时, 点的轨迹是双曲线. 当 e = 1 时, 点的轨迹是抛物线.
其 中 e是 圆 锥 曲 线 的 离 心 率 , 定点F是圆锥曲线的焦点, 定 直 线 l是 圆 锥 曲 线 的 准 线 .
x a
l1
2 2

y b
2 2
1( a b 0 )
y l2
x a

圆锥曲线的性质与方程

圆锥曲线的性质与方程

圆锥曲线的性质与方程圆锥曲线是平面几何中重要的一类曲线,包括抛物线、椭圆和双曲线。

它们在数学、物理、工程等领域有着广泛的应用。

本文将介绍圆锥曲线的性质以及它们的方程。

一、抛物线的性质与方程抛物线是最简单的圆锥曲线,其性质和方程如下:1. 对称性:抛物线具有关于焦点对称的性质,即从焦点到抛物线上任意一点的距离与该点在水平直线上的投影之间的距离相等。

2. 焦点与准线:抛物线上的每个点到焦点的距离与该点到准线的距离相等。

焦点和准线都是抛物线的重要几何特征。

3. 方程形式:一般来说,抛物线的标准方程为y^2=4ax,其中a是抛物线的焦点到准线的距离,x和y分别表示坐标轴上的点。

二、椭圆的性质与方程椭圆是圆锥曲线中的另一种形式,其性质和方程如下:1. 对称性:椭圆具有关于两个焦点和两条主轴的对称性。

每个点到两个焦点的距离之和是一个常数。

2. 长轴与短轴:两焦点之间的距离等于椭圆的长轴长度,长轴的中点称为椭圆的中心。

3. 方程形式:一般来说,椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。

三、双曲线的性质与方程双曲线是另一种重要的圆锥曲线,其性质和方程如下:1. 对称性:双曲线有两个焦点,对于每个点到两个焦点的距离之差是一个常数。

2. 极限性质:双曲线的曲线趋向于两条互相平行的渐近线,与渐近线的距离越远,曲线越陡峭。

双曲线上的点的坐标差的绝对值等于常数。

3. 方程形式:一般来说,双曲线的标准方程为(x-h)^2/a^2 - (y-k)^2/b^2 = 1,其中(h,k)是双曲线的中心坐标,a和b分别是双曲线的焦点到准线距离的一半。

综上所述,圆锥曲线是平面几何中重要且有趣的一类曲线。

抛物线、椭圆和双曲线分别具有自己独特的性质和方程形式。

它们的研究和应用不仅在数学领域有着重要作用,还在物理、工程等领域得到广泛的应用。

对于理解和运用圆锥曲线,掌握其性质与方程是非常关键的。

圆锥曲线的共同特征

圆锥曲线的共同特征

圆锥曲线的共同特征教学目标:(1)知识与技能了解圆锥曲线的共同特征,会简单的应用;掌握求曲线方程的一般步骤。

(2)过程与方法能通过实例分析,类比抛物线的特征研究圆锥曲线的特征。

(3)情感态度价值观学生在寻求圆锥曲线共同特征的过程中,体会猜想、归纳、发现的快乐。

本节课虽降低了难度,但仍然要使学生认识到事物之间的普遍联系性和数学研究的严谨性!教学重点难点:通过实例分析,归纳总结圆锥曲线的共同特征,这也是本节要学习的重点。

教学方法:多媒体辅助教学教学过程:1、情景设置,点出课题课前我是这样设计的:在无边的黑夜,一颗美丽的彗星划过天际,也许多少年后它会和我们再见面,或许它永远离我们远去。

同学们你知道为什么会出现这样的情形吗?因为彗星的运行轨迹有的是椭圆,有的是双曲线,还有的是抛物线,即其运行轨道是圆锥曲线。

那么彗星是以什么样的基准在运行呢?圆锥曲线上的点又符合什么样的特征呢?设计意图:以这样的方式导入,引起学生的注意,并让学生认识到数学来源于现实世界!2、设置问题,引起思考知识要问题化,问题要层次化,有层次的问题可以分解学生学习知识时的障碍。

因此我首先设置了两个问题。

问题1:什么是抛物线?抛物线上点的特征是什么?问题2:椭圆、双曲线上点有类似的特征吗?演示圆锥曲线。

设计意图:通过回忆抛物线上点的特征,找到本节课学习的切入点,启发学生从定点,定直线入手。

以几何画板演示,让学生直观感受到圆锥曲线的统一。

3、学习探究探究一:椭圆(师生合作)教师指导学生阅读教材86页例2,复习巩固求曲线方程的一般步骤,在求曲线方程的过程中也验证了椭圆上的也有类似抛物线的特征。

由于本节课只出现了一道例题,且对椭圆的准线没有说明,而课后题中却出现了对准线的判断,为了使学生更好的完成本节课的所有题目,再对椭圆的关于定点,定直线的一般式作一推导。

为了推广一般式,找切入点,指导学生反思例2的步骤,采用对比联想的手法找到切入点。

指导学生思考:问题1:你能将化成类似例2的步骤二吗?将该式整理为问题2:你能仿照例2说出它的几何意义吗?ac x ca y c x =-+-222)(归纳:椭圆上的点也是到定点的距离与到定直线的距离之比为定值。

高中数学第二章2.5圆锥曲线的共同性质学案苏教版选修7.doc

高中数学第二章2.5圆锥曲线的共同性质学案苏教版选修7.doc

2.5圆锥曲线的共同性质1(离心率)的动点的轨迹.问题1:当比值大于0小于1时轨迹是什么?提示:椭圆.问题2:当比值大于1时轨迹是什么?提示:双曲线.圆锥曲线的共同定义为:平面内到一个定点F和到一条定直线l(F不在l上)的距离之比等于常数e的点的轨迹.当0<e<1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.在圆锥曲线的定义中,定点F是焦点,定直线l是准线,而且知道抛物线只有一个焦点和一条准线.问题:椭圆和双曲线有几个焦点、几条准线?提示:椭圆和双曲线有两个焦点、两条准线.椭圆、双曲线和抛物线的准线方程1.关于圆锥曲线共同特征的认识(1)从点的集合(或轨迹)的观点来看:它们都是平面内与一个定点和一条定直线的距离的比是常数e 的点的集合(或轨迹),只是当0<e <1时为椭圆,当e =1时为抛物线,当e >1时为双曲线.(2)从曲线形状的生成过程来看:圆锥曲线可看成不同的平面截圆锥面所得到的截面的周界,因此,椭圆(包括圆)、抛物线、双曲线又统称为圆锥曲线.2.圆锥曲线共同特征的应用设F 为圆锥曲线的焦点,A 为曲线上任意一点,d 为点A 到定直线的距离,由AF d=e 变形可得d =AF e.由这个变形可以实现由AF 到d 的转化,借助d 则可以解决一些最值问题.[对应学生用书P36][例1] 已知动点M (x ,y )到点F (2,0)与到定直线x =8的距离之比为12,求点M 的轨迹.[思路点拨] 该题有两种解法,一种是利用直译法直接代入化简,另一种是用圆锥曲线的统一定义来求.[精解详析] 法一:由题意得x -2+y 2|x -8|=12,整理得x 216+y 212=1.法二:由圆锥曲线的统一定义知,M 点的轨迹是一椭圆.c =2,a 2c=8,则a 2=16,∴a =4,∴e =24=12,与已知条件相符,∴椭圆中心在原点,焦点(±2,0),准线x =±8,b 2=12, 其方程为x 216+y 212=1.[一点通](1)解决此类题目有两种方法:①直接列方程,代入后化简整理即得方程.②根据定义判断轨迹是什么曲线,然后确定其几何性质,从而得出方程.(2)当题目中给出的条件直观上看不符合圆锥曲线定义时,要进行适当的变形,通过推导找出与之相关的距离问题进行验证,通过点与点、点与线间距离的转化去寻找解题途径,对于这种轨迹问题,一般都要通过定义解决.1.平面内的动点P (x ,y )(y >0)到点F (0,2)的距离与到x 轴的距离之差为2,求动点P 的轨迹.解:如图,作PM ⊥x 轴于M ,延长PM 交直线y =-2于N . ∵PF -PM =2.∴PF =PM +2. 又∵PN =PM +2,∴PF =PN .∴P 到定点F 与到定直线y =-2的距离相等.由抛物线的定义知,P 的轨迹是以F 为焦点以y =-2为准线的抛物线,顶点在原点,p =4.∴抛物线方程为x 2=8y .∴动点P 的轨迹是抛物线.2.在平面直角坐标系xOy 中,已知F 1(-4,0),直线l :x =-2,动点M 到F 1的距离是它到定直线l 距离d 的2倍.设动点M 的轨迹曲线为E .(1)求曲线E 的轨迹方程;(2)设点F 2(4,0),若直线m 为曲线E 的任意一条切线,且点F 1,F 2到m 的距离分别为d 1,d 2,试判断d 1d 2是否为常数,并说明理由.解:(1)由题意,设点M (x ,y ),则有MF 1=x +2+y 2,点M (x ,y )到直线l 的距离d =|x -(-2)|=|x +2|, 故x +2+y 2=2|x +2|,化简得x 2-y 2=8.故动点M 的轨迹方程为x 2-y 2=8. (2)d 1d 2是常数,证明如下:若切线m 斜率不存在,则切线方程为x =±22, 此时d 1d 2=(c +a )·(c -a )=b 2=8.当切线m 斜率存在时,设切线m :y =kx +t , 代入x 2-y 2=8,整理得:x 2-(kx +t )2=8, 即(1-k 2)x 2-2tkx -(t 2+8)=0. Δ=(-2tk )2+4(1-k 2)(t 2+8)=0, 化简得t 2=8k 2-8.又由kx -y +t =0,d 1=|-4k +t |k 2+1,d 2=|4k +t |k 2+1, d 1d 2=|16k 2-t 2|k 2+1=|16k 2-k 2-k 2+1=8,8为常数.综上,对任意切线m ,d 1d 2是常数.[例2] 若点P 的坐标是(-1,-3),F 为椭圆x 216+y 212=1的右焦点,点Q 在椭圆上移动,当QF +12PQ 取得最小值时,求点Q 的坐标,并求出最小值.[思路点拨] 利用定义把QF 转化成到准线的距离,然后再求它与12PQ 的和的最小值.[精解详析] 在x 216+y 212=1中a =4,b =2 3,c =2,∴e =12,椭圆的右准线l :x =8,过点Q 作QQ ′⊥l 于Q ′, 则QFQQ ′=e . ∴QF =12QQ ′.∴QF +12PQ =12QQ ′+12PQ =12(QQ ′+PQ ).要使QQ ′+PQ 最小,由图可知P 、Q 、Q ′三点共线,所以由P 向准线l 作垂线,与椭圆的交点即为QF +12PQ 最小时的点Q ,∴Q 的纵坐标为-3,代入椭圆得:Q 的横坐标为x =2. ∴Q 为(2,-3),此时QF +12PQ =92.[一点通] 利用圆锥曲线的定义通过把到焦点的距离转化为到准线的距离,或把到准线的距离转化为到焦点的距离,从而求得距离问题的最值是这一部分的常见题型,应熟练掌握.3.已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),M 为双曲线的动点,求MA +35MF 的最小值.解:双曲线离心率e =53,由圆锥曲线的共同性质知MFd =e (d 为点M 到右准线l 的距离),右准线l 的方程为x =95,而AM +35MF =MA +35de =MA +d .显然当AM ⊥l 时,AM +d 最小,而AM +d 的最小值为A 到l 的距离为9-95=365.即MA +53MF 的最小值为365.4.已知定点A (-2,3),点F 为椭圆x 216+y 212=1的右焦点,点M 在椭圆上运动,求AM+2MF 的最小值,并求此时点M 的坐标.解:∵a =4,b =23,∴c =a 2-b 2=2.∴离心率e =12.A 点在椭圆内,设M 到右准线距离为d ,则MF d =e ,即MF =ed =12d ,右准线l :x =8.∴AM +2MF =AM +d .∵A 点在椭圆内,∴过A 作AK ⊥l (l 为右准线)于K ,交椭圆于点M 0.则A 、M 、K 三点共线,即M 与M 0重合时,AM +d 最小为AK ,其值为8-(-2)=10. 故AM +2MF 的最小值为10,此时M 点坐标为(23,3).[例3] 求椭圆x 216+y 225=1的离心率与准线方程,并求与该椭圆有相同准线,且离心率互为倒数的双曲线方程.[思路点拨] 由方程确定a ,c ,从而求e 与准线,由椭圆的准线、离心率,再确定双曲线的实轴长、虚轴长,从而求出双曲线的方程.[精解详析] 由x 216+y 225=1知a =5,b =4,c =3,e =c a =35,准线方程为y =±253.设双曲线虚半轴长为b ′,实半轴长为a ′,半焦距为c ′,离心率为e ′. 则e ′=1e =53,又∵a 2c =a ′2c ′=253.解得:a ′=1259,c ′=62527,b ′2=250 000729.双曲线方程为81y 215 625-729x2250 000=1.[一点通] 在圆锥曲线中,a ,b ,c ,e ,p 是确定图形形状的特征量,把握它们之间的内在联系是解决此类问题的关键.5.过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A ,B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为________.解析:设圆锥曲线的离心率为e ,M 为AB 的中点,A ,B 和M 到准线的距离分别为d 1,d 2和d ,圆的半径为R ,d =d 1+d 22,R =AB 2=FA +FB 2=e d 1+d 22.由题意知R >d ,则e >1,故圆锥曲线为双曲线.答案:双曲线6.(天津高考)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点, 且双曲线的离心率为2,则该双曲线的方程为________.解析:抛物线y 2=8x 的准线x =-2过双曲线的一个焦点,所以c =2,又离心率为2,所以a =1,b =c 2-a 2=3,所以该双曲线的方程为x 2-y 23=1.答案:x 2-y 23=11.圆锥曲线的准线:在求解圆锥曲线的准线时,应根据曲线的方程先化为其对应的标准形式,通过标准形式确定好曲线的焦点在坐标轴的位置,求出相应的量a 、c 或p ,然后写出其准线.2.圆锥曲线的判断:要判断所给曲线是哪种圆锥曲线,常利用圆锥曲线的定义求解,其思路是: (1)如果遇到有动点到两定点的距离问题应自然联想到椭圆及双曲线的定义.(2)如果遇到动点到一个定点和一条定直线的距离问题,应自然联想到椭圆、双曲线和抛物线的统一定义.[对应课时跟踪训练(十四)]1.若双曲线x 28-y 2b2=1的一条准线与抛物线y 2=8x 的准线重合,则双曲线的离心率为________.解析:根据题意和已知可得方程组⎩⎪⎨⎪⎧a 2c=2,a 2=8,⇒⎩⎨⎧c =4,a =2 2,⇒e = 2.答案: 22.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则cos ∠F 1PF 2的值是________.解析:曲线C 1:x 26+y 22=1与曲线C 2:x 23-y 2=1的焦点重合,两曲线共有四个交点,不妨设P 为第一象限的交点.则PF 1+PF 2=26,PF 1-PF 2=23,解得PF 1=6+3,PF 2=6-3.又F 1F 2=4,在△F 1PF 2中,由余弦定理可求得 cos ∠F 1PF 2=6+32+6-32-426+36-3=13. 答案:133.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则PM +PN 的最小值、最大值分别为________________.解析:PM +PN 最大值为PF 1+1+PF 2+1=12,最小值为PF 1-1+PF 2-1=8. 答案:8,124.(福建高考)椭圆Γ:x 2a2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,MF 1=c ,MF 2=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1.答案:3-15.已知椭圆x 24+y 22=1内部的一点为A ⎝ ⎛⎭⎪⎫1,13,F 为右焦点,M 为椭圆上一动点,则MA +2MF 的最小值为________.解析:设M 到右准线的距离为d , 由圆锥曲线定义知MFd =22,∴d =2MF . ∴MA +2MF =MA +d .由A 向右准线作垂线,垂线段长即为MA +d 的最小值.MA +d ≥2 2-1.答案:2 2-16.已知双曲线x 2a 2-y 2b2=1的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,求此双曲线离心率e 的最大值.解:设P 点坐标为P (x 0,y 0),由圆锥曲线的统一定义得:e =PF 1x 0+a 2c =PF 2x 0-a 2c,把PF 1=4PF 2. 代入则有:x 0+a 2c =4⎝⎛⎭⎪⎫x 0-a 2c .整理得5a2c=3x 0≥3a (∵x 0≥a ).∴e =c a ≤53.∴离心率e 的最大值为53.7.已知平面内的动点P 到定直线l :x =2 2的距离与点P 到定点F (2,0)之比为 2. (1)求动点P 的轨迹C 的方程;(2)若点N 为轨迹C 上任意一点(不在x 轴上),过原点O 作直线AB ,交(1)中轨迹C 于点A 、B ,且直线AN 、BN 的斜率都存在,分别为k 1、k 2,问k 1·k 2是否为定值?解:(1)设点P (x ,y ),依题意,有x -22+y 2|x -2 2|=22. 整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1. (2)由题意,设N (x 1,y 1),A (x 2,y 2),则B (-x 2,-y 2),x 214+y 212=1,x 224+y 222=1.k 1·k 2=y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=y 21-y 22x 21-x 22=2-12x 21-2+12x 22x 21-x 22=-12,为定值. 8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右准线l 2与一条渐近线l 交于点P ,F 是双曲线的右焦点.(1)求证:PF ⊥l ;(2)若PF =3,且双曲线的离心率e =54,求该双曲线的方程.解:(1)证明:右准线为l 2:x =a 2c ,由对称性不妨设渐近线l 为y =b a x ,则P ⎝ ⎛⎭⎪⎫a 2c ,ab c ,又F (c,0),∴k PF =abc -0a 2c-c =-ab .又∵k l =b a ,∴k PF ·k l =-a b ·b a=-1.∴PF ⊥l . (2)∵PF 的长即F (c,0)到l :bx -ay =0的距离, ∴|bc |a 2+b 2=3,∴b =3.又e =c a =54,∴a 2+b 2a 2=2516.∴a =4.故双曲线方程为x 216-y 29=1.[对应学生用书P38]一、圆锥曲线的意义1.椭圆平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.(1)焦点:两个定点F1,F2叫做椭圆的焦点.(2)焦距:两焦点间的距离叫做椭圆的焦距.2.双曲线平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线.(1)焦点:两个定点F1,F2叫做双曲线的焦点.(2)焦距:两焦点间的距离叫做双曲线的焦距.3.抛物线平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.二、圆锥曲线的标准方程及几何性质1.椭圆的标准方程和几何性质2.双曲线的标准方程和几何性质3. 抛物线的标准方程和几何性质三、圆锥曲线(椭圆、双曲线、抛物线)的共同性质1.圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e .这个常数e 叫值圆锥曲线的离心率,定点F 就是圆锥曲线的焦点,定直线l 就是该圆锥曲线的准线.2.椭圆的离心率满足0<e <1,双曲线的离心率e >1,抛物线的离心率e =1.⎣⎢⎡⎦⎥⎤对应阶段质量检测二 见8开试卷 (时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.(江苏高考)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:令x 216-y 29=0,解得y =±34x .答案:y =±34x2.(四川高考改编)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是________.解析:因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y =±3x ,所以所求距离为|±3×1-0|1+3=32.答案:323.(辽宁高考)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题意因为PQ 过双曲线的右焦点(5,0),所以P ,Q 都在双曲线的右支上,则有FP -PA =6,FQ -QA =6,两式相加,利用双曲线的定义得FP +FQ =28,所以△PQF 的周长为FP +FQ +PQ =44.答案:444.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析:设P (x ,y ),动圆P 在直线x =1的左侧,其半径等于1-x ,则PC =1-x +1,即x +2+y 2=2-x .∴y 2=-8x . 答案:y 2=-8x5.两个焦点为(±2,0)且过点P ⎝ ⎛⎭⎪⎫52,-32的椭圆的标准方程为________.解析:∵两个焦点为(±2,0), ∴椭圆的焦点在x 轴上,且c =2.设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫522a 2+⎝ ⎛⎭⎪⎫-322b 2=1a 2-b 2=4,,解得a 2=10,b 2=6.∴椭圆的标准方程为x 210+y 26=1.答案:x 210+y 26=16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,AF =2,则BF =________. 解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有,焦点F (1,0),AF =x 1+1=2,x 1=1,直线AF 的方程是x =1,故BF =AF =2.答案:27.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.解析:在△ABF 中,AF 2=AB 2+BF 2-2AB ·BF ·cos∠ABF =102+82-2×10×8×45=36,则AF =6.由AB 2=AF 2+BF 2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =OF =AB2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以BF =AF 1=8.由椭圆的性质可知AF +AF 1=14=2a ⇒a =7,则e =c a =57.答案:578.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是________.解析:设P (x ,y )为抛物线上任意一点,则P 到直线的距离d =|2x -y -4|5=|2x -x 2-4|5=x -2+3|5,∴当x =1时,d 取最小值35,此时P 的坐标为(1,1).答案:(1,1)9.设点P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)与圆x 2+y 2=2a 2的一个交点,F 1,F 2分别是双曲线的左、右焦点,且PF 1=3PF 2,则双曲线的离心率为________.解析:由⎩⎪⎨⎪⎧PF 1-PF 2=2a ,PF 1=3PF 2得PF 1=3a ,PF 2=a ,设∠F 1OP =α,则∠POF 2=180°-α, 在△PF 1O 中,PF 21=OF 21+OP 2-2OF 1·OP ·cos α ①,在△OPF 2中,PF 22=OF 22+OP 2-2OF 2·OP ·cos(180°-α) ②,由cos(180°-α)=-cos α与OP =2a , ①+②得c 2=3a 2,∴e =ca=3aa= 3.答案: 310.已知双曲C 1=x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐进线的距离为2,则抛物线C 2的方程为______________________.解析:∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的率心率为2.∴c a =a 2+b 2a=2,∴b =3a .∴双曲线的渐近线方程为 3 x ±y =0.∴抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为⎪⎪⎪⎪⎪⎪3×0±p 22=2.∴p =8.∴所求的抛物线方程为x 2=16y . 答案:x 2=16y11.(新课标全国卷Ⅰ改编)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.解析:因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3.所以E 的方程为x 218+y 29=1.答案:x 218+y 29=112.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则PF 1·PF 2的值是________.解析:取P 在双曲线的右支上,则⎩⎨⎧PF 1+PF 2=2 m ,PF 1-PF 2=2 a ,∴⎩⎨⎧PF 1=m +a ,PF 2=m -a .∴PF 1·PF 2=(m +a )(m -a )=m -a . 答案:m -a13.若椭圆mx 2+ny 2=1(m >0,n >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 的中点的连线斜率为22,则nm的值为________. 解析:设A (x 1,y 1),B (x 2,y 2),AB 中点(x 0,y 0).由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x ,得(m +n )x 2-2nx +n -1=0∴x 1+x 2=2n m +n ,∴x 0=n m +n .∴y 0=mm +n. 又y 0x 0=22,∴m n =22,∴nm= 2. 答案: 214.(四川高考改编)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由已知,点P (-c ,y )在椭圆上,代入椭圆方程,得P ⎝⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB=k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.答案:22二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知双曲线与椭圆x 236+y 249=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为37,求双曲线的方程.解:在椭圆x 236+y 249=1中,焦点坐标为(0,±13),离心率e ′=137, 设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),∴⎩⎪⎨⎪⎧a 2+b 2=13,137∶a 2+b 2a =37,解得⎩⎪⎨⎪⎧a 2=9,b 2=4.∴双曲线的方程为y 29-x 24=1.16.(本小题满分14分)已知中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为32,且与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆的方程.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),∵e =32,∴a 2=4b 2,即a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.把直线方程代入并化简,得5x 2-8x +4-4b 2=0. 设M (x 1,y 1)、N (x 2,y 2),则x 1+x 2=85,x 1x 2=15(4-4b 2).∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=15(1-4b 2).由于OM ⊥ON ,∴x 1x 2+y 1y 2=0. 解得b 2=58,a 2=52.∴椭圆方程为25x 2+85y 2=1.17.(本小题满分14分)如图,F1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程为y =-3(x -c ).代入椭圆方程3x 2+4y 2=12c 2,得B ⎝ ⎛⎭⎪⎫85c ,-335c .所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设AB =t .因为|AF 2|=a ,所以|BF 2|=t -a . 由椭圆定义BF 1+BF 2=2a 可知,BF 1=3a -t . 由余弦定理得(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.18.(本小题满分16分)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与C 相交于A ,B 两点,若|AB |=8,求直线l 的方程.解:抛物线y 2=4x 的焦点为F (1,0),当直线l 斜率不存在时,|AB |=4,不合题意.设直线l 的方程为y =k (x -1),代入y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由题意知k ≠0,则x 1+x 2=2k 2+4k2.由抛物线定义知,|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2, ∴x 1+x 2+2=8,即2k 2+4k2+2=8.解得k =±1.所以直线l 的方程为y =±(x -1), 即x -y -1=0,x +y -1=0.19.(本小题满分16分)(陕西高考)已知动点M (x ,y )到直线l :x =4的距离是它到点N (1,0)的距离的2倍.(1)求动点M 的轨迹C 的方程;(2)过点P (0,3)的直线m 与轨迹C 交于A ,B 两点,若A 是PB 的中点,求直线m 的斜率. 解:(1)设M 到直线l 的距离为d ,根据题意d =2|MN |.由此得|4-x |=2x -2+y 2,化简得x 24+y 23=1,所以,动点M 的轨迹方程为x 24+y 23=1.(2)法一:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2).将y =kx +3代入x 24+y 23=1中,有(3+4k 2)x 2+24kx +24=0,其中Δ=(24k )2-4×24(3+4k 2)=96(2k 2-3)>0,故k 2>32.由根与系数的关系得,x 1+x 2=-24k3+4k2,① x 1x 2=243+4k2.② 又因为A 是PB 的中点,故x 2=2x 1,③ 将③代入①,②,得x 1=-8k 3+4k 2,x 21=123+4k2, 可得⎝ ⎛⎭⎪⎫-8k 3+4k 22=123+4k 2,且k 2>32, 解得k =-32或k =32,所以直线m 的斜率为-32或32.法二:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2). ∵A 是PB 的中点, ∴x 1=x 22,①y 1=3+y 22.② 又x 214+y 213=1,③ x 224+y 223=1,④ 联立①,②,③,④解得⎩⎪⎨⎪⎧x 2=2,y 2=0,或⎩⎪⎨⎪⎧x 2=-2,y 2=0.即点B 的坐标为(2,0)或(-2,0), 所以直线m 的斜率为-32或32.20.(本小题满分16分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P ,Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积.解:(1)设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|, 故∠B 1AB 2为直角,从而|OA |=|OB 2|,即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2, 由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20. 因此所求椭圆的标准方程为x 220+y 24=1. (2)由(1)知B 1(-2,0),B 2(2,0).由题意,直线PQ 的倾斜角不为0, 故可设直线PQ 的方程为x =my -2,代入椭圆方程得 (m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是方程(*)的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5. 又2B P =(x 1-2,y 1),2B Q =(x 2-2,y 2),所以2B P ·2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-m 2+m 2+5-16m2m 2+5+16 =-16m 2-64m 2+5,由PB 2⊥QB 2,知2B P ·2B Q =0, 即16m 2-64=0,解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0. 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8109,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16109.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16109.综上所述,△PB 2Q 的面积为16109.。

圆锥曲线的共同特征、直线与圆锥曲线的交点课件ppt

圆锥曲线的共同特征、直线与圆锥曲线的交点课件ppt
任意一个交点的坐标都满足方程组 gx,y=0. 反过来,该 方程组的任何一组实数解都对应着这两条曲线的某一交点的
坐标.
1.椭圆、双曲线、抛物线上的点都满足到定点的距离 与到定直线的距离的比值是常数e.
2.直线方程与曲线方程联立方程组转化为一元二次方 程是解决直线与曲线相交问题的基本方法.
[例 1] 曲线上的点 M(x,y)到定点 F(5,0)的距离和它 到直线 l:x=156的距离之比是常数54,(1)求此曲线方程;(2) 在曲线求一点 P 使|PF|=5.
∴x12+4y12=16,x22+4y22=16. 两式相减,得(x12-x22)+4(y21-y22)=0, 即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0, ∴xy11- -yx22=-4yx11++yx22=-12,即 kAB=-12. ∴所求直线方程为 y-1=-12(x-2), 即 x+2y-4=0.
∴|PA|+2|PF|=|PA|+d.
当 P 点的纵坐标(横坐标大于零)与 A 点的
纵坐标相同时,|PA|+d 最小,如图. 把 y=2 代入1x62 +1y22 =1,

x=4 3
6(负值舍之),即
4
P
3
6,2为所求的点.
[例2]
若直线y=kx+1与焦点在x轴上的椭圆
x2 5

y2 m
=1
总有公共点,求m的取值范围.
[思路点拨] 设 A(x1,y1),B(x2,y2),把 A,B 两点的坐标代 入椭圆方程相减(点差法)再结合中点坐标公式求出直线 AB 的斜 率,从而可求直线 AB 的方程,再联立方程求得 A、B 的坐标,根 据两点间的距离公式求|AB|.
[精解详析] 设 A(x1,y1),B(x2,y2),由 A,B 两点在椭

2.5 圆锥曲线的共同性质

2.5  圆锥曲线的共同性质

2.5圆锥曲线的共同性质班级__________姓名____________ ______年____月____日【教学目标】了解圆锥曲线的统一定义,掌握根据标准方程求圆锥曲线准线方程的方法. 【教学重点】解决与准线相关的简单的圆锥曲线问题. 【教学难点】根据标准方程求圆锥曲线准线方程. 【教学过程】 一、引入:1.椭圆、双曲线定义相似,抛物线的定义与椭圆、双曲线的定义区别在何处?2.离心率:椭圆0<e <1 ,双曲线e >1, 抛物线有没有离心率?什么曲线的离心率等于1?二、新授内容:问题1.在推导椭圆的标准方程时,我们曾经得到这样一个式子2a cx -=,ca x c=-,你能解释这个式子的几何意义吗?问题2.已知点),(y x P 到定点)0,(c F 的距离与到定直线l :2a x c =的距离之比是常数(0)ca c a>>,求点P 的轨迹方程.变式:将条件0a c >>改为0c a >>呢?1.圆锥曲线的统一定义:平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹.当 时,它表示椭圆; 当 时,它表示双曲线; 当 时,它表示抛物线.其中e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点,定直线l 是圆锥曲线的准线.2.椭圆22221(0)x y a b a b +=>>的准线方程是_________________________;双曲线22221(0,0)x y a b a b-=>>的准线方程是_____________________.例2.求下列曲线的焦点坐标和准线方程:(1)22416x y +=; (2)22832y x -=; (3)20x y +=.【变式拓展】求下列曲线的准线方程:①2222153x y +=; ②222516400x y +=; ③22832x y -=;④224x y -=-; ⑤216y x =; ⑥23x y =-.【变式拓展】(2)焦点坐标为,(,准线方程为x =±的椭圆方程为 .(3)顶点坐标为(0,2),(0,2)-,准线方程为43y =±的双曲线方程为 .反思:例3.已知椭圆2212516x y +=上一点P 到左焦点的距离为3,求点P 到椭圆右准线的距离.【变式拓展】已知双曲线2216436x y -=上一点P 到左焦点的距离为14,求P 点到右准线的距离.例3.填空题专项:(1)到定点(5,0)A 及定直线165l x =:的距离之比为5:4的点的轨迹方程为 .(2)设双曲线的两条准线把两焦点间的线段三等分,则此双曲线的离心率为 .(3)已知P 是椭圆22x a +22y b=1(a >b >0)上任意一点,P 与两焦点连线互相垂直,且P 到两准线距离分别为6,12,则椭圆方程为__________________.*(4)椭圆22143x y +=内有一点(1,1)P -,F 为右焦点,椭圆上有一点M ,使2MP MF +最小,则点M 坐标为 .三、课堂反馈:1.中心在原点,准线方程为4y =±,离心率为12的椭圆方程是 .2.已知双曲线的焦点为(,渐近线方程为32y x =±,则它的两条准线间的距离是________.3.已知双曲线22194x y -=上一点P 到右焦点的距离为3,则点P 到左准线的距离为 .4.已知椭圆22221(0)x y a b a b+=>>的焦点到相应准线的距离等于a ,则椭圆的离心率为 .*5.椭圆()222210x y a a b+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .四、课后作业: 学生姓名:___________ 1.椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是 .2.双曲线的两条准线分顶点间距离为三等分,则双曲线的离心率为_________.3.已知双曲线22221(0,0)x y a b a b-=>>一条渐近线方程是y ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为 .4.双曲线的渐近线方程为2y x =±,焦点在x , 则双曲线的方程为 .5.椭圆2212516x y +=上的点A 到右焦点的距离等于4,则点A 到两条准线的距离分别为__________.6.已知双曲线22x a -22y b=1(0,0a b >>)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (o 为原点),则渐近线的方程为_______________.*7.对于顶点在原点的抛物线,给出下列条件:(1)焦点在y 轴上; (2)焦点在x 轴上; (3)抛物线上横坐标为1的点到焦点的距离等于6; (4)抛物线的通径的长为5; (5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 其中适合抛物线210y x =的是 (要求写出所有适合条件的序号)____________.8.若双曲线22116x y k-=的一条准线恰好为圆2220x y x ++=的一条切线,则实数k 为________.9.已知点P 在抛物线24x y =上运动,F 为抛物线的焦点,点A 的坐标为(2,3), 求PA PF +的最小值及此时点P 的坐标.*10.已知(A -是椭圆2211612y x +=内一点,2F 是椭圆的上焦点,点M 在椭圆上移动,当22MA MF +取最小值时,求点M 的坐标.。

高中数学第2章圆锥曲线与方程2.5圆锥曲线的共同性质课件苏教版选修11

高中数学第2章圆锥曲线与方程2.5圆锥曲线的共同性质课件苏教版选修11



段(jຫໍສະໝຸດ (jiēiē
d
d
u
u
à n)
2.5 圆锥曲线的共同性质
à n)



段 (j iē d u à
学 业 分 层 测 评
n)

第一页,共35页。
1.了解圆锥曲线的共同性质.(重点) 2.能用坐标法解决一些与圆锥曲线有关的简单几何问题.(难点)
第二页,共35页。
[基础·初探] 教材整理 圆锥曲线的共同性质 阅读教材 P53 至思考以上部分,完成下列问题. 1.圆锥曲线的共同性质: 圆锥曲线上的点到一个定点 F 和到一条定直线 l(F 不在定直线 l 上)的距离之比 是一个 常数(chán. gshù)e 这个 常数(cháng叫sh做ù)e圆锥曲线的离心率, 定点(dìnɡ diǎn)就F 是圆锥曲线的焦 点, 定直线l 就是该圆锥曲线的准线.
第三十二页,共35页。
4.椭圆x42+y32=1 上一点 P 到其焦点的距离为 2,则点 P 到对应的准线的距离 为________.
【解析】 由题意知 a=2,c=1,∴e=12,所以 p 到准线的距离为 2÷12=4. 【答案】 4
第三十三页,共35页。
5.椭圆1x020+3y62 =1 上有一点 P,它到椭圆的左准线的距离为 10,求点 P 到椭 圆的右焦点的距离.
义得,P 到右焦点的距离为 2a-258=10-258=252.
第十九页,共35页。
[探究共研型]
利用(lìyòng)圆锥曲线的定义求最值
探究 1 根据椭圆(双曲线)的共同性质,椭圆(双曲线)上一点 P 到其焦点 F 的 距离 PF,与点 P 到对应准线的距离 d 有什么关系?

圆锥曲线的共同特征教案

圆锥曲线的共同特征教案

圆锥曲线的共同特征一、教学目标:1、知识与技能:通过本节的学习,掌握圆锥曲线的共同性质,理解离心率、焦点、准线的意义.2、过程与方法:教材通过多媒体课件演示连续变化的圆锥曲线,通过观察、类比、归纳总结得出圆锥曲线的共同性质.3、情感、态度与价值观:通过本节的学习,可以培养我们观察、猜想、归纳、推理的能力,感受圆锥曲线的统一美.二、教学重点:圆锥曲线第二定义的推导;教学难点:对圆锥曲线第二定义的理解与运用三、教学方法:讨论探究法四、教学过程(一)复习回顾1、椭圆的定义:平面内到两定点 F 1、F 2 距离之和等于常数 2a (2a>|F 1F 2|)的点的轨迹 表达式 |PF 1|+|PF 2|=2a (2a>|F 1F 2|)2、抛物线的定义:平面内到定点F 的距离和到定直线的距离相等的点的轨迹 表达式|PF|=d (d 为动点到定直线距离)3 、双曲线的定义:平面内到两定点F 1、F 2 距离之差的绝对值等于常数2a (2a< |F 1F 2| )的点轨迹 表达式||PF 1|-|PF 2||=2a (2a<|F 1F 2|)4、求轨迹方程的方法:定义法、直接法、相关点法(二)新课导入学生看课本P24《椭圆的标准方程》、P32《双曲线的标准方程》 思考:在推导椭圆的标准方程时,我们曾得到这样的一个式子:你能解释这个式子的几何意义吗? (三)自主学习:P86(四)学生练习:见课本P87 1、2(五)讨论交流:思考1:通过以上求轨迹方程,你有哪些发现? 思考2: 2a cx -=c a x c =-2a P(x,y)F(c,0):x=c c (),P a>0.ac>已知点到定点的距离与它到定直线l 的距离的比是常数求点的轨迹解:由题意可得ac x ca y c x =-+-222)( 化简得 )()(22222222c a a y a x c a -=+-。

令222b c a =-,则上式可以化为 )0(12222>>=+b a by a x若将条件0>>c a 改为c a <<0呢?由上例知,椭圆上的点P 到定点F 的距离和它到一条定直线l (F 不在l 上)的距离的比是一个常数,这个常数就是椭圆的离必率e类似地,可以得到:双曲线上的点P 到定点F (c ,0)的距离和它到定直线ca x l 2:=(2220a c b a c -=>>,)的距离的比是一个常数,这个常数a c 就是双曲线的离心率e 。

【高二数学】圆锥曲线的共同特征

【高二数学】圆锥曲线的共同特征
想一想:当这个比值是一个不等于1的常 数时,动点P的轨迹又是什么曲线呢?
Ⅱ.合作交流,探究新知
(一)探索发现
例1:曲线上的点M(x,y)与定点F(2,0)的距离和它
到定直线l: x 8 的距离的比是常数 1 ,求曲线
2
方程。
y
解:设d是点M到直线l: x 8
Md H
的距离,
| MF
根据题意,点M满足: d
A 椭圆 B 双曲线 C 线段 D 抛物线
2.中心在原点,准线方程为
x 4 ,离心率为
1 2

椭圆的标准方程是___________. 3.椭圆 x2 y 2 1 上一点 P 到一个焦点 F(3,0) 的
25 16
距离等于3,则点 P到直线 x 10 的距离为___.
4.已知双曲线 x2 y2 1上一点 P 到左焦点的距离
a2 x
c e (1) a
c
y
x a2
..P(x, y)
c
o F2 (c,0)
x
推导双曲线标准方程的部分步骤:
定义:PF1 PF2 2a(0 a c)
列式: (x c)2 y2 (x c)2 y2 2a 移项: (x c)2 y2 2a (x c)2 y2
|

1, 2
OF
x
l
由此得 (x 2)2 y2 1,
|8 x |
2
将上式两边平方,并化简,得
3x2 4 y2 48, 即 x2 y 2 1,
16 12
y
Md H
OF
x
这是一个椭圆。
l
【 思考交流 】

圆锥曲线共同性质

圆锥曲线共同性质

由几何性质可知,当 P 点的纵坐标(横坐 标大于零)与 A 点的纵坐标相同时,|PA| +d 即|PA|+2|PF|最小. 把 y=2 代入1x62+1y22 =1,得 x=436(负 值舍去),

P4
3
6,2为所求.
【名师点评】 本类题是圆锥曲线中求最值的 一类典型问题,解题的方法也是相通的,都是 利用定义实现转化.
知新益能
1.圆锥曲线的共同性质及离心率和准线的定义
圆锥曲线定义中的__定__点__就F 是圆锥曲线的____焦,定点直 线l就是圆锥曲线的____,常准数线e叫做圆锥曲线的 ____离__.心率
椭圆、双曲线、抛物线的共同性质: 圆锥曲线上任一点到焦点F的距离和到同侧准线l的距 离之比等于离心率e. 显然,椭圆的离心率满足0<e<1,双曲线的离心率满 足e>1,抛物线的离心率满足e=1.
(3)圆锥曲线的准线总是垂直于其焦点所在的对 称轴.
(4)无论平面直角坐标系怎样建立,有关圆锥曲 线的基本量是不会改变的.
对于椭圆和双曲线(如图所示),两条准线之 间的距离为2ca2,焦点到相应准线的距离为 d =c-ac2=c2-c a2=bc2,顶点到相应焦点与 到相应准线的距离的比为 e=||AA11FK1||.
由圆锥曲线的统一定义知|PF1|=ed1=35
x+235=35x+5,
|PF2|=ed2=35235-x=5-35x.8 分 ∵|PF1|∶|PF2|=2∶1, ∴35x+5∶5-35x=2∶1,
解得 x=295,代入椭圆的方程得 y=±89 14.12,89
14 或
课堂互动讲练
考点突破
考点一 利用共同性质求方程
平面上,动点 M 到定点 F 的距离 MF 与到定直 线 l 的距离 d 之比MdF=e(e 为大于零的常数)的 点的轨迹是圆锥曲线,当 e∈(0,1)时是椭圆,e =1 时是抛物线,e∈(1,+∞)时是双曲线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学2.5圆锥曲线的共同性质
要点精讲
椭圆、双曲线、抛物线有共同的性质:
圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比是一个常数e. 这个常数e 叫做圆锥曲线的离心率,定点F 就是圆锥曲线的焦点,定直线l 就是该圆锥曲线的准线.
椭圆的离心率满足0<e <1,双曲线的离心率e >1,抛物线的离心率e =1.
根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,准线方程都是
典型题解析
【例1】以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,,则动点P 的轨迹为双曲线;
②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若则动点P 的轨迹为椭圆; ③方程的两根可分别作为椭圆和双曲线的离心率;
④双曲线
135
192522
22=+=-y x y x 与椭圆有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
【分析】本题主要考查圆锥曲线的定义和性质主要由a,b,c,e 的关系求得
【解】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数2a, 且,那么P 点的轨迹为双曲线,故①错, 由,得P 为弦AB 的中点,故②错,
设的两根为则可知两根互与为倒数,且均为正,故③对, 的焦点坐标(),而的焦点坐标(),故④正确.
【点评】要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e 的相互关系.
【例2】设曲线1sin cos 1cos sin 2
2
2
2
=-=+θθθθy x y x 和有4个不同的交点.
(Ⅰ)求θ的取值范围;
(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.
【分析】本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力. 【解】(I )两曲线的交点坐标(x ,y )满足方程组 即
有4个不同交点等价于且即 又因为所以得的取值范围为(0,
(II )由(I )的推理知4个交点的坐标(x ,y )满足方程 即得4个交点共圆,该圆的圆心在原点,半径为 因为在上是减函数,所以由知r 的取值范围是
【例3】设双曲线C 的中心在原点,以抛物线y 2=2x -4的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.
(Ⅰ)试求双曲线C 的方程;
(Ⅱ)设直线l:y=2x +1与双曲线C 交于A .B 两点,求|AB|;
(Ⅲ)对于直线y=kx +1,是否存在这样的实数k ,使直线l 与双曲线C 的交点A .B 关于直线y=ax(a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.
【分析】(Ⅰ)由已知条件判断双曲线C 的焦点在x 轴上,然后求双曲线标准方程中的a ,b ;
(Ⅱ)利用弦长公式求|AB|;
(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点A .B 关于直线y=ax(a 为常数)对称求k 值,发现矛盾,从而判断不存在这样的实数k ,使直线l 与双曲线C 的交点A .B 关于直线y=ax(a 为常数)对称. 【解】(Ⅰ)由抛物线y 2=2x -4,即y 2=2 (x -),
可知抛物线顶点为(,0),准线方程为x=.
在双曲线C 中,中心在原点,右焦点(,0),右准线x=,
∴⎪⎪⎪⎩
⎪⎪⎪⎨⎧===⇒⎪⎪⎪⎩
⎪⎪⎪⎨⎧
+===33
21
3363322222c b a b a c c a c ∴双曲线c 的方程3x 2-y 2=1 (Ⅱ)由0241)12(31
31
22222
2=++⇒=+-⇒⎩⎨⎧=-+=x x x x y x x y
∴|AB|=2
(Ⅲ)假设存在实数k ,使A .B 关于直线y=ax 对称,设A(x 1,y 1).B(x 2,y 2),
则⎪⎪⎩⎪
⎪⎨⎧
+⋅=+++=+-=2
22)(121212121x x a y y x x k y y ka 由022)3(1
31222
2=---⇒⎩⎨⎧-=+=kx x k x y kx y ④ 由②③,有a(x 1+x 2)=k(x 1+x 2)+2 ⑤ 由④知:x 1+x 2=代入⑤
整理得ak=3与①矛盾,故不存在实数k ,使A .B 关于直线y=ax 对称.
【点评】两点关于一直线对称有两方面的含义:一是两点的连线与已知直线垂直;另一方面两点的连线段的中点在已知直线上.
【例4】已知椭圆的左、右焦点分别是 、,是椭圆外的动点,满足,
点P是线段与该椭圆的交点,点T在线段上,并且 满足.
(Ⅰ)设为点P的横坐标,证明 ; (Ⅱ)求点T的轨迹C的方程;
∠的正切值;若不存在,请说明理由.
【分析】用,以及综合运用数学知识解决问题的能力.. (Ⅰ)证法一:设点P 的坐标为 由P 在椭圆上,得
.
)()()(||22
222
2
2
2
1x a
c
a x
a b b c x y c x F +=-++=++=
由0,>+-≥+
≥a c x a
c
a a x 知,所以 证法二:设点P 的坐标为记
则.)(,)(222221y c x r y c x r ++=++=
由cx r r a r r 4,2222121=-=+,得

证法三:设点P 的坐标为
② ③
椭圆的左准线方程为 由椭圆第二定义得,即.||||||2
1x a
c a c a x a c F +=+= 由0,>+-≥+
-≥a c x a
c
a a x 知,所以
(Ⅱ)解法一:设点T 的坐标为
当时,点(,0)和点(-,0)在轨迹上. 当|时, 由,得.
又,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,,所以有
综上所述,点T 的轨迹C 的方程是
解法二:设点T 的坐标为 当时,点(,0)和点(-,0)在轨迹上. 当|时,由,得.
又,所以T 为线段F 2Q 的中点.
设点Q 的坐标为(),则⎪⎪⎩
⎪⎪⎨

'=+'=.2,2y y c x x 因此 ① 由得 ② 将①代入②,可得
综上所述,点T 的轨迹C 的方程是
(Ⅲ)解法一:C 上存在点M ()使S=的充要条件是
⎪⎩⎪⎨⎧=⋅=+.||22
1,
2
022020b y c a y x 由③得, 由④得
所以,当时,存在点M ,使S=; 当时,不存在满足条件的点M.
当时,),(),,(002001y x c MF y x c MF --=---=, 由2
2
2
2
02
2
021b c a y c x MF =-=+-=⋅,
212121cos ||||MF F MF MF MF ∠⋅=⋅,
22121sin ||||2
1
b MF F MF MF S =∠⋅=
,得
解法二:
③ ④
C 上存在点M ()使S=的充要条件是
⎪⎩⎪⎨⎧=⋅=+.||221,2
022020b y c a y x 由④得 上式代入③得
.0))((2
2242
20
≥+-=-=c b a c b a c
b a x
于是,当时,存在点M ,使S=;
当时,不存在满足条件的点M.
当时,记c x y k k c x y k k M F M F -==+==00
200121
,,
由知,所以
规律总结
1.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线的方程联立成方程
组,消去y 得关于x 的方程,讨论得关于x 的方程解的情况对应得到直线与圆锥曲线的位置关系.一般注意以下三点:
(1)要注意与两种情况,只有时,才可用判别式来确定解 的个数; (2)直线与圆锥曲线相切时,一定有 ;
(3)直线与圆锥曲线有且只有一个交点时,不一定相切.对椭圆来讲,一定相切;对双曲线来讲,除了相切,还有一种相交,此时 此时直线与渐近线平行,直线与双曲线的一支相交有一个交点; 对抛物线来说,除了相切,还有一种相交,此时 此时直线与抛物线的对称轴平行只有一个交点. 2.直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相交,此时直线被圆锥曲线截得的线段称
为圆锥曲线的弦.当弦所在直线的斜率k 存在时.利用两点距离公式()
2
1221221)(y y x x P P -+-=及斜率公式得
弦长公式为:()()[]
212
212
122
21411x x x x
k x x k P P -++=
-+=,
或当弦所在直线的斜率k 存在且非零时,弦长公式可表示为:
()[]
212
212
1222141111y y y y k y y k P P -+⎪⎭
⎫ ⎝⎛+=-+
=. ③
④。

相关文档
最新文档