高中数学讲义微专题80 排列组合中的常见模型
高中数学排列组合中几种常见的数学模型-文档资料
高中数学排列组合中几种常见的数学模型排列组合问题是高考中必考的一个类型题,常常单独命题或与概率内容等相结合,一般以较容易题出现,但由于解这类问题时方法灵活,切人点多,且抽象性极强,在解题过程中发生重复或遗漏现象不易被发现,所以又成为高中学生学习的难点之一。
故在解题过程中通过分类、分步把复杂问题分解,找出问题的切入点,建立合理的数学模型,将问题简单化、常规化。
一、特殊元素优先数学模型对于存在特殊元素或特殊位置的排列组合问题,我们可以从这些“特殊”入手,先满足特殊元素或特殊位置,再去满足其他元素或其他位置,这种模型称为“特殊元素优先数学模型”。
例1.用0,1,2,3,4,5这六个数字可组成无重复数字的四位偶数____个。
(用数字作答)解:先安排四位偶数的个位上的数字(优先考虑)。
无重复数字的四位偶数中如果个位数是0共有C■A■个,同时如果个位数是2或4共有C■C■A■=96个,所以,重复数字的四位偶数共有60+96=156个。
点评:特殊元素优先法是比较容易入手的一种方法,在处理此类问题时一是要注意优先考虑有要求的特殊位置的元素,二是要注意与分步计数原理结合运用。
二、捆绑式数学模型对于某些元素要求相邻排列的问题,可先将相邻元素捆绑并看作一个元素再与其它元素进行排列,同时对相邻元素进行自排,这种模型称为“捆绑式数学模型”。
这种模型分为两种,一种是相邻元素要全排列,一种是相邻元素是组合问题,不用排列。
例2.四个工人去住旅店,旅店只剩下三个房间,要求四人中必须有两个住在一个房间,另两个房间各住一人,问共有多少种不同的安排方法?解:第一步:把四个工人中的二个捆绑在一起,共有C■=6种方法;第二步:把四个工人看成三个工人进行排列,共有A■=6种方法。
所以共有36种不同的安排方法。
点评:由于两个工人在同一个房间没有排列问题,所以不能自排。
还有一种典型的错误排法,先在四个人中选出三个工人入住三个房间,有24种方法,再把剩下一个人放下四个房间中的任意一个,共有4种方法,故共有96种方法。
高中数学排列组合问题的几种基本方法
高中数学排列组合问题的几种基本方法总结1. 分组(堆)问题分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.)处理问题的原则:①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m! ②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m!③非均分堆问题,只要按比例取出分完再用乘法原理作积.④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.1. 分组(堆)问题例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?解:要完成发包这件事,可以分为两个步骤:⑴先将四项工程分为三“堆”,有种分法;⑵再将分好的三“堆”依次给三个工程队,有3!=6种给法.∴共有6×6=36种不同的发包方式.211421226C C C A2.插空法:解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决.♀ ♀♀ ♀ ♀♀ ♀↑ ↑ ↑ ↑ ↑ ↑例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?解:分两步进行:第1步,把除甲乙外的一般人排列: 第2步,将甲乙分别插入到不同的间隙或两端中(插孔):几个元素不能相邻时,先排一般元素,再让特殊元素插孔.3.捆绑法相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?解:(1)分两步进行:♀ ♀ ♀ ♀ ♀ ♀甲 乙第一步,把甲乙排列(捆绑):55A 有=120种排法26A 有=30种插入法120303600∴⨯共有=种排法第二步,甲乙两个人的梱看作一个元素与其它的排队:几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.4.消序法(留空法)几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.例4. 5个人站成一排,甲总站在乙的右侧的有多少种站法?解法1:将5个人依次站成一排,有 种站法,然后再消去甲乙之间的顺序数∴甲总站在乙的右侧的有站法总数为解法2:先让甲乙之外的三人从5个位置选出3个站好,有 种站法,留下的两个位置自然给甲乙有1种站法∴甲总站在乙的右侧的有站法总数为22A 有=2种捆法2120240∴⨯共有=种排法55A 有=120种排法55A 22A 535522543A A A =⨯⨯=35A 33551A A ⨯=4.消序法(留空法)变式:如下图所示,有5横8竖构成的方格图,从A 到B 只能上行或右行共有多少条不同的路线?解: 如图所示将一条路经抽象为如下的一个排法(5-1)+(8-1)=11格:也可以看作是1,2,3,4,5,6,7,①,②,③,种排法.其中必有四个↑和七个→组成!BA BA所以, 四个↑和七个→一个排序就对应一条路经,所以从A 到B 共有 条不同的路径.5.剪截法(隔板法):n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.例5. 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班至少一个名额,则不同的分配方案共有___种.解: 问题等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将16个小球串成一串,截为4段有 种截断法,对应放到4个盒子里. 因此,不同的分配方案共有455种 .5.剪截法:n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.变式: 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有___种.解: 问题等价于先给2班1个,3班2个,4班3个,再把余下的10个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将10个小球串成一串,截为4段有 种截断法,对应放到4个盒子里. 514(51)(81)11C C --+-=315455C =3984C =因此,不同的分配方案共有84种 .6.错位法:编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.特别当n=2,3,4,5时的错位数各为1,2,9,44.例6. 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有____种.解: 选取编号相同的两组球和盒子的方法有 种,其余4组球与盒子需错位排列有9种放法.故所求方法有15×9=135种.7.剔除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法.排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.解:所有这样的直线共有 条,其中不过原点的直线有 条,∴所得的经过坐标原点的直线有210-180=30条. 2615C =37210A =1266180A A ⨯=小结:①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法).巩固练习1.将3封不同的信投入4个不同的邮筒,则不同的投法的种数是( )A.43B.34 C.34A D.34C 2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块地上,其中黄瓜必须种植,不同的种植方法共有( )A.24种B.18种C.12种D.6种3. 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A.4448412C C C 种B.34448412C C C 种 C.3348412A C C 种 D.334448412A C C C 种。
高中数学100个热点问题(三):-排列组合中的常见模型
高中数学100个热点问题(三):-排列组合中的常见模型第80炼 排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =-=(种)3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
排列组合常见模型及解题技巧
排列组合常见模型及解题技巧排列组合常见模型及解题技巧___________________________________排列组合是数学中的一个重要概念,其主要用于解决有关物品数量、顺序、种类等问题,十分重要。
尤其在中考、高考中,排列组合模型非常常见。
因此,想要在考试中取得好成绩,需要对排列组合的相关知识有所了解。
### 一、常见的排列组合模型1. 元素排列模型:当有n个元素时,可以有n!种不同的排列方式。
2. 重复的排列模型:当有n个元素中有m个重复的元素时,可以有$\frac{n!}{m!}$种不同的排列方式。
3. 选择排列模型:当从n个元素中选出m个元素进行排列时,可以有$\frac{n!}{(n-m)!}$种不同的排列方式。
4. 组合模型:当从n个元素中选出m个元素进行组合时,可以有$\frac{n!}{m!(n-m)!}$种不同的组合方式。
5. 组合中出现重复的情况:当从n个元素中选出m个元素进行组合时,若有k个重复的元素,可以有$\frac{n!}{(m-k)!(n-m)!}$种不同的组合方式。
### 二、解题技巧1. 明确问题:排列组合问题一般都是要求出物品的总数量或者某一种情况出现的总次数。
因此,在解决这样的问题之前,要明确问题是要计算出总数量还是总次数。
2. 对物品进行分类:在解决排列组合问题时,要明确物品的数量、重复的情况以及可以选择的情况,将物品分成不同的分类。
3. 认真计算:根据不同的情况,选择对应的模型来计算出总数量或者总次数。
在计算之前一定要仔细地去理解问题,以免出错。
4. 熟悉常用公式:在处理排列组合问题时,要能够准确地使用对应的公式来计算出正确的答案。
因此,对于常用的公式一定要牢记于心,并能够准确地使用。
### 三、总结通过本文,我们可以了解到排列组合常见的几个模型以及如何正确地使用它们来解决问题。
排列组合问题是数学考试中常见的问题之一,因此在备考考试时一定要加强对这方面的学习。
排列组合常用策略及模型九种
排列组合问题常用策略排列组合问题的常用模型及策略有:捆绑法、插空法、隔板法、特殊元素/特殊位置优先法、缩倍法、间接法(正难则反)、均分问题、错排问题、圆排列问题等。
1、捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的例题:,,,,排法种数有()A、60种B、48种C、36种D、24种2、插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例题:七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种 B、3600种 C、4820种 D、4800种3、缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那例题:,,,,么不同的排法种数是()A、24种B、60种C、90种D、120种4、隔板法:对于将不可分辨的球装入可以分辨的盒子中求装入方法数的问题,常用隔板法.例题:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?5、特殊元素/特殊位置优先法:某个或某几个元素要或不要排在指定位置,可先处理这个或几个元素,再排其它的元素(元素优先法);也可先把指定位置安排符合要求的元素,再排其它的元素(位置优先法)。
例题:某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?6、间接法:对有限制条件的问题,尤其是“至多”“至少”问题,直接法较难则采用间接法,即从总体考虑,再把不符合条件的情况去掉。
例题:从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?7、均分问题:n个元素分成m堆得问题,平均分成的组,无论顺序如何都是一种情况。
排列组合问题的常见模型(详解)
排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。
这类问题有如下一些常见的模型。
模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。
高中数学100个热点问题(三):排列组合中地常见模型
第80炼 排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =-=(种)3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案 (二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种 2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
高中数学讲义微专题80排列组合中常见模型
微专题 80 摆列组合的常有模型一、基础知识:(一)办理摆列组合问题的常用思路:1、特别优先:关于题目中有特别要求的元素,在考虑步骤时优先安排,而后再去办理的元素。
比如:用0,1,2,3,4 构成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不可以是 0,因此先办理首位,共有 4 种选择,而其需将剩下的元素全摆列即可,因此排法总数为4 N 4 A 96 种42、找寻对峙事件:假如一件事从正面下手,考虑的状况许多,则能够考虑该事的对峙用所有可能的总数减去对峙面的个数即可。
比如:在 10 件产品中,有 7 件合格品, 3 件次品。
从这 10 件产品中随意件次品的状况有多少种解:假如从正面考虑,则“起码 1 件次品”包括 1 件, 2 件, 3 件次品议论,但假如从对峙面想,则只要用所有抽取状况减去所有是正品的状况即可,列式较3 3N C10 C7 85 (种)3、先取再排(先分组再摆列):摆列数mA 是指从n 个元素中拿出mn素进行摆列。
但有时会出现所需摆列的元素并不是前一步选出的元素,因此此时就要将分红两个阶段,可先将所需元素拿出,而后再进行摆列。
比如:从 4 名男生和 3 名女生中选 3 人,分别从事 3 项不一样的工作,若解:考虑第一步将甲乙视为一个整体,与其他 3 个元素摆列,则共有甲乙自己次序,有2A 种地点,因此排法的总数为24 2N A4 A2 48 种2、插空法:当题目中有“不相邻元素”时,则可考虑用节余元素“搭台”“插空”,而后再进行各自的排序注:( 1)要注意在插空的过程中能否能够插在两边( 2)要从题目中判断能否需要各自排序比如:有 6 名同学排队,此中甲乙不相邻,则共有多少种不一样的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从 5 个空中选择种选择,而后四名同学排序,甲乙排序。
因此2 4 2N C5 A4 A2 4803、错位摆列:摆列好的n 个元素,经过一次再排序后,每个元素都不在原来的为这n 个元素的一个错位摆列。
高中数学讲义排列组合——选择合适的数学模型
x 1, y 1, z 1, w 1这四个盒子非空即可。所以使用挡板法得:
C133 286 种
答案:正整数解有 84 种,非负整数解有 286 种
二、历年好题精选 1、在航天员进行的一项太空实验中,要先后实施
6 个程序,其中程序 A 只能出现在第一步或
最后一步,程序 B 和 C 在实施时必须相邻,则在该实验中程序顺序的编排方法共有(
A. 484
B. 472
C. 252
D. 232
16、集合 S 1,2,3, L ,20 的 4 元子集 T a1, a2, a3 , a4 中,任意两个元素差的绝对值都不
为 1,这样的 4 元子集 T 的个数有 _____个
习题答案: 1、答案: B
解析: B ,C 相邻则考虑使用整体法,程序 A 有要求所以先确定 A 的位置,共有 2 种选法,然
例 7:设 A 是整数集的一个非空子集,对于 k A ,如果 k 1 A 且 k 1 A ,那么称 k 是
集合 A 的一个“孤立元” ,给定 S 1,2,3,4,5,6,7,8 ,则 S 的 3 个元素构成的所有集合中,
其元素都是“孤立元”的集合个数是(
)
A. 6
B. 15
C. 20
D. 25
思路:首先要理解“ k A ,则 k 1 A 且 k 1 A ”,意味着“独立元”不含相邻的数,元
思路:可将组成子集的过程视为 A 中的元素一个个进行选择,要不要进入到这个子集当中,
所以第一步从 a1 开始,有两种选择,同样后面的 N 21 442 2 L4 432 2n 个
n个
答案: 2n
a2, a3,L ,a n 都有两种选择,所以总数
例 2:已知 S 1,2,3,L ,40 , A S且 A 中有三个元素,若 A 中的元素可构成等差数列,
80 排列组合中的常见模型
第80炼 排列组合的常见模型一、基础知识:排列、组合、二项式1.分类计数原理(加法原理)12n N m m m =+++.2.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.3.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.:nn A =n!4.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720 单条件排列(以下各条的大前提是从n 个元素中取m 个元素的排列) (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k m k n A A 11+-+-种注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +5.分配问题6“错位问题”及其推广①信2封信与2个信封全部错位有1种排法; ②信3封信与3个信封全部错位有2种排法; ③信4封信与4个信封全部错位有9种排法; ④信5封信与5个信封全部错位有44种排法;贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p mm m m m mmp m n n n n nnC C C C C C n A A A A A A =-+-+-+-++-7.不定方程2n x x x m =1+++的解的个数(1)方程2n x x x m =1+++(,n m N *∈)的正整数解有11m n C --个(2) 方程2n x x x m =1+++(,n m N *∈)的非负整数解有 11n m n C +--个 (3) 方程2n x x x m =1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)n m n k C -+---个8.组合(1)组合的定义,排列与组合的区别 (2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n12.解排列组合应用题的基本规律(1)分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。
排列与组合.版块六.排列组合问题的常见模型2.学生版
体的解题策略有
对特殊元素进行优先安排 理解题意后进行合理和准确分类,分类后要验证是否 漏
对于抽出部分元素进行排列的问题一般是先选后排,以防出现 复 对于元素相邻的条件, 采取捆绑法 对于元素间隔排列的问题, 采取插空法或隔板法 序固定的问题用除法处理 分几排的问题可以转化 直排问题处理
对于 面考虑太复杂的问题,可以考虑反面. 对于一些排列 组合 的问题,需要构造模型.
全排列 一般地,n 个
同元素全部取出的一个排列,叫做 n 个
同元素的一个全排列.
1
ห้องสมุดไป่ตู้
n 的阶乘
整 由 1 到 n 的连乘
,叫作 n 的阶乘,用 n ! 表示.规定
0! = 1 .
组合 一般地,从 n 个
同元素中,任意取出 m (m ≤ n) 个元素并成一组,叫做从 n 个
元素中任取 m 个元素的一个组合. 组合 从n个 同元素中,任意取出 m (m ≤ n) 个元素的所有组合的个 ,叫做从 n 个
m n
序排成一列, 同
中被取的对象叫做元素 ,叫做从 n 个
从n个 公式
同的元素中取出 m(m ≤ n) 个元素的所有排列的个
元素中取出 m 个元素的排列 ,用符号 A 表示.
Am n = n( n − 1)( n − 2)L ( n − m + 1) , m ,n ∈ N + ,并且 m ≤ n .
对于较复杂的排列组合问题,常需要分类 漏.
到分类明确,层次清楚, 3.排除法,从总体中排除 4.捆绑法
符合条件的方法 , 是一种间接解题的方法. 它元
某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,
素进行排列,然后再给那“一捆元素”内部排列. 5.插空法 某些元素 相邻的排列,可以先排 它元素,再 6.插板法 相邻的元素插空.
(完整版)高中数学完整讲义——排列与组合5.排列组合问题常见模型1
高中数学讲义摆列组合问题的常有模型1知识内容1.基本计数原理⑴加法原理分数原理:做一件事,达成它有n 法,在第一法中有m1种不一样的方法,在第二法中有 m2种方法,⋯⋯,在第 n 法中有 m n种不一样的方法.那么达成件事共有N m1 m2 L m n种不一样的方法.又称加法原理.⑴乘法原理分步数原理:做一件事,达成它需要分红 n 个子步,做第一个步有 m1种不一样的方法,做第二个步有 m2种不同方法,⋯⋯,做第 n 个步有 m n种不同的方法.那么完成件事共有N m1 m2 L m n种不一样的方法.又称乘法原理.⑴加法原理与乘法原理的综合运用假如达成一件事的各样方法是互相独立的,那么计算达成这件事的方法数时,使用分类计数原理.假如达成一件事的各个步骤是互相联系的,即各个步骤都一定达成,这件事才告达成,那么计算达成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导摆列数、组合数公式的理论基础,也是求解摆列、组合问题的基本思想方法,这两个原理十分重要一定仔细学好,并正确地灵巧加以应用.2.摆列与组合⑴摆列:一般地,从n 个不一样的元素中任取m(m ≤ n) 个元素,依据必定的次序排成一列,叫做从n 个不一样元素中拿出m 个元素的一个摆列.(此中被取的对象叫做元素)摆列数:从 n 个不一样的元素中拿出m(m ≤ n) 个元素的所有摆列的个数,叫做从n个不一样元素中拿出m 个元素的摆列数,用符号 A m n表示.摆列数公式: A m n 全摆列:一般地,n的阶乘:正整数由n(n 1)(n 2) L (n m 1) , m,n N,而且 m ≤ n .n 个不一样元素所有拿出的一个摆列,叫做n 个不一样元素的一个全摆列.1到n的连乘积,叫作n的阶乘,用n! 表示.规定: 0! 1 .思想的挖掘能力的飞腾1高中数学讲义⑴组合:一般地,从 n 个不一样元素中,随意拿出 m ( m≤n)个元素并成一组,叫做从n 个元素中任取m个元素的一个组合.组合数:从 n 个不一样元素中,随意拿出m (m≤n)个元素的所有组合的个数,叫做从n 个不一样元素中,随意拿出 m 个元素的组合数,用符号C n m表示.组合数公式: C n m n( n1)(n 2)L( n m1)n!, m, n N ,而且m≤ n .m!m!( n m)!组合数的两个性质:性质1:C n m C n n m;性质 2:C n m1 C n m C n m 1.(规定 C n0 1 )⑴摆列组合综合问题解摆列组合问题,第一要用好两个计数原理和摆列组合的定义,即第一弄清是分类仍是分步,是排列仍是组合,同时要掌握一些常有种类的摆列组合问题的解法:1.特别元素、特别地点优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其余元素;地点优先法:先考虑有限制条件的地点的要求,再考虑其余地点;2.分类分步法:对于较复杂的摆列组合问题,常需要分类议论或分步计算,必定要做到分类明确,层次清楚,不重不漏.3.清除法,从整体中清除不切合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的摆列,能够先将相邻的元素“捆成一个”元素,与其余元素进行摆列,而后再给那“一捆元素”内部摆列.5.插空法:某些元素不相邻的摆列,能够先排其余元素,再让不相邻的元素插空.6.插板法:n个同样元素,分红 m( m≤ n) 组,每组起码一个的分组问题——把n个元素排成一排,从 n 1个空中选 m 1 个空,各插一个隔板,有C n m11.7.分组、分派法:分组问题(分红几堆,无序).有平分、不平分、部分平分之别.一般地均匀分红 n 堆(组),一定除以n !,假如有m 堆(组)元素个数相等,一定除以m !8.错位法:编号为 1 至n的n个小球放入编号为 1 到n的n个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不一样,这类摆列称为错位摆列,特别当n 2 ,3,4,5 时的错位数各为1,2,9,44.对于 5、6、7 个元素的错位摆列的计算,能够用剔除法转变为 2 个、 3 个、 4 个元素的错位摆列的问题.1.摆列与组合应用题,主要考察有附带条件的应用问题,解决此类问题往常有三种门路:⑴元素剖析法:以元素为主,应先知足特别元素的要求,再考虑其余元素;⑴地点剖析法:以地点为主考虑,即先知足特别地点的要求,再考虑其余地点;⑴间接法:先不考虑附带条件,计算出摆列或组合数,再减去不切合要求的摆列数或组合数.2思想的挖掘能力的飞腾高中数学讲义求解时应注意先把详细问题转变或归纳为摆列或组合问题;再经过剖析确立运用分类计数原理仍是分步计数原理;而后剖析题目条件,防止“选用”时重复和遗漏;最后列出式子计算作答.2.详细的解题策略有:⑴对特别元素进行优先安排;⑴理解题意后进行合理和正确分类,分类后要考证能否不重不漏;⑴对于抽出部分元素进行摆列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采纳捆绑法;对于元素间隔摆列的问题,采纳插空法或隔板法;⑴次序固定的问题用除法办理;分几排的问题能够转变为直排问题办理;⑴对于正面考虑太复杂的问题,能够考虑反面.⑴对于一些摆列数与组合数的问题,需要结构模型.典例剖析排队问题【例 1】三个女生和五个男生排成一排⑴ 假如女生一定全排在一同,可有多少种不一样的排法?⑵ 假如女生一定全分开,可有多少种不一样的排法?⑶ 假如两头都不可以排女生,可有多少种不一样的排法?【例 2】 6 个人站成一排:⑴此中甲、乙两人一定相邻有多少种不一样的排法?⑴此中甲、乙两人不相邻有多少种不一样的排法?⑴此中甲、乙两人不站排头和排尾有多少种不一样的排法?⑴此中甲不站排头,且乙不站排尾有多少种不一样的排法?思想的挖掘能力的飞腾3高中数学讲义【例 3】 7 名同学排队照相.⑴若分红两排照,前排 3 人,后排 4 人,有多少种不一样的排法?⑵若排成两排照,前排 3 人,后排 4 人,但此中甲一定在前排,乙一定在后排,有多少种不一样的排法?⑶ 若排成一排照,甲、乙、丙三人一定相邻,有多少种不一样的排法?⑷若排成一排照,7 人中有 4 名男生, 3 名女生,女生不可以相邻,有多少种不一样的排法?【例 4】 6 个队员排成一排,⑴共有多少种不一样的排法?⑴若甲一定站在排头,有多少种不一样的排法?⑶若甲不可以站排头,也不可以站排尾,问有多少种不一样的排法?【例 5】ABCDE 五个字母排成一排,若 ABC 的地点关系一定按 A 在前、 B 居中、 C 在后的原则,共有 _______种排法(用数字作答).【例 6】用 1 到 8 构成没有重复数字的八位数,要求 1 与 2 相邻, 3 与 4 相邻,5 与6 相邻,而7 与8 不相邻,这样的八位数共有___个(用数字作答).4思想的挖掘能力的飞腾高中数学讲义【例 7】记者要为5名志愿者和他们帮助的2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两头,不一样的排法共有()A .1440 种B. 960种C. 720种D. 480 种【例 8】12 名同学合影,站成前排 4 人后排 8 人,现拍照师要从后排 8人中抽 2 人调整到前排,若其余人的相对次序不变,则不一样调整方法的总数是()22B.2622D.22A .C C C A CA A A【例 9】记者要为5名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两头,不一样的排法共有()A . 1440 种B .960 种C.720 种 D .480 种【例 10】在数字 1,2 ,3与符号,五个元素的所有全摆列中,随意两个数字都不相邻的全摆列个数是()A .6B.12C.18D.24【例 11】计划展出 10 幅不一样的画,此中 1 幅水彩、 4 幅油画、 5 幅国画,排成一列陈设,要求同一品种的画一定连在一同,而且水彩画不放在两头,那么不一样的陈设方式有_____种.思想的挖掘能力的飞腾5高中数学讲义【例 12】 6 人站一排,甲不站在排头,乙不站在排尾,共有_________种不一样的排法(用数字作答).【例 13】一条长椅上有7 个座位, 4 人坐,要求 3 个空位中,有 2 个空位相邻,另一个空位与 2 个相邻位不相邻,共有几种坐法?【例 14】3位男生和3位女生共6位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A. 360B. 288C. 216D. 96【例 15】古代“五行”学说以为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不一样属性的物质随意排成一列,但摆列中属性相克的两种物质不相邻,则这样的摆列方法有种(结果用数值表示).【例 16】在1,2,3,4,5,6,7的任一摆列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的摆列方式共有()种.A. 288B. 576C. 864D. 11526思想的挖掘能力的飞腾高中数学讲义【例 17】从会合P ,Q ,R ,S 与 0 ,1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 中各任取2个元素排成一排(字母和数字均不可以重复).每排中字母 Q和数字0至多只好出现一个的不一样排法种数是_________.(用数字作答)【例 18】从会合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不可以重复).每排中字母 O,Q 和数字 0 至多只好出现一个的不一样排法种数是_________.(用数字作答)【例 19】6个人坐在一排10个座位上,问⑴空位不相邻的坐法有多少种?⑵ 4 个空位只有 3 个相邻的坐法有多少种?⑶ 4 个空位至多有 2 个相邻的坐法有多少种?【例 20】3位男生和3位女生共6位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A . 360B. 288C. 216D. 96思想的挖掘能力的飞腾7高中数学讲义【例 21】12名同学合影,站成了前排 4 人后排 8 人,现拍照师要从后排8 人中抽 2 人调整到前排,其余人的相对次序不变,则不一样调整的方法的总数有()2 A 2B.2A6C.2A2D.22A .C C C C A【例 22】两部不一样的长篇小说各由第一、二、三、四卷构成,每卷1本,共 8 本.将它们随意地排成一排,左侧 4 本恰巧都属于同一部小说的概率是_______.【例 23】2007年12月中旬,我国南方一些地域遭受历史稀有的雪灾,电煤库存吃紧.为了增援南方地域抗灾救灾,国家一致部署,加紧从北方采煤区调运电煤.某铁路货运站对 6 列电煤货运列车进行编组调动,决定将这 6 列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.假如甲所在小组 3 列列车先开出,那么这 6 列列车先后不一样的发车次序共有()A. 36种B.108种C. 216种D. 432种数字问题【例 24】给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能构成多少个四位数?⑴可能构成多少个四位奇数?⑴可能构成多少个四位偶数?⑴可能构成多少个自然数?【例 25】用 0 到 9 这 10 个数字,可构成多少个没有重复数字的四位偶数?8思想的挖掘能力的飞腾高中数学讲义【例 26】在1,3,5,7,9中任取3个数字,在0,2,4, 6,8 中任取两个数字,可构成多少个不一样的五位偶数.【例 27】用1,2,3,4,5排成一个数字不重复的五位数 a1,a2,a3,a4,a5,满足a1 a2,a2 a3,a3 a4,a4 a5的五位数有多少个?【例 28】用0,1,2,L,9这十个数字构成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例 29】用数字0,1,2,3,4,5,6构成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例 30】有4张分别标有数字1,2,3 ,4 的红色卡片和 4 张分别标有数字1,2,3,4 的蓝色卡片,从这8思想的挖掘能力的飞腾9张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法数一共有种.432;【例 31】有8张卡片分别标有数字1, 2 , 3, 4 , 5 , 6 , 7 , 8,从中拿出 6 张卡片排成 3行 2列,要求 3行中仅有中间行的两张卡片上的数字之和为 5 ,则不一样的排法共有()..A .1344种B .1248种C.1056种D.960种【例 32】有4张分别标有数字1,2,3,4的红色卡片和4 张分别标有数字 1,2 ,3,4的蓝色卡片,从这 8张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法共有 ____种(用数字作答).【例 33】用 1, 2, 3, 4, 5, 6 构成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不一样,且 1 和 2 相邻,这样的六位数的个数是__________ (用数字作答).【例 34】用数字1,2,3,4,5能够构成没有重复数字,而且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个【例 35】从1,2,3,8,9,10这6个数中,拿出两个,使其和为偶数,则共可获得个这样的不一样偶数?10思想的挖掘能力的飞腾【例 36】求无重复数字的六位数中,能被 3 整除的数有 ______个.【例 37】用数字0,1,2,3,4,5,6构成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例 38】从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,构成没有重复数字的四位数的个数为()A.300B. 216C.180D. 162【例 39】从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,构成没有重复数字的四位数的个数为()A.300B. 216C.180D.162【例 40】从1到9的九个数字中取三个偶数四个奇数,试问:⑴能构成多少个没有重复数字的七位数?此中随意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一同的有几个?⑴⑴中的七位数中,偶数排在一同、奇数也排在一同的有几个?思想的挖掘能力的飞腾11⑷ ⑴此中随意两偶数都不相邻的七位数有几个?【例 41】用0到9这九个数字.可构成多少个没有重复数字的四位偶数?【例 42】有4张分别标有数字1,2,3,4 的红色卡片和 4 张分别标有数字1,2 ,3,4 的蓝色卡片,从这8张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法共有 ______种(用数字作答).【例 43】在由数字1,2,3,4,5构成的所有没有重复数字的5 位数中,大于23145且小于 43521的数共有()个A. 56个B. 57个C. 58个D. 60个【例 44】由0,1,2,3,4这五个数字构成的无重复数字的四位偶数,按从小到大的次序排成一个数列 a n,则 a19_____.A . 2014B . 2034C. 1432D. 143012思想的挖掘能力的飞腾【例 45】从数字0、 1、 3、 5、 7 中拿出不一样的三个作系数,可构成多少个不一样的一元二次方程ax2bx c0 ,此中有实数根的有几个?【例 46】从 3 , 2 , 1,0 ,1,2 ,3 ,4 中任选三个不一样元素作为二次函数y ax2bx c 的系数,问能构成多少条图像为经过原点且极点在第一象限或第三象限的抛物线?思想的挖掘能力的飞腾13。
高中数学排列组合模型讲义
高中数学排列组合模型讲义定义:从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列。
记作:Km HY2.构成:{⎧⎪⎨⎪⎩原始的元素:n 个取出的元素:m 个【元素】 【位置】m 个元素按照一定的顺序排列【分步】 本质:【顺序】从n 个不同的元素中取出的m 个元素进行排列时顺序是固定的 【集合】有限集合K={}n a a a ......,21{},,|),......,,(.....21j i x x k x x x x K K K K j i i m m ≠≠∈=**=(1)(2)......(1)m mn k n n n n m A =*--*-+=【元素个数】⎪⎩⎪⎨⎧=⊇≥=n A card BA mn mB card )()(【数】m 个不同的元素【个数】从n 个不同的元素中取出m(n m ≤)个元素的所有不同元素的个数,叫做从n 个不同元素中取出m 个元素的排列数【K 集合中的两个元素】1.相邻 2.不相邻3.在特定的位置 4.不在特定的位置 【三个元素】1.相邻 2.不相邻3.在特定的位置4.不在特定的位置【四个元素】从a,b,c,d 四个元素中取出三个元素的排列共有34A 个,abc 是其中一个排列 【m 个元素】1.取出的m 个元素可以重复 2.取出的m 个元素不可以重复 【位置与元素】1.特定的元素排在特定的位置 2.特定的元素不排在特定的位置 3.分类【元素的个数】{【有限】有穷数列【无限】无穷数列【顺序】{组合数列【m 】{时,全排列时,选排列n m n m =<4.条件1.【定义】从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列2.【位置】元素相同,位置也相同,则是同一个排列;元素完全不同,或元素不完全相同,或元素相同,位置不同都不是同一个排列 5.性质【个数】)!(!m n n A mn -=【m=n 】!n A nn =11--=m n m n nA A排列模型一、 直线排列:元素不完全相同的直线排列⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⊃⊃⎢⎣⎡⊃⎢⎣⎡+-+-⊃→置特定元素必不在特定位特定元素必在特定位置元素顺序不固定元素顺序固定必不相邻模型)!元素顺序不固定()!元素顺序固定(必相邻模型排列数不重复排列m m m m n m m n m !11 模型个人,每个人至少一件映射个数为排列数为重复排列k n m ⊃→→ 元素不完全相同的直线排列走楼梯法排列数⊃→!!!!!321k m m m m n二、 环状排列⎢⎢⎢⎢⎢⎣⎡⎢⎢⎢⎣⎡⊃→长方形排列正多边形排列项圈排列排列数为无编号直线排列有编号 直线排列一、 不同元素的排列问题 (一) 不重复排列 1、 必相邻模型:站法?必须站在一起,有几种名女生站成一排,女生名男生和例、有)数为(元素进行排列,总排列对个元素顺序不固定个元素排列元素看成一个元素,解析:用捆绑法把)元素顺序不固定:()、()总排列数为(个元素顺序一定个元素排列一个元素,然后对元素捆绑在一起,看成解析:把)元素顺序固定:(、元素必相邻的排列数:个不同元素中,34!!11!!12!11!1)1(m m n m m m n m m m n m m n m m n m m n m m n +-∴+-+-+-∴+-+-2、 不相邻模型:有几种站法?女生和女生都不相邻,不相邻,有几种站法?名女生站成一排,女生名男生和例、有方法并按顺序排列,共有种个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序不固定:)、(顺序固定,即有个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序固定:、数:个元素必不相邻的排列个不同元素中,45121)1(m m m n m n m m m m n m n m m n +--+--3、特定元素必在特定位置站法?在两端,有几种不同的必须站中间,乙必须站个人站成一排,其中甲例、排列。
高中数学-排列组合21种模型
高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。
(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学完整讲义排列与组合排列组合问题的常见模型
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m nn n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题知识内容排列组合问题的常见模型1解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.排队问题【例1】 三个女生和五个男生排成一排⑴ 如果女生必须全排在一起,可有多少种不同的排法 ⑵ 如果女生必须全分开,可有多少种不同的排法 ⑶ 如果两端都不能排女生,可有多少种不同的排法典例分析【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法⑵其中甲、乙两人不相邻有多少种不同的排法⑶其中甲、乙两人不站排头和排尾有多少种不同的排法⑷其中甲不站排头,且乙不站排尾有多少种不同的排法【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法【例4】6个队员排成一排,⑴共有多少种不同的排法⑵若甲必须站在排头,有多少种不同的排法⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法【例5】 ABCDE 五个字母排成一排,若ABC 的位置关系必须按A 在前、B 居中、C 在后的原则,共有_______种排法(用数字作答).【例6】 用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答).【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1440种B .960种C .720种D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法【例14】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6个人坐在一排10个座位上,问⑴ 空位不相邻的坐法有多少种⑵ 4个空位只有3个相邻的坐法有多少种 ⑶ 4个空位至多有2个相邻的坐法有多少种【例20】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C A B .2686C A C .2286C A D .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】 2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )A .36种B .108种C .216种D .432种数字问题 【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数⑵可能组成多少个四位奇数 ⑶可能组成多少个四位偶数⑷可能组成多少个自然数【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个【例28】 用0129L ,,,,这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种. 432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种B .1248种C .1056种D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种(用数字作答).【例33】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个 B.36个 C.24个 D.18个,,,,,这6个数中,取出两个,使其和为偶数,则共可得到个这样的【例35】从1238910不同偶数【例36】求无重复数字的六位数中,能被3整除的数有______个.,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字【例37】用数字0123456之和为偶数的四位数共有个(用数学作答).,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的【例38】从012345个数为()A.300 B.216 C.180 D.162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数其中任意两偶数都不相邻的七位数有几个 ⑵上述七位数中三个偶数排在一起的有几个⑶⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个⑷⑴其中任意两偶数都不相邻的七位数有几个【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种(用数字作答).【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线。
排列组合之21种模型(经典)
排列组合模型用于构建离散概率模型,用于描述离散随机事件
的概率分布。
在统计学中的应用
样本统计
排列组合模型用于描述样本数据 的分布和统计规律,例如样本均
值、方差、分布函数等。
贝叶斯统计
贝叶斯统计中的参数估计和假设检 验需要用到排列组合模型来计算概 率和似然函数。
多元统计分析
在多元统计分析中,排列组合模型 用于描述多个变量之间的关联和结 构,例如因子分析、聚类分析等。
插板法
总结词
插板法是一种计数方法,它通过将 n 个物体分成 m 份,使得每份至少有一个物体,从而得到一种组合方式。
详细描述
插板法是组合数学中的一种重要方法,它可以用来解决各种组合问题。插板法的应用非常广泛,例如在排列、组 合、概率论等领域都有应用。插板法的基本思想是通过将 n 个物体分成 m 份,使得每份至少有一个物体,从而 得到一种组合方式。
详细描述
组合恒等式是组合数学中的重要公式之一,它可以用来表示某些组合数之间存在一定的关系。组合恒 等式的应用非常广泛,例如在排列、组合、概率论等领域都有应用。
05
模型应用
在数学中的应用
01
02
03
组合数学
排列组合模型是组合数学 中的基础概念,用于研究 不同元素的选取、排列和 组合问题。
概率论
排列组合模型在概率论中 用于描述随机事件的组合 和排列,是概率计算的基 础。
排列的应用
体育比赛中的名次排列
在体育比赛中,参赛选手的名次是根据他们的成绩进行排列的, 排列的顺序决定了他们的名次。
密码学中的排列
在密码学中,通过排列不同的字母和数字可以生成复杂的密码,增 加了信息的安全性。
统计学中的排列
高中数学讲义微专题80 排列组合中的常见模型
微专题80 排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =-=(种)3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案 (二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种 2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
排列组合常见模型及解题技巧
排列组合常见模型及解题技巧■河南省南阳市第二中学校李红勤解排列组合问题常分三步走:首先审题,明确要完成的事件;其次确定是独立完成还是分步完成,是排列还是组合;最后要用计数原理和排列数、组合数公式求解。
一、优先法(先特殊后一般)元素优先法:先考虑有限制条件的元素,再考虑其他元素。
位置优先法:先考虑有限制条件的位置,再考虑其他位置。
f用1,2,3,4,5,6这6个数字组成无重复的五位数,试求满足下列条件的五位数各有多少个。
(1)数字1不在个位和千位;(2)数字1不在个位,数字6不在万位。
解析:(1)位置优先,个位和千位从5个数中选,共有A:种选择方法,其余3位从4个数中选,共有A;种选择方法,由乘法原理知有A[A;=480(个)数满足题意。
(2)元素优先,当1在万位时余下四位有A?=120(种)选法;1不在万位时,万位有A:种选法,个位有A:种选法,余下的有A:种选法,共有A:A;A:=384(种)选法。
所以总共有384+120=504(种)选法。
变式训练1:1名老师和4名获奖同学排成一排照相留念,若老师不站两端,则不同的排法有多少种?(答案:72种)二、捆绑法某些元素必相邻的排列,可以先将相邻的元素绑捆成一个元素,与其他元素进行排列,然后再把捆绑元素松开内部全排列。
侧2某市图书馆要在国庆长假一周内接待5所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观两天,其余只参观一天,则不同的安排方法有多少种?解析:注意连续参观两天,即把7天中的连续两天“捆绑成一天”,有Cj种方法,其余的就是4所学校选5天进行排列,共有C;A:=720(种)方法。
变式训练2:4个不同的小球全部放入3个不同的盒子中,若使每个盒子不空,则不同的放法有____种。
(答案:C:A§=36)三、插空法对于元素不相邻的排列,可以先排其他元素,再让不相邻的元素插空。
若局部元素相邻,可参照“捆绑法”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题80排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =-=(种)3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
所以242542480N C A A =⋅⋅=种3、错位排列:排列好的n 个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n 个元素的一个错位排列。
例如对于,,,a b c d ,则,,,d c a b 是其中一个错位排列。
3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种。
以上三种情况可作为结论记住例如:安排6个班的班主任监考这六个班,则其中恰好有两个班主任监考自己班的安排总数有多少种?解:第一步先确定那两个班班主任监考自己班,共有26C 种选法,然后剩下4个班主任均不监考自己班,则为4个元素的错位排列,共9种。
所以安排总数为269135N C =⋅=4、依次插空:如果在n 个元素的排列中有m 个元素保持相对位置不变,则可以考虑先将这m 个元素排好位置,再将n m -个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1+)例如:已知,,,,,A B C D E F 6个人排队,其中,,A B C 相对位置不变,则不同的排法有多少种解:考虑先将,,A B C 排好,则D 有4个空可以选择,D 进入队伍后,E 有5个空可以选择,以此类推,F 有6种选择,所以方法的总数为456120N =⨯⨯=种5、不同元素分组:将n 个不同元素放入m 个不同的盒中6、相同元素分组:将n 个相同元素放入m 个不同的盒内,且每盒不空,则不同的方法共有11m n C --种。
解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这n 个元素排成一列,共有()1n -个空,使用()1m -个“挡板”进入空档处,则可将这n 个元素划分为m 个区域,刚好对应那m 个盒子。
例如:将6个相同的小球放入到4个不同的盒子里,那么6个小球5个空档,选择3个位置放“挡板”,共有3520C =种可能7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。
例如:最多使用四种颜色涂图中四个区域,不同的涂色方案有多少种?解:可根据使用颜色的种数进行分类讨论(1)使用4种颜色,则每个区域涂一种颜色即可:414N A =(2)使用3种颜色,则有一对不相邻的区域涂同一种颜色,首先要选择不相邻的区域:用列举法可得:{},I IV 不相邻所以涂色方案有:324N A =(3)使用2种颜色,则无法找到符合条件的情况,所以讨论终止总计434448S A A =+=种二、典型例题:例1:某电视台邀请了6位同学的父母共12人,请12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,则不同选择的方法种数有多少思路:本题解决的方案可以是:先挑选出一对夫妻,然后在挑选出两个不是夫妻的即可。
第一步:先挑出一对夫妻:16C 第二步:在剩下的10个人中选出两个不是夫妻的,使用间接法:2105C -所以选择的方法总数为()126105240N C C =-=(种)答案:240种例2:某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有()A.474种 B.77种 C.462种 D.79种思路:本题如果用直接法考虑,则在安排的过程中还要考虑两节连堂,并且会受到第5,6节课连堂的影响,分类讨论的情形较多,不易求解。
如果使用间接法则更为容易。
首先在无任何特殊要求下,安排的总数为39A 。
不符合要求的情况为上午连上3节:34A 和下午连上三节:33A ,所以不同排法的总数为:333943474A A A --=(种)答案:A例3:2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A.60 B.48 C.42 D.36思路:首先考虑从3位女生中先选中相邻的两位女生,从而相邻的女生要与另一女生不相邻,则可插空,让男生搭架子,因为男生甲不站两端,所以在插空的过程中需有人站在甲的边上,再从剩下的两个空中选一个空插入即可。
第一步:从三位女生中选出要相邻的两位女生:23C 第二步:两位男生搭出三个空,其中甲的边上要进入女生,另外两个空中要选一个空进女生,所以共有12C 种选法。
第三步:排列男生甲,乙的位置:22A ,排列相邻女生和单个女生的位置:22A ,排列相邻女生相互的位置:22A 所以共有212223222248N C C A A A =⋅⋅⋅⋅=种答案:B例4:某班班会准备从甲,乙等7名学生中选派4名学生发言,要求甲,乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为()A.360 B.520 C.600 D.720思路:因为选人的结果不同会导致安排顺序的不同,所以考虑“先取再排”,分为“甲乙”同时选中和“甲乙只有一人选中”两种情况讨论:若甲乙同时被选中,则只需再从剩下5人中选取2人即可:25C ,在安排顺序时,甲乙不相邻则“插空”,所以安排的方式有:2232A A ⋅,从而第一种情况的总数为:2221532120N C A A =⋅⋅=(种),若甲乙只有一人选中,则首先先从甲乙中选一人,有12C ,再从剩下5人中选取三人,有35C ,安排顺序时则无要求,所以第二种情况的总数为:1342254480N C C A =⋅⋅=(种),从而总计600种答案:C例5:从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有________种思路:从题意上看,解决的策略要分为两步:第一步要先取出元素,因为“qu”必须取出,所以另外3个元素需从剩下的6个元素中取出,即36C 种,然后在排列时,因为要求“qu”相连,所以采用“捆绑法”,将qu 视为一个元素与其它三个元素进行排列:44A ,因为“qu”顺序不变,所以不需要再对qu 进行排列。
综上,共有:3464480C A ⋅=种答案:480例6:设有编号1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有()A.30种 B.31种 C.32种 D.36种思路:本题可按照相同编号的个数进行分类讨论,有两个相同时,要先从5个里选出哪两个相同,有25C 种选法,则剩下三个为错位排列,有2种情况,所以2152N C =⋅,有三个相同时,同理,剩下两个错位排列只有一种情况(交换位置),所以3251N C =⋅,有四个相同时则最后一个也只能相同,所以31N =,从而235521131S C C =⋅+⋅+=(种)答案:B例7:某人上10级台阶,他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步;最多能跨3级台阶,称为三阶步,若他总共跨了6步,而且任何相邻两步均不同阶,则此人所有可能的不同过程的种数为()A.6 B.8 C.10 D.12答案:A思路:首先要确定在这6步中,一阶步,二阶步,三阶步各有几步,分别设为,,x y z N *∈,则有62310x y z x y z ++=⎧⎨++=⎩,解得:4320,2,4210x x x y y y z z z ===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩,因为相邻两步不同阶,所以符合要求的只有321x y z =⎧⎪=⎨⎪=⎩,下面开始安排顺序,可以让一阶步搭架子,则二阶步与三阶步必须插入一阶步里面的两个空中,所以共有2种插法,二阶步与三阶步的前后安排共有3种(三二二,三二三,二三三),所以过程总数为236N =⨯=答案:A例8:某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人负责英语导游,另外三人负责日语导游,则不同的选择方法有_______种思路:在步骤上可以考虑先选定英语导游,再选定日语导游。