专题复习--体积问题
小学六年级复习题——图形体积专题
小学六年级复习题——图形体积专题1.唐老鸭用一个圆锥形容器装满了2000克香油,米老鼠趁唐老鸭不在,在容器的中间咬了一个洞,然后开始偷油,一直偷到油面与小洞平齐为止(如图).问:米老鼠共偷得香油多少克(容器的厚度不计)?2.工地上有一堆圆锥形沙堆,沙堆的底面周长是18.84米,高15分米,把它铺在一条长31.4米,宽9米的公路上可以铺多厚?3.如图把一张长10厘米、宽6厘米的长方形纸板分成两个相等的直角三角形.绕乙三角形的顶点B所在的直线旋转一周,请你求出所形成的几何体的体积.4.图形的计算.(1)已知圆锥底面周长是18.84分米,求圆锥体积.(如图1)(2)求如图阴影部分面积.(单位:cm)(如图2)4.一个圆锥形沙堆,底面积是15平方米,高0.9米.把这堆沙子铺入长4.5米、宽2米的沙坑内,可以铺多厚?6.天气越来越热,商家举行冰淇淋促销活动,他们把冰淇淋装入下面的圆柱和圆锥形杯子里,圆柱形的要2元钱,圆锥形的要8角钱,你认为买哪一杯划算?为什么?7.把一个底面半径为10厘米的圆锥形金属铸件完全浸没在底面半径是15厘米的圆柱形容器中,水面上升了 1.2厘米.这个圆锥形金属铸件的高是多少厘米?8.一个长方体铁皮长50厘米,宽28厘米.如果从四个角剪去边长6厘米的正方形,再折成一个无盖的盒子,这个无盖盒子的容积是多少?8.制作一个长1m,宽4dm,高6dm的长方体的鱼缸,至少要用多少dm2的玻璃?如果鱼缸里的水面高4dm,鱼缸里有多少升的水?10.流动的水:有圆柱体、长方体和正方体玻璃容器连在一起,容器下面用细管连接起来,水可以流动,并装有A、B两个阀门.已知圆柱体底面积为25平方厘米,水深14厘米,长方体底面积为15平方厘米,水深10厘米,正方体底面积10平方厘米,无水.(1)如果打开A阀,等水停止流动,此时长方体水深多少厘米?(2)接着打开B阀,等水停止流动,此时正方体水深多少厘米?11.王老师用一根长48cm的铁丝做一个长方体框架,使长宽高的比是2:1:3.这个长方体的体积是多少?12.把一个直径是2分米的圆柱的底面分成许多相等的扇形,然后沿直径把圆切开,拼成一个和它体积相等的长方体,这个长方体表面积比原来圆柱的表面积增加8平方分米,这个长方体的体积是多少?13.有一个长方体木块(如图).长、宽、高的长度比是10:5:2,已知高比长少24厘米.(1)这个长方体木块的体积是多少立方厘米?(2)至少需要多少个这样的长方体木块才能拼成一个正方体?13.一个棱长是6分米的正方体水箱装满水,把水倒入一个长9分米,宽6分米的长方体水箱中,水高度是多少?14.用一根铁丝可做一个长6分米,宽5分米,高4分米的长方体框架,用这根铁丝做一个正方体的框架,这个正方体的体积是多少?16.小华放学回家,看见桌上放着两个金鱼缸,小华爸爸在留言条上写着:“小华回家后,请将A鱼缸中的水倒入B鱼缸,直到两个鱼缸中的水深一样为止.”请将小华计算一下,这两个鱼缸的水深多少厘米?17.一个棱长3分米的正方体,它的体积与另一个圆锥体体积的比是3:5,已知这个圆锥体的高是5分米,它的底面积是多少平方分米?18.一个用塑料薄膜覆盖的大棚长10m,横截面是一个半径为2m的半圆.(1)这个大棚所占地面的大小是多少?(2)大棚内的空间有多大?(3)搭建这个大棚至少要用多少平方米的塑料薄膜?19.一张长方形的铁皮(如图),剪下图中的阴影部分恰好可以做成一个油桶(接头处不算).这个油桶的容积是多少立方分米?20.一个直径是12厘米的圆柱形水桶里装着水,把一个底面直径是6厘米,高36厘米的铁制圆锥体完全浸在水中.当圆锥体从桶中取出后,桶内的水将下降多少厘米?21.一台压路机,前轮直径1.2米,轮宽1.1米,工作时每分钟滚动16圈,这台压路机工作1分钟前轮压过的路面是多少平方米?22.照下面的样子,用铁皮焊制一个盛水容器,求这个容器最多能装水多少立方厘米?(单位:厘米)23.做如图规格的一个抽屉至少需要多少木板?它的容积是多少?(木板厚度忽略不计)24.用240厘米长的铁丝做成一个长方体框架,长是宽、高之和的57,宽是高的23,这个长方体的体积是多少?(接头处忽略不计)小学六年级复习题——图形体积专题参考答案与试题解析1.考点:圆锥的体积。
小学数学-有答案-人教版小升初数学专题复习:面积与体积
小学数学-有答案-人教版小升初数学专题复习:面积与体积一.填空.1. 估计我们正在做的试卷的面积大小约是________.2. 一个长方体物体长、宽、高如图所示,这个实物可能是________.(填一文化用品)3. 图中,阴影部分的面积用字母表示是________,a2表示________的面积。
4. 一个平行四边形菜地的高是40m,底是105m,它的面积是________平方米,合________公顷。
5. 如图是平行四边形,图中数据为相应的面积数(单位:cm2),那么阴影部分的面积是________cm2.6. 某长方形足球场周长为350m,长和宽的比为3:2,则长为________m.国际比赛的足球场的长可以是在100m到110m之间,宽在64m到75m之间,则这个足球场________可以作国际足球比赛场。
(填“是”或“否”)7. 一个长方体的长是4厘米,宽3厘米,高2厘米,它的表面积是________平方厘米。
可以切成棱长1厘米的立方体________块。
8. 教室长8m、宽6m、高3m,六(1)班有48名学生,平均每人占有的空间是________.9. 如图,至少再摆上________个这样的正方体,可以得到一个长方体。
10. 如图中甲是用20个硬币堆成的,底面是个圆形,面积是5.3cm2,它的高度是4cm,那么甲的体积是________cm3.再用这20个硬币重新堆成乙图,乙的高度________4cm.(填“大于”、“小于”或“等于”)11. 圆锥体底面直径是6厘米,高3厘米,体积是________立方厘米。
12. 一个长方体盒子从里面量长6dm,宽4dm,高5dm,若把棱长为2dm的正方体积木装进盒内(要求积木不能露出盒子),最多能装________块。
二.选择.一本数学书的体积约是240()A.cm2B.cm3C.dm3D.m3根据下图给出的数据,面积最大的是图________,面积相等的是图________和图________贝贝家圆桌直径1米,现在要给它铺上台布,()种台布比较合适。
2020年小升初数学专题复习训练—空间与图形:周长、面积与体积(3)(知识点总结 同步测试) (含详解)
2020年小升初数学专题复习训练—空间与图形周长、面积与体积(3)知识点复习一.组合图形的体积 【知识点归纳】可以先把组合图形分解成独立的图形,然后相加减去重叠部分的体积. 【命题方向】例:求如图沿AB 旋转一周后形成物体所占空间的大小.(单位:厘米)分析:沿AB 旋转一周后形成物体,上部是一个底面半径为2厘米,高为3厘米的圆锥体,下部是一个底面半径为2厘米,高为6厘米的圆柱体,由此利用圆柱与圆锥的体积公式即可解答. 解:31×3.14×22×3+3.14×22×6, =12.56+75.36, =87.92(立方厘米);答:旋转后的立体图形的体积是87.92立方厘米.点评:所占空间的大小,就是旋转后的立体图形的体积大小,根据圆柱与圆锥的展开图特点得出这个立体图形是圆柱与圆锥的组合图形是解决本题的关键.二.球的球面面积和体积 【知识点归纳】 1.球体:空间中到定点的距离小于或等于定长的所有点组成的图形叫做球.球面的面积=4πR2.【命题方向】例:一个铁球的半径为6厘米,重7千克,如果每立方米铁重7800千克,(1)这个铁球的体积是多少立方厘米?=904.32(立方厘米);答:这个铁球的体积是904.32立方厘米.(2)这个铁球的质量应为:7800×0.00090432≈7(千克),与实际质量正好相等,所以这个铁球是实心球.点评:此题重点考查了球形体积计算公式的应用,同时考查了分析判断能力.三.立体图形的容积【知识点归纳】所有立体图形的体积公式都是底面积乘高.长方体=长×宽×高正方体=棱长×棱长×棱长圆柱=底面积×高,底面积=圆周率×半径的平方圆锥=底面积×高÷3.【命题方向】例1:自来水管的内直径是2厘米,水管内水的流速是每秒8厘米.一位同学去洗手,走时忘记关掉水龙头,分析:把流过的水看成圆柱,它的底面直径是2厘米、高是(8×5×60)厘米,由此根据圆柱的体积公式V=sh=πr2h计算即可.解:3.14×(2÷2)2×(8×5×60), =3.14×1×2400, =7536(cm 3), =7.536(升);答:五分钟浪费7.536升的水. 故答案为:7.536.点评:把不规则的形状物体,转化成规则的形状来求解体积.例2:有一种饮料的瓶身如图所示,容积是3升.现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米.那么瓶内现有饮料2.4升.分析:正放时饮料高度为20厘米,倒放时,空余部分的高度为5厘米,如果把饮料瓶内饮料的体积看作圆柱体,正放和倒放瓶内饮料的体积不变,用高之比等于体积之比,即可求出饮料有多少升.解:饮料和空气的体积比是: 20:5=4:1 饮料有: 3×144+=3×0.8=2.4(升) 答:瓶内现有饮料2.4升. 故答案为:2.4.点评:此题主要考查应用圆柱体的体积(容积)的计算方法,解决有关的实际问题.四.扇形的面积 【知识点归纳】R 是扇形半径,n 是弧所对圆心角度数,π是圆周率扇形面积可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度nS=3602r n π.【命题方向】五.长度、周长的估算【知识点归纳】1.周长是围成这个图形的所有边长的总和.2.长度和周长的估算需要有数量级大小的概念和一定的常识.【命题方向】例:估一估下面两个图形的周长与面积.(横竖相临两点间的距离是1cm)①平行四边形的周长约是18cm,面积约是16cm2;②梯形的周长约是19cm,面积约是20cm2.分析:①平行四边形的相邻的两条边的长度约为4厘米、5厘米,高为4厘米;再根据周长和面积公式计算即可.②梯形的上底为2厘米、下底为6厘米、两腰约为5厘米、6厘米,高为5厘米,再根据周长和面积公式计算即可.解:①周长约为:(4+5)×2=18(厘米),面积约为:4×4=16(平方厘米);②周长约为:2+6+5+6=19(厘米),面积约为:(2+6)×5÷2=20(平方厘米).故答案为:①18,16;②19,20.点评:此题主要考查先估算边的长度,再根据周长和面积公式计算.六.面积及面积的大小比较【知识点归纳】1.将不同的单位化作同一单位,一般是化作标准单位.2.比较数值的大小.【命题方向】例:如图,阴影部分面积相等答案完全正确的是()A、①②B、①②④C、①②③D、①②③④分析:在平行四边形①②中和长方形③中,阴影部分面积都是平行四边形或者长方形面积的一半,梯形的上底加下底也是4厘米,也等于平行四边形面积的一半,由此即可判断它们面积的大小.解:前三图中,阴影部分均为平行四边形(长方形)面积的一半,而三个平行四边形(长方形)的面积相等;梯形的上底加下底也是4厘米,也等于平行四边形面积的一半;由此可得:阴影部分的面积都相等.故选:D.点评:此题主要考查等底等高的三角形面积相等及平行四边形的特点.据图即可以作出判断.七.弧长【知识点归纳】在圆上过两点的一段弧的长度叫做弧长.在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR÷180.【命题方向】一.选择题(共6小题)1.在一个周长是36πcm的圆中,弧长为9πcm的弧所对的圆心角是()A.60°B.90°C.120°D.150°2.我估计黑板的周长是()A.2千米B.10米C.80毫米D.4米3.圆心角是90°的扇形面积是它所在圆面积的()A.B.C.4.甲容器可盛水8升.乙容器可盛水8100毫升.甲容器的容量比乙容器的容量()A.大B.小C.无法比较5.O点是平行四边形的中心点.经过O点画一条线段,分别把两个面积相等的平行四边形分成了两部分.比较两幅图中阴影部分的面积,()A.甲>乙B.甲=乙C.无法比较它们的大小6.一个物体是由圆柱和圆锥黏合而成的(如图),如果把圆柱和圆锥重新分开,表面积就增加了50.24cm2,原来这个物体的体积是()A.200.96cm3B.226.08cm3C.301.44cm3D.401.92cm3二.填空题(共8小题)7.一个半球的全面积为9π,则球的半径为.8.1分硬币、1角硬币、5角硬币的厚度大约是毫米.电话卡、银行卡的厚度大约是毫米.9.一扇形的半径为2m,弧长为2π,则扇形的圆心角为.10.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米.一位同学去洗手,走时忘记关掉水龙头,5分钟浪费升水.11.把一根18分米长的铁丝平均截成3段,一段围成正方形,一段围成长方形,另一段围成一个圆.其中,面积最大,面积最小.12.有一种饮料的瓶身如图所示,容积是3升.现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米.那么瓶内现有饮料升.13.圆的弧长所对的圆心角是度,如果该弧长6.28厘米,该扇形的面积是平方厘米.(π按3.14计算)14.有一个深4分米的长方体容器,其内侧底面为边长3分米的正方形.当容器底面的一边紧贴桌面倾斜如图时,容器内的水刚好不溢出.容器内的水有升.三.判断题(共5小题)15.如图,在梯形中,阴影部分甲和乙的面积相等.(判断对错)16.一个图形的周长就是围成这个图形的边线的长度..(判断对错)17.两个扇形,圆心角大的扇形面积不一定大.(判断对错)18.一台冰箱的容积是196升,它的体积就是196dm3..(判断对错)19.从球心到球面上任意一点的线段叫做球的半径..(判断对错)四.计算题(共2小题)20.如图,求阴影部分的面积.21.计算如图图形的体积.五.操作题(共3小题)22.如图哪两个图形的面积相等?请你涂上相同的颜色.23.请画出两个半径为1厘米的圆,在两个圆内分别画出圆心角为90°和120°的两个扇形,并涂色.24.用一张边长20厘米的正方形纸,裁剪粘贴成一个无盖的长方体纸盒(不考虑损耗及接缝),要使它的容积大于550cm3.请你画出剪裁草图、标明主要数据,并回答下面问题:(1)你设计的纸盒长是厘米,宽是厘米,高是厘米.(2)在下面计算出纸盒的容积是多少立方厘米?六.应用题(共4小题)25.由于生产的需要,打算将一个半径为5cm的钢球重新铸造成一批半径为1cm的小钢球,求这些小钢球的个数.26.把一个半径6厘米的圆分成两部分,其中涂色部分是一个圆心角为120°的扇形.你能算出涂色部分的面积吗?27.如图所示,左图是一个密闭的玻璃容器,里面装有5厘米深的水.(1)根据图上标注的信息计算该容器内水的体积:(2)若把该容器顺时针旋转90°,成为右图所示情形,求这时容器内水的深度.(单位:厘米.玻璃厚度不计.)28.把一张圆纸片三次对折,并量得曲线的长(如图).那么,圆纸片的直径是多少厘米?参考答案与试题解析一.选择题(共6小题)1.【分析】在同一个圆里,弧长和圆心角成正比例,所以,设弧长为9πcm的弧所对的圆心角是x度,则有:36π:360=9π:x,解比例即可.【解答】解:设弧长为9πcm的弧所对的圆心角是x度,则有:36π:360=9π:x36πx=360×9πx=360×9π÷36πx=90答:弧长为9πcm的弧所对的圆心角是90度.故选:B.【点评】本题主要考查弧长问题,关键根据同圆或等圆中弧长和圆心角成正比例的关系做题.2.【分析】根据生活经验、对长度单位和数据大小的认识,可知:黑板的周长大约是10米;据此选择即可.【解答】解:由分析可知:估计黑板的周长大约是10米;故选:B.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.3.【分析】根据题意一个扇形和它所在的圆的半径相等,所以圆心角的度数是周角度数的几分之几,那么扇形的面积就是所在圆面积的几分之几;用扇形的圆心角90°除以周角360,即可求出圆心角的度数是周角度数的几分之几,即扇形的面积就是所在圆面积的几分之几.【解答】解:90°÷360°=所以圆心角是90°的扇形面积是它所在圆面积的.故选:A.【点评】此题重点考查了扇形面积和它所在的圆的面积之间的关系.4.【分析】低级单位毫升化高级单位升除以进率1000,8100毫升=8.1升,8升<8.1升.【解答】解:8100毫升=8.1升8升<8.1升即甲容器的容量比乙容器的容量小.故选:B.【点评】不同单位的名数的大小比较通常是先化成相同的单位名数,再根据整数或小数或分数的大小比较方法进行比较.化成什么单位要灵活掌握.5.【分析】由于O点是平行四边形的中心点,经过O点画一条线段,分别把两个面积相等的平行四边形分成了两部分,第一幅图中甲占整个平行四形面积的一半,第二幅图中,乙占整个平行四边形面积的半.因此,比较两幅图中阴影部分的面积相等.【解答】解:因为O为平行四边形的中点所以第一幅图中甲占整个平行四形面积的一半,第二幅图中,乙占整个平行四边形面积的半因此,比较两幅图中阴影部分的面积相等即甲=乙.故选:B.【点评】关键明白,两个图形中阴影部分都是平行四形面积的一半.6.【分析】根据题意可知:如果把圆柱和圆锥重新分开,表面积就增加了50.24平方厘米,表面积增加的两个底面的面积,由此可以求出底面积,再根据圆柱的体积公式:V=sh,圆锥的体积公式:V=sh,把数据分别代入公式求出它们的体积和即可.【解答】解:50.24÷2=25.12(平方厘米)25.12×625.12×(12﹣6)=150.72+25.12×6=150.72+50.24=200.96(立方厘米)答:原来这个物体的体积是200.96立方厘米.故选:A.【点评】此题主要考查圆柱、圆锥体积公式的灵活运用,关键是熟记公式.二.填空题(共8小题)7.【分析】设球的半径为r,则球的面积为4πr2,半球的面积为2πr2再加截面的面积,据此解答即可.【解答】解:设球的半径为r,πr2+2πr2=9π3πr2=9πr2=3r=,答:球的半径为.故答案为:.【点评】本题考查半球的表面积的求法,半球的全面积=半球的侧面积+底面面积.8.【分析】根据生活经验、对长度单位和数据大小的认识,可知1分硬币、1角硬币、5角硬币的厚度大约是2毫米,电话卡、银行卡的厚度大约是1毫米,据此解答.【解答】解:据分析可知:1分硬币、1角硬币、5角硬币的厚度大约是2毫米.电话卡、银行卡的厚度大约是1毫米.故答案为:2、1.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.9.【分析】根据题意,利用弧长公式L=nπR÷180进行计算即可.【解答】解:扇形的圆心角为2π×180÷π÷2=180(度)故答案为:180°.【点评】本题主要考查弧长公式的应用.10.【分析】把流过的水看成圆柱,它的底面直径是2厘米、高是(8×5×60)厘米,由此根据圆柱的体积公式V=sh=πr2h计算即可.【解答】解:3.14×(2÷2)2×(8×5×60),=3.14×1×2400,=7536(cm3),=7.536(升);答:五分钟浪费7.536升的水.故答案为:7.536.【点评】把不规则的形状物体,转化成规则的形状来求解体积.11.【分析】18÷3=6(分米),即周长为6分米的正方形、长方形、圆的面积哪个最大,哪个最小.根据正方形的周长计算公式“C=4a”,正方形的边长为6÷4=1.5(分米),根据正方形面积计算公式“S =a2”即可求出正方形的面积.周长一定时,所画长方形的长、宽不一定,其中长、宽之差越小,面积越大.根据长方形周长计算公式“C=2(a+b)”,正方形的长、宽之和为6÷2=3(分米),可画一个长为2分米,宽为1分米的长方形,根据长方形面积计算公式“S=ab”即可求出长方形的面积.根据圆周长计算公式“C=2πr”、圆周长计算公式“C=2πr”可求出圆的面积.然后通过比较即可确定哪个图形的面积最大,哪个图形的面积最小.【解答】解:18÷3=6(分米)正方形:6÷4=1.5(分米)1.5×1.5=2.25(平方分米)长方形:6÷2=3(分米),画长2分米,宽1分米的长方形2×1=2(平方分米)圆:6÷3.14÷2=(分米)3.14×()2=3.14×≈2.87(平方分米)2.87>2.25>2答:圆面积最大,长方形面积最小.故答案为:圆,长方形.【点评】在周长相同时,所有的平面图形中,圆的面积最大;在四边形中,正方形面积最大;周长一定时,长方形的长、宽不确定,但长、宽之差越小,面积越大.记住这个结论能快速解答此类题.12.【分析】正放时饮料高度为20厘米,倒放时,空余部分的高度为5厘米,如果把饮料瓶内饮料的体积看作圆柱体,正放和倒放瓶内饮料的体积不变,用高之比等于体积之比,即可求出饮料有多少升.【解答】解:饮料和空气的体积比是:20:5=4:1饮料有:3×=3×0.8=2.4(升)答:瓶内现有饮料2.4升.故答案为:2.4.【点评】此题主要考查应用圆柱体的体积(容积)的计算方法,解决有关的实际问题.13.【分析】周角是360度,圆的弧长所对的圆心角是周角的,根据一个数乘分数的意义,用乘法求出该圆心角度数;如果该弧长6.28厘米,由此可知:6.28厘米是该圆周长的,根据已知一个数的几分之几是多少,求这个数,用除法求出该圆的周长,根据圆的周长公式:C=2πr,那么r=C÷2π,由此可以求出半径,再根据圆的面积公式:S=πr2,把数据代入公式求出该圆面积的就是这个扇形的面积.【解答】解:360°×=90°;6.28÷=6.28×4=25.12(厘米);3.14×(25.12÷3.14÷2)2×=3.14×42×=3.14×16×=12.56(平方厘米);答:圆的弧长所对的圆心角是90度,该扇形的面积是12.56平方厘米.故答案为:90、12.56.【点评】此题考查的目的是理解掌握圆的周长公式、面积公式、扇形面积公式及应用,关键是熟记公式.14.【分析】先根据长方体的体积公式求出容器的容积;无水的部分看作是底面是直角三角形的棱柱,再根据棱柱的体积公式求出无水的部分的体积;相减即可求得容器内的水的体积.【解答】解:容器的容积:4×3×3=36(立方分米);无水的部分看作是底面是直角三角形的棱柱,底面积是3×3÷2=4.5(平方分米),高是3分米.所以体积是4.5×3=13.5(立方分米);所以容器内有水:36﹣13.5=22.5立方分米=22.5升.答:容器内的水有22.5升.故答案为:22.5.【点评】考查了组合图形的体积,本题容器内的水的体积=容器的容积﹣无水的部分体积,难点是把无水的部分看作是底面是直角三角形的棱柱.三.判断题(共5小题)15.【分析】如图所示,甲和丙组成的三角形与乙和丙组成的三角形等底等高,则其面积相等,同样的道理,都减去公共部分丙的面积,面积仍然相等,即甲乙的面积相等.【解答】解:因为甲和丙组成的三角形与乙和丙组成的三角形等底等高,则其面积相等,同样的道理,都减去公共部分丙的面积,面积仍然相等,即甲乙的面积相等;题干的说法是正确的.故答案为:√.【点评】解答此题的主要依据是:等底等高的三角形的面积相等.16.【分析】周长的意义是:物体表面或平面图形一周边线的长就是它们的周长.【解答】解:根据周长的含义可知:一个图形的周长就是围成这个图形的边线的长度.故答案为:√.【点评】本题主要考查了学生对周长意义的理解.17.【分析】根据扇形面积公式:S=πr2×,在同圆或等圆中扇形的圆心角大的扇形面积就大.计算扇形面积需要知道半径的大小和圆心角,只知道圆心角而不知道半径,则无法计算扇形的面积,也无法比较大小.据此判断.【解答】解:计算扇形面积需要知道圆心角和半径,不知道半径的大小,就无法计算面积,也就更不能比较面积大小了;所以原题说法错误.故答案为:×.【点评】此题主要考查扇形面积的计算方法,注意扇形的面积的大小是由圆心角的度数和半径的大小决定的.18.【分析】根据体积与容积的意义以及区别直接判断即可.【解答】解:电冰箱的容积是电冰箱所能容纳物体的体积,电冰箱的体积是电冰箱所占空间的大小,电冰箱的体积要大于它的容积;故答案为:×.【点评】此题考查体积与容积的意义及区别.19.【分析】根据球半径的定义:在球中,连接球心和球面上任意一点的线段叫做球的半径,即可判断.【解答】解:球的半径就是从球心到球面上任意一点的线段.故答案为:√.【点评】此题考查了学生对“球的半径”这一定义的掌握与理解.四.计算题(共2小题)20.【分析】根据扇形面积公式S=代入数据解答即可.【解答】解:×3.14×22=1.5×3.14=4.71(平方厘米)答:阴影部分的面积是4.71平方厘米.【点评】本题考查了扇形面积公式S=的灵活应用.21.【分析】根据圆锥的体积公式:V=πr2h,圆柱的体积公式:V=πr2h,把数据分别代入公式求出它们的体积和即可.【解答】解: 3.14×(8÷2)2×6+3.14×(8÷2)2×15= 3.14×16×6+3.14×16×15=100.48+753.6=854.08(立方厘米),答:它的体积是854.08立方厘米.【点评】此题主要考查圆锥、圆柱体积公式的灵活运用,关键是熟记公式.五.操作题(共3小题)22.【分析】分别数出各图形所占格的多少,然后进行比较,即可得出结论.【解答】解:如图所示:【点评】数出两个图形中小方格的个数,是解答此题的关键.23.【分析】根据“圆心定位置,半径定大小”,在平面上确定一点为圆心,以半径为1厘米即可画出此圆.先在圆内画一条半径,再以这条半径为一边,以圆心为顶点画一个90°的角,角的另一边为圆的另一条半径,这两条半径与所夹的弧就是圆心角为90的扇形,并涂色.用同样的方法即可再画一个圆及圆心角为120°的扇形并涂色.【解答】解:【点评】此题是考查圆的意义及画法,扇形的意义及画法.24.【分析】根据题意,在原正方形的四个角上剪掉4个小正方形,小正方形的边长即是长方体的高,长宽都是20减小正方形边长的2倍,然后根据V=abh计算出体积.【解答】解:如果剪掉边长1厘米的小正方形,V=(20﹣1×2)×(20﹣1×2)×1=324(cm3),剪掉边长2厘米的小正方形,V=(20﹣2×2)×(20﹣2×2)×2=512(cm3),剪掉边长3厘米的小正方形,V=(20﹣3×2)×(20﹣3×2)×3=588(cm3),剪掉边长4厘米的小正方形,V=(20﹣4×2)×(20﹣4×2)×4=576(cm3),剪掉边长5厘米的小正方形,V=(20﹣5×2)×(20﹣5×2)×5=500(cm3),所以剪掉的正方形的边长取整厘米时,为3或4厘米,粘贴的长方形的容积超过550cm3.答:纸盒的容积是588或576cm3.【点评】本题考查了正方形粘贴成长方形需要4个角剪掉4个一样的小正方形,以及用V=abh的计算.六.应用题(共4小题)25.【分析】根据球的体积运算公式V=πr3,计算出半径为5cm、1cm的钢球的体积,因为钢球的总体积不变,用除法计算即可.【解答】解:×3.14×53÷(×3.14×13)=×3.14×53÷÷3.14÷13=125(个),答:这些小钢球的个数为125个.【点评】本题考查了球的体积运算,要熟练掌握球的体积运算公式V=πr3.26.【分析】因为一周是360°,所以圆心角是120°的扇形的面积等于该圆的面积的120÷360=.利用圆的面积公式:S=πr2,计算即可.【解答】解:120÷360×3.14×62==37.68(平方厘米)答:涂色部分的面积是37.68平方厘米.【点评】本题主要考查扇形面积,关键利用圆的面积公式计算.27.【分析】(1)根据图示可知,该容器中水的体积为:一个长12厘米、宽6厘米高4厘米的长方体体积,加上长(12﹣4﹣4)=4(厘米)、宽6厘米、高(5﹣4)=1(厘米)的长方体的体积,利用长方体体积公式计算即可;(2)根据图示,该图形旋转后,水的体积不变,所以,水旋转后的高度为:(312﹣4×6×4)÷(4+6)÷6+4=7.6(厘米).【解答】解:(1)12×6×4+(12﹣4﹣4)×6×(5﹣4)=288+24=312(立方厘米)答:这个容器中水的体积为312立方厘米.(2)(312﹣4×6×4)÷(4+6)÷6+4=(312﹣96)÷10÷6+4=216÷10÷6+4=3.6+4=7.6(厘米)答:旋转后水的高度为7.6厘米.【点评】本题主要考查组合图形的体积,关键把组合图形转化为规则图形,利用规则图形的体积公式进行计算.28.【分析】把这张圆纸片对折1次,形成的扇形(半圆)的弧长是所在圆周长的,对折2次,形成的扇形的弧长是所在圆周长的,对折3次,形成的扇形的弧长是所在圆周长的.把扇形所在圆的周长看作单位“1”,根据分数除法的意义,用此时的弧长除以就是扇形所在圆的周长.根据圆周长计算公式“C=πd”即可求出这个圆纸片的直径.【解答】解:1.57÷÷3.14=12.56÷3.14=4(厘米)答:圆纸片的直径是4厘米.【点评】解答此题的关键有两点:一是明白把这张圆纸片对折3次所形成的扇形弧长是扇形所在圆周长的几分之几;二是圆周长计算公式的灵活运用.。
高考数学立体几何专题:等体积法
高考数学立体几何专题:等体积法一、引言在高考数学中,立体几何是一门重要的学科,它考察了学生的空间想象能力和逻辑推理能力。
其中,等体积法是一种常用的方法,它在解决立体几何问题中具有重要的作用。
本文将详细介绍等体积法的基本原理和应用,并通过实例来展示其用法。
二等体积法的基本原理等体积法的基本原理是:对于同一个体积,可以将其分解为不同的几何形状,并且这些几何形状的体积相等。
在立体几何中,常见的几何形状有长方体、正方体、圆柱体、圆锥体等。
这些形状的体积可以通过其高度、底面积和高度的乘积等参数来计算。
三等体积法的应用等体积法在解决立体几何问题中具有广泛的应用。
下面我们将通过几个例子来展示其用法:1、求几何体的表面积和体积例1:已知一个长方体的长、宽和高分别为a、b和c,求该长方体的表面积和体积。
解:该长方体的表面积为2(ab+bc+ac),体积为abc。
2、判断两个几何体是否体积相等例2:给定两个几何体,判断它们是否体积相等。
解:根据等体积法,我们可以分别计算两个几何体的体积,如果两个体积相等,则两个几何体体积相等;否则,两个几何体体积不相等。
3、求几何体的重心位置例3:已知一个长方体的长、宽和高分别为a、b和c,求该长方体的重心位置。
解:根据等体积法,我们可以将该长方体分成两个小的长方体,它们的重心位置与原长方体的重心位置相同。
因此,我们只需要找到这两个小长方体的重心位置即可。
四、结论等体积法是一种常用的方法,在解决立体几何问题中具有重要的作用。
它可以帮助我们计算几何体的表面积和体积,判断两个几何体是否体积相等,以及求几何体的重心位置等。
在实际应用中,我们需要灵活运用等体积法来解决各种不同的问题。
在数学的世界里,立体几何是一门研究空间几何形状、大小、位置关系的科学。
它不仅在数学领域中占据着重要的地位,同时也是高考数学中的重要考点之一。
本文将针对高考数学立体几何专题进行深入探讨,帮助大家更好地理解和掌握这一部分内容。
专题20:《立体几何的体积和容积(二)》小升初数学专题讲练解析版)通用版
2019-2020学年通用版数学小升初总复习专题汇编讲练专题20 立体几何的体积和容积(二)(一)长方体1、特征六个面都是长方形(有时有两个相对的面是正方形)。
相对的面面积相等,12条棱相对的4条棱长度相等。
有8个顶点。
相交于一个顶点的三条棱的长度分别叫做长、宽、高。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
把长方体放在桌面上,最多只能看到三个面。
长方体或者正方体6个面的总面积,叫做它的表面积。
2、计算公式:s=2(ab+ah+bh) V=sh V=abh(二)正方体1、特征六个面都是正方形六个面的面积相等12条棱,棱长都相等有8个顶点正方体可以看作特殊的长方体2、计算公式:S表=6a² v=a³(三)圆柱1、圆柱的认识圆柱的上下两个面叫做底面。
圆柱有一个曲面叫做侧面。
圆柱两个底面之间的距离叫做高。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
2、计算公式:s侧=ch s表=s侧+s底×2 v=sh/3(四)圆锥1、圆锥的认识圆锥的底面是个圆,圆锥的侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形。
2、计算公式:v= sh/3(五)球1、认识球的表面是一个曲面,这个曲面叫做球面。
球和圆类似,也有一个球心,用O 表示。
从球心到球面上任意一点的线段叫做球的半径,用r 表示,每条半径都相等。
通过球心并且两端都在球面上的线段,叫做球的直径,用d 表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r 。
2、计算公式:d=2r四、周长和面积1、平面图形一周的长度叫做周长。
2、平面图形或物体表面的大小叫做面积。
3、常见图形的周长和面积计算公式一.圆锥的体积【例1】(2019•广东)从正方体里削出一个最大的圆锥,圆锥的体积是32cm π,正方体的体积是( 3)cm . A .12 B .8 C .6 D .4 【解答】解:设正方体的棱长是acm ,则圆锥的底面直径和高都是acm ,则正方体的体积是:33()a a a a cm ⨯⨯= 圆的体积是3231(2)()312a a a cm ππ÷⨯= 圆锥的体积是正方体的12π 正方体的体积是36()212cm ππ÷=答:正方体的体积是36cm .故选:C .【变式1-1】(2019春•方城县期中)把一个底面直径6cm 、高9cm 的圆锥形木块,沿底面直径切成相同的两块后,表面积比原来增加了( )平方厘米.A .18B .27C .54【解答】解:6922⨯÷⨯272=⨯54=(平方厘米)答:表面积比原来增加了54平方厘米.故选:C .【变式1-2】(2019春•交城县期中)用一个高是36cm 的圆锥形容器盛满油,倒入和它等底等高的圆柱形容器中,油面的高度是 12 cm .【解答】解:136123⨯=(厘米)答:油面的高度是12厘米.故答案为:12.【变式1-3】(2019•衡阳模拟)绕一个直角三角形(如图)的短直角边旋转一周,得到一个立体图形.(单位:厘米)(1)这个立体图形是什么?(2)这个立体图形的体积是多少?【解答】解:以直角三角形短直角边为轴旋转一周得到一个底面半径是5厘米,高是4厘米的圆锥.所以这个立体图形是圆锥.(2)21 3.14543⨯⨯⨯1 3.142543=⨯⨯⨯3143=(立方厘米),答:这个立体图形的体积是3143立方厘米.【变式1-4】(2019•安顺)一个圆锥形的沙石堆,底面积是188.4平方米,高15米.如果用这堆沙石铺路,公路宽10米.沙石厚2分米,能铺多少米长?【解答】解:2分米0.2=米1188.415(100.2)3⨯⨯÷⨯=÷9422=(米)471答:能铺471米长.二.组合图形的体积【例2】(2019•益阳模拟)一个物体是由圆柱和圆锥黏合而成的(如图),如果把圆柱和圆锥重新分开,表面积就增加了250.24cm,原来这个物体的体积是()A.3401.92cm301.44cm D.3226.08cm C.3200.96cm B.3÷=(平方厘米)【解答】解:50.24225.121⨯+⨯⨯-25.12625.12(126)31=+⨯⨯150.7225.1263=+150.7250.24=(立方厘米)200.96答:原来这个物体的体积是200.96立方厘米.故选:A.【变式2-1】用两根完全相同的圆柱形木料分别制作成右图中的两个模型(图中涂色部分),甲与乙的体积相比()A .甲大B .乙大C .相等 【解答】解:底面积相同时,两个高为12a 的圆锥的体积之和,等于一个高为a 的圆锥的体积;已知原来两个圆柱的体积相等,而空白处的图形的体积也相等,所以涂色部分的体积也相等,故选:C .【变式2-2】(2014春•泸西县校级期末)如图是一个直角梯形,如果以AB 边为轴旋转一周,会得到一个立体图形.这个立体图形是由 圆柱 和 组成(填图形名称).它的底面积是 平方厘米,体积是 立方厘米.【解答】解:这个立体图形由1个圆柱和1个圆锥组成,其底面积为:23.14212.56⨯=(平方厘米);其体积为:2213.1422 3.142(52)3⨯⨯+⨯⨯⨯-,12.56212.56=⨯+,25.1212.56=+,37.68=(立方厘米);答:这个立体图形的底面积是12.56平方厘米,体积是37.68立方厘米.故答案为:圆柱、圆锥、12.56、37.68.【变式2-3】(2016春•平阳县校级期中)一个粮囤,上面是圆锥,下面是圆柱形(如图).如果每立方米的粮食重600千克,这个粮囤可囤粮食多少千克?【解答】解:这个粮囤的底面积是:23.14(42)⨯÷3.144=⨯12.56=(平方米)这个粮囤的体积是:112.56212.56 1.53⨯+⨯⨯25.12 6.28=+31.4=(立方米)这囤小麦的重量是:60031.418840⨯=(千克).答:这个粮囤可囤粮食18840千克.【变式2-4】(2019•萧山区模拟)图形计算求立体图形的体积单位(分米)【解答】解:223.14[(202)(102)]15⨯÷-÷⨯3.14[10025]15=⨯-⨯3.147515=⨯⨯3532.5=(立方分米),答:这个立体图形的体积是3532.5立方分米.三.立体图形的容积【例3】(2019春•江城区期末)一个水池能蓄水3430m ,3430m 是这个水池的( )A .表面积B .重量C .体积D .容积 【解答】解:一个水池能蓄水3430m ,3430m 是这个水池的容积.故选:D .【变式3-1】(2015•遂溪县校级模拟)一个汽油桶可装汽油360dm ,它的( )是360dm .A .容积B .体积C .表面积【解答】解:一个汽油桶可装60升汽油,是指它的容积是60升;故选:A .【变式3-2】(2010•广州自主招生)有一种饮料的瓶身如图所示,容积是3升.现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米.那么瓶内现有饮料 2.4 升.【解答】解:饮料和空气的体积比是:20:54:1=饮料有:4330.8 2.441⨯=⨯=+(升)答:瓶内现有饮料2.4升.故答案为:2.4.【变式3-3】(2013•福田区校级模拟)去超市买酸奶,发现一种酸奶采用长方体塑封纸盒包装,从外面量这种纸盒长6.4厘米,宽4厘米,高8.5厘米.这种酸奶盒上标注酸奶的净含量为220毫升,标注是否真实?【解答】解:6.448.5217.6⨯⨯=(立方厘米)217=(毫升);答:盒子的体积是217毫升,而净含量为220毫升,不真实.【变式3-4】一个谷囤的形状如图,下面是圆柱形,底面周长是18.84米,高是2米;上面是圆锥形,高是1.5米.这个谷囤最多能装稻谷多少立方米?【解答】解:221 3.14(18.84 3.142) 1.5 3.14(18.84 3.142)23⨯⨯÷÷⨯+⨯÷÷⨯13.149 1.5 3.14923=⨯⨯⨯+⨯⨯14.1356.52=+70.65=(立方米);答:这个谷囤最多能装稻谷70.65立方米.真题强化演练一.选择题1.(2019•萧山区模拟)将直角三角形ABC 以BC 为轴旋转一周,得到的圆锥体积是V ,那么(V = )A .16πB .12πC .25πD .48π【解答】解:21433π⨯⨯⨯16π=⨯16π=答:体积是16π.故选:A .2.(2018春•平阴县期中)把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将( )A .扩大3倍B .缩小3倍C .扩大6倍【解答】解:根据等底等高的圆锥形的体积是圆柱形体积的13,又因为,在捏橡皮泥的过程中,它的总体积不变,所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A .3.(2015春•平阳县校级期中)一个体积是325.12cm 的圆锥,半径是2cm ,它的高是( )cm .A .2B .8C .6 【解答】解:2125.12(3.142)3÷÷⨯ 25.123(3.144)=⨯÷⨯75.3612.56=÷6=(厘米),答:它的高是6厘米.故选:C .4.(2014春•鹿城区校级月考)一个圆锥和一个圆柱的高相等,圆锥底面半径是1厘米,圆柱底面半径是2厘米,圆锥体积是圆柱体积的( )A .13B .16C .112D .14【解答】解:设圆锥和圆柱的高为h 厘米,圆锥的体积:211133h h ππ⨯=(立方厘米),圆柱的体积:224h h ππ⨯=(立方厘米),114312h h ππ÷=,答:圆锥的体积是圆柱体积的112.故选:C .二.填空题5.(2019•杭州模拟)如图是一个直角三角形,以6cm 的直角边所在直线为轴旋转一周,所得到的图形是 圆锥 ,它的体积是 3cm .【解答】解:以直角三角形的直角边(6厘米)为轴旋转一周得到一个底面半径是2厘米,高是6厘米的圆锥.21 3.14263⨯⨯⨯3.148=⨯25.12=(立方厘米)答:得到的立体图形是圆锥,它的体积是25.12立方厘米.故答案为:圆锥、25.12.6.(2019•杭州模拟)计算下面圆锥的体积是 50 3cm【解答】解:11510503⨯⨯=(立方厘米),答:这个圆锥的体积是50立方厘米.故答案为:50.7.(2019•衡水模拟)一个圆锥形零件的底面半径是4厘米,高是9厘米,它的体积是 150.72 立方厘米.【解答】解:21 3.14493⨯⨯⨯1 3.141693=⨯⨯⨯150.72=(立方厘米)答:它的体积是150.72立方厘米.故答案为:150.72.8.(2019•萧山区模拟)下面,以直角三角形的斜边为轴旋转一圈,求所形成图形的体积.(得数保留整数)【解答】解:如图斜边的高为:345 2.4⨯÷=(厘米),21 3.14 2.453⨯⨯⨯1 3.14 5.7653=⨯⨯⨯30.144=(立方厘米);答:所形成图形的体积是30.144立方厘米.9.(2013•永康市)一个圆柱形水桶,里面盛48升的水,正好盛满,如果把一块与水桶等底等高的圆锥形,放入水中,桶内还有 32 升水.【解答】解:4832÷⨯,162=⨯,32=;故答案为:32.10.(2017•杭州)一个正方体木料削成最大的圆锥,圆锥的体积占正方体的12π .【解答】解:假设正方体的棱长为a 厘米,正方体的体积是:3a a a a ⨯⨯=(立方厘米), 削出最大圆锥的体积是:23211(2)33412a a a a a πππ⨯÷⨯=⨯⨯=(立方厘米), 所以圆锥的体积占正方体体积的:331212a πππ÷=; 故答案为:12π.三.判断题11.(2014•桐乡市校级模拟)在一个圆柱中挖去一个最大的圆锥,剩下部分的体积是圆柱的23. √ .(判断对错)【解答】解:根据题干分析可得:这个圆柱的体积与挖出的圆锥是等底等高,所以圆柱的体积是圆锥的体积的3倍, 则剩下部分的体积是圆柱的体积的2(31)33-÷=. 故答案为:√.12.(2019•亳州模拟)把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的13. ⨯ .(判断对错) 【解答】解:把一个圆柱削成一个与它等底等高的圆锥,这个圆锥的体积是圆柱体积的13,如果没有确定削成的圆锥是否与圆柱等底等高,那么把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的13,这种说法是错误的.故答案为:⨯.13.(2016•温州)把一个圆柱削成最大的圆锥体,削去部分的体积与圆锥的体积的比是2:1. √ (判断对错)【解答】解:圆柱体削成一个最大的圆锥体,则:3V V =圆柱圆锥():V V V -圆柱圆锥圆锥2:V V =圆锥圆锥2:1= 答:削去部分的体积与圆锥的体积的比是2:1.故题干的说法是正确的.故答案为:√.14.(2012•紫金县)把圆柱体削成一个最大的圆锥体,圆锥体体积是削去部分的12. 正确 .(判断对错) 【解答】解:把圆柱体的体积看作“1”,与它等底等高的圆锥的体积是圆柱体的13,削求部分是圆柱体的23. 12133-=; 1213133322÷=⨯=; 答:圆锥体体积是削去部分的12.故答案为:正确.四.计算题15.(2019•萧山区模拟)求如图图形的体积.单位:厘米.【解答】解:2 501030 3.14(202)10⨯⨯-⨯÷⨯15000 3.1410010=-⨯⨯150003140=-11860=(立方厘米),答:它的体积是11860立方厘米.16.(2019•萧山区模拟)求如图空心圆柱的表面积.(单位:分米)【解答】解:22 3.1444 3.1424 3.14[(42)(22)]2⨯⨯+⨯⨯+⨯÷-÷⨯50.2425.12 3.14[41]2=++⨯-⨯50.2425.12 3.1432=++⨯⨯50.2425.1218.84=++94.2=(平方分米),答:这个空心圆柱的表面积是94.2平方分米.五.应用题17.(2019•宁波模拟)有一块正方体木料,它的棱长是4分米.把这块木料加工成一个最大的圆柱.削去部分的体积是多少?【解答】解:2 444 3.14(42)4⨯⨯-⨯÷⨯64 3.1444=-⨯⨯6450.24=-13.76=(立方分米),答:削去部分的体积是13.76立方分米.18.(2018•萧山区模拟)一个圆锥形沙堆,底面积是250m ,高是3m .用这堆沙在10米宽的公路上铺2cm 厚的路面,能铺多少米?【解答】解:2厘米0.02=米, 1503(100.02)3⨯⨯÷⨯500.2=÷250=(米),答:能铺250米.19.(2019•萧山区模拟)一个圆锥形的沙堆,底面直径是4米、高1.5米.用这堆沙子铺在宽10米,厚5厘米的路上,能铺多长?【解答】解:5厘米0.05=米21 3.14(42) 1.5(100.05)3⨯⨯÷⨯÷⨯1 3.144 1.50.53=⨯⨯⨯÷6.280.5=÷12.56=(米)答:能铺12.56米.六.解答题20.(2019•萧山区模拟)一个直角三角形,两条直角边长分别为3厘米和4厘米,斜边长是5厘米.以斜边所在直线为轴旋转一周(如图),所得到的立体图形的体积是多少?【解答】解:直角三角形斜边所在直线为轴旋转一周,得到的几何体是同一底面的两个圆锥,如上图所示, 设这个圆锥的底面半径是r ,则:52342r ÷=⨯÷,512r =,2.4r =,所以这个立体图形的体积是:21 3.14 2.4()3AO CO ⨯⨯⨯+,1 3.14 5.7653=⨯⨯⨯;30.144=(立方厘米),答:旋转一周后的立体图形的体积是30.144立方厘米.21.(2016•龙湾区校级模拟)一个底面半径与高的比为1:3的圆锥体煤堆.高是6米,如果每0.75立方米的煤是1吨,这堆煤有多少吨? 【解答】解:21 3.14(63)63⨯⨯÷⨯3.148=⨯25.12=(立方米)251225.120.7575÷=(吨) 答:这堆煤有251275吨.22.(2012•桐乡市校级模拟)一个圆锥形麦堆,高1.2米,占地面积16平方米,如果每立方米小麦重750千克,这堆小麦重多少千克? 【解答】解:116 1.27503⨯⨯⨯,6.4750=⨯,4800=(千克).答:这堆小麦重4800千克.23.(2017•朝阳区)小红和小军分别以直角梯形的上底和下底为轴,将梯形旋转一周,得到两个立体图形.(1)你同意谁的说法,请将名字填在横线里. 小红.(2)甲、乙两个立体图形的体积比是多少?(写出你的思考过程)【解答】解:(1)我同意小红的说法,分别以直角梯形的上底和下底为轴,将梯形旋转一周,得到两个立体图形的体积不相等.以梯形的上底为轴旋转得到是高为6厘米,底面半径是3厘米的圆柱内有一个空心圆锥;而以梯形的下底为轴旋转得到的是上面是圆锥、下面是圆柱.(2)甲的体积:2213.1436 3.143(63)3⨯⨯-⨯⨯⨯-13.1496 3.14933=⨯⨯-⨯⨯⨯169.5628.26=-141.3=(立方厘米);乙的体积:221 3.143(63) 3.14333⨯⨯⨯-+⨯⨯1 3.1493 3.14933=⨯⨯⨯+⨯⨯28.2684.78=+113.04=(立方厘米);141.3:113.04(141.3 3.14):(113.04 3.14)=÷÷(459):(369)=÷÷5:4=.答:甲、乙体积的比是5:4.故答案为:小红.24.(2012•苍南县)工地上有一些沙子,堆起来近似于一个圆锥.如果每立方米沙重1.5t,这堆沙重多少吨?(得数保留一位小数.)【解答】解:213.14(42) 1.6 1.5 3⨯⨯÷⨯⨯13.144 1.6 1.53=⨯⨯⨯⨯6.7 1.5≈⨯10.1≈(吨),答:这堆沙重10.1吨.25.(2009•新昌县)一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱地面的周长是6.28m,高是2m,圆锥的高是1.5m,这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤能装稻谷多少千克?【解答】解:(1)圆柱的底面积为:23.14(6.28 3.142)⨯÷÷23.141=⨯3.14=(平方米);这个粮囤的体积:13.14 1.5 3.1423⨯⨯+⨯1.57 6.28=+7.85=(立方米);答:这个粮囤能装稻谷7.85立方米.⨯=(千克)(2)7.855003925答:这个粮囤最多能装稻谷3925千克.。
小升初数学复习专题《不规则物体体积算法》练习及答案
小升初数学复习专题《不规则物体体积算法》练习一、单选题1.我会测量一块不规则矿石的体积,如下图所示。
这块石头体积为()立方厘米。
A.1200B.8000C.68002.一个长方体容器,底面是正方形,盛水高1分米。
放入6个质量一样的鸡蛋后,水面升高2厘米。
要求一个鸡蛋的体积,只需要再知道()。
A.6个鸡蛋的表面积B.长方体容器的表面积C.长方体容器的高D.长方体容器的底面周长3.依依测量一颗铁球的体积,过程如下:⑴将300mL的水倒入一个容量为500mL的杯子中,如图①;⑴将4颗相同的球放入水中,结果水没有满,如图②;⑴再加入一颗同样的球,结果水满溢出来,如图③。
根据以上过程,推测一个铁球的体积大约在()。
A.30~40cm3B.40~50cm3C.50~60cm3D.正好40cm34.小强测量一个土豆的体积,在一个棱长1分米的正方体容器中装了一些水,水面距离杯口2厘米(如图)。
他把土豆浸没在水中,有部分水溢出,接着他又把土豆取出来,水面下降了3厘米,土豆的体积是()立方厘米。
A.200B.500C.100D.3005.爸爸在一个长8dm,宽5dm,高4dm的长方体鱼缸中放入一个假山石(完全浸没),水面上升了3cm,这个假山石的体积是()。
A.16cm3B.120dm3C.120cm3D.12dm36.把一粒花生米放入装满水的杯子里,溢出来的水的体积大约是().A.1毫升B.100毫升C.1升D.10升二、判断题7.长方体容器的长和宽都是4cm,原来水深3cm。
将一颗钢珠掷入这个容器中(完全浸没),水面上升了4cm。
这颗钢珠的体积是64cm3。
()三、填空题8.一个圆柱形的水箱里装满了水。
这时放入一块高和宽都是1分米的长方体石块,完全浸没,水溢出4升。
这块石块的体积是立方分米。
9.如图,甲、乙两个容器装有8厘米深的水。
小林为了测一块石头的体积,把石头放入甲容器(全部淹没),水面正好上升了2厘米,他再把这块石头放入乙容器也全部淹没,水面会上升厘米.10.一个长方体水槽,从里面量,长60厘米,宽25厘米,高40厘米。
五年级下册数学体积
五年级下册数学体积
数学体积是五年级下册的重要内容之一。
在这个学期,学生将会学习有关三维图形的体积计算和相关概念。
什么是体积?
体积是用来描述三维图形所占空间大小的属性。
通常使用单位立方厘米(cm³)或立方米(m³)来表示。
如何计算体积?
不同的三维图形有不同的计算公式来求解体积。
以下是一些常见图形的体积计算公式:
立方体:体积=边长³
长方体:体积=长×宽×高
圆柱体:体积=π×半径²×高
锥体:体积=1/3×底面积×高
实际问题中的体积应用
学生们将会通过实际问题来应用体积的概念和计算方法。
例如,他们可以计算一个鱼缸的容量、一个纸盒的容积或者一个水桶可以装多少水等等。
总结
通过五年级下册的数学体积学习,学生将会掌握计算不同图形体积的方法,并能够应用到实际生活中。
体积的概念在日常生活中有着广泛的应用,对于培养学生的空间思维能力和解决实际问题的能力都非常重要。
1。
高考数学专题复习:立体几何体的表面积与体积
高考数学专题复习:立体几何体的表面积与体积一、单选题1.一个圆柱的轴截面是一个面积为36的正方形,则该圆柱的体积是( ) A .54π B .36π C .16π D .8π2.在正三棱锥A BCD -中,BCD △的边长为6,侧棱长为积为( )A .754πB .75πCD 3.在菱形ABCD 中,6AB =,60A ∠=,连结BD ,沿BD 把ABD 折起,使得二面角A BD C --的大小为60,连结AC ,则四面体ABCD 的外接球的表面积为( ) A .13π B .24π C .36π D .52π 4.已知一个圆柱上,下底面的圆周都在同一个球面上,球的直径为4,圆柱底面直径为2,则圆柱的侧面积为( )A .B .C .D .5.一平面截一球得到直径为的圆面,球心到这个平面的距离为2cm ,则该球的体积为( )A .3256cm 3πB .364cm πC .364 c m 3πD .316cm 3π 6.若底面直径和高相等的圆柱的侧面积是π,则这个圆柱的体积是( ) A .π B .4π C .2π D .34π7.已知三棱锥S ABC -中,SA ⊥平面,4,60ABC SA BC BAC ==∠=︒,则三棱锥S ABC -外接球的表面积为( )A .32πB .64πC .80πD .128π8.已知一平面截一球得到直径为,则该球的体积为( )3cmA .12πB .36πC .D .108π 9.已知圆柱1OO 及其展开图如图所示,则其体积为( )A .πB .2πC .3πD .4π10.已知正四棱锥S ABCD -的底面边长为2,则该正四棱锥的体积等于( )A .43BC .D .411.已知A ,B 是球O 的球面上两点,23AOB π∠=,P 为该球面上动点,若三棱锥O PAB -体O 的表面积为( ) A .12π B .16π C .24π D .36π12.正四棱台的上、下底面边长分别是2和4,则该棱台的体积是( ) A .563 B .583 C .20 D .21二、填空题13.设体积为P ABC -外接球的球心为O ,其中O 在三棱锥P ABC -内部.若球O 的半径为R ,且球心O 到底面ABC 的距离为3R ,则球O 的半径R =__________. 14.将边长为1的正方形ABCD 沿对角线AC 折起,使ABD △为正三角形,则三棱锥A BCD -的体积为__________.15.已知正四棱台的上底边长为4,下底边长为8________. 16.如图边长为2的正方形ABCD 中,以B 为圆心的圆与AB ,BC 分别交于点E ,F ,若1tan 2CDF ∠=,则阴影部分绕直线BC 旋转一周形成的几何体的体积等于__________.三、解答题17.如图,已知圆锥的顶点为P ,O 是底面圆心,AB 是底面圆的直径,5PB =,3OB =.(1)求圆锥的表面积;(2)经过圆锥的高PO 的中点O '作平行于圆锥底面的截面,求截得的圆台的体积.18.如下图1,一个正三棱柱形容器中盛有水,底面三角形ABC 的边长为2cm ,侧棱14cm AA =,若侧面11AA B B 水平放置时(如下图2),水面恰好过AC ,BC ,11A C ,11B C 的中点.(1)求容器中水的体积;(2)当容器底面ABC 水平放置时(如图1),求容器内水面的高度.19.如果一个正四棱柱与一个圆柱的体积相等,那么我们称它们是一对“等积四棱圆柱”.将“等积四棱圆柱”的正四棱柱、圆柱的表面积与高分别记为1S 、2S 与1h 、2h .(1)若121h h ==,1=30S ,求2S 的值;(2)若12h h =,求证:12S S >.20.已知正三棱柱111ABC A B C -的底面边长为2D 为BC 的中点;(1)求该三棱柱的体积与表面积;(2)求三棱锥11D AB C -的内切球半径.21.如图,正三棱锥(底面是正三角形,侧棱长都相等)P ABC -的底面边长为2,侧棱长为3.-的表面积;(1)求正三棱锥P ABC-的体积.(2)求正三棱锥P ABC22.如图所示是在圆锥内部挖去一正四棱柱所形成的几何体,该正四棱柱上底面的四顶点在r=.圆锥侧面上,下底面落在圆锥底面内,已知圆锥侧面积为15π,底面半径为3(Ⅰ)若正四棱柱的底面边长为a(Ⅱ)求该几何体内正四棱柱侧面积的最大值.参考答案1.A【分析】设圆柱的底面半径为r ,则圆柱的高为2r ,利用圆柱的轴截面面积求出r 的值,再利用柱体体积公式可求得该圆柱的体积.【详解】设圆柱的底面半径为r ,则圆柱的高为2r ,该圆柱的轴截面面积为2436r =,解得3r =, 因此,该圆柱的体积为2223654V r r πππ=⨯=⨯⨯=.故选:A.2.B【分析】取CD 中点E ,连接BE ,在BE 上取点F ,使得23BF BE =,连接AF ,则点F 为三角形BCD的中心, 根据题意可得AF ⊥平面BCD ,求出BF =AF =半径为R ,则222)R R =+,解得R 【详解】解:取CD 中点E ,连接BE ,在BE 上取点F ,使得23BF BE =,连接AF , 则点F 为三角形BCD 的中心,根据题意可得AF ⊥平面BCD ,则该三棱锥外接球的球心O 在AF 上,BF ==,AF = 设该三棱锥外接球的半径为R ,则222)R R =+, 解得R∴该三棱锥外接球的表面积为:224475S R πππ==⨯=.故选:B .3.D【分析】取BD 的中点记为O ,分别取BCD △和ABD △的外心E 与F ,过这两点分别作平面BDC 、平面ABD 的垂线,交于点P ,则P 就是外接球的球心,先在POE △中,求解1PE =,再在PCE ,求PC 可得球半径,进而得解.【详解】如图,取BD 的中点记为O ,连接OC ,OA ,分别取BCD △和ABD △的外心E 与F ,过这两点分别作平面BDC 、平面ABD 的垂线,交于点P ,则P 就是外接球的球心,连接OP ,CP ,易知AOC ∠为二面角A BD C --的平面角为60,则AOC △是等边三角形,其边长为6=1133OE OC ==⨯在POE △中,30POE ∠=,∴tan 30=3PE OE =⋅⨯∵2=3CE OC =∴PC R ====则四面体ABCD 的外接球的表面积为2452ππ⨯=.故选:D.4.B【分析】由题意结合勾股定理可得12h = 【详解】设圆柱的高为h ,球的半径为R ,圆柱的底面半径为r ,根据题意,2,1R r ==,由勾股定理可得12h h =S 侧221rh ππ==⨯⨯=,故选:B5.A【分析】依题意求得球半径即可.【详解】依题意得球半径4R =,所以该球的体积33442564333V R πππ==⨯=(cm 3). 故选:A.6.B【分析】设出圆柱底面圆半径r 并表示出其高,借助圆柱侧面积求出r 即可作答.【详解】设圆柱底面圆半径为r ,依题意得高2h r =,于是得圆柱侧面积224S r h r πππ=⋅==,解得12r =,1h =, 所以圆柱的体积为24V Sh r h ππ==⋅=.故选:B7.A【分析】根据三棱锥中线面位置关系求解外接球的半径,进而求出外接球的表面积.【详解】 ABC 中,23,60BC BAC =∠=︒,设 ABC 的外接圆半径为r ,根据正弦定理有, 23242sin sin 60BC r r BAC ===∴=∠︒如图,1O 点为 ABC 的外心,O 三棱锥外接球的球心SA ⊥平面ABC , 1//OO SA ∴,且 OS OA =1122OO SA ∴== 1Rt AO O 中,11122,90AO r OO AO O ===∠=︒,, 22AO ∴= 即三棱锥外接球的半径为:22所以外接球的表面积为()24π·2232π=,选项A 正确,选项BCD 错误故选:A.8.B【分析】由球的截面性质求得球半径后可得体积.【详解】由题意截面圆半径为r =3R ==, 体积为334433633V R πππ==⨯=. 故选:B .9.D【分析】结合展开图求出圆柱的底面半径与高,进而结合体积公式即可求出结果.【详解】设底面半径为r ,高为h ,根据展开图得422h r ππ=⎧⎨=⎩,则41h r =⎧⎨=⎩,所以圆柱的体积为22144r h πππ=⨯⨯=,故选:D.10.A【分析】首先计算正四棱锥的高,再计算体积.【详解】如图,正四棱锥S ABCD -,SB =OB =1SO =, 则该正四棱锥的体积1422133V =⨯⨯⨯=.故选:A【分析】当点P 位于垂直于面AOB 的直径端点时,三棱锥O PAB -的体积最大,利用三棱锥O PAB -体O 的表面积. 【详解】解:如图所示,当点P 位于垂直于面AOB 的直径端点时,三棱锥O PAB -的体积最大, 设球O 的半径为R ,此时21132O PAB P AOB V V R R --==⨯=, 解得2R =,则球O 的表面积为2416R ππ=,故选:B .12.A【分析】先求出棱台的高,然后利用台体的体积公式求体积即可.【详解】由棱台的几何特征可得其高为:2h , 则其体积为:(2215624233V =⨯+⨯=. 故选:A13.3【分析】根据等边三角形的性质,结合球的几何性质、棱锥的体积公式进行求解即可.取ABC 的中心G .连接PG ,则PG ⊥平面ABC 且球心O 在PG 上.由条件知,3R OG =,连接OA ,AG ,则AG ==,设等边ABC 的边长为a ,所以等边ABC =,因此23AG ===,所以有R a 362=,于是ABC .又OP R =, 故三棱锥P ABC -的高是:1433R R R +=,所以223148)333P ABC V R R R -=⋅⋅=⋅==3R =. 故答案为:314【分析】取AC 的中点O ,连接BO ,DO ,求出底面面积以及高,然后求解体积即可.【详解】取AC 的中点O ,连接BO ,DO ,由题意,AC ⊥BO ,AC ⊥DO ,BO DO == 因为ABD △为正三角形,AB =AD =DB =1,由已知可得AO =OB =OD ,∴OBD 是直角三角形,∴DO ⊥OB ,又,OD AC AC OB O ⊥⋂=,∴OD ⊥面ABC ,∴111332A BCD D ABC ABC V V S DO --==⋅=⨯=15.112【分析】 根据已知条件,分别计算出上、下底面面积以及棱台的高,代入棱台体积公式进行计算即可得解.【详解】因为正四棱台的上底边长为4,下底边长为8所以棱台的下底面积64S =,上底面积16S '=,高3h =,所以正四棱台的体积(()11641632311233V S S h '=⋅+⋅=⋅++⋅=. 故答案为:112.16.6π【分析】阴影部分绕直线BC 旋转一周形成的几何体是一个圆柱挖掉一个半球与圆锥,分别计算其体积,然后得到答案.【详解】在Rt DCF 中12,tan 212DC CF DC CDF ==∠=⨯=, 所以211BF BC CF =-=-=,正方形ABCD 绕直线BC 旋转一周形成圆柱,圆柱的底面半径2R AB ==,高12h BC ==,其体积2211228V R h πππ==⨯⨯=; 直角CDF 绕直线BC 旋转一周形成与圆柱同底的圆锥,圆锥的底面半径2R =,高21h CF ==,其体积222211421333V R h πππ==⨯⨯=;扇形BEF 是圆的14,绕直线BC 旋转一周形成一个半球,球的半径为1r BE ==, 故其体积33314142123233V r πππ=⨯=⨯⨯=; 所以阴影部分绕直线BC 旋转一周形成的几何体是一个圆柱挖掉上述的半球与圆锥, 故其体积123428633V V V V ππππ=--=--=. 故答案为:6π.17.(1)24π;(2)21π2. 【分析】(1)由题意可知,该圆锥的底面半径3r =,母线5l =,从而可求出锥的表面积,(2)先求出大圆锥的高,从而可求出小圆锥的高,进而可得圆台的体积等于大圆锥的体积减去小圆锥的体积【详解】解:(1)由题意可知,该圆锥的底面半径3r =,母线5l =.∴该圆锥的表面积22πππ3π3524πS r rl =+=⨯+⨯⨯=.(2)在Rt POB △中,4PO ==,∵O '是PO 的中点,∴2PO '=.∴小圆锥的高2h '=,小圆锥的底面半径1322r r '==, ∴截得的圆台的体积2211321π34π2π3322V V V ⎛⎫=-=⨯⨯⨯-⨯⨯⨯= ⎪⎝⎭小台大.18.(1))3cm ;(2)3cm . 【分析】(1)在图2中,根据四棱柱的体积公式计算可得;(2)设图1中水高度为cm h ,根据水的体积相等得到方程,解得即可;【详解】解:(1)在图2中,水所占部分为四棱柱.四棱柱底面积为)222112sin 601sin 6022S cm =⨯⨯︒-⨯⨯︒=,又高为4cm所以水的体积为)34V cm ==,(2)设图1中水高度为cm h ,则212sin 602V h =⨯⨯︒⨯=3h =. 所以当容器底面ABC 水平放置时,容器内水面的高度为3cm .19.(1)18+;(2)证明见解析.【分析】设正四棱柱的底面边长为a ,圆柱的底面半径为r ,2212πa h r h =,21124S a ah =+,2222π2πS r rh =+.(1)由121h h ==,1=30S 可得答案;(2)由21h h =,得22πa r =,212124S S a ah -=+22(2π2π)r rh -+化简可得答案.【详解】设正四棱柱的底面边长为a ,圆柱的底面半径为r ,则2212πa h r h =,21124S a ah =+,2222π2πS r rh =+.(1)224130a a +⨯=,得22150a a +-=,又0a >,所以3a =,所以22π131r ⨯=⨯,得r =292π2π1πS =⨯+18=+(2)证明:21h h =,则22πa r =,212124S S a ah -=+22(2π2π)r rh -+212π4r ah =+212π2πr rh --14ah =12πrh -12π)h r =0>.得证.20.(1)1113-=ABC A B C V ,111ABC A B C S -=(2 【分析】(1)直接利用体积公式求解即可,直接求解表面积,(2)利用等体积法求法【详解】(1)111223ABC A B C V Sh -===,111222232ABC A B C S S S -=+=+=底侧(2)111111112132D AB C B AB C C ABB V V V ---===⨯= 1111113,6AB D AC D B C D AC B S S S S ====,则三棱锥11D AB C -的表面积为+设三棱锥11D AB C -的内切球半径为r ,则113r ⨯⨯=,则r =21.(1);(2【分析】(1)取BC 的中点D ,连接PD ,利用勾股定理求得PD ,可得三角形PBC 的面积,进一步可得正三棱锥P ABC -的侧面积,再求出底面积,则正三棱锥P ABC -的表面积可求; (2)连接AD ,设O 为正三角形ABC 的中心,则PO ⊥底面ABC .求解PO ,再由棱锥体积公式求解.【详解】解:(1)取BC 的中点D ,连接PD ,在Rt PBD 中,可得PD = ∴1222PBC S BC PD == 正三棱锥的三个侧面是全等的等腰三角形,∴正三棱锥P ABC -的侧面积是33PBC S =⨯=正三棱锥的底面是边长为2的正三角形,∴122sin 602ABC S =⨯⨯⨯︒=△则正三棱锥P ABC -的表面积为(2)连接AD ,设O 为正三角形ABC 的中心,则PO ⊥底面ABC .且13OD AD ==在Rt POD 中,PO ==∴正三棱锥P ABC -的体积为1133ABC S PO ⋅==.22.(Ⅰ)16123π-;(Ⅱ)【分析】 (Ⅰ)分别计算圆锥和正四棱柱的体积,再计算该几何体的体积;(Ⅱ)首先利用比例关系求得1312h +=,再利用基本不等式求得1h a 的最大值,即可得到正四棱柱侧面积的最大值【详解】解:设圆锥母线长为l ,高为h ,正四棱柱的高为1h(Ⅰ)由S rl π=圆锥侧,有315l ππ=,故5l =,由222h r l +=,故4h =, 所以圆锥体积为2211341233V r h πππ==⨯⨯=圆锥由a =2, 由图可得11h r h r -=,所以11318433r h h r --==⨯=, 故正四棱柱的体积为21816233V a h ==⨯=正四棱柱 所以该几何体的体积为16123V V π-=-圆锥正四棱柱 (Ⅱ)由图可得12r h h r =,即13243h -=,即1312h +=由13h +≥136h ==时左式等号成立,有112h a ⇒≤12h =,a =故正四棱柱侧面积14S h a =≤侧,当且仅当12h =,a =所以该几何体内正四棱柱侧面积的最大值为。
高考数学复习空间几何体的表面积与体积专题训练(含答案)
高考数学复习空间几何体的表面积与体积专题训练(含答案)答案 C4.已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为().A. B. C. D.解析在直角三角形ASC中,AC=1,SAC=90,SC=2,SA==;同理SB=.过A点作SC的垂线交SC于D点,连接DB,因SAC≌△SBC,故BDSC,故SC平面ABD,且平面ABD为等腰三角形,因ASC=30,故AD=SA=,则ABD的面积为1=,则三棱锥的体积为2=.答案 A.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为().A.cm2B.cm2C.cm2D.cm2解析该几何体的上下为长方体,中间为圆柱.S表面积=S下长方体+S上长方体+S圆柱侧-2S圆柱底=244+442+233+431+21-22=94+.答案 C.已知球的直径SC=4,A,B是该球球面上的两点,AB=,ASC=BSC=30,则棱锥SABC的体积为().A.3B.2C.D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在SAD和SBD中,由已知条件可得AD=BD=x,又因为SC为直径,所以SBC=SAC=90,所以DCB=DCA=60,在BDC中,BD=(4-x),所以x=(4-x),所以x=3,AD=BD=,所以三角形ABD为正三角形,所以V=SABD4=.答案 C二、填空题.已知S、A、B、C是球O表面上的点,SA平面ABC,ABBC,SA=AB=1,BC=,则球O的表面积等于________.解析将三棱锥S-ABC补形成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,所以2R=SC=2,R=1,表面积为4.答案 4.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积V=11=.答案9.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为________.解析借助常见的正方体模型解决.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4.答案 12+4.如图所示,正方体ABCD-A1B1C1D1的棱长为6,则以正方体ABCD-A1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.解析设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为=2,圆锥底面面积为S1=(2)2=24,圆锥的母线即为球的半径3,圆锥的侧面积为S2=23=18.因此圆锥的全面积为S=S2+S1=18=(18+24).答案 (18+24)三、解答题.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=11=.(2)由三视图可知,该平行六面体中,A1D平面ABCD,CD平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,S=2(11+1+12)=6+2..在直三棱柱ABC-A1B1C1中,底面为直角三角形,ACB=90,AC=6,BC=CC1=,P是BC1上一动点,如图所示,求CP+PA1的最小值.解 PA1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.铺平平面A1BC1、平面BCC1,如图所示.计算A1B=AB1=,BC1=2,又A1C1=6,故A1BC1是A1C1B=90的直角三角形.CP+PA1A1C.在AC1C中,由余弦定理,得A1C===5,故(CP+PA1)min=5..某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的主视图和俯视图.(1)请画出该安全标识墩的左视图;(2)求该安全标识墩的体积.(1)左视图同主视图,如图所示:(2)该安全标识墩的体积为V=VPEFGH+VABCDEFGH=40260+40220=64 000(cm3)..如图(a),在直角梯形ABCD中,ADC=90,CDAB,AB=4,AD=CD=2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体D-ABC,如图(b)所示.(1)求证:BC平面ACD;(2)求几何体D-ABC的体积.(1)证明在图中,可得AC=BC=2,从而AC2+BC2=AB2,故ACBC,又平面ADC平面ABC,平面ADC平面ABC=AC,BC平面ABC,BC平面ACD.(2)解由(1)可知,BC为三棱锥B-ACD的高,BC=2,SACD=2,VB-ACD=SACDBC=22=,由等体积性可知,几何体D-ABC的体积为.空间几何体的表面积与体积专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。
【通用版】数学小升初专题复习材料—利用水和容积巧求物体的体积(附答案)
与几何图形有关的实际问题重点把握六:利用水和容器巧求物体的体积【画龙点睛】运用排水法求不规则物体的体积,最直接的方法是用容器的底面积×高度差进行计算。
【例题把握解读】【例1】小文家有一个长方体形状的鱼缸,长4分米,宽3分米,里面注入了2分米深的水。
一天,爸爸买回4条一样大小的金鱼,放入鱼缸后,水面立即上升了2厘米,你能求出每条金鱼的体积吗?解:4×3×0.2÷4=0.6(立方分米)答:每条金鱼的体积是0.6立方分米。
【例2】一个长方体水箱,长75厘米,宽60厘米,箱内装满水,水中有一块长30厘米,宽24厘米的铁块,当取出铁块后水面下降4厘米。
铁块的高度是多少厘米?解: (1)铁块的体积: 75×60×4=18000(立方厘米) (2)铁块的高:18000÷(30×24)=25(厘米)答:铁块的高度是25厘米。
上升部分水的体积就是4条金鱼的体积。
当取出铁块后水面下降的空间就是铁块的体积,这段空间的长就是长方体水箱的长,宽就是水箱的宽,高是4厘米。
【同步演练】1.一个长方体容器,底面长是60厘米,宽38厘米,里面沉入一个长方体钢块,当钢块取出时,容器中的水面下降了5厘米。
如果长方体钢块的底面积是570平方厘米,钢块高是多少厘米?2.一块棱长为5厘米的正方体铁块,浸没在一个长方体容器的水中,取出铁块后,水面下降了1厘米,求容器的底面积是多少?3.一个长方体玻璃缸,最多可装水120升。
已知玻璃钢里面长6分米,宽4分米,现在水深3分米。
如果在玻璃缸里放入体积为15立方分米的玻璃缸,里面的水会不会溢出?为什么?4.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口3厘米。
若将一个圆锥形铅垂完全侵入杯中,水会溢出20毫升。
求铅垂的体积。
【答案与解答】1解:(60×38×5)÷570=20(厘米)2.【解答】水面下降的空间就是正方体铁块的体积。
高考物理专题复习例题习题及答案解析:物质的量-气体摩尔体积-
课时3 物质的量气体摩尔体积一、选择题(本题共7个小题,每题6分,共42分,每个小题只有一个选项符合题意。
)1.三聚氰胺又名蛋白精[分子式:C3N3(NH2)3,相对分子质量:126]是一种低毒性化工产品,婴幼儿大量摄入可引起泌尿系统疾患。
有关三聚氰胺的下列说法正确的是()。
A.2.52 g三聚氰胺含氮原子数目为0.12N A B.标准状况下1 mol的三聚氰胺的体积为22.4 L C.三聚氰胺含氮量约为10% D.三聚氰胺的摩尔质量为126解析三聚氰胺为固体,一分子三聚氰胺中含有6个氮原子,含氮量约为66.7%,摩尔质量为126 g·mol-1。
答案 A2.下列有关气体体积的叙述中,正确的是()。
A.在一定的温度和压强下,各种气态物质体积的大小由气体分子的大小决定B.在一定的温度和压强下,各种气态物质体积的大小由物质的量的多少决定C.不同的气体,若体积不同,则它们所含的分子数一定不同D.气体摩尔体积是指1 mol任何气体所占的体积约为22.4 L解析决定物质体积的因素:①微粒数的多少,②微粒本身的大小,③微粒间的距离。
对于气体物质,在一定温度和压强下,其体积的大小主要由分子数的多少来决定,故A不正确,B正确;气体的体积随温度和压强的变化而变化。
体积不同的气体,在不同的条件下,其分子数可能相同,也可能不同,是无法确定的,故C不正确;气体摩尔体积是指1 mol任何气体所占的体积,其大小是不确定的,会随着温度、压强的变化而变化,22.4 L·mol-1是标准状况下的气体摩尔体积,故D不正确。
答案 B3.在下列条件下,两种气体的分子数一定相等的是()。
A.同密度、同压强的N2和C2H4 B.同温度、同体积的O2和N2C.同体积、同密度的C2H4和CO D.同压强、同体积的O2和N2解析根据阿伏加德罗定律及其推论可以判断A、B、D错误。
C项,同体积、同密度的C2H4和CO质量相等,C2H4和CO的相对分子质量都是28,所以,等质量时两者物质的量相等,分子数也相等。
高二下数学期终复习专题系列10---求多面体的体积时常用的方法
V棱锥 棱锥B-PEF
= 1 3 S⊿PFE×h
V棱锥 棱锥P-BEF
= 1 3 S⊿BFE×PC
斜三棱柱ABC-A`B`C`的侧面 的侧面BB`C`C 斜三棱柱 的侧面 的面积为S, 到此侧面的距离是a, 的面积为 ,AA`到此侧面的距离是 , 到此侧面的距离是 求此三棱柱的体积? 求此三棱柱的体积?
如图,在多面体 如图,在多面体ABCDEF中,已知面 中 已知面ABCD 是边长为3的正方形 的正方形, 是边长为 的正方形,EF//AB,EF=1.5, EF , 与面AC的距离为 的距离为2,求此多面体的体积? 与面 的距离为 ,求此多面体的体积? E
H
F
棱柱BCF-GHE V棱柱
=4.5
C B
C1 A1 B1
C A B
已知三棱锥有一条棱长为4, 已知三棱锥有一条棱长为 ,其余各棱 长为3,求其体积? 长为 ,求其体积? D
3
3
4
A B C
已知三棱锥有一条棱长为4, 已知三棱锥有一条棱长为 ,其余各棱 长为3,求其体积? 长为 ,求其体积? D E C B
V棱锥 棱锥D-ABC V棱锥 棱锥D-BCE V棱锥 棱锥A-BCE V棱锥 棱锥D-ABC
P D E A G F H O B
点—线 线
C
点—面 面
线—面 面
已知: 是边长为4的正方形 已知:ABCD是边长为 的正方形,E,F分别是 是边长为 的正方形, , 分别是 AD,AB的中点,PC⊥面ABCD,PC=2, 的中点, ⊥ , 的中点 , , 求点B到平面 到平面PEF的距离? 的距离? 求点 到平面 的距离 P D E A G F B C
解法三 P 割补法
F
六年级下册数学专题复习教案-第4模块有关圆柱、圆锥体积的应用题|人教新课标
六年级下册数学专题复习教案-第4模块有关圆柱、圆锥体积的应用题|人教新课标教案:六年级下册数学专题复习教案-第4模块有关圆柱、圆锥体积的应用题|人教新课标一、教学内容本节课的教学内容来自于人教新课标六年级下册的数学教材,主要复习第107页至第109页的“圆柱与圆锥的体积”章节。
这一章节主要介绍了圆柱和圆锥的体积计算方法,以及如何运用这些知识解决实际问题。
二、教学目标通过本节课的学习,学生能够熟练掌握圆柱和圆锥体积的计算方法,并能够灵活运用这些方法解决实际问题。
同时,培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:圆柱和圆锥体积的计算方法,以及如何运用这些方法解决实际问题。
难点:如何引导学生将实际问题转化为数学问题,并运用圆柱和圆锥体积的计算方法进行解答。
四、教具与学具准备教具:黑板、粉笔、PPT学具:练习本、笔五、教学过程1. 实践情景引入(5分钟)通过展示一些实际问题,如“一个圆柱形的水桶,底面半径为10cm,高为20cm,求水桶的体积。
”引导学生思考如何解决这个问题。
2. 圆柱体积的计算(10分钟)讲解圆柱体积的计算方法,即底面积乘以高。
通过PPT展示例题,并进行讲解。
例题1:一个圆柱形的水桶,底面半径为10cm,高为20cm,求水桶的体积。
解答:底面积= π r^2 = 3.14 10^2 = 314cm^2,体积 = 底面积高 = 314 20 = 6280cm^3。
3. 圆锥体积的计算(10分钟)讲解圆锥体积的计算方法,即底面积乘以高再除以3。
通过PPT展示例题,并进行讲解。
例题2:一个圆锥形的沙堆,底面半径为10cm,高为20cm,求沙堆的体积。
解答:底面积= π r^2 = 3.14 10^2 = 314cm^2,体积 = 底面积高 / 3 = 314 20 / 3 = 2093.33cm^3。
4. 应用题练习(10分钟)给出一些有关圆柱和圆锥体积的应用题,让学生独立解答,并展示答案。
高考数学复习考点题型专题讲解13 空间几何体的结构、表面积和体积
高考数学复习考点题型专题讲解专题13 空间几何体的结构、表面积和体积高考定位空间几何体的结构特征是高考重点考查的内容.近几年主要考查空间几何体的表面积与体积,常以选择题与填空题为主,也涉及空间几何体的结构特征等内容,要求考生要有较强的空间想象能力和计算能力,难度为中低档.1.(2021·新高考Ⅰ卷)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2B.2 2C.4D.4 2答案 B解析设圆锥的母线长为l,因为该圆锥的底面半径为2,侧面展开图为一个半圆,所以2π×2=πl,解得l=22,故选B.2.(2022·新高考Ⅰ卷)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5 m时,相应水面的面积为140.0 km2;水位为海拔157.5 m时,相应水面的面积为180.0 km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5 m上升到157.5 m时,增加的水量约为(7≈2.65)()A.1.0×109 m3B.1.2×109 m3C.1.4×109 m3D.1.6×109 m3答案 C解析如图,由已知得该棱台的高为157.5-148.5=9(m),所以该棱台的体积V=13×9×(140+140×180+180)×106=60×(16+37)×106≈60×(16+3×2.65)×106=1.437×109≈1.4×109(m3).故选C.3.(2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为( )A.100πB.128πC.144πD.192π答案 A解析由题意得,正三棱台上、下底面的外接圆的半径分别为23×32×33=3,23×32×43=4.设该棱台上、下底面的外接圆的圆心分别为O1,O2,连接O1O2,则O1O2=1,其外接球的球心O在直线O1O2上.设球O的半径为R,当球心O在线段O1O2上时,R2=32+OO21=42+(1-OO1)2,解得OO1=4(舍去);当球心O不在线段O1O2上时,R2=42+OO22=32+(1+OO2)2,解得OO2=3,所以R2=25,所以该球的表面积为4πR2=100π.综上,该球的表面积为100π.4.(2022·全国甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若S甲S乙=2,则V甲V乙=( )A.5B.2 2C.10D.510 4答案 C解析法一因为甲、乙两个圆锥的母线长相等,所以结合S甲S乙=2,可知甲、乙两个圆锥侧面展开图的圆心角之比是2∶1.不妨设两个圆锥的母线长为l=3,甲、乙两个圆锥的底面半径分别为r1,r2,高分别为h1,h2,则由题意知,两个圆锥的侧面展开图刚好可以拼成一个周长为6π的圆,所以2πr1=4π,2πr2=2π,得r1=2,r2=1.由勾股定理得,h1=l2-r21=5,h2=l2-r22=22,所以V甲V乙=13πr21h113πr22h2=4522=10.故选C.法二设两圆锥的母线长为l,甲、乙两圆锥的底面半径分别为r1,r2,高分别为h1,h2,侧面展开图的圆心角分别为n1,n2,则由S甲S乙=πr1lπr2l=n1πl22πn2πl22π=2,得r1r2=n1n2=2.由题意知n1+n2=2π,所以n1=4π3,n2=2π3,所以2πr 1=4π3l ,2πr 2=2π3l ,得r 1=23l ,r 2=13l .由勾股定理得,h 1=l 2-r 21=53l ,h 2=l 2-r 22=223l , 所以V 甲V 乙=13πr 21h 113πr 22h 2=4522=10.故选C.热点一 空间几何体的结构特征关于空间几何体的结构特征辨析关键是紧扣各种几何体的概念. 例1 (1)以下四个命题中,真命题为( ) A.侧面都是等腰三角形的棱锥是正棱锥 B.底面是矩形的平行六面体是长方体 C.直四棱柱是直平行六面体 D.棱台的侧棱延长后必交于一点 (2)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( )A.0B.1C.2D.3答案(1)D (2)A解析(1)A中等腰三角形的腰不一定是侧棱,A是假命题;B中,侧棱与底面矩形不一定垂直,B是假命题;C中,直四棱柱的底面不一定是平行四边形,C是假命题;根据棱台的定义,选项D是真命题.(2)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转一周形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.规律方法 1.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.2.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.训练1(多选)(2022·潍坊调研)下面关于空间几何体的叙述正确的是( )A.底面是正多边形的棱锥是正棱锥B.用平面截圆柱得到的截面只能是圆和矩形C.长方体是直平行六面体D.存在每个面都是直角三角形的四面体答案CD解析A中当顶点在底面的投影是正多边形的中心时才是正棱锥,A不正确;B中当平面与圆柱的母线平行或垂直时,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分,B不正确;C正确;D正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形.热点二空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l+rl).(4)若球的半径为R,则它的表面积S=4πR2.例2 (1)如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,则圆柱的侧面积是( )A.23π B.324π C.223π D.22π(2)(多选)等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( )A.2πB.(1+2)πC.22πD.(2+2)π 答案 (1)C (2)AB解析 (1)如图所示,过点P 作PE ⊥平面ABC ,E 为垂足,点E 为等边三角形ABC 的中心,连接AE 并延长,交BC 于点D .AE =23AD ,AD =32,∴AE =23×32=33,∴PE =PA 2-AE 2=63. 设圆柱底面半径为r ,则r =AE =33,∴圆柱的侧面积S =2πr ·PE =2π×33×63=22π3. (2)如果绕直角边旋转,则形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角形的斜边,长为2,所以所形成的几何体的表面积S =π×1×2+π×12=(2+1)π.如果绕斜边旋转,则形成的是上、下两个共底面的圆锥,圆锥的底面半径是直角三角形斜边上的高22,两个圆锥的母线都是直角三角形的直角边,长是1,所以形成的几何体的表面积S′=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π.故选AB.易错提醒 1.旋转体的表面积问题注意其侧面展开图的应用.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.训练2 (1)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__________.(2)(多选)(2022·青岛质检)已知四棱台ABCD-A1B1C1D1的上、下底面均为正方形,其中AB=22,A1B1=2,AA1=BB1=CC1=2,则下列结论正确的是( )A.该四棱台的高为3B.AA1⊥CC1C.该四棱台的表面积为26D.该四棱台外接球的表面积为16π答案(1)1 (2)AD解析(1)如图,设圆锥的母线长为l,底面半径为r,则圆锥的侧面积S侧=πrl=2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2(cm),因此r =1(cm).(2)由棱台的性质,把四棱台还原为四棱锥如图所示.由题易知点S 在平面A 1B 1C 1D 1和平面ABCD 的射影分别为点O 1,O ,连接OS ,OA ,则O 1在OS 上,由AB =22,A 1B 1=2,可知△SA 1B 1与△SAB 的相似比为1∶2, 则SA =2AA 1=4,AO =2, 则SO =23,OO 1=3,即该四棱台的高为3,故A 正确; 因为SA =SC =AC =4,所以AA 1与CC 1的夹角为60°,不垂直,故B 错误;该四棱台的表面积S =S 上底+S 下底+S 侧=(2)2+(22)2+4×(2+22)2×22-⎝ ⎛⎭⎪⎫222=10+67,故C 错误;由于上、下底面都是正方形,则外接球的球心在OO 1上,在平面B 1BOO 1中, 由于OO 1=3,B 1O 1=1, 则OB 1=2=OB ,即点O 到点B与点B 1的距离相等,所以该四棱台的外接球的球心为O ,半径r =2,所以该四棱台外接球的表面积为16π,故D正确.故选AD.热点三空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=13Sh(S为底面面积,h为高);(3)V台体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(4)V球=43πR3.考向1 直接利用公式求体积例3 正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( ) A.20+123B.28 2C.563D.2823答案 D解析如图,设上、下底面的中心分别为O1,O,过点B1作B1M⊥OB于点M,则O1B1=2,OB=22,BM=2,所以该棱台的高h=B1M=4-2=2,所以该四棱台的体积为h3(S上+S下+S上S下)=23(22+42+22×42)=2823,故选D.考向2 割补法求体积例4 如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.答案23解析 过AD 做与底面ABCD 垂直的平面交EF 于点G ,过BC 做与底面ABCD 垂直的平面交EF 于点H ,则多面体ABCDEF 被分为三棱锥E -ADG ,三棱柱ADG -BCH ,三棱锥F -HBC 三部分.依题意,三棱锥E -ADG 的高EG =12,直三棱柱AGD -BHC 的高AB =1.则AG =AE 2-EG 2=12-⎝ ⎛⎭⎪⎫122=32.取AD 的中点M ,并连接MG ,则MG =⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122=22,所以S △AGD =12×1×22=24,∴V 多面体=V E -ADG +V F -BCH +V ADG -BCH =2V E -ADG +V ADG -BCH =13×24×12×2+24×1=23.考向3 等体积法求体积例5(2022·台州调研)如图,已知四棱锥P-ABCD中,四边形ABCD为正方形,平面ABCD⊥平面APB,G为PC上一点,且BG⊥平面APC,AB=2,则三棱锥P-ABC体积的最大值为( )A.23B.223C.43D.2答案 A解析由题意知,平面ABCD⊥平面APB,则BC⊥AP.又由BG⊥平面APC,得BG⊥AP.因为BC∩BG=B,所以AP⊥平面PBC,所以AP⊥BP,所以V P-ABC=V C-APB=13×12PA·PB·BC=13PA·PB.令PA=m,PB=n,则m2+n2=4,所以V P-ABC=13mn≤13·m2+n22=23,当且仅当m=n=2时取等号,所以三棱锥P-ABC体积的最大值为23 .规律方法 1.规则的几何体可以直接利用相应的公式求解,这就需要熟记柱体、锥体的体积公式;2.不规则的几何体往往可以通过“间接法”——割补法求得,即把不规则的几何体通过“割补”手段,转化为规则几何体体积的和或差.训练3 (1)(2022·广州模拟)在五面体EF-ABCD中,正方形CDEF所在平面与平面ABCD垂直,四边形ABCD为等腰梯形,AB∥CD,AD=DC=BC=12AB.若三棱锥A-BCE的体积为433,则线段AB的长为________.(2)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A 1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为______g.答案(1)4 (2)118.8解析(1)取AB的中点O,连接CO.因为AD =DC =BC =12AB ,AB ∥CD ,所以四边形AOCD 为菱形, 所以CO =OA =OB , 所以△ACB 为直角三角形, 所以AC ⊥BC .因为正方形CDEF 所在平面与平面ABCD 垂直,CD 为交线,ED ⊥CD , 所以ED ⊥平面ABCD . 设BC =x ,则ED =x ,AB =2x . 由勾股定理得AC =3x , 故V A -BCE =V E -ABC =13S △ABC ·ED ,S △ABC =12·x ·3x =32x 2, 所以V A -BCE =13·32x 2·x =36x 3=433.解得x =2.所以AB =4.(2)由题知挖去的四棱锥的底面是一个菱形,其对角线长分别为6 cm 和4 cm , 故V 挖去的四棱锥=13×12×4×6×3=12(cm 3).又V 长方体=6×6×4=144(cm 3),所以模型的体积为V-V挖去的四棱锥=144-12=132(cm3),长方体所以制作该模型所需原料的质量为132×0.9=118.8(g).一、基本技能练1.下列说法中,正确的是( )A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等答案 C解析棱柱的侧面都是平行四边形,选项A错误;其他侧面可能是平行四边形,选项B错误;棱柱的侧棱与底面边长并不一定相等,选项D错误;易知选项C正确.2.如图所示的等腰梯形是一个几何图形的斜二测直观图,其底角为45°,上底和腰均为1,下底为2+1,则此直观图对应的平面图形的面积为( )A.1+2B.2+ 2C.2+22D.4+2 2答案 B解析 ∵平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形, ∴平面图形为直角梯形,且直角腰长为2,上底边长为1,下底边长为2+1, ∴平面图形的面积S =1+1+22×2=2+ 2.故选B. 3.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( )A.4B.43C.23D.3 答案 B解析 易知该几何体是由上、下两个全等的正四棱锥组成的,其中正四棱锥底面边长为2,棱锥的高为1,所以该多面体的体积V =2×13×(2)2×1=43.4.已知在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,则将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( ) A.(5+2)π B.(4+2)π C.(5+22)π D.(3+2)π 答案 A解析 因为在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,所以将梯形ABCD绕AD所在的直线旋转一周得到的几何体是一个底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥后剩余的部分,如图所示.所以该几何体的表面积S=π×12+2π×1×2+π×1×12+12=(5+2)π.5.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷、佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为( )A.3∶2B.2∶2C.3∶3D.3∶4答案 D解析设塔顶是正四棱锥P-ABCD(如图),PO是正四棱锥的高.设正四棱锥底面边长为a,则底面面积S1=a2,因为AO=22a,∠PAO=45°,所以PA=2×22a=a,所以△PAB是正三角形,其面积为S 2=34a2,所以S2∶S1=34a2∶a2=3∶4.6.过圆锥的轴作截面,如果截面为正三角形,则称该圆锥为等边圆锥.已知在一等边圆锥中,过顶点P的截面与底面交于CD,若∠COD=90°(O为底面圆心),且S△PCD=7 2,则这个等边圆锥的表面积为( )A.2π+2πB.3πC.2π+3πD.π+3π答案 B解析如图,连接PO,设圆锥的母线长为2a,则圆锥的底面圆的半径为a,高为PO=3 a.由已知得CD=2a,PC=PD=2a,则S△PCD=12×2a×(3a)2+⎝⎛⎭⎪⎫22a2=72,从而可得a=1,圆锥的表面积为πa×2a+πa2=3πa2=3π.7.如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为( )A.13B.23C.1D.43答案 B解析∵ED ⊥平面ABCD 且AD ⊂平面ABCD , ∴ED ⊥AD .∵在正方形ABCD 中,AD ⊥DC , 又DC ∩ED =D ,DC ,ED ⊂平面CDEF , ∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF .∵V E -ABCD =13·ED ·S 正方形ABCD =13×2×2×2=83,V B -EFC =13·BC ·S △EFC =13×2×2×1×12=23, ∴V ABCDEF =V E -ABCD +V B -EFC =83+23=103.又V F -ABCD =13·FC ·S 正方形ABCD =13×1×2×2=43,V A -DEF =13·AD ·S △DEF =13×2×2×2×12=43,∴V A -BEF =V ABCDEF -V F -ABCD -V A -DEF =103-43-43=23.故选B.8.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为5-12,约为0.618.这个比例被公认为是最能引起美感的比例,因此被称为黄金比.在几何世界中有很多黄金图形,在三角形中,如果相邻两边之比等于黄金比,且它们夹角的余弦值为黄金比值,那么这个三角形一定是直角三角形,且这个三角形称为黄金分割直角三角形.在正四棱锥中,以黄金分割直角三角形的长直角边作为正四棱锥的高,黄金分割直角三角形的短直角边的边长作为底面正方形的边心距(正多边形的边心距是正多边形的外接圆圆心到正多边形某一边的距离),斜边作为正四棱锥的斜高,这样得到的正四棱锥称为黄金分割正四棱锥.在黄金分割正四棱锥中,以该正四棱锥的高为边长的正方形的面积与该正四棱锥的侧面积之比为( ) A.5-12 B.5+12C.1D.14答案 D解析 如图,在黄金分割正四棱锥P -ABCD 中,O 是正方形ABCD 的中心,PE 是正四棱锥的斜高,设OE =a ,则CD =2a , ∴Rt△POE 为黄金分割直角三角形,则OE PE =5-12, ∴PE =5+12a , 则PO =PE 2-OE 2=1+52a , ∴以该正四棱锥的高为边长的正方形的面积S =PO 2=1+52a 2, 又正四棱锥的四个侧面是全等的,∴S 侧=4S △PCD =4×12×CD ×PE =2(1+5)a 2,∴该正四棱锥的高为边长的正方形的面积与该正四棱锥的侧面积之比为14.9.(2022·潍坊二模)如图,在棱长为2的正方体ABCD -A ′B ′C ′D ′中,点E ,F ,G 分别是棱A ′B ′,B ′C ′,CD 的中点,则由点E ,F ,G 确定的平面截正方体所得的截面多边形的面积等于________.答案332解析 分别取AD ,CC ′和AA ′的中点为P ,M ,N ,可得出过E ,F ,G 三点的平面截正方体所得截面为正六边形EFMGPN ,则正六边形的边长MG =CG 2+CM 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫222=1,故截面多边形的面积等于S=6×34×12=33 2.10.(2022·佛山质检)已知圆锥的顶点为S,底面圆周上的两点A,B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________. 答案82π解析设圆锥的母线长为l,由△SAB为等边三角形,且面积为43,所以12l2sinπ3=43,解得l=4;又设圆锥底面半径为r,高为h,则由轴截面的面积为8,得rh=8;又r2+h2=l2=16,解得r=h=22,所以圆锥的侧面积S=πrl=π·22·4=82π.11.如图,已知正三棱柱ABC-A1B1C1的各棱长均为2,点D在棱AA1上,则三棱锥D-BB1C1的体积为________.答案23 3解析如图,取BC的中点O,连接AO.∵正三棱柱ABC-A1B1C1的各棱长均为2,∴AC=2,OC=1,则AO= 3.∵AA1∥平面BCC1B1,∴点D到平面BCC1B1的距离为 3.又S△BB1C1=12×2×2=2,∴V D-BB1C1=13×2×3=233.12.已知三棱锥S-ABC中,∠SAB=∠ABC=π2,SB=4,SC=213,AB=2,BC=6,则三棱锥S-ABC的体积为________. 答案4 3解析∵∠ABC=π2,AB=2,BC=6,∴AC=AB2+BC2=22+62=210.∵∠SAB=π2,AB=2,SB=4,∴AS=SB2-AB2=42-22=2 3.由SC=213,得AC2+AS2=SC2,∴AC⊥AS.又∵SA⊥AB,AC∩AB=A,AC,AB⊂平面ABC,∴AS⊥平面ABC.∴AS为三棱锥S-ABC的高,∴V三棱锥S-ABC=13×12×2×6×23=4 3.二、创新拓展练13.(多选)(2022·无锡模拟)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是( )A.圆柱的侧面积为4πR2B.圆锥的侧面积为2πR2C.圆柱的侧面积与球的表面积相等D.球的体积是圆锥体积的两倍答案ACD解析对于A,∵圆柱的底面直径和高都等于2R,∴圆柱的侧面积S1=2πR·2R=4πR2,故A正确;对于B,∵圆锥的底面直径和高都等于2R,∴圆锥的侧面积为S2=πR·R2+4R2=5πR2,故B错误;对于C,∵圆柱的侧面积为S1=4πR2,球的表面积S3=4πR2,即圆柱的侧面积与球的表面积相等,故C正确;对于D,球的体积为V1=43πR3,圆锥的体积为V2=13πR2·2R=23πR3,即球的体积是圆锥体积的两倍,故D正确.14.(多选)(2022·邯郸模拟)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧面与底面所成的锐二面角为θ,这个角接近30°.若取θ=30°,侧棱长为21米,则( )A.正四棱锥的底面边长为6米B.正四棱锥的底面边长为3米C.正四棱锥的侧面积为243平方米D.正四棱锥的侧面积为123平方米答案AC解析如图,在正四棱锥S-ABCD中,O为正方形ABCD的中心,H为AB的中点,则∠SHO为侧面SAB与底面ABCD所成的锐二面角,且SH⊥AB,∠SHO=30°,设底面边长为2a , 所以OH =AH =a ,OS =33a ,SH =233a . 在Rt△SAH 中,a 2+⎝ ⎛⎭⎪⎫233a 2=21,解得a =3,所以正四棱锥的底面边长为6米,侧面积为S =12×6×23×4=243(平方米).15.(多选)(2022·福州调研)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中正确的是( )A.AC ⊥AFB.EF ∥平面ABCDC.三棱锥A -BEF 的体积为定值D.△AEF 的面积与△BEF 的面积相等 答案 BC解析 由题意及图形知,当点F 与点B 1重合时,∠CAF =60°,故A 错误;由正方体ABCD -A 1B 1C 1D 1的两个底面平行,EF ⊂平面A 1B 1C 1D 1,知EF ∥平面ABCD ,故B 正确;由几何体的性质及图形知,三角形BEF 的面积是定值,点A 到平面DD 1B 1B 的距离是定值,故可得三棱锥A -BEF 的体积为定值,故C 正确;由图形可以看出,B到直线EF的距离与A到直线EF的距离不相等,故△AEF的面积与△BEF的面积不相等,故D错误.故选BC.16.(多选)《九章算术》是《算经十书》中最重要的一部,其中将有三条棱互相平行且有一个面为梯形的五面体称为“羡除”,则( )A.“羡除”有且仅有两个面为三角形B.“羡除”一定不是台体C.不存在有两个面为平行四边形的“羡除”D.“羡除”至多有两个面为梯形答案ABC解析由题意知AE∥BF∥CD,四边形ACDE为梯形,如图所示.选项A,由题意知“羡除”有且仅有两个面为三角形,故A正确;选项B,因为AE∥BF∥CD,所以“羡除”一定不是台体,故B正确;选项C,假设四边形ABFE和四边形BCDF为平行四边形,则AE∥BF∥CD,且AE=BF=CD,即四边形ACDE为平行四边形,与已知四边形ACDE为梯形矛盾,故不存在,故C正确;选项D,若AE≠BF≠CD,则“羡除”有三个面为梯形,故D错误.故选ABC.17.(多选)(2022·新高考Ⅱ卷)如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB.记三棱锥E-ACD,F-ABC,F-ACE的体积分别为V,V2,V3,则( )1A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1答案CD解析如图,连接BD交AC于O,连接OE,OF.设AB=ED=2FB=2,则AB=BC=CD=AD=2,FB=1.因为ED⊥平面ABCD,FB∥ED,所以FB⊥平面ABCD,所以V1=V E-ACD=13S△ACD·ED=13×12AD·CD·ED=13×12×2×2×2=43,V 2=V F-ABC=13S△ABC·FB=13×12AB·BC·FB=13×12×2×2×1=23.因为ED⊥平面ABCD,AC⊂平面ABCD,所以ED⊥AC,又AC⊥BD,且ED∩BD=D,ED,BD⊂平面BDEF,所以AC⊥平面BDEF. 因为OE,OF⊂平面BDEF,所以AC⊥OE,AC⊥OF.易知AC =BD =2AB =22,OB =OD =12BD =2,OF =OB 2+FB 2=3,OE =OD 2+ED 2=6, EF =BD 2+(ED -FB )2 =(22)2+(2-1)2=3, 所以EF 2=OE 2+OF 2,所以OF ⊥OE . 又OE ∩AC =O ,OE ,AC ⊂平面ACE , 所以OF ⊥平面ACE ,所以V 3=V F -ACE =13S △ACE ·OF =13×12AC ·OE ·OF=13×12×22×6×3=2, 所以V 3≠2V 2,V 1≠V 3,V 3=V 1+V 2,2V 3=3V 1,所以选项A ,B 不正确,选项C ,D 正确.故选CD.18.(2022·丽水质检)已知三棱柱ABC -A 1B 1C 1中,AB =AC =1,AA 1=2,∠A 1AC =∠A 1AB =60°,∠BAC =90°,则四面体A 1BB 1C 1的体积为________. 答案26解析 法一 如图,连接A 1C ,在三角形A 1AB 中,AB =1,AA 1=2,∠A 1AB =60°, 由余弦定理得A 1B 2=22+12-2×1×2×cos 60°=3,即A 1B =3, 同理A 1C =3,则AB 2+A 1B 2=A 1A 2, 所以A 1B ⊥AB ,同理A 1C ⊥AC , 所以△A 1AB ≌△A 1AC .过点B 作BD ⊥A 1A ,垂足为D ,连接CD ,则CD ⊥A 1A ,又BD ∩CD =D ,所以A 1A ⊥平面BCD , 所以BD =CD =1×32=32, 又AB =AC =1,∠BAC =90°, 所以BC = 2.取BC 的中点E ,连接DE ,则DE ⊥BC ,且DE =⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫222=12, 所以S △BCD =12×BC ×DE =12×2×12=24,则V A 1-BB 1C 1=V B -A 1B 1C 1=V A 1-ABC =V A 1-BCD +V A -BCD =13·S △BCD ·A 1A =13×24×2=26. 法二 如图,连接A 1C ,在三角形A 1AB 中,AB =1,AA 1=2,∠A 1AB =60°, 由余弦定理得A 1B 2=22+12-2×1×2×cos 60°=3, 即A 1B =3,同理A 1C =3, 则AB 2+A 1B 2=A 1A 2, 所以A 1B ⊥AB ,同理A 1C ⊥AC .设A 1在平面ABC 内的射影为O ,连接A 1O ,AO ,OB ,OC , 则A 1O ⊥平面ABC ,又AB ⊂平面ABC ,所以A 1O ⊥AB ,31 / 31 又A 1B ∩A 1O =A 1,所以AB ⊥平面A 1OB ,又OB ⊂平面A 1OB ,所以AB ⊥OB ,同理OC ⊥AC ,且△A 1OB ≌△A 1OC , 所以OB =OC ,则点O 在∠BAC 的平分线上. 设AO 交BC 于点E ,连接A 1E ,则AE =22,A 1E =(3)2-⎝ ⎛⎭⎪⎫222=102, 在△A 1AE 中,cos∠A 1AE =A 1A 2+AE 2-A 1E 22×A 1A ×AE =22, 则∠A 1AE =45°,则A 1O =A 1A sin 45°=2,V A 1-BB 1C 1=V B -A 1B 1C 1=V A 1-ABC =13·S △ABC ·A 1O =13×12×1×1×2=26.。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积
专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。
高考数学复习考点知识与解题方法专题讲解34---空间几何体的表面积和体积
高考数学复习考点知识与解题方法专题讲解 专题34 空间几何体的表面积和体积【考纲要求】1.会计算柱、锥、台、球的表面积和体积.【知识清单】知识点1.几何体的表面积圆柱的侧面积 rl S π2=圆柱的表面积 )(2l r r S +=π圆锥的侧面积 rl S π=圆锥的表面积 )(l r r S +=π圆台的侧面积 l r r S )(+'=π圆台的表面积 )(22rl l r r r S +'++'=π球体的表面积 24R S π=柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积. 知识点2.几何体的体积圆柱的体积 h r V 2π=圆锥的体积 h r V 231π=圆台的体积 )(3122r r r r h V '++'=π 球体的体积 334R V π= 正方体的体积 3a V =正方体的体积 abc V =【考点梳理】考点一 :几何体的面积【典例1】(2020·天津高考真题)若棱长为则该球的表面积为( )A .12πB .24πC .36πD .144π 【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【典例2】(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514-B .512-C .514+D .512+ 【答案】C【解析】如图,设,CD a PE b ==,则PO ==, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去). 故选:C.【规律方法】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.【变式探究】1.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为__________.【答案】【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB ,因为SAB 的面积为,l 所以221802l l ⨯==,因为SA 与圆锥底面所成角为45°,所以底面半径为πcos,4l =因此圆锥的侧面积为2ππ.2rl l ==2.(2019·福建高三月考)已知四面体ABCD 内接于球O ,且2AB BC AC ===,若四面体ABCD ,球心O 恰好在棱DA 上,则球O 的表面积是_____. 【答案】16π【解析】如图:在三角形ABC 中,因为222AB BC AC +=,所以△ABC 为直角三角形,所以三角形ABC 的外接圆的圆心为AC 的中点1O ,连1OO ,根据垂径定理,可得1OO ⊥平面ABC ,因为1,O O 为,AD AC 的中点可知DC ⊥平面ABC ,所以DC 为四面体ABCD 的高.所以11323DC ⨯=,解得DC =所以4AD ==. 所以四面体ABCD 的外接球的半径为2,表面积为24R π=24216ππ⨯=.【总结提升】计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. 高频考点二 :几何体的体积【典例3】(2019·北京高考真题(文))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,几何体的体积()3142424402V =-+⨯⨯=. 【典例4】(2020·江苏省高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π【总结提升】 (1)已知几何体的三视图求其体积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表体积公式求其体积.(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.(3)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(4)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(5)三视图形式:若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解提醒:处理高线问题时,经常利用的方法就是“等积法”.【变式探究】1.(2020·全国高一课时练习)已知ABC ∆的三边长分别是3AC =,4BC =,5AB =.下列说法正确的是( )A .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为16π【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体是底面半径为3,母线长为5,高为4的圆锥,其侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,故A 正确,B 错误; 以AC 所在直线为轴旋转时,所得旋转体是底面半径为4,母线长为5,高为3的圆锥,侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,故C 错误,D 正确. 故选:AD.2.(2019·湖南高三月考(理))正方体1111ABCD A B C D -的棱长为2,点E 、F 、G 分别是AB 、AD 、1AA 的中点,以EFG ∆为底面作直三棱柱(侧棱垂直底面的棱柱),若此直三棱柱另一底面的三个顶点也都在该正方体的表面上,则该直三棱柱的体积为( )B.2C.32D.34【答案】C【解析】如图,连接11A C ,1C D ,1AC , 1BC ,分别取11A C 、1BC 、1C D 中点M 、N 、Q ,连接MQ ,MN ,NQ ,FQ ,EN ,GM由中位线定理可得111111111//,,//,,//,222GM AC GM AC FQ AC FQ AC EN AC EN AC === 又1AC EFG ⊥平面,∴三棱柱EFG NQM —是正三棱柱2EFG S ∆==112h GM AC ===,∴三棱柱32EFG NQM V =— 答案选C【方法总结】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.高频考点三 : 几何体的展开、折叠、切、截问题【典例5】(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】A【解析】 设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【典例6】(2019·天津高考真题(理))已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.【答案】4π. 【解析】2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 【规律方法】几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.【典例7】(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( ) A .86π B .46πC .26πD 6π【答案】D 【解析】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点, //EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,22226R =++= 364466633R V R =∴=π==ππ,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,344338V R ∴=π=π⨯=,故选D.【典例8】(2019·四川高三月考(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,高为10cm .打印所用部料密度为30.9g/cm .不考虑打印损耗.制作该模型所需原料的质量为________g .(π取3.14)【答案】358.5 【解析】设被挖去的正方体的棱长为xcm ,圆锥底面半径为r ,取过正方体上下底面面对角线的轴截面,由相似三角形得则10210x xh x x r h --=⇒=,解得5x =.模型的体积为(223311500105125333V r h x πππ=-=⨯⨯-=-, 因此,制作该模型所需材料质量约为5000.91251500.9125358.5g 3ππ⎛⎫⨯-=-⨯≈⎪⎝⎭. 故答案为:358.5. 【总结提升】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【典例9】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD中,,现沿AC折起,使得平面ABC⊥平面ADC,连接BD,得到三棱锥-,则其外接球的体积为()B ACD【答案】D【解析】结合几何体的特征可得,外接球的球心为AC的中点,则外接球半径:本题选择D选项.【总结提升】解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:【变式探究】1.(2018届河南省洛阳市高三期中)在三棱锥S ABC -中,底面ABC ∆是直角三角形,其斜边4AB =, SC ⊥平面ABC ,且3SC =,则三棱锥的外接球的表面积为( ) A. 25π B. 20π C. 16π D. 13π 【答案】A【解析】根据已知,可将三棱锥补成一个长方体,如下图:则三棱锥的外接球就是这个长方体的外接球,由于43AB SC ==,,且ABC ∆是直角三角形, SC ⊥平面ABC , ∴长方体的对角线长为∴三棱锥的外接球的半径 ∴三A.2.(2018·天津高考真题(文))如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且111122A O A C ===,1111BDD B S BD DD =⨯==四边形,结合四棱锥体积公式可得其体积为1113323V Sh ===,故答案为13.3.(2018届河北省衡水市武邑中学高三上第三次调研)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑M ABC-中, MA⊥平面ABC, 2MA AB BC===,则该鳖臑的外接球与内切球的表面积之和为____.【解析】由题意,MC为球O的直径,O∴球O的表面积为4π•3=12π,内切球的半径设为r,【典例10】(2017课标1,理16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】【规律方法】有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【变式探究】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形中,,现沿折起,使得平面平面,连接,得到三棱锥,则其外接球的体积为( )ABCD AC ABC ⊥ADC BD B ACD -【答案】D【解析】结合几何体的特征可得,外接球的球心为AC的中点,则外接球半径:本题选择D选项.【典例11】(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正,所以该多面体的体积为21421.33⨯⨯⨯=【变式探究】(2020·山东省滨州市三模)已知P,A,B,C是球O的球面上的四个点,平面,则球O的表面积为__________.PA⊥,26,ABC PA BC==AB AC⊥【答案】 【解析】由于平面,所以,而,故可将补形为长方体,如图所示,长方体的外接球,也即三棱锥的外接球,也即球. 由于,设,则,所以长方体的对角设球的半径为,则所以球的表面积为. 故答案为:【典例12】(2020·山东省泰安市6月三模)已知球O是正三棱锥的外接球,,E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是_______. 【答案】45πPA ⊥ABC ,PA AB PA AC ⊥⊥AB AC ⊥P ABC -P ABC -O 26,3PA BC BC ===,AB a AC b ==2229a b BC +===O R 2R =O 2445R ππ=45πP ABC -3AB =PA =94π【解析】如图,设三棱锥的外接球半径为R ,正三角形的外接圆圆心为,因为,三角形是正三角形,为正三角形的外接圆圆心, 所以因为所以,解得,,因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值,在中,故,截面面积, 故答案为:. 【总结提升】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【变式探究】1.(2020·安徽马鞍山�高三三模(文))已知正方体1111ABCD A B C D -,直线1AC ⊥平面α,平面α截此正方体所得截面中,正确的说法是( )ABC D 3AB =ABC D ABC DA =PA =3PD =()223R R +-=2R =1OD =E O OE OE Rt EDO ∆OE ==32r ==294S r ππ==94πA .截面形状可能为四边形B .截面形状可能为五边形C .截面面积最大值为D 【答案】D【解析】如图在正方体中1AC ⊥平面1A BD ,所以平面α与平面1A BD 平行平面α与正方体的截面可以是三角形、六边形但不会是五边形和四边形 当截面为正六边形EFNMGH 时,截面面积有最大,由题可知:21sin 45==NM ,则133611sin 6022=⨯⨯⨯⨯=EFNMGH S 故选:D2.(2020·江苏苏州�高一期末)已知在球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,则球O 的表面积为________,若P 为线段AD 的中点,则过点P 的平面截球O 所得截面面积的最小值为______.【答案】17π9π4【解析】如图,因为球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,所以12=DB R = 所以球的表面积2=417S R ππ=, 当OP ⊥球的截面,即P 为截面圆圆心时,球心到截面圆的距离d OP =时最大, 此时截面圆的半径22d R r -=最小,此时截面圆的面积最小,而OP ===所以32r ==, 所以截面圆面积294S r ππ==. 故答案为:17π;94π。
六年级下册数学试题-小升初复习讲练:组合图形的体积(含答案)sc
组合图形的体积尊典题探究例1.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的体积是10立方厘米,表面积是36平方厘米.例2.计算体积.(单位:厘米)例3.有一个深4分米的长方体容器,其内侧底面为边长3分米的正方形.当容器底面的一边紧贴桌面倾斜如图时,容器内的水刚好不溢出.容器内的水有22.5升.例4.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.演练方阵A档(巩固专练)选择题(共5小题)1.如图,三个半径分别为1米、1.5米和2米的同轴圆柱,每个圆柱高0.5米,这三个圆柱组成一个立体图形,这个立体图形的表面积是()平方米.卜,]米I2来—iA.42.39B.39.25C.36.11D.25.123.把一个底面直径为a,高为a的圆柱恰好放入正方体盒子里,此时盒子剩余空间()A-(1-2L)a3B-(1-—)a3C'(1-2L)a3D,(1- —)a3 3412244.两个棱长1分米的正方体并成一个长方体,并成的长方体的表面积()原两个正方体的表面积之和.A.大于B.小于C.等于5.用两根完全相同的圆柱形木料分别制作成右图中的两个模型(图中涂色部分),甲与乙的体积相比()C.相等二.填空题(共13小题)6.如图中,每个小长方体的体积都是1立方厘米,那么图形的体积是,表面积是-7.如图,是一个直立于水平面上的几何体(它是圆柱的一部分,下底面为圆面,单位:cm).则这个几何体的体积为cm3.(计算结果保留兀)8.有一个草堆,上部是一个圆锥,下部是一个圆柱,圆锥高1.5m,底面半径2m,圆柱高3m,底面半径2m,这个草堆的体积是m3.9.(•富源县)如图有个棱长为20cm的正方体木箱堆放在墙角的形状,这些木箱的体积是_____________cm3.10.(•北京)一支未用过的圆柱形铅笔,长18厘米,体积是9立方厘米.使用一段时间后,变成了如图的样子.这时体积是多少立方厘米?11.(•万州区)以直角梯形的上底为轴旋转一周,所得的立体图形的体积是立方厘米.(兀值取整数3)12.如图,计算出它的体积为单位:厘米.A.n(24-2)2x3x(1+1)B./ix22x3x(1+1)33C.n(2+2)2xlx(3+3)D.形(2+2)2x3xlx4.3313.以棱长10厘米的正方体的一个面,挖去一直径为4厘米的圆孔(挖去的圆孔为圆柱体),则挖去后这个物体的体积是立方厘米.14.如图1,是三个直立于水平面上的形状完全相同的几何体(下底面为圆面.单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为cn?.(计算结果保留兀)15.(•崇文区)一个长20厘米、宽10厘米、高20厘米的无盖长方体玻璃容器,里面盛有一些红色溶液.小明想知道溶液的深,他将一根底面边长5厘米,长1米的长方形木条垂直插入到容器底部,取出后量得木条被染红的部分长16厘米.原来容器内红色溶液深_厘米.16.(•大安区)一根长方体木料,横截面是边长10厘米的正方形.从这根木料上截下6厘米长的一段,切削成一个最大的圆锥.圆锥的体积是cn?,约占截下这段长方体木料体积的_____________%(百分号前面保留一位小数).17.(•武汉模拟)已知某几何体的三视图如图所示,则该几何体的体积为(结果保留71)18.最早将圆周率精确地计算到小数点后面7位,请借助圆周率计算立体图形(如图)的侧面积为平方厘米.6chl4cm2c mB档(提升精练)一.解答题(共9小题)1.(•临川区)有一个粮仓,它们上面是圆锥体,下面是圆柱体,已知圆柱的底面周长是18.84米,高为4米,圆锥的高是1米,则这个粮仓的体积是多少立方米?2.(•汉阳区)如图是丰裕粮仓示意图.如果每立方米稻谷重600千克,这个粮仓可储存稻谷多少千克?3.(•龙泉驿区)请计算零件的表面积和体积(正方体棱长10cm,圆柱的半径r=4cm,高h=6cm).4.(»±海)如图,(单位:dm)是一块零件的铜铸毛坯,每立方分米铜重8.9千克,这块零件铸铁毛坯的重量是多少吨?5.(•广州模拟)有一根长20厘米,半径为2厘米的圆钢,在它的两端各钻了一个深为4厘米,底面半径为2厘米的圆锥形小孔做成一个零件,如图这个零件的体积是多少立方厘米?6.(•陆良县模拟)每立方厘米的钢重7.8克,求下面一段钢管约重多少千克?(得数保留一位小数)(单位:厘米)(/]。
高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积
最新考纲:1.了解球、柱体、锥体、台体的表面积计算 公式;2.了解球、柱体、锥体、台体的体积计算公式.
基础
知识回顾
1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所 有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
角度2:几何体的内切球
【例3-2】 (1)(2019·重庆七校联考)已知正三棱锥的
高为6,内切球(与四个面都相切)的表面积为16π,则其底面
边长为( B )
A.18
B.12
C.6 3
D.4 3
ห้องสมุดไป่ตู้
(2)(2019·广东七校第二次联考)在四棱锥P-ABCD中, 四边形ABCD是边长为2a的正方形,PD⊥底面ABCD,且PD =2a,若在这个四棱锥内放一个球,则该球半径的最大值 为_(_2_-___2_)_a.
1 2
×3×4×5-
1 3
×
1 2
×3×4×(5-2)=
24,故选C.
2.(2019·福建泉州期中)已知一几何体的三视图如图所 示,俯视图是一个等腰直角三角形和半圆,则该几何体的 体积为( B )
A.16+8π B.136+8π C.16+16π D.136+16π
[解析] 由三视图可知,该几何体是一个三棱锥与半圆
[拓展探究] (1)本例(1)改为“侧棱和底面边长都是3 2
的正四棱锥”,则其外接球的半径是___3_____. (2)本例(2)改为:底面为正三角形的直棱柱ABC-
A′B′C′的6个顶点都在球面上,且AB=6,AA′=12, 则球O的半径是__4__3____.
高考数学复习典型题型专题讲解与练习40 圆柱、圆锥、圆台的表面积和体积
高考数学复习典型题型专题讲解与练习专题40圆柱、圆锥、圆台的表面积和体积题型一圆柱的表面积【例1】已知圆柱的底面半径r=1,母线长l与底面的直径相等,则该圆柱的表面积为( )A.6π B.8π C.9π D.10π【答案】A【解析】圆柱的表面的等于侧面积+两个底面积,即S=2πrl+2πr2,又题意可得:r=1,l=2,∴S =2π×1×2+2π×12=6π【变式1-1】一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.【答案】6π【解析】由底面周长为2π可得底面半径为1,S 底=2πr 2=2π,S 侧=2πr ·h =4π,所以S 表=S 底+S 侧=6π.【变式1-2】一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( )A .142ππ+ B .122ππ+ C .12ππ+ D .142ππ+ 【答案】B【解析】设圆柱的底面半径为r ,圆柱的高为h ,圆柱的侧面展开图是一个正方形,2r h π∴=,∴圆柱的侧面积为2224rh r ππ=,圆柱的两个底面积为22r π,∴圆柱的表面积为22222224r rh r r ππππ+=+,∴圆柱的表面积与侧面积的比为:22222241242r r r πππππ++=.【变式1-3】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】B【解析】因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2π×(2)2+2π×2×22=12π.故选B.题型二 圆锥的表面积【例2】若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为( )A B .2π C . D .【答案】C【解析】如图圆锥的轴截面是顶角为120,即60APO ∠=,2AP =,90POA ∠=, 所以AO =AO PA π⨯⨯=.故选:C.【变式2-1】把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为()A.10 B.C.D.【答案】Brππ=⨯,【解析】半径为20的半圆卷成圆锥的侧面,则圆锥的底面圆周长为220所以底面圆的半径为r=10,所以圆锥的高为h==.【变式2-2】已知某圆锥的底面半径为8,高为6,则该圆锥的表面积为_________. 【答案】144π【解析】由题意,得该圆锥的母线长l=82+62=10,所以该圆锥的侧面积为π×8×10=80π,底面积为π×82=64π,所以该圆锥的表面积为80π+64π=144π.【变式2-3】圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.求圆柱的表面积和圆锥的表面积之比;【答案】√2−1【解析】如图所示,设圆柱和圆锥的底面半径分别为r ,R ,则有r R =R -r R ,即r R =12,∴R =2r ,圆锥的母线长l =2R ,∴S 圆锥表S 圆锥表=22πR∙√2R+πR 2=2(√2+1)πR 2=2(√2+1)R 2=√2+1=√2−1.【变式2-4】一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是( )A .32π B .3π C .5π D .4π 【答案】D【解析】圆锥的底面半径为2,高为4,设内接圆柱的底面半径为x ,则它的上底面截圆锥得小圆锥的高为422x x ⨯=, 因此,内接圆柱的高42h x =-;∴圆柱的侧面积为()()224242S x x x x ππ=-=-(02)x <<,令()22121==-+--t x x x ,当1x =时,1max t =; 所以当1x =时,4max S π=,即圆柱的底面半径为1时,圆柱的侧面积最大,最大值为4π.题型三 圆台的表面积【例3】圆台的上下底面半径分别为1、2,母线与底面的夹角为60°,则圆台的侧面积...为________.【答案】6π【解析】12r R ==,,()121cos60122l =-÷︒=÷= ()326S r R l πππ∴=+=⨯=圆台侧故答案为6π【变式3-1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的表面积为574π,则圆台较小的底面半径为____________.【答案】7【解析】设圆台较小的底面半径为r,那么较大的底面半径为3r,由已知得π(r+3r)×3+πr2+9πr2=574π,解得r=7.【变式3-2】圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,求圆台的表面积.【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r,下底面半径为R,高为h,则它的母线长为l=√ℎ2+(R−r)2=√(4r)2+(3r)2=5r=10,所以r=2,R=8.故S侧=π(R+r)l=π(8+2)×10=100π,S表=S侧+πr2+πR2=100π+4π+64π=168π.【变式3-3】已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是____________.【答案】7∶9【解析】圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x,5x,则中截面半径为4x,设上台体的母线长为l,则下台体的母线长也为l,上台体侧面积S1=π(3x+4x)l=7πxl,下台体侧面积S2=π(4x+5x)l=9πxl,所以S1∶S2=7∶9.【变式3-4】圆台的母线长为8 cm,母线与底面成60°角,轴截面的两条对角线互相垂直,求圆台的表面积.【答案】32(1+3)π【解析】如图所示是圆台的轴截面ABB1A1,其中∠A1AB=60°,过A1作A1H⊥AB于点H,则O1O=A1H=A1A sin60°=43(cm),AH=A1A cos60°=4(cm).设O1A1=r1,OA=r2,则r2-r1=AH=4.①设A1B与AB1的交点为M,则A1M=B1M.又A1B⊥AB1,∴∠A1MO1=∠B1MO1=45°.∴O1M=O1A1=r1.同理OM=OA=r2.∴O1O=O1M+OM=r1+r2=43,②由①②可得r1=2(3-1),r2=2(3+1).∴S表=πr21+πr22+π(r1+r2)l=32(1+3)π(cm2).题型四 圆柱的体积【例4】如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A .πB .2πC .4πD .8π【答案】B【解析】由于侧面积为4π,∴2πrh =4π,且h =2r ,∴r =h 2=1,∴V =πr 2h =2π.【变式4-1】(多选)圆柱的侧面展开图是长12 cm ,宽8 cm 的矩形,则这个圆柱的体积可能是( )A .288π cm 3B .192π cm 3C .288π cm 3D .192π cm 3【答案】AB【解析】当圆柱的高为8 cm 时,V =π×⎝ ⎛⎭⎪⎫122π2×8=288π(cm 3), 当圆柱的高为12 cm 时,V =π×⎝ ⎛⎭⎪⎫82π2×12=192π(cm 3).【变式4-2】周长为20cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_______3cm .【答案】400027π 【解析】设矩形的一边长为x ,则另一边长为10x -,(010)x <<,则圆柱的体积2(10)V x x π=-=4(10)22x x x π⋅⋅⋅-310224()3x x x π++-≤=400027π, 当且仅当102x x =-,即203x =时等号成立. 故最大值为400027π.【变式4-3】如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是________.【答案】πr 2(a +b )2【解析】两个同样的该几何体能拼接成一个高为a +b 的圆柱,则拼接成的圆柱的体积V =πr 2(a +b ),所以所求几何体的体积为πr 2(a +b )2.题型五 圆锥的体积【例5】已知圆锥的母线长为5,底面周长为6π,则它的体积为( )A .10πB .12πC .15πD .36π【答案】B【解析】设圆锥的底面半径为r ,高为h ,因为底面周长为6π,所以26r ππ=,解得3r =,又因为母线长为5,所以h =4,所以圆锥的体积是21123V r h ππ==故选:B【变式5-1】将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为( )A.π B . C .3π D .3 【答案】D 【解析】由扇形弧长公式可求得弧长2323L ππ=⨯=,∴圆锥底面周长为2π, ∴圆锥底面半径1r =,∴圆锥的高h ==,∴圆锥的体积213V r h π=⋅=.故选:D .【变式5-2】已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为( )A .3B .3πC .9D .9π【答案】B【解析】设圆锥的底面半径为r ,高为h ,则母线长为l = 则圆柱的侧面积为()2221122r r h ππ=+, 故表面积为()222192r h r πππ++=,得2231922r h +=①, 又底面圆周长等于侧面展开半圆的弧长, 故2r π=2r =223h r =②,联立①②得:r =,3h =.故该圆锥的体积为2113333V Sh ππ==⨯⨯⨯=.故选:B.【变式5-3】若一个圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比是( )A .1B .1∶2 C.3∶2 D .3∶4【答案】【解析】设圆柱、圆锥的高都为h ,底面半径分别为r ,R ,则有12·2Rh =2rh ,所以R =2r ,V 圆锥=13πR 2h =43πr 2h ,V 圆柱=πr 2h ,故V圆柱∶V圆锥=3∶4.题型六圆台的体积方法概要:台体的体积转化为求锥体的体积.根据台体的定义进行“补形”,还原为锥体,采用“大锥体”减去“小锥体”的方法求台体的体积.【例6】已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是________.【答案】73π3【解析】设圆台的上、下底面半径分别为r和R,母线长为l,高为h,则S上=πr2=π,S下=πR2=4π,∴r=1,R=2,S侧=π(r+R)l=6π,∴l=2,∴h=3,∴V=13π(1+4+1×2)×3=73π3.【变式6-1】圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为()A.40πB.52πC.50πD.212 3π【答案】B【解析】作出圆台的轴截面如图所示:上底面半径2MD =,下底面半径6NC =,过D 做DE 垂直NC ,则624EC =-=由5CD =故3DE =即圆台的高为3, 所以圆台的体积为222213(2626)523V πππππ=⋅⋅⋅+⋅+⋅⋅⋅=.【变式6-2】古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为( )A .198π立方丈B .1912π立方丈C .198π立方丈 D .19π12立方丈 【答案】B 【解析】由题意得,下底半径32R π=(丈),上底半径212r ππ==(丈),高1h =(丈), 所以它的体积为()222211313113322V h R r Rr ππππππ⎡⎤⎛⎫⎛⎫=++=⨯⨯++⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 所以19V =12π(立方丈).故选:B.【变式6-3】设圆台的高为3,如图,在轴截面A 1B 1BA 中,∠A 1AB =60°,AA 1⊥A 1B ,则圆台的体积为____________.【答案】【解析】设上、下底面半径,母线长分别为r ,R ,l .作A 1D ⊥AB 于点D ,则A 1D =3,∠A 1DA =∠A 1DB =90°,又∠A 1AB =60°,∴AD =A 1D tan60°=3,∴R -r = 3.∵∠BA 1A =90°,∴∠BA 1D =60°,∴BD =A 1D ·tan60°=33,∴R +r =33,∴R =23,r =3,而h =3.∴V 圆台=13πh (R 2+Rr +r 2)=13π×3×[(23)2+23×3+(3)2]=21π.∴圆台的体积为21π.题型七 球的表面积和体积【例7】(1)已知球的直径为6 cm ,求它的表面积和体积;(2)已知球的表面积为64π,求它的体积;(3)已知球的体积为500π3,求它的表面积.【解析】(1)∵球的直径为6 cm ,∴球的半径R =3 cm.∴球的表面积S 球=4πR 2=36π(cm 2),球的体积V 球=43πR 3=36π(cm 3).(2)∵S 球=4πR 2=64π,∴R 2=16,即R =4.∴V 球=43πR 3=43π×43=256π3.(3)∵V 球=43πR 3=500π3,∴R 3=125,R =5.∴S 球=4πR 2=100π.【变式7-1】若一个球的直径为2,则此球的表面积为( )A .2πB .16πC .8πD .4π【答案】D【解析】因为球的直径为2,即球的半径为1,所以球的表面积为2414ππ⨯=,故选:D.【变式7-2】两个球的半径相差1,表面积之差为28π,则它们的体积和为____________.【答案】364π3.【解析】设大、小两球半径分别为R ,r ,则由题意可得⎩⎪⎨⎪⎧ R -r =1,4πR 2-4πr 2=28π,∴⎩⎪⎨⎪⎧R =4,r =3.∴它们的体积和为43πR 3+43πr 3=364π3.【变式7-3】三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C .95倍D .74倍【答案】C【解析】设最小球的半径为r ,则另外两个球的半径分别为2r,3r ,其表面积分别为4πr 2,16πr 2,36πr 2,故最大球的表面积是其余两个球的表面积之和的36πr 24πr 2+16πr 2=95倍.题型八球的截面问题【例8】一平面截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B.43π C.46π D.63π【解析】B【答案】如图,设截面圆的圆心为O′,M为截面圆上任一点,则OO′=2,O′M=1,∴3OM=√(√2)2+1=√3,即球的半径为3,∴V=43π×(3)3=43π.【变式8-1】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器厚度,则球的体积为( )A.500π3cm3B.866π3cm3C.1372π3cm3D.2048π3cm3【答案】A【解析】如图,作出球的一个截面,则MC=8-6=2(cm),BM=12AB=12×8=4(cm).设球的半径为R cm,则R2=OM2+MB2=(R-2)2+42,∴R=5,∴V球=43π×53=500π3(cm3).【变式8-2】球的表面积为400π,一个截面的面积为64π,则球心到截面的距离为____________.【答案】6【解析】如图,由已知条件知球的半径R=10,截面圆的半径r=8,∴球心到截面的距离h=R2-r2=6.【变式8-3】一个距离球心为3的平面截球所得的圆面面积为π,则球的体积为____________.【答案】32π3【解析】设所得的圆面的半径为r,球的半径为R,则由π=πr2,得r=1,又r2+(3)2=R2,∴R=2.∴V=43πR3=32π3.。
六年级下册数学专题复习教案-第4模块 有关圆柱、圆锥体积的应用题 |人教新课标
六年级下册数学专题复习教案-第4模块有关圆柱、圆锥体积的应用题一、教学目标1. 让学生理解和掌握圆柱、圆锥的体积计算公式。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的空间想象能力和抽象思维能力。
二、教学内容1. 圆柱的体积计算2. 圆锥的体积计算3. 圆柱、圆锥体积的应用题三、教学重点和难点1. 教学重点:圆柱、圆锥的体积计算公式,解决实际问题。
2. 教学难点:理解并运用圆柱、圆锥的体积计算公式,解决实际问题。
四、教学过程1. 导入通过复习圆柱、圆锥的基本概念和特性,引导学生进入本节课的主题。
2. 新课导入(1)圆柱的体积计算首先,引导学生回顾圆柱的体积计算公式,然后通过例题讲解,让学生理解并掌握圆柱的体积计算方法。
(2)圆锥的体积计算接着,引导学生回顾圆锥的体积计算公式,然后通过例题讲解,让学生理解并掌握圆锥的体积计算方法。
3. 实例讲解通过讲解实例,让学生了解圆柱、圆锥体积在实际生活中的应用,培养学生的实际问题解决能力。
4. 练习巩固通过布置练习题,让学生巩固所学知识,提高解决问题的能力。
5. 课堂小结对本节课所学内容进行总结,强调重点和难点,帮助学生巩固所学知识。
6. 作业布置布置相关作业,让学生在课后进一步巩固所学知识。
五、教学反思通过本节课的教学,发现学生对圆柱、圆锥的体积计算掌握较好,但在解决实际问题时,仍有一部分学生存在困难。
因此,在今后的教学中,应加强对学生实际问题解决能力的培养,提高学生的数学素养。
六、教学延伸1. 让学生通过查找资料,了解更多关于圆柱、圆锥体积的应用。
2. 结合生活实际,让学生发现身边的圆柱、圆锥,并计算其体积。
七、教学评价1. 通过课堂提问、练习和作业,了解学生对圆柱、圆锥体积计算和应用题的掌握情况。
2. 通过课后辅导和交流,了解学生在学习过程中遇到的问题,及时给予指导和帮助。
八、教学资源1. 教材2. 练习题3. 相关资料和图片九、教学时间本节课共计2课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用体积公式
h
s
V棱柱
ห้องสมุดไป่ตู้
=
s
底
· h
常用体积公式
h V棱锥= s 底 ·
1 3
求多面体的体积时常用的方法
1、直接法 2、割补法
根据条件直接用柱体或锥体的体积公式 如果一个多面体的体积直接用体积公式 计算用困难,可将其分割成易求体积的 几何体,逐块求积,然后求和。 如果一个三棱锥的体积直接用体积公式 计算用困难,可转换为等积的另一三棱 锥,而这一三棱锥的底面面积和高都是 容易求得
变形:PA与BC成 角呢?
(06山东卷)如图,平面A1B1C1平行于三棱锥F-ABC 的底面ABC,等边三角形 AB1C所在的平面与底面 ABC垂直,角ACB=90°,设AC=2a,BC=a. (1)求证:B1C1是异面直线AB1与A1C1的公垂线; (2)求点A到平面FBC的距离; (3)求二面角A-FB-C的大小.
3、换底法
正方体ABCD-A1B1C1D1中,E,F分别是 BB1,DD1的中点,棱长为a,求四棱锥D1AEC1F的体积?
D1 A1 F B1 E D A B C C1
已知三棱锥有一条棱长为4,其余各棱 长为3,求其体积? D
A
C
B
已知三棱锥有一条棱长为4,其余各棱 长为3,求其体积? D E C
V棱锥D-ABC V棱锥D-BCE V棱锥A-BCE V棱锥D-ABC
= 1 3 S⊿BCE×AD
A
B
(05湖北)如图所示的多面体是由底面ABCD 的长方体被截面AEGF所截而得到的, 其中AB=4,BC=2,CG=3,BE=1, ( )求FB的长(2)求这个多面体的体积 1 (3)求C到面AEGF的距离
问题:
在三棱锥P-ABC中,E为PA的中点, F为棱PB上一点,且有PB=3PF, G为棱 PC上一点,且有3PC=4PG,若三棱锥 P-EFG的体积为1, 求多面体EFG-ABC的体积.
在三棱锥P-ABC中,PA BC, 且EF=h,求三棱锥P-ABC的体积。
PA=BC=a,PA、BC的公垂线段为EF,