直线与椭圆位置关系(经典)
直线和椭圆位置关系总结大全
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的位置关系讲解(全面)
分析:先画图熟悉题意, 点 F1 到直线 AB 的距离易知,
要求 S△F1AB ,关键是求弦长 AB. 设 A( x1 , y1 ), B( x2 , y2 ) . 由直线方程和椭圆方程联立方程组
解 例焦:2∵:点已椭,圆知过点x2F2 F21作y、2倾F斜21分的角别两为个 是4焦椭的点圆直坐2x线标2 ,F11y求(21△,10F)的1, AF左2B(1、 的, 0右 面) 积. ∴直线 AB 的方程为 y x 1 设 A( x1, y1 ), B( x2 , y2 )
是否存在一点,它到直线l的距离最小? y 最小距离是多少?
解:设直线m平行于l,
则l可写成:4x 5y k 0
x o
4x 5y k 0
由方程组
x2
y2
消去y,得25x2 8kx k 2 - 225 0
25 9 1
由 0,得64k 2 - 4 2(5 k 2 - 225) 0
平分,求此弦所在直线的方程.
点
作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
知识点3:中点弦问题
点差法:利用端点在曲线上,坐标满足方程,作 差构造出中点坐标和斜率.
设A(x1, y1), B(x2 , y2 ), AB中点M (x0 , y0 ),
则有:2x0 x1 x2 , 2 y0 y1 y2
1 a2
1 b2
1
a2
b2
a2b2
题型一:直线与椭圆的位置关系
练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有 两个公共点?有一个公共点?没有公共点?
当k= 6 时有一个交点 3
当k> 6 或k<- 6 时有两个交点
2.2.2椭圆的简单几何性质(3)直线与椭圆的位置关系
题型三:中点弦问题
例1、已知椭圆 x2 y2 1过点P(2,1)引一弦,使弦在这点被 16 4
平分,求此弦所在直线的方程.
点 作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
例2、如图,已知椭圆 ax2 by2 1 与直线x+y-1=0交
于A、B两点,AB 2 2, AB的中点M与椭圆中心连线的
斜率是 2 ,试求a、b的值。
2
解:ax2 by2 1
y
消y得:(a b)x2 2bx b 1 0
x y 1 0
A
=4b2 -4(a b)(b 1) 0 ab a b 设A(x1, y1), B(x2 , y2 )
M
o
x
B
x1
x2
2b ab
0)
y x1
由
x2 2
y2
1
消去
3x2 4x 0
y 并化简整理得
∴ x1 x2
4 3
,
x1 x2
0
∴ AB
( x1 x2 )2 ( y1 y2 )2
2( x1 x2 )2
2
( x1
x2
)2
4 x1 x2
=
4 3
2
∵点 F1 到直线 AB 的距离 d
18
9
x1 x2
7
, x1 x2
14
弦长
1 k2
(x1 x2 )2
4x1 x2
6
11 7
练习: 已知椭圆5x2+9y2ቤተ መጻሕፍቲ ባይዱ45,椭圆的右焦点为F,
直线与椭圆的位置关系-高中数学复习
点, O 为坐标原点,若 AB ∥ OP ,则椭圆的焦距为(
C. 1
)
D. 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
目录
高中总复习·数学
解析: 由题意知, F 1(- c ,0), A ( a ,0), B (0,1),
1
1
则点 P (- c , ),所以直线 BA 的斜率 kBA =- ,直线 PO 的斜
1
1
1
1
率 kPO = =- .由 BA ∥ PO ,得 kBA = kPO ,所以- =- ,则
−
c =1,所以椭圆的焦距为2 c =2.故选D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
目录
高中总复习·数学
4.
2
(2023·新高考Ⅱ卷5题)已知椭圆 C : + y 2=1的左、右焦点分别
2
+
(1 +2 )(1 −2 )
=0,
1 −2
2 1 +2
2
1
∴
=- 2 ×
=2,∴ 2 = ,
1 −2
2
1 +2
2
故椭圆的离心率 e = =
1−
2
2
= .
2
2
目录
高中总复习·数学
1
2
2
(2)已知斜率为- 且不经过坐标原点 O 的直线与椭圆 + =1相
直线与椭圆的位置关系
直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。
在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。
直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。
2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。
直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。
2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。
3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。
直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。
直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。
结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。
这个问题在计算机图形学、建筑设计等领域都有广泛的应用。
了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。
总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。
直线与椭圆
直线与椭圆
1. 直线与椭圆的位置关系:
直线y=kx+m与椭圆=1(a>b>0)的位置关系判断方法:
联立,消去y得一个一元二次方程。
位置关系解的个数Δ的取值
相交两解Δ>0
相切一解Δ=0
相离无解Δ<0
2. 弦长公式:
设直线方程为y=kx+m(k≠0),椭圆方程为=1(a>b>0)或=
1(a>b>0),直线与椭圆的两个交点为A(x1,y1),B(x2,y2),则|AB|=,
∴|AB|==
=。
或|AB|==
=。
其中,x1+x2,x1x2或y1+y2,y1y2的值,可通过由直线方程与椭圆方程联立消去y或x后得到关于x或y的一元二次方程得到。
例题对不同的实数值m,讨论直线y=x+m与椭圆+y2=1的位置关系。
思路分析:
答案:联立方程组得:+(x+m)2=1,
整理得:5x2+8mx+4m2-4=0,Δ=(8m)2-4×5(4m2-4)=16(5-m2)
当Δ>0,即-<m<时,方程有两个不同的实数根,此时直线与椭圆相交;
当Δ=0,即m=±时,方程有两个相等的实数根,此时直线与椭圆相切;
当Δ<0,即m<-或m>时,方程无实数根,直线与椭圆相离。
技巧点拨:直线与椭圆的位置关系有相交、相切和相离三种情况,其几何特征分别是直线与椭圆有两个交点、有且只有一个交点、无公共点,并且二者互为充要条件。
直线与椭圆的位置关系
直线与椭圆的位置关系【重要考点】1. 直线与椭圆的位置关系及判断方法(1)直线和椭圆有三种位置关系:相交、 相切 、 相离 ;(2)直线和椭圆的位置关系的判断:设直线方程:y =kx +m ,椭圆方程:22221x y a b+=(0a b >>),两方程联立消去y 可得:Ax 2+Bx +C =0,其判别式为Δ=B 2-4AC 。
当Δ>0时,直线与椭圆 相交 ; 当Δ=0时,直线与椭圆 相切 ; 当Δ<0时,直线与椭圆 相离 。
2. 向量的运算及其中一些特殊几何关系在直线和椭圆解题中的运用,例如直线AB ⊥AC 可转化为0AB AC ⋅=。
【易错点辨析】解答直线和椭圆相关问题要注意避免出现如下两种错误:(1)对直线l 斜率的存在性不作讨论而直接设为点斜式,出现漏解或思维不全造成步骤缺失;(2)对二次项系数不为零或Δ≥0这个前提忽略而直接使用根与系数的关系。
例题1 在直角坐标系xOy 中,椭圆C :x 24+y 23=1的左、右焦点分别为F 1、F 2,点M(23,263)为C 上的一点,点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与曲线C 交于A 、B 两点,若以AB 为直径的圆经过坐标原点O ,求直线l 的方程。
解析:由MN →=MF 1→+MF 2→知四边形MF 1NF 2是平行四边形,其中心为坐标原点O ,因为l ∥MN ,所以l 与OM 的斜率相同。
故l 的斜率k =26323=6。
设l 的方程为y =6(x -m )。
由⎩⎨⎧3x 2+4y 2=12,y =6(x -m ),消去y 并化简得 9x 2-16mx +8m 2-4=0。
设A (x 1,y 1),B (x 2,y 2),x 1+x 2=16m9,x 1x 2=8m 2-49。
因为OA ⊥OB ,所以x 1x 2+y 1y 2=0。
x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m9+6m 2=19(14m 2-28)=0。
直线和椭圆位置关系总结大全
直线和椭圆位置关系总结大全1.直线不交于椭圆:当直线与椭圆不相交时,可以分为以下两种情况:(1)直线在椭圆外部:此时直线与椭圆没有交点;(2)直线在椭圆内部:此时直线与椭圆没有交点。
2.直线与椭圆外切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆外切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆外切于一条线段:此时直线与椭圆有且仅有两个切点。
3.直线与椭圆内切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆内切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆内切于一条线段:此时直线与椭圆有且仅有两个切点。
4.直线穿过椭圆:当一条直线穿过椭圆时,可以分为以下三种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆没有交点:此时直线与椭圆相离。
5.直线包围椭圆:当一条直线将椭圆切割成两个部分时,可以分为以下两种情况:(1)直线穿过椭圆:此时直线将椭圆分成内外两个部分;(2)直线在椭圆外部:此时直线将椭圆分成两个不相交的部分。
6.直线与椭圆重合:当直线与椭圆方程相同或者参数相同时,直线与椭圆重合。
7.直线与椭圆相交:当直线与椭圆有交点时,可以分为以下几种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆相交于两条线段:此时直线穿过椭圆。
总之,直线和椭圆之间的位置关系相当复杂,可以分为不交、外切、内切、相离、穿过、重合和相交等情况。
具体的位置关系可以通过解方程或者观察图形进行判断,同时利用相关的几何性质也可以得到更加精确的结论。
直线与椭圆位置关系(经典)
直线与椭圆(教师版)知识与归纳:1..点与椭圆的位置关系点P (x 0,y 0)在椭圆12222=+b y a x 内部的充要条件是1220220<+b y a x ;在椭圆外部的充要条件是1220220>+b y a x ;在椭圆上的充要条件是122220=+by a x .2.直线与椭圆的位置关系.设直线l :Ax +By +C =0,椭圆C :12222=+by a x ,联立l 与C ,消去某一变量(x 或y )得到关于另一个变量的一元二次方程,此一元二次方程的判别式为Δ,则l 与C 相离的⇔Δ<0; l 与C 相切⇔Δ=0; l 与C 相交于不同两点⇔Δ>0. 3.计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为P 1(x 1,y 1),P 2(x 2,y 2)⇒|P 1P 2|=221221)()(y y x x -+- 212212111y y kx x k -+=-+=(k 为直线斜率)形式(利用根与系数关系(推导过程:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB ====或者AB ====) 一,直线与椭圆的位置关系例题1、判断直线03=+-y kx 与椭圆141622=+y x 的位置关系 解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k(1)当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 相交 (2)当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 相切 (3)当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 相离 例题2、若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围 解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m 51≠≥∴m m 且解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m 当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m 51≠≥∴m m 且[评述]由直线方程与椭圆方程联立的方程组解的情况直接导致两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交0>∆⇔(2)直线与椭圆相切0=∆⇔(3)直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具。
第三讲:直线与椭圆的位置关系
逻辑推理 根据离心率求出 a 与 c 的关系
利用余弦定理解这个三角形求出 a,b,c
直线方程与椭圆方程联立,应用一元二次方程根与系数的关系 转化表示 MN 的斜率
利用垂直关系建立斜率相关的等式求出直线斜率,写出方程
[方法探究] 解决直线与椭圆位置关系问题的思路 先把直线方程与椭圆方程联立,消元、化简,然后应用一元二次方程根 与系数的关系建立方程,解决相关问题.涉及垂直问题常常转化为斜率或向 量,应用斜率关系或数量积运算解决,往往会更简单;
解得 k 的取值范围是 (25 , 25) .——判别式法
例 7 已知直线 l : 4x 5 y k 0 与椭圆 E : x2 y2 1 相交于 A , B 两点.
25 9
(1)求 k 的取值范围;
y
(2)求弦长| AB | 的最大值;
(3)证明:不论 k 如何变化,
弦 AB 的中点总在一条直线上.
由已知可得,点
A
的坐标为1,
22或1,-
22.
∴AM 的方程为 y=- 22x+ 2或 y= 22x- 2.
(2)当 l 与 x 轴重合时,∠OMA=∠OMB=0°. 当 l 与 x 轴垂直时,OM 为 AB 的垂直平分线, ∴∠OMA=∠OMB. 当 l 与 x 轴不重合也不垂直时,设 l 的方程为 y=k(x-1)(k≠0),A(x1, y1),B(x2,y2), 则 x1< 2,x2< 2,直线 MA,MB 的斜率之和为 kMA+kMB=x1y-1 2+ x2y-2 2.
又 M0,18,则 kMN=180+-33+ +43kk442kk22=-24k+323k+2 4k2. ∵MN⊥PQ,∴kMN=-1k,得到 k=12或32.则 kMN=-2 或 kMN=-23, ∴MN 的直线方程为 16x+8y-1=0 或 16x+24y-3=0.
与椭圆有关的位置关系
线 xy 30交M于A、B两点,P为AB的中点,
且 OP 的斜X率X为分1 ,校求椭圆 M 的方程
2
a2 b2
3
,短轴的一个端点到右焦点的距离为 3 ,直线
l:ykxm交椭圆于A、B两点
(1)求椭圆的方程
(2)若原点 O 到直线 l 的距离为 3 ,求 AOB
面积的最大X值X 分 校
2
例 已知直线 l 交椭圆 x2 y2 1 于A、B两点,若线 16 4
段AB的中点为 P(2,1) ,求直线 l 的方程
XX分校
1、点与椭圆的位置关系
已知点
P(x0,
y0)
,椭圆
x2 a2
y2 b2
1(ab0),则
Байду номын сангаас
点 P 在椭圆上 ax022
y02 b2
1
点 P 在椭圆内 ax022
y02 b2
1
点 P 在椭圆X 外X 分 校ax022
y02 b2
1
2、直线与椭圆的位置关系
x2 y2
已知直线
l:ykxm,椭圆
1k2 |
A|
若消去
x
XX分校
,保留 y ,则 |MN|
1k12
| y2y1|
例 已知直线 y2x1与椭圆 x2 y2 1
94
相交于 A、B 两点,求 AB 的长
变式1 已知直线 yxt与椭圆 x2 y2 1
4
相交于 A、B 两点,当 t 变化时,求 AB 的最大值
XX分校
变式2 已知椭圆 x2 y2 1(ab0) 的离心率为 6
a2
直线与椭圆的位置关系及判断方法
直线与椭圆的位置关系及判断方法直线与椭圆的位置关系是指确定一条直线和一个椭圆之间的相对位置关系,主要有以下几种情况:直线与椭圆相离、直线与椭圆相切、直线穿过椭圆两个交点、直线包含椭圆等情况。
判断直线与椭圆的位置关系可以通过研究直线方程和椭圆方程的解来实现。
一、直线与椭圆相离的情况:当直线方程与椭圆方程不存在实数解时,说明直线与椭圆相离。
直线方程通常采用一般式表示,即Ax+By+C=0,椭圆方程通常采用标准方程表示,即((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1、将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
通过判别式B^2-4AC的值来确定二次方程是否有实数解,当判别式小于零时,直线与椭圆相离。
二、直线与椭圆相切的情况:当直线方程刚好与椭圆方程有一个实数解时,说明直线与椭圆相切。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
当判别式B^2-4AC等于零时,直线与椭圆相切。
三、直线穿过椭圆两个交点的情况:当直线方程与椭圆方程有两个实数解时,说明直线穿过椭圆的两个交点。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x 的二次方程。
当判别式B^2-4AC大于零时,直线与椭圆有两个交点。
四、直线包含椭圆的情况:当直线方程将椭圆方程的所有解都包含时,说明直线包含椭圆。
判断方法是将直线方程的x、y分别带入椭圆方程,而不是代入x的解,得到一个关于y的二次方程。
如果这个二次方程对于任何实数x都有解,则直线包含椭圆。
需要注意的是,在判断直线与椭圆的位置关系时,需要先将椭圆方程化简为标准方程,即将h、k分别代表椭圆的中心坐标,a、b分别代表椭圆的长半轴和短半轴长度。
总结起来,判断直线与椭圆的位置关系,可以通过以下步骤实现:1.将椭圆方程化简为标准方程。
2.将直线方程写为一般式。
3.将直线方程的x、y带入椭圆方程,得到关于x的二次方程。
4.判断该二次方程的判别式B^2-4AC的值,确定直线是否与椭圆有交点、相切或相离。
直线与椭圆、双曲线、抛物线位置关系
直线与椭圆、双曲线、抛物线位置关系引言几何学是数学的一个重要分支,研究几何图形之间的关系和性质。
在几何学中,直线和曲线是两个基本概念,它们在空间中所处的位置关系对于几何图形的研究至关重要。
本文将探讨直线与椭圆、双曲线、抛物线之间的位置关系,并分析它们在几何学中的应用。
直线与椭圆的位置关系椭圆是一个几何图形,由平面上到两个定点的距离之和等于常数的点构成。
在直线与椭圆的位置关系中,有三种可能的情况:直线与椭圆相离当直线与椭圆相离时,它们没有任何交点。
这意味着直线与椭圆之间没有共享的点,它们在平面上相互独立并不相交。
这种情况可能出现在椭圆的外部或者与椭圆的某个分支平行的直线上。
直线与椭圆相切当直线与椭圆相切时,它们只有一个共享的点。
这个点同时位于直线和椭圆上,直线在这个点的切线方向与椭圆的切线方向一致。
这种情况在直线与椭圆相交的一些特殊位置上出现,例如直线与椭圆的焦点位置相对应的直线上。
直线与椭圆相交当直线与椭圆相交时,它们有两个共享的点。
这意味着直线与椭圆相交,并且在平面上有两个交点。
这种情况可能出现在直线穿过椭圆的两个分支,或者一个分支和椭圆的边界相交的位置上。
直线与双曲线的位置关系双曲线是平面上的一种几何图形,它具有两个分离的极限点,且其到两个极限点的距离之差等于一个常数。
在直线与双曲线的位置关系中,有三种可能的情况:直线与双曲线相离当直线与双曲线相离时,它们没有任何交点。
这意味着直线在双曲线的外部,它们不会相交或共享任何点。
直线与双曲线相切当直线与双曲线相切时,它们只有一个共享的点。
这个点同时位于直线和双曲线上,且直线在该点处与双曲线的切线方向一致。
这种情况可能出现在直线与双曲线的极限点位置相对应的直线上。
直线与双曲线相交当直线与双曲线相交时,它们有两个共享的点。
这意味着直线与双曲线相交,并且在平面上有两个交点。
这种情况发生在直线穿过双曲线的两个分支,或者一个分支和双曲线的边界相交的位置上。
直线与抛物线的位置关系抛物线是平面上的一种几何图形,具有对称轴和焦点。
直线与椭圆的位置关系
由 0,得64k - 4 25 (k - 225) 0
2 2
解得k1 =25,k 2 =-25
由图可知k 25,
40 25 15 41 直线 m与椭圆的交点到直线d l的距离最近。 直线 l到椭圆的最近距离为: 2 2 41 4 5 40 25 15 且d 41
否存在一点,它到直线l的距离最小?最小距离是多少? 并求出该点坐标.最大呢? y
l
O
m
分析:若设P(x,y)是椭圆上到 直线l距离最近的点,利用点到 直线的距离公式可以求出最小 值吗?请同学们试一试。
x
很显然这种方法很难求解。请同学 们想想还有其它解法吗?
通过直线的平移,使直线m与椭圆首先相交,此时 的交点就是所求的点,两条平行线间的距离就是最 小距离。
直线与椭圆的位置关系
1.位置关系:相交、相切、相离
2.判别方法(代数法)
通过解直线方程与椭圆方程组成的方程组,对解的个
数进行讨论.通常消去方程组中的一个变量,得到关
于另一变量的一元二次方程. (1)△>0直线与椭圆相交有两个公共点; (2)△=0 直线与椭圆相切有且只有一个公共点; (3)△<0 直线与椭圆相离无公共点.
点被平分,求此弦所在直线的方程.
Hale Waihona Puke 所以 x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0 从而A ,B在直线x+2y-4=0上 而过A,B两点的直线有且只有一条
解后反思:中点弦问题求解关键在于充分利用“中点”这 一
x2 y 2 1,直线l:4x-5y+40=0.椭圆上是 例:已知椭圆 25 9
证法一:记△ OCM 的面积是 S1 ,△ ODN 的面积是 S2 . 由 M (2m,0) , N (0, m) , 则 S1 S2
椭圆与直线位置关系-精心制作!
2
2
y 2 1 的两个焦点坐标 F1 (1, 0), F2 (1, 0)
3x 4x 0
4 ∴ AB ( x1 x2 )2 ( y1 y2 )2 2( x1 x2 )2 2 ( x1 x2 )2 4 x1 x2 = 3 2
2
= 2
例2:当m取何值时,直线l: y x m 与椭圆 2x 2 3y2 6 相交、相切、相离? 解:联立方程组
2
{ 2x 3y 6
2 2
yxm
2
消y得:
5x 6mx 3m 6 0
6m 4 5 3m 6
2 2
24m 2 120 相离 0, 则m 5或m 5
中点弦问题
关于中点的问题一般可采用两种方法解决:
(1)联立方程组,消元,利用根与系数的关系进行
设而不解,从而简化运算解题;
(2)利用“点差法”,求出与中点、斜率有关的式
子,进而求解.
= 2[x1+x22-4x1x2]= 2 = 10-8m2, 5 所以当 m=0 时,d 最大,此时直线方程为 y=x. 4m2 4 2 2[ - m -1] 25 5
题型:中点弦问题
例4 :已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
解得k1 =25,k 2 =-25
由图可知k 25.
解:∵椭圆
x2 y2 1 的左、右 例7 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线,求 △F1 AB 的面积. 4 x2
直线与椭圆的位置关系,弦长公式,弦中点问题
汇报人: 日期:
目录
• 直线与椭圆的位置关系 • 弦长公式 • 弦中点问题
01
直线与椭圆的位置关系
直线与椭圆的基本定义
直线的定义
直线是无限延伸的,没有起点和 终点。在平面几何中,直线通常 用两点间的连线表示。
椭圆的定义
椭圆是一种平面曲线,其定义是 固定两点(焦点)的距离之和等 于常数的点的轨迹。
通过观察直线与椭圆的交点个数来判 断位置关系。
02
弦长公式
弦长的定义及计算方法
Байду номын сангаас弦长定义
弦长是指连接圆内任意两点间的线段 长度。
计算方法
通过利用勾股定理和圆的基本性质, 可以计算出连接圆内两点的线段长度 。
弦长公式的推导过程
勾股定理:在直角三角形中,直角边的平方和等 于斜边的平方。
圆的基本性质:圆内任意两点间的距离平方等于 这两点与圆心距离的平方和。
直线与椭圆的位置关系分类
相交
直线与椭圆有两个不同的交点。
相切
直线与椭圆只有一个交点。
相离
直线与椭圆没有交点。
判断直线与椭圆位置关系的常用方法
代数法
通过联立直线和椭圆的方程,消元后 得到一元二次方程,然后根据判别式 的值判断直线与椭圆的位置关系。
几何法
参数法
通过引入参数来表示直线的方程,然 后代入椭圆的方程进行求解,根据解 的情况判断位置关系。
弦中点的性质
弦中点与椭圆中心连线段与弦AB垂直,且该线段等于A、B两点到椭圆中心的距 离之和的一半。
弦中点问题的求解方法
利用定义求解
根据弦中点的定义,可以求出弦中点的坐标。
利用几何性质求解
直线与椭圆位置关系(经典)
直线与椭圆位置关系(经典)本文介绍了直线与椭圆的位置关系以及弦长计算方法。
1.点与椭圆的位置关系对于椭圆$x^2/a^2+y^2/b^2=1$,点$P(x,y)$在椭圆内部的充要条件是$x^2/a^2+y^2/b^21$,在椭圆上的充要条件是$x^2/a^2+y^2/b^2=1$。
2.直线与椭圆的位置关系设直线$l: Ax+By+C=0$,椭圆$C: x^2/a^2+y^2/b^2=1$,联立$l$与$C$,消去某一变量$(x$或$y)$得到关于另一个变量的一元二次方程,此一元二次方程的判别式为$\Delta$,则$l$与$C$相离的充要条件是$\Delta0$。
3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为$P_1(x_1,y_1)$,$P_2(x_2,y_2)$,则$|P_1P_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=1+kx_1-x_2=1+\frac{1}{k}(y_1-y_2)$($k$为直线斜率)。
题目:已知椭圆$\frac{x^2}{5m}+\frac{y^2}{m}=1$,直线$y=kx+1$,求实数$m$的取值范围使得直线与椭圆有公共点。
解法一:将直线方程代入椭圆方程,得到关于$x$的一元二次方程,其判别式为$\Delta=m-5k-1$,要使直线与椭圆有交点,需要$\Delta\geq0$,即$m\geq5k+1$。
另外要注意,当$m=5k+1$时,直线与椭圆可能只有一个交点,在这种情况下也算有公共点。
因此,实数$m$的取值范围为$m\geq1$且$m\neq5$。
解法二:观察椭圆方程,发现其长轴在$x$轴上,短轴在$y$轴上,因此,当$m5$时,椭圆焦点在$y$轴上,与直线的交点只有$1$个或$3$个。
因此,要使直线与椭圆有公共点,需要$m\geq5$。
另外,当$m=5$时,椭圆退化成一个点,直线与该点有交点,因此也算有公共点。
直线与椭圆的位置关系及最值
直线与椭圆的位置关系1.直线与椭圆的位置关系.设直线l :Ax +By +C =0,椭圆C :12222=+b y a x 联立⎪⎩⎪⎨⎧=++=+012222C By Ax b y a x 得02=++p nx mx (1)若l 与C 相离的⇔Δ<0;(2)l 与C 相切⇔Δ=0;(3)l 与C 相交于不同两点⇔Δ>0.2.弦长公式 设直线与椭圆交于点P 1(x 1,y 1),P 2(x 2,y 2)则|P 1P 2|=221221)()(y y x x -+- 212212111y y kx x k -+=-+=(k 为直线斜率) 一,直线与椭圆的位置关系例题1、判断直线03=+-y kx 与椭圆141622=+y x 的位置关系例题2、若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围.二、弦长问题例题3、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例4、已知椭圆1222=+y x 的左右焦点分别为1F ,2F ,若过点P (0,-2)及1F 的直线交椭圆于A,B 两点,求⊿ABF 2的面积练习、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.三、中点弦问题例题5、已知椭圆C 的焦点分别为12(F F -,长轴长为6,设直线2y x =+交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
例题6、如果焦点是F (0,±52)的椭圆截直线3x -y -2=0所得弦的中点横坐标为21,求此椭圆方程.例7. 已知椭圆1222=+y x (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过Q(2,1)引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点A 、B ,O 为原点,且有直线OA 、OB 斜率满足K OA ·K OB =-1/2,求线段AB 中点M 的轨迹方程.四、对称问题例题8、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.五、最值问题类型1:焦点三角形角度最值-------最大角法(求离心率问题)例1. 已知椭圆C :22221(0)x y a b a b+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使12FQ F Q ⊥,求椭圆离心率的最小值。
直线和椭圆的位置关系
直线和椭圆的位置关系一、要点精讲1.直线和椭圆的位置关系有三种:相交、相切、相离. 判定方法——代数法。
将直线方程与椭圆方程联立消去一个未知数,得到一个一元二次方程,判断方程解的情况:△>0,方程有两个不同的解,则直线与椭圆相交; △=0,方程有两个相等的解,则直线与椭圆相切; △<0,方程无解,则直线与椭圆相离.2.直线与椭圆相交所得的弦长公式:设直线b kx y +=交椭圆于()111,y x P ,()222,y x P, 则()()()()()2221221212212212212111k x x x x y y x x y y x x P P +-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=-+-=所以221211k x x P P +-=,或()01122121≠+-=k ky y P P . 4.研究直线与椭圆位置关系的通性通法解决直线与椭圆位置关系时,一般通过直线与椭圆交点个数进行研究,用一元二次方程的判别式,根与系数的关系,求根公式等来处理问题,还要注意数形结合思想的运用,通过图形的直观性帮助分析、解决间题. 三、基础自测1. 椭圆13422=+y x 的右焦点到直线x y 3=的距离是 A.21 B. 23 C. 1 D.32. 直线032:=++by x l 过椭圆1010:22=+y x C 的一个焦点,则b 的值为( ) A. 1- B.21 C. 1-或1 D. 21-或21 3. 方程221y x -=表示的是椭圆的(A )上半部分 (B )下半部分 (C )左半部分 (D )右半部分4.(2012四川)椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________。
解: 当x m =过右焦点时FAB ∆的周长最大,1m ∴=;将1x =带入解得32y =±;132322FAB S ∆=⨯⨯=.5. 直线0=--m y x 与椭圆1922=+y x 只有一个公共点,则=m . 6. 已知椭圆12122=+y x 和椭圆外一点()2,0,过这点任意引直线与椭圆交于A,B 两点,求弦AB 的中点P 的轨迹方程.四、典例精析题型一:直线与椭圆的交点问题1. 已知椭圆1422=+y x 及直线m x y +=.⑴ 当直线和椭圆有公共点时,求实数m 的取值范围; ⑵ 求被椭圆截得的最长弦所在的直线的方程.2. 已知定点A(-2, -1),B(1, 2),线段AB 与椭圆222x y a +=有公共点,求a 的取值范围.题型二:求椭圆方程问题3.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.(Ⅰ)求椭圆C 的离心率;(Ⅱ)如果|AB|=154,求椭圆C 的方程.4.(2011天津)已知椭圆22221x y a b+=()0a b >>的离心率e =得到的菱形的 面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点,A B .已知点A 的坐标为(),0a -.若5AB =,求直线l 的倾斜角;5.(2012陕西)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与椭圆(教师版)知识与归纳:1..点与椭圆的位置关系点P (x 0,y 0)在椭圆12222=+b y a x 内部的充要条件是1220220<+b y a x ;在椭圆外部的充要条件是1220220>+b y a x ;在椭圆上的充要条件是122220=+by a x .2.直线与椭圆的位置关系.设直线l :Ax +By +C =0,椭圆C :12222=+by a x ,联立l 与C ,消去某一变量(x 或y )得到关于另一个变量的一元二次方程,此一元二次方程的判别式为Δ,则l 与C 相离的⇔Δ<0; l 与C 相切⇔Δ=0; l 与C 相交于不同两点⇔Δ>0. 3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为P 1(x 1,y 1),P 2(x 2,y 2)⇒|P 1P 2|=221221)()(y y x x -+- 212212111y y k x x k -+=-+=(k 为直线斜率)形式(利用根与系数关系(推导过程:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,2222221212121212()()()()(1)()AB x x y y x x kx kx k x x =-+-=-+-=+-221212(1)[()4]k x x x x =++-或者2222212121212122111()()()()(1)()AB x x y y x x y y y y k k k=-+-=-+-=+-2121221(1)[()4]y y y y k=++-) 一,直线与椭圆的位置关系例题1、判断直线03=+-y kx 与椭圆141622=+y x 的位置关系 解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k(1)当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 相交 (2)当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 相切 (3)当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 相离 例题2、若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围 解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m 51≠≥∴m m 且解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m 当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m 51≠≥∴m m 且[评述]由直线方程与椭圆方程联立的方程组解的情况直接导致两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交0>∆⇔(2)直线与椭圆相切0=∆⇔(3)直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具。
或者可首先判断直线是否过定点,并且初定定点在椭圆内、外还是干脆就在椭圆上,然后借助曲线特征判断:如例2中法二是根据两曲线的特征观察所至;法三则紧抓定点在椭圆内部这一特征:点),(o o y x M 在椭圆内部或在椭圆上则12222≤+bya x o o二、弦长问题例3、已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得04492=-+y y ,91044)(2122121=-+=-y y y y y y 9104212121=-=∴∆y y F F S 解法二:2F 到直线AB 的距离554=h 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,又92101212=-+=x x k AB 910421==∴∆h AB S [评述]在利用弦长公式212212111y y kx x kAB -+=-+=(k 为直线斜率)或焦(左)半径公式)(22212121x x e a ex a ex a PF PF AB ++=+++=+=时,应结合韦达定理解决问题。
例题4、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .一、求中点弦所在直线方程问题例1 过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:016)12(4)2(8)14(2222=--+--+k x k k x k又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是14)2(82221+-=+k k k x x ,又M 为AB 的中点,所以214)2(422221=+-=+k k k x x , 解得21-=k ,故所求直线方程为042=-+y x 。
解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x , 两式相减得0)(4)(22212221=-+-y y x x ,所以21)(421212121-=++-=--y y x x x x y y ,即21-=AB k ,故所求直线方程为042=-+y x 。
解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1),则另一个交点为B(4-y x -2,),因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16)2(4)4(1642222y x y x , 两式相减得042=-+y x ,由于过A 、B 的直线只有一条,故所求直线方程为042=-+y x 。
二、求弦中点的轨迹方程问题例2 过椭圆1366422=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。
解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),则有⎩⎨⎧=+=+57616957616922222121y x y x ,两式相减得0)(16)(922212221=-+-y y x x ,又因为x x x 221=+,y y y 221=+,所以0)(216)(292121=-⋅+-⋅y y y x x x ,所以y x x x y y 1692121=--,而)8(0---=x y k PQ ,故8169+=x y y x 。
化简可得01672922=++y x x (8-≠x )。
解法二:设弦中点M (y x ,),Q (11,y x ),由281-=x x ,21yy =可得821+=x x ,y y 21=, 又因为Q 在椭圆上,所以136642121=+y x ,即136464)4(422=++y x , 所以PQ 中点M 的轨迹方程为1916)4(22=++y x (8-≠x )。
三、弦中点的坐标问题例3 求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。
解:解法一:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩⎨⎧=-=x y x y 412,消去y 得x x 4)1(2=-,即0162=+-x x ,所以32210=+=x x x ,2100=-=x y ,即中点坐标为)2,3(。
解法二:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩⎨⎧==22212144x y x y ,两式相减得)(4122122x x y y -=-, 所以4))((121212=-+-x x y y y y ,所以421=+y y ,即20=y ,3100=+=y x ,即中点坐标为)2,3(。
例题5、已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去y (或x ),得到关于x (或y )的一元二次方程,再由根与系数的关系,直接求出21x x +,21x x (或21y y +,21y y )的值代入计算即得. 并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程,整理得036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根,∴14)24(8221+-=+k k k x x ∵)2,4(P 为AB 中点,∴14)24(424221+-=+=k k k x x ,21-=k .∴所求直线方程为082=-+y x . 方法二:设直线与椭圆交点),(11y x A ,),(22y x B .∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y . 又∵A ,B 在椭圆上,∴3642121=+y x ,3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x , 即0))((4))((21212121=-++-+y y y y x x x x .∴21)(4)(21212121-=++-=--y y x x x x y y .∴直线方程为082=-+y x .方法三:设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --.∵A 、B 在椭圆上,∴36422=+y x ①。