工程热力学第9章-工程热力学(沈维道_童钧耕主编)第四版
工程热力学课后思考题答案--第四版-沈维道-童钧耕主编-高等教育出版社
1word 版本可编辑.欢迎下载支持.1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
2word 版本可编辑.欢迎下载支持.4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p =p b +p g (p > p b ), p = p b-p v (p < p b ) 中,当地大气压是否必定是环境大气压? 当地大气压p b 改变,压力表读数就会改变。
当地大气压p b 不一定是环境大气压。
5.温度计测温的基本原理是什么?热力学第零定律The zeroth law of thermodynamics enables us to measure temperature. In order to measure temperature of body A, we compare body C — a thermometer — with body A and temperature scales (温度的标尺,简称温标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer.6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
工程热力学课后思考题答案__第四版_沈维道_童钧耕主编_高等教育出版社
工程热力学课后思考题答案第1章 基本概念1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所 以开口系统不可能是绝热系。
对不对,为什么? 不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p =p b +p g (p > p b ), p = p b -p v (p < p b )中,当地大气压是否必定是环境大气压?可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
4题图环境大气压是指压力仪表所处的环境的压力。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的Pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
当地大气压就是指的所处地点的大气压力. 任何一个地点的大气压不仅是海拔高度的函数, 而且是天气或者说是气候的函数. 也就是说是时间的函数. 但是某地的大气压随时间的变化并不会很大, 也不会非常频繁. 假如当地大气压仅仅是指所处地点地表附近的大气压, 那么所处地点上方空间中的任何一个位置就不能说成是"当地", 而只能说成是"环境",5.温度计测温的基本原理是什么?热力学第零定律如果两个热力系的每一个都与第三个热力系处于热平衡,则它们彼此也处于热平衡。
工程热力学(沈维道_童钧耕主编)第四版-全书完整课件_第九章
2. cV
定容过程 dv=0
若为理想气体
cV
u T
v
u u(T )
u T
v
du dT
cV
du dT
du
cVdT
cV cV (T ) 温度的函数
7
3. cp
据一般表达式
cp
u T
v
u v
T
第三章 气体和蒸气的性质
Properties of gas and vapor
3-1 理想气体 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 饱和状态、饱和温度和饱和压力
3-5 水的定压加热汽化过程 3-6 水和水蒸气状态参数 3-7 水蒸气图表和图
1
3-1 理想气体
一、理想气体(perfect gas or ideal gas)的基本假设
加热,使温度升高如 t',保持定 值,系统建立新的动态平衡。与之 对应,p变成ps'。
所以 Ts ps 一一对应,只有一个独立变量,即 ts f ps
如
ps
ts 100
4
ps atm ts C
28
t/ ℃ p/ MPa
0
20
50
100
120
0.0 006 112 0.0 023 385 0.0 123 446 0.1 013 325 0. 198 483
20
讨论: 如图:
Tb Tc Td
uab uac uad hab hac had
工程热力学 复习指南 配套工程热力学第四版 童均耕 沈维道
目录
第一章 基本概念及定义 ................................................................................................... 3 §1.1 热能和机械能相互转换的过程 .............................................................................. 3 §1.2 热力系统(热力系、系统、体系)外界和边界 .................................................. 3 §1.3 工质的热力学状态和基本状态参数 ....................................................................... 3 §1.4 平衡状态.................................................................................................................. 4 §1.5 工质的状态变化过程 .............................................................................................. 5 §1.6 功和热量.................................................................................................................. 5 §1.7 热力循环.................................................................................................................. 6 ☆本章习题指导 ............................................................................................................... 6 第二章 热力学第一定律 ......................................................................................................... 8 §2.1 热力学第一定律的实质 .......................................................................................... 8 §2.2 热力学能(内能)和总能 ........................................................................................... 9 §2.3 热力学第一定律基本表达式 .................................................................................. 9 §2.4 闭口系基本能量方程式 ........................................................................................ 10 §2.5 开口系能量方程 .................................................................................................... 10 ☆本章习题指导 ............................................................................................................. 13 第三章 气体和蒸汽的性质 ................................................................................................... 14 §3.1 理想气体................................................................................................................ 14 §3.2 理想气体的比热容 ................................................................................................ 14 §3.3 理想气体的热力学能、焓和熵 ............................................................................ 18 §3.4 饱和状态、饱和温度和饱和压力 ........................................................................ 19 §3.5 水的定压加热汽化过程 ........................................................................................ 19 §3.6 水和水蒸气状态参数 ............................................................................................ 20 §3.7 水蒸气图表和图 .................................................................................................... 21 ☆本章习题指导 ............................................................................................................. 21 第四章 气体和蒸汽的基本的热力过程 ............................................................................... 25 §4.1 研究热力过程的目的及一般方法 ........................................................................ 25 §4.2 理想气体的定压、定容、定温和等比熵(可逆绝热)过程 ............................ 26 §4.4 理想气体多变过程 ................................................................................................ 27 §4.5 水蒸气的基本过程 ................................................................................................ 28 ☆本章习题指导 ............................................................................................................. 29 第五章 热力学第二定律 ....................................................................................................... 33 §5.1 热力学第二定律 .................................................................................................... 33 §5.2 卡诺循环和卡诺定理 ............................................................................................ 33 §5.3 熵和热力学第二定律的数学表达式 ................................................................... 35 §5.4 熵方程与孤立系统熵增原理 ............................................................................... 37 §5.5 系统的作功能力(㶲)及熵产与作功能力损失 ..................................................... 39 §5.6 㶲平衡方程及㶲损失 ............................................................................................ 40 ☆本章习题指导 ............................................................................................................. 41
工程热力学课后试探题答案第四版沈维道童钧耕
1.闭口系与外界无物质互换,系统内质量维持恒定,那么系统内质量维持恒定的热力系必然是闭口系统吗?不必然,稳固流动系统内质量也维持恒定。
2.有人以为开口系统内系统与外界有物质互换,而物质又与能量不可分割,因此开口系统不可能是绝热系。
对不对,什么缘故?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平稳状态与稳固状态有何区别和联系?平稳状态必然是稳固状态,稳固状态那么不必然是平稳状态。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p =p b +p g (p > p b ), p = p b -p v (p < p b )中,本地大气压是不是必然是环境大气压?本地大气压p b 改变,压力表读数就会改变。
本地大气压p b 不必然是环境大气压。
5.温度计测温的大体原理是什么?热力学第零定律 Thezerothlawofthermodynamics enables us to measure temperature. In order to measure temperature of body A, we compare body C — a thermometer — with body Aand temperature scales (温度的标尺,简称温标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer. 6.体会温标的缺点是什么?什么缘故?不同测温物质的测温结果有较大的误差,因为测温结果依托于测温物质的性质。
工程热力学课后思考题问题详解__第四版_沈维道_童钧耕
1.闭口系与外界无物质交换,系统质量保持恒定,那么系统质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统质量也保持恒定。
2.有人认为开口系统系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p =p b +p g (p > p b ), p = p b -p v (p < p b )中,当地大气压是否必定是环境大气压? 当地大气压p b 改变,压力表读数就会改变。
当地大气压p b 不一定是环境大气压。
5.温度计测温的基本原理是什么?热力学第零定律 The zeroth law of thermodynamics enables us to measure temperature. In order to measure temperature of body A, we compare bodyC — a thermometer — with body A and temperature scales (温度的标尺,简称温标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer.6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
工程热力学课后习题答案
{T}°Q = {t}°N + 2358.35
{T}°N = 0 时, T = 2358.385°Q 。
1-4 直径为 1m 的球形刚性容器,抽气后真空度为 752.5mmHg,若当地大气为 0.101MPa , 求:
(1)容器内绝对压力为多少 Pa; (2)容器表面受力多少 N?
解 :(1) p = p b − pv = 0.101×106 Pa − 752.5mmHg ×133.3Pa/mmHg = 691.75Pa
pe3 = pB − pb = 0.3553MPa − 0.1013MPa = 0.254MPa 1-10 起重机以每秒 2m 的恒速提升总质量为 450kg 的水泥块,试求所需功率。 解:功率等于力与速度的乘积,因恒速提升,加速度为零,所以仅为重力。
P = Fc = mgc = 450kg × 9.80665m/s2 × 2m/s = 8826W = 8.83kW
图 1-3
3
工程热力学第 4 版习题解
柱塞质量
pe = p − pb = 201kPa −101kPa = 100kPa
m = pe A = 100 ×103 Pa × 4 ×10−6 m2 = 0.0408kg = 40.8g
g
9.81m/s2
1-9 容器被分隔成 AB 两室,如图 1-4 所示,已知当场大气
1-11 电阻加热器的电阻 15Ω,现有 10A 的电流流经电阻丝,求功率。
解:
P = Ei = Ri2 = 15Ω × (10A)2 = 1500W = 1.5kW
1-12 气缸中密封有空气,初态为 p1 = 0.2MPa,V1 = 0.4m3 ,缓慢胀到V2 = 0.8m3 。 (1)过程中 pV 保持不变;
工程热力学答案
英制系统中朗肯温度与华氏温度的关系为{T 1-2 英制系统中朗肯温度与华氏温度的关系为 }° R = {t}° F + 459.67 。已知热力学绝对温 标及朗肯温标在纯水冰点的读数分别是 273.15K 和 491.67°R ;汽点的读数分别是 373.15K 和 671.67°R 671.67 R 。 (1)导出朗肯温度和开尔文温度的关系式 导出朗肯温度和开尔文温度的关系式; (2)开尔文温标上绝对零度在朗肯温标上是多少度 开尔文温标上绝对零度在朗肯温标上是多少度? 解:(1)若任意温度 T 在朗肯温标上读数为 T (°R) 在热力学绝对温标上读数为 T(K), 则 解得 671.67 491.67 T (°R) 491.67 = 373.15 273.15 T (K) 273.15 {T }° R = 1.8{T }K
2
+V
pV 2
1
dV = p1V1 ln
V2 V1
0.8m3 6 4 = 0.2 ×10 Pa × 0.4m3 × ln = 5.54 ×10 J 0.4m3
4
工程热力学第 4 版习题解
(2)
w = + pdV = 1
2 a
+pdV + + p pdV
工程热力学课后思考题答案 第四版 沈维道 童钧耕主编 高等教育出版社
工程热力学课后思考题答案第四版沈维道童钧耕主编高等教育出版社工程热力学课后思考题答案第四版沈维道童钧耕主编高等教育出版社1.封闭系统与外界没有物质交换,系统中的质量保持不变,所以系统中质量恒定的热力系统一定是封闭系统?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开放系统中的系统与外界之间存在物质交换,物质和能量是不可分割的,因此开放系统不可能是绝热系统。
正当为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态必须是稳定状态,而稳定状态不一定是平衡状态。
4.如果容器中的气体压力没有变化,安装在容器上的压力表读数是否会变化?绝对压力计算公式p=pb+pg(p>pb),p=pb-pv(p<pb)当地大气压力一定是环境大气压力吗?当地大气压pb改变,压力表读数就会改变。
当地大气压pb不一定是环境大气压。
5.温度计的基本原理是什么?热力学第零定律4.标题图不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
7.是什么导致系统状态发生变化?举个例子。
有势差(温度差、压力差、浓度差、电位差等等)存在。
8.分别以图1-20所示的参加公路自行车赛的运动员、运动手枪中的压缩空气、杯子里的热水和正在运行的电视机为研究对象,说明这些是什么系统。
参加公路自行车赛的运动员是开放式系统,运动手枪中的压缩空气是封闭式绝缘系统,杯子中的热水是开放式系统(封闭式系统——忽略蒸发),运行的电视是封闭式系统。
9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。
取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能当前热水冷水传热热水冷水ab9主题图构成孤立系统?除电加热器外,它是一个开放式(非绝缘)系统(图a)。
工程热力学课后思考题答案__第四版_沈维道_童钧耕主编_高等教育出版社
1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p=p b+p g (p> p b), p= p b中,当地大气压是否必定是环境大气压?当地大气压p b4题图压力表读数就会改变。
当地大气压p b不一定是环境大气压。
6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
7.促使系统状态变化的原因是什么?举例说明。
有势差(温度差、压力差、浓度差、电位差等等)存在。
9.家用电热水器是利用电加热水的家用设备,通常9题图其表面散热可忽略。
取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能构成孤立系统?不包括电加热器为开口(不绝热)系统(a图)。
包括电加热器则为开口绝热系统(b图)。
将能量传递和质量传递(冷水源、热水汇、热源、电源等)全部包括在内,构成孤立系统。
或者说,孤立系统把所有发生相互作用的部分均包括在内。
12.图1-22中容器为刚性绝热容器,分成两部分,一部分装气体,一部分抽成真空,中间是隔板,(1)突然抽去隔板,气体(系统)是否作功?(2)设真空部分装有许多隔板,逐个抽去隔板,每抽一块板让气体先恢复平衡在抽下一块,则又如何? (3)上述两种情况从初态变化到终态,其过程是否都可在p -v 图上表示?4.一刚性容器,中间用绝热隔板分为两部分,A 中pv1a b 2隔板A B图2-12 自由膨胀存有高压空气,B中保持真空,如图2-12所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1 v2
p3 p2
17
v1 v2 p3 p2
q1 cV T3 T2
q2 cV T4 T1
q2 T4 T1 t 1 1 q1 T3 T2
1 1 1 t 1 1 1 1 1 1
或
wnet qnet q1 q2
q1 q23 q34 cV T3 T2 c p T4 T3
q2 q51 cV T5 T1
11
T5 T1 q2 t 1 1 q1 T3 T2 T4 T3
按点火方式:点燃式(spark ignition engine) 压燃式(compression ignition engine)
按冲程:二冲程(two-stroke ) 四冲程(four-stroke )
5
2.活塞式内燃机循环特点
开式循环(open cycle); 燃烧、传热、排气、膨胀、压缩均为不可逆; 各环节中工质质量、成分稍有变化。
注意:式中T1、T2并非指高温 热源,低温热源。
T1 1 t 1 1 T2 1
29
2.分析
T1 1 t 1 1 T2 1
a) t t与T3无关
?
b) 一定 q1 wnet t不变
30
c) 一定, 取某值wnet wmax
利用 、、 表示
t
1
1 2
v1 T2 T1 v2
T1 1
23
p3 T3 T2 T1 1 p2
34
5 1
v4 T4 T3 T1 1 v3
p5 T5 T1 p1
12
求
p1v1 p2v2 ; p5 v5 p4v4
2
三、分析动力循环的方法
1. 第一定律分析法 以第一定律为基础,以能 量的数量守恒为立足点。
2. 第二定律分析法 熵分析法 分析法
综合第一定律和第二定律 从能量的数量和质量分析。 熵产 火用损 作功能力损失
火用效率
3
四、内部热效率i(internal thermal efficiency )
气体动力循环中工作流体 燃烧和排气过程
理想气体
空气
定比热
吸热和放热过程
4
燃料燃烧造成各部分气体成分及质量改变忽略不计
9–2 活塞式内燃机实际循环的简化
一、活塞式内燃机(internal combustion engine)简介
1.分类:
按燃料:煤气机(gas engine) 汽油机(gasoline engine; petrol engine) 柴油机(diesel engine)
14
二、定压加热理想循环(Diesel cycle)
v1 v2 v3 v2
q2 t 1 q1
T4 T1 t 1 T3 T2 1 t 1 1 1 1 1 1 t 1 1 1
p5 p1
两式相除,考虑到
p4 p3 v1 v5 v2 v3
p5 p4 v4 p3 v4 p1 p2 v3 p2 v3 p5 T5 T1 T5 T1 p1
把T2、T3、T4和T5代入
T5 T1 t 1 T3 T2 T4 T3
简化:引用空气标准假设
燃烧2-3等容吸热+3-4定压吸热
排气5-1等容放热 压缩、膨胀1-2及4-5等熵过程 吸、排气线重合、忽略 燃油质量忽略 燃气成分改变忽略
9
1. p-v图及T-s图 12 等熵压缩;23 等容吸热; 34 定压吸热;45 等熵膨胀; 51 定容放热 特性参数: 压缩比(compression ratio) 定容增压比(pressure ratio)
例A470299 例A447277
21
9-5 燃气轮机装置循环
一、燃气轮机(gas turbine)装置简介
小型燃气轮机
22
轴流式燃气轮机
23
24
ห้องสมุดไป่ตู้
25
26
构成
压气机(compressor)
燃烧室(combustion chamber)
燃气轮机(gas turbine)
特点
1.开式循环(open cycle),工质流动; 2.运转平稳,连续输出功; 3.启动快,达满负荷快; 4.压气机消耗了燃气轮机产生功率 的绝大部分,但重量功率比 (specific weight of engine)仍较大。
v1 v2
p3 p2
定压预胀比 (cutoff ratio)
v4 v3
10
2. 循环热效率
wnet t q1
wnet w12 w23 w34 w45 w51 w12 w34 w45
1 1 Rg Rg p2 p5 T1 1 p3 v4 v3 T4 1 1 p1 1 p4
tv tm tp
或
T 2v T 2 m T 2 p
T 1v T 1m T 1 p
20
二、循环pmax、Tmax相同时的比较
q2 p q2m q2v q1 p q2m q2v
t,p t,m t,v
或
T 2 p T 2 m T 2v
T 1 p T 1m T 1v
第九章 气体动力循环
Gas power cycles
9-1 分析动力循环的一般方法 9-2 活塞式内燃机实际循环的简化 9-3 活塞式内燃机的理想循环 9-4 活塞式内燃机个正理想循环的热力学比较 9-5 燃气轮机装置循环 9-6 燃气轮机装置定压加热实际循环 9-7 提高燃气轮机装置热效率的热力学措施 9-8 喷气发动机简介
——不可逆过程中实际作功量和循环加热量之比
其中
i
wnet t q1
wnet,act q1
T wnet
q1
Tt
与实际循环相当的内可逆循环的热效率 相对内部效率(internal engine efficiency) 反映内部摩擦引起的损失
T
wnet,act wnet
五、空气标准假设(the air-standard hypothesis)
T4 T1 c p T4 T1
q2 T4 T1 t 1 1 q1 T3 T2
p4 T4 T3 p 3 p1 T1 T2 p 2
1
1
p4 p1
T4 T1 T T T 4 1 1 p3 p 2 T3 T2 T3 T2 T2
1
9–1 分析动力循环的一般方法
一、分析动力循环的目的
在热力学基本定律的基础上分析循环能量转化的经济性, 寻求提高经济性的方向及途径。
二、分析动力循环的一般步骤
1. 实际循环(复杂不可逆) 分析可逆循环 影响经济性的主要因素和可能改进途径 指导改善 实际循环 抽象、简化 可逆理论循环
2. 分析实际循环与理论循环的偏离程度,找出实际 损失的部位、大小、原因及改进办法
wnet q1 q2 c p T3 T2 T4 T1
1 1 1 c pT1 1 1
δwnet 0 d
1
Cs
2s
h
2s
h1
h3 h2 h3 h1 q1
整理
1
Cs
s
h
T
wt,T wt,T
T h3 h4s wt,T
h3 h4 h3 h4s
h4 h3 T h3 h4s
34
三、燃气轮机装置的内部热效率 (internal thermal efficiency)ηi
wnet i q1
wt,T wC T h3 h4s wnet
1 t 1 1 1 1
13
讨论:
a) t
b) t
c) t
归纳: a.吸热前压缩气体,提高平均吸热温度是提高热效率的重 要措施,是卡诺循环,第二定律对实际循环的指导。 b.利用T-s图分析循环较方便。 c.同时考虑q1和q2或T1m和T2m平均。
6
二、活塞式内燃机循环的简化
7
三、平均有效压力(mean effective pressure)
Wnet Vh
pMEP
8
9–3 活塞式内燃机的理想循环
一、混合加热理想循环 (dual combustion cycle)
01 12 23 34 45 50 吸气 压缩 喷油、燃烧 燃烧 膨胀作功 排气
用途
27 飞机、舰船的动力载荷机组,电站峰荷机组(peak-load set) 等。
二、定压加热理想循环 (constant-pressure combustion cycle, Brayton cycle)
1-2 等熵压缩(压气机内)
p2 p1
循环增压比(pressure ratio) 2-3 定压吸热(燃烧室内)
18
讨论: a)
t
b) ; t不变,但wnet
c ) 重负荷(q1 )时内部热效 率下降,因温度上升使 ,造 成热效率下降