第9-11届希望杯数学竞赛五年级二试试题含答案

合集下载

2011年第9届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2011年第9届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2011年第9届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:0.15÷2.1×56=_________.2.(5分)15+115+1115+11115+…+1111111115=_________.3.(5分)一个自然数除以3,得余数2,用所得的商除以4,得余数3.若用这个自然数除以6,得余数_________.4.(5分)数一数图中有_________个正方形.5.(5分)有一些自然数(0除外)既是平方数,又是立方数.(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个自然数的乘积).如:1=1×1=1×1×1 64=8×8=4×4×4.那么,1000以内的自然数中,这样的数有_________个.6.(5分)有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是_________.7.(5分)如图,先将4黑1白共5个棋子放在圆上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉.如此不断操作下去,圆圈上的5个棋子中最多有_________个白子.8.(5分)甲乙两人分别从AB两地同时相向而行,甲的速度是乙的3倍.经过60分钟,两人相遇,然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行,那么,当甲到达B地后,再经过_________分钟,乙到达A地.9.(5分)如图,将一个棱长为1米的正方体木块分别沿长宽高三个方向锯开1,2,3次得到24个长方形木块,这24个长方形木块的表面积的和是_________平方米.10.(5分)如图,小丽和小明的桶中原来各装有3千克和5千克水,依据图中的信息可知,小丽的桶最多可以装_________千克水,小明的桶最多可以装_________千克水.11.(5分)将1~2011的奇数排成一列,然后按每组1,2,3,2,1,2,3,2,1,…个数的规律分组如下(每个括号为一组):(1)(3,5)(7,9,11)(13,15)(17)(19,21)(23,25,27)(29,31)(33)…则最后一个括号内的各数之和是_________.12.(5分)当爷爷的年龄是爸爸年龄的2倍时,小明1岁;当爸爸的年龄是小明的年龄的8倍时,爷爷61岁.那么,爷爷比小明大_________岁;当爷爷的年龄是小明年龄的20倍时,爸爸的年龄是_________岁.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图,大小两个正方形并排放在一起,请分别在图乙和图丙中阴影标出一个几何图形(不一定是三角形,可以是任意的多边形),使它的面积等于图甲中的阴影面积.(直接作图,不写解答过程)14.(15分)甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到的鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲乙丙丁各钓到几条鱼?15.(15分)A、B两地间有一条公路,甲乙两辆车分别从AB两地同时相向出发,甲车的速度是50千米/时.经过1小时,两车第一次相遇.然后两车继续行驶,各自到达B、A两地后都立即返回,第二次相遇点与第一次相遇点的距离是20千米.求:(1)AB两地的距离.(2)乙车的速度.16.(15分)观察以下的运算:若是三位数,因为=100a+10b+c=99a+9b+(a+b+c)所以,若a+b+c能被9整除,能被9整除.这个结论可以推广到任意多位数.运用以上的结论,解答以下问题:(1)N是2011位数,每位数字都是2,求N被9除,得到的余数.(2)N是n位数,每位数字都是7,n是被9除余3的数.求N被9除,得到的余数.2011年第9届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:0.15÷2.1×56=4.×,2.(5分)15+115+1115+11115+…+1111111115=1234567935.3.(5分)一个自然数除以3,得余数2,用所得的商除以4,得余数3.若用这个自然数除以6,得余数5.4.(5分)数一数图中有18个正方形.5.(5分)有一些自然数(0除外)既是平方数,又是立方数.(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个自然数的乘积).如:1=1×1=1×1×1 64=8×8=4×4×4.那么,1000以内的自然数中,这样的数有3个.6.(5分)有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是385.=308x=308×7.(5分)如图,先将4黑1白共5个棋子放在圆上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉.如此不断操作下去,圆圈上的5个棋子中最多有3个白子.8.(5分)甲乙两人分别从AB两地同时相向而行,甲的速度是乙的3倍.经过60分钟,两人相遇,然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行,那么,当甲到达B地后,再经过140分钟,乙到达A 地.9.(5分)如图,将一个棱长为1米的正方体木块分别沿长宽高三个方向锯开1,2,3次得到24个长方形木块,这24个长方形木块的表面积的和是18平方米.10.(5分)如图,小丽和小明的桶中原来各装有3千克和5千克水,依据图中的信息可知,小丽的桶最多可以装 3.2千克水,小明的桶最多可以装 6.4千克水.×,解这个方程即可解决问题.×,11.(5分)将1~2011的奇数排成一列,然后按每组1,2,3,2,1,2,3,2,1,…个数的规律分组如下(每个括号为一组):(1)(3,5)(7,9,11)(13,15)(17)(19,21)(23,25,27)(29,31)(33)…则最后一个括号内的各数之和是6027.12.(5分)当爷爷的年龄是爸爸年龄的2倍时,小明1岁;当爸爸的年龄是小明的年龄的8倍时,爷爷61岁.那么,爷爷比小明大57岁;当爷爷的年龄是小明年龄的20倍时,爸爸的年龄是31岁.岁;则爷爷﹣二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图,大小两个正方形并排放在一起,请分别在图乙和图丙中阴影标出一个几何图形(不一定是三角形,可以是任意的多边形),使它的面积等于图甲中的阴影面积.(直接作图,不写解答过程)14.(15分)甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到的鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲乙丙丁各钓到几条鱼?15.(15分)A、B两地间有一条公路,甲乙两辆车分别从AB两地同时相向出发,甲车的速度是50千米/时.经过1小时,两车第一次相遇.然后两车继续行驶,各自到达B、A两地后都立即返回,第二次相遇点与第一次相遇点的距离是20千米.求:(1)AB两地的距离.(2)乙车的速度.16.(15分)观察以下的运算:若是三位数,因为=100a+10b+c=99a+9b+(a+b+c)所以,若a+b+c能被9整除,能被9整除.这个结论可以推广到任意多位数.运用以上的结论,解答以下问题:(1)N是2011位数,每位数字都是2,求N被9除,得到的余数.(2)N是n位数,每位数字都是7,n是被9除余3的数.求N被9除,得到的余数.。

第十一届希望杯五年级2试试题及解析

第十一届希望杯五年级2试试题及解析

第十一届小学“希望杯”全国数学邀请赛五年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)慧更思教育整理一、填空题(每题5分,共60分)1. 请在横线上方填入一个数,使等式成立:()⨯+=。

540.8【答案】25【解析】5420÷=。

⨯=,200.8252. 两个自然数的和与差的积是37,则这两个自然数的积是。

【答案】342【解析】(1)37137=⨯,两个数的和是37,差是1。

(2)较大数是:()-÷=。

371219371218+÷=,较小数是:()(3)两个数的乘积是:1918342⨯=3. 180的因数共有个。

【答案】18【解析】(1)180分解质因数:22=⨯⨯180235(2)180的因数个数是:()()()+⨯+⨯+=(个)。

212111184. 数字1至9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次)组成一个九位数,例如123654789。

按此取法取得的数中,最小的是。

最大的是。

【答案】123547896;987563214【解析】(1)从最高位开始,每一位由小到大选择数字,即:123547896(2)从最高位开始,每一位由大到小选择数字,即9875632145. 若32只兔子可换4只羊,9只羊可换3头猪,8头猪可换2头牛。

那么,5头牛可换只兔子。

【答案】480【解析】(1)5头牛可以换猪:82520÷⨯=(头)。

(2)20头猪可换羊:932060÷⨯=(只)。

(3)60只羊可换兔子:32460480÷⨯=(只)6. 包含数字0的四位自然数共有个。

【答案】2439【解析】(1)四位自然数共有:91010109000⨯⨯⨯=(个);(2)不含有0的四位自然数共有:99996561⨯⨯⨯=(个);(3)包含数字0的四位自然数共有:900065612439-=(个)。

希望杯第1-10届五年级数学试题及答案(WORD版)

希望杯第1-10届五年级数学试题及答案(WORD版)

2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。

2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点。

4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。

5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。

10.六位自然数1082□□能被12整除,末两位数有种情况。

11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。

14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。

警察由此判断该车牌号可能是。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9。

中随意取出两个数字,一个作分子,一个作分母,组成一个分数,所有分数中,最大的是,循环小数有个。

【最新整理】第十四届“希望杯”五年级第二试试题及答案

【最新整理】第十四届“希望杯”五年级第二试试题及答案

小学“希望杯”全国数学邀请赛 五年级 第2试试题 一、填空题(每题5分,共60分)。

1、=÷÷÷÷÷÷)05.004.0()04.03.0()3.02(10 .2、小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是 元.3、将1.41的小数点向右移动两位,得a ,则41.1-a 的整数部分是 .4、定义:n n m m n m ⨯-⨯=⊗,则=⊗--⊗-⊗-⊗10098866442Λ .5、从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是 .6、如图1,四边形ABCD 是正方形,ABGF 和FGCD 都是长方形,点E 在AB 上,EC 交FG 于点M 。

若6=AB ,∆ECF 的面积是12,则∆BCM 的面积是 .7、在一个出发算式中,被除数是12,除数小于12,则可能出现的不同余数之和是 .8、如图2,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是 .9、正方形A 、B 、C 、D 的边长一次是15,b ,10,d (b ,d 都是自然数),若它们的面积满足D C B A S S S S ++=,则=+d b .10、根据图3所示的规律,推知=M .11、一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的去法有a 种;若每次取奇数颗,若干次后刚好去完,不同的去法有b 种,则=+b a .(每次去珍珠的颗数相同)12、若A 是质数,并且4-A ,6-A ,12-A ,18-A 也是质数,则=A .二、解答题(每题15分,共60分)。

13、张强骑车从公交的A 站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A 站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟. 若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14、如图4,水平方向和竖直方向上相邻两点之间的距离都是m ,若四边形ABCD 的面积是23,求五边形EFGHI 的面积.15、定义:[]a 表示不超过数a 的最大自然数,如[]06.0=,[]125.1=. 若[]7.039.05+=-a a ,则a 的值.16、有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?…… …… 3 7 5 9 11 81 1215 20 27 36 47 M 图3“希望杯”数学邀请赛五年级2试参考答案。

历届(9—13届)希望杯五年级答案及解析

历届(9—13届)希望杯五年级答案及解析

历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。

1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。

从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。

所以共有5 ×1 ×5 = 25种走法。

5、解:在3 ×4的长方形中有20个横平竖直的正方形。

斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。

共46个。

6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。

10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。

DE为60米,CE为40米。

SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。

11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。

五年级希望杯近四年一、二试试题及答案解析

五年级希望杯近四年一、二试试题及答案解析

第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--=2、9个13相乘,积的个位数字是________.3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______.4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个.5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米.图16、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个.7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米.8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是 .(π取3.14)9、循环小数0.0142857的小数部分的前2015位数字之和是 .10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体.11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab + cde =1079,则a +b +c +d +e =15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个.17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个.18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是 分.19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.①②③20、今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在岁.第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题一.填空题(每小题5分,共60分)1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____. 【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, 因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分).5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种).6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.7.大于0的自然数n 是3的倍数,3n 是5的倍数,则n 的最小值是_____.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得: 3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______. 【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,,()224503k k ≤位上的数;第n 次删除后剩余第2,22,23n n n ⨯⨯位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x 小时,则逆水航行()3-x 小时,根据题意列方程得:()843x x =-,解得:1x =,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1, 图中面积为1的三角形有16个; 面积为2的三角形有44+8=24⨯(个); 面积为4的三角形有44+4=20⨯(个); 面积为8的三角形4+4=8(个); 面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).cm 和5cm . 乙直角三角形的两条直角边边分别为6cm 和2cm .求图中阴影部分的面积.图2【解析】如下图所示,延长CP 与DF 垂直于F ,DF 与AH 交于E ,由于ABCD 为平行四边形,则直角三角形CFD 与甲三角形相等,直角三角形AED 与乙三角形相等,阴影部分的面积为直角三角形CFD 与直角三角形AED 面积之和减去长方形EFPH ,可得EF =5-2=3cm ,EH =8-6=2cm ,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米).16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数. 【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则苹果 1 0 1 0 1 0 香蕉 0 0 1 0 0 12人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图1cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图216. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。

第9-11届希望杯数学竞赛五年级二试试题含答案

第9-11届希望杯数学竞赛五年级二试试题含答案

第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。

2、 15+115+1115+……+1111111115=____________。

3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。

若用这个自然数除以 6,得余数____________。

4、数一数,图 1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在 1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。

7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。

8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。

9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。

这 24 块长方体木块的表面积的和是_____________平方米。

(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

希望杯数学竞赛五年级培训题 2

希望杯数学竞赛五年级培训题 2

希望杯数学竞赛五年级培训题231.已知ABCDEF×B=EFABCD,相同的字母表示相同的数字,不同的字母表示不同的数字。

那么ABCDEF的可能情况有_____种。

32.下表中,15位于第4行第2列,2021位于第a行第b列,则a+b= ____ 。

33.四个连续自然数 a,b,c,d依次是3,4,5,6的倍数(倍数大于1), 则 a+b+c+d 最小值是_____。

34.5个连续奇数的乘积是135135,则这5个数中最大的是_____。

35.一个三位自然数abc减去它各个数位上的数字,得到的差是三位数□44,那么a=_____。

36.棱长为4 c m 的密封正方体盒子中,有一个半径为1 c m 的小球,小球可以在盒子里随意移动,盒子也可以任意翻转.小球可以接触到的正方体盒子的内表面面积是_____cm²。

37.被9除所得余数是5的四位数有_____个。

38.用两个8,三个7,一个0可以组成_____个不同的六位数。

39.如图,△ABC被分成四部分,各部分的面积已在图上标出,则△BEF 的面积为_____。

40.电视台打算5天播完10集电视剧(按顺序播完),其中可以有若干天不播,共有______种播出的方法。

41.图中包含*的正方形有____个。

42.如图,长方形ACDF 中,AC=3BC, FD=3FE, 阴影部分的面积为30,△AFG 的面积为_____。

43.如图, AD//EFI/BC,AB//GH//DC. 若平行四边形 BEPH 的面积为4,△PAC的面积为3,则平行四边形 PFDG 的面积为_____。

44.下图是一个正方体的平面展开图,若该正方体相对的两个面上的数相等,则c-a+b=_____。

45.从1到100这100个自然数中至少选出____个数,才能保证其中一定有两个数的和是10的倍数。

46.如图,2根绳子系在一起,现在绳子的某处点火,如果每分钟火燃烧的长度是1,那么烧光这些绳子至少需要_______分钟。

第二届五年级希望杯第2试试题(含答案)

第二届五年级希望杯第2试试题(含答案)

第二届小学“希望杯”全国数学邀请赛五年级 第2试一、填空题1、12.53.6798.33.6÷-÷+÷=。

2、右边是三个数的加法算式,每个“□”内有一个数字,则三个加数中最大的是 。

3、在一列数2、2、4、8、2、……中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字。

按这个规律,这列数中的第2004个数是 。

4、若四位数能被15整除,则a 代表的数字是 。

5、a b c 、、都是质数,如果()()342a bb c +⨯+=,那么b = 。

6、如果()()1,1,,a a a a a a =⨯+=⨯+ 那么1= 。

7、甲、乙、丙三个网站定期更新,甲网站每隔一天更新1次;乙网站每隔两天更新1次,丙网站每隔三天更新1次。

在一个星期内,三个网站最多更新 次。

8、“六一”儿童节,几位同学一起去郊外登山。

男同学都背着红色的旅行包,女同学都背着黄色的旅行包。

其中一位男同学说,我看到红色旅行包个数是黄色旅行包个数的1.5倍。

另一位女同学却说,我看到的红色旅行包个数是黄色旅行包个数的2倍。

如果这两位同学说的都对,那么女同学的人数是 。

9、王老师昨天按时间顺序先后收到A 、B 、C 、D 、E 共5封电子邮件,如果他每次都是首先回复最新收到的一封电子邮件,那么在下列顺序:①ABECD ②BAECD ③CEDBA ④DCABE ⑤ECBAD中,王老师可能回复的邮件顺序是 (填序号)10、图1中的阴影部分是由4个小正方形组成的“L ”图形,在图中的方格网内,最多可以放置这样的“L ”图形(可以旋转、翻转,图形之间不可有重合部分)的个数是 。

11、如图2,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的 。

12、如图3,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A 、B 、C 三点周围的阴影部分是圆形的水洼。

一只小鸟飞来飞去,四处觅食,它最初停留在0号位,过了一会儿,它跃过水洼,飞到关于A 点对称的1号位;不久,它又飞到关于B 点对称的2号位;接着,它飞到关于C 点对称的3号位,再飞到关于A 点对称的4号位,……,如此继续,一直对称地飞下去。

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(五年级第2试)

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(五年级第2试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:0.15÷2.1×56=.2.(5分)15+115+1115+11115+…+1111111115=.3.(5分)一个自然数除以3,得余数2,用所得的商除以4,得余数3.若用这个自然数除以6,得余数.4.(5分)数一数图中有个正方形.5.(5分)有一些自然数(0除外)既是平方数,又是立方数.(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个自然数的乘积).如:1=1×1=1×1×164=8×8=4×4×4.那么,1000以内的自然数中,这样的数有个.6.(5分)有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是.7.(5分)如图,先将4黑1白共5个棋子放在圆上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉.如此不断操作下去,圆圈上的5个棋子中最多有个白子.8.(5分)甲乙两人分别从AB两地同时相向而行,甲的速度是乙的3倍.经过60分钟,两人相遇,然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行,那么,当甲到达B地后,再经过分钟,乙到达A地.9.(5分)如图,将一个棱长为1米的正方体木块分别沿长宽高三个方向锯开1,2,3次得到24个长方形木块,这24个长方形木块的表面积的和是平方米.10.(5分)如图,小丽和小明的桶中原来各装有3千克和5千克水,依据图中的信息可知,小丽的桶最多可以装千克水,小明的桶最多可以装千克水.11.(5分)将1~2011的奇数排成一列,然后按每组1,2,3,2,1,2,3,2,1,…个数的规律分组如下(每个括号为一组):(1)(3,5)(7,9,11)(13,15)(17)(19,21)(23,25,27)(29,31)(33)…则最后一个括号内的各数之和是.12.(5分)当爷爷的年龄是爸爸年龄的2倍时,小明1岁;当爸爸的年龄是小明的年龄的8倍时,爷爷61岁.那么,爷爷比小明大岁;当爷爷的年龄是小明年龄的20倍时,爸爸的年龄是岁.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图,大小两个正方形并排放在一起,请分别在图乙和图丙中阴影标出一个几何图形(不一定是三角形,可以是任意的多边形),使它的面积等于图甲中的阴影面积.(直接作图,不写解答过程)14.(15分)甲、乙、丙、丁4人去钓鱼,共钓到25条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到的鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲乙丙丁各钓到几条鱼?15.(15分)A、B两地间有一条公路,甲乙两辆车分别从AB两地同时相向出发,甲车的速度是50千米/时.经过1小时,两车第一次相遇.然后两车继续行驶,各自到达B、A两地后都立即返回,第二次相遇点与第一次相遇点的距离是20千米.求:(1)AB两地的距离.(2)乙车的速度.16.(15分)观察以下的运算:若是三位数,因为=100a+10b+c=99a+9b+(a+b+c)所以,若a+b+c能被9整除,能被9整除.这个结论可以推广到任意多位数.运用以上的结论,解答以下问题:(1)N是2011位数,每位数字都是2,求N被9除,得到的余数.(2)N是n位数,每位数字都是7,n是被9除余3的数.求N被9除,得到的余数.2011年第九届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:0.15÷2.1×56=4.【解答】解:0.15÷2.1×56,=0.15×56÷2.1=0.15×8×7÷2.1=1.2×,=4.故答案为:4.2.(5分)15+115+1115+11115+…+1111111115=1234567935.【解答】解:15+115+1115+11115+11115+ (1111111115)=(10+110+1110+11110+1111110+1111110+11111110+111111110+1111111110)+5×9,=1234567890+45,=1234567935.故答案为:1234567935.3.(5分)一个自然数除以3,得余数2,用所得的商除以4,得余数3.若用这个自然数除以6,得余数5.【解答】解:设这个商除以4得余数3时所得商为x,则这个商为4x+3,这个自数数为:(4x+3)×3+2=12x+11=6×(2x+1)+5,所以若用这个自然数除以6,得余数5.故答案为:5.4.(5分)数一数图中有18个正方形.【解答】解:1个小正方形的个数为:13个;含有4个小正方形的大正方形的个数为:4;含有9个小正方形的大正方形的个数为:1.故有13+4+1=18个正方形.或直接利用公式先求中间由9个小正方形组成的正方形一共有:32+22+12=14,加上四周的4个共14+4=18个.故答案为:18.5.(5分)有一些自然数(0除外)既是平方数,又是立方数.(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个自然数的乘积).如:1=1×1=1×1×164=8×8=4×4×4.那么,1000以内的自然数中,这样的数有3个.【解答】解:既是平方数,又是立方数的数一定是完全六次方数,所以:16=1,26=64,36=729,46=4096…而46=4096超过了1000,所以共有3个.故答案为:3.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

第九届新希望杯数学竞赛五年级决赛试卷和答案详解

第九届新希望杯数学竞赛五年级决赛试卷和答案详解

2013年第九届新希望杯五年级决赛考试时间60分钟,总分120分一、选择题(本大题共6小题,每题4分,共24分)题1. 在期末考试中,方方五科的总分是445分,除数学外的四科平均分是87.25分,方方的数学是___________.A 、95分B 、96分C 、97分D 、98分题2. 王伯去水果店买水果,如果买4千克梨和7千克苹果,要付款84元;如果买4.5千克梨和7千克苹果,要付款87.5元。

那么买1千克梨要付款___________.A 、3.5元B 、5元C 、6元D 、7元题3. 下表中的数是按规律排列的,其中第2行第4列是9,那么第9行第9列是___________.12345635791113581114172071115192327A 、99B 、95C 、89D 、87题4. 布袋中的球大小相同,其中黄球和红球各有9个,蓝球有4个,绿球有3个,从布袋中摸出m个球,为保证摸出的球中至少有5个球颜色相同,m 最小是___________.A 、15B 、16C 、17D 、18题5. 如图,3个长方形与1个直角三角形的面积已知,那么阴影长方形和阴影三角形的面积之和为___________.A 、56.1B 、60.4C 、68.2D 、78.6题6. 在有10个不同因数的自然数中,最小的两个数的和是___________.A 、92B 、128C 、210D 、560二、填空题(本大题共10小题,每题5分,共50分)题7. 计算:()()()()9 2.012 2.013 2.012 2.0133249 2.012 2.013324 2.012 2.013++⨯++-+++⨯+=____ 题8. 李某以17元/个的进价购买一批玩具,再以35元/个售出。

当卖了一半时,除去购进这批玩具的全部成本外还获得了200元的利润。

李某卖完这批玩具共可获得利润_______元 题9. 在循环小数0.425871∙∙中,从小数点后第m 位开始到第n 位止的所有数字之和为2013,当m 取最小值时,n =__ ____. 题10. 如图,一个圆周上有9个位置,依次编号为1~9号。

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题1.(3分)请在横线上方填入一个数,使等式成立:5×4÷_________=0.8.2.(3分)两个自然数的和与差的积是37,那么,这两个自然数的积是_________.3.(3分)180的因数共有_________个.4.(3分)数字1~9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次),组成一个九位数,例如,123654789,按此取法取得的数中,最小的是_________最大的是_________.5.(3分)若32只兔子可换4只羊,9只羊可换3头猪,6头猪可换2头牛,那么5头牛可换_________只兔子.6.(3分)包含数字0的四位自然数共有_________个.7.(3分)养殖场将一批鸡蛋装入包装盒,每盒30枚,恰好全部装完,后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒,则这批鸡蛋有_________枚.8.(3分)一只蜘蛛有8条腿,一只蜻蜓有6条腿,如果蜘蛛、蜻蜓共有腿450条,蜘蛛的只数是蜻蜓只数的3倍,那么蜘蛛有_________只.9.(3分)甲乙两桶中共装有26升水,先将乙桶中的一半倒入甲桶,再将甲桶中一半倒入乙桶,然后,从乙桶中取5升水倒入甲桶,整个过程中无水溢出.这时,甲桶中的水比乙桶中的水多2升,则最初甲桶中有水_________升.10.(3分)如图,若△ABC的面积是24,D、E、F分别是BC、AD、AB的中点,则△BEF的面积是_________.11.(3分)数一堆贝壳,若4个4个地数,则剩1个;若5个5个地数,则剩2个;若6个6个地数,则剩3个,由以上情况可推知,这堆贝壳至少有_________个.12.(3分)一个长方形形状的玻璃缸,不计玻璃的厚度,量得长54厘米,宽24厘米,高20厘米,缸内水深12厘米,将一块正方体形状的石块放入玻璃缸中,水面升高至16厘米,则石块的体积是_________立方厘米.二、解答题:每题都要写出推算过程.13.小明绕操场跑一圈5分钟,妈妈绕操场跑一圈用3分钟.(1)如果小明和妈妈从同一起点同时同向出发,几分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?(2)如果小明和妈妈从同一起点同时同向出发,几分钟后妈妈第一次追上小明?(3)如果小明和妈妈从同一起点同时反向出发,几分钟后两人第四次相遇?14.有一批货物,用28辆货车一次运走,货车有载重8吨的和载重5吨的两种,若所有货车都满载,且载重8吨的货车运送货物的总重量比载重5吨的货车运送货物的总重量多3吨.则这批货物共有多少吨?15.图是一块宅基地的平面图,其中相邻的两条线段都互相垂直.求:(1)这块宅基地的周长;(2)这块宅基地的面积.16.两个不同的三位自然数和除以7都余3,求和的和.2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题1.(3分)请在横线上方填入一个数,使等式成立:5×4÷25=0.8.2.(3分)两个自然数的和与差的积是37,那么,这两个自然数的积是342.3.(3分)180的因数共有18个.4.(3分)数字1~9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次),组成一个九位数,例如,123654789,按此取法取得的数中,最小的是123547896最大的是987563214.5.(3分)若32只兔子可换4只羊,9只羊可换3头猪,6头猪可换2头牛,那么5头牛可换360只兔子.6.(3分)包含数字0的四位自然数共有2439个.7.(3分)养殖场将一批鸡蛋装入包装盒,每盒30枚,恰好全部装完,后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒,则这批鸡蛋有4320枚.8.(3分)一只蜘蛛有8条腿,一只蜻蜓有6条腿,如果蜘蛛、蜻蜓共有腿450条,蜘蛛的只数是蜻蜓只数的3倍,那么蜘蛛有45只.9.(3分)甲乙两桶中共装有26升水,先将乙桶中的一半倒入甲桶,再将甲桶中一半倒入乙桶,然后,从乙桶中取5升水倒入甲桶,整个过程中无水溢出.这时,甲桶中的水比乙桶中的水多2升,则最初甲桶中有水10升.10.(3分)如图,若△ABC的面积是24,D、E、F分别是BC、AD、AB的中点,则△BEF的面积是3.三角形三角形=××三角形三角形三角形××=11.(3分)数一堆贝壳,若4个4个地数,则剩1个;若5个5个地数,则剩2个;若6个6个地数,则剩3个,由以上情况可推知,这堆贝壳至少有57个.12.(3分)一个长方形形状的玻璃缸,不计玻璃的厚度,量得长54厘米,宽24厘米,高20厘米,缸内水深12厘米,将一块正方体形状的石块放入玻璃缸中,水面升高至16厘米,则石块的体积是5832立方厘米.二、解答题:每题都要写出推算过程.13.小明绕操场跑一圈5分钟,妈妈绕操场跑一圈用3分钟.(1)如果小明和妈妈从同一起点同时同向出发,几分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?(2)如果小明和妈妈从同一起点同时同向出发,几分钟后妈妈第一次追上小明?(3)如果小明和妈妈从同一起点同时反向出发,几分钟后两人第四次相遇?,,妈妈每分钟比小明多跑一周的﹣(﹣,则第四相遇时两人共行了()(﹣(+14.有一批货物,用28辆货车一次运走,货车有载重8吨的和载重5吨的两种,若所有货车都满载,且载重8吨的货车运送货物的总重量比载重5吨的货车运送货物的总重量多3吨.则这批货物共有多少吨?15.图是一块宅基地的平面图,其中相邻的两条线段都互相垂直.求:(1)这块宅基地的周长;(2)这块宅基地的面积.16.两个不同的三位自然数和除以7都余3,求和的和.是数符合,然后再求它们的和即可.+=108+801=909。

希望杯五年级第7--11届2试试题

希望杯五年级第7--11届2试试题

第十一届小学“希望杯”全国数学邀请赛五年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 请在横线上方填入一个数,使等式成立:()⨯+=。

540.82. 两个自然数的和与差的积是37,则这两个自然数的积是。

3. 180的因数共有个。

4. 数字1至9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次)组成一个九位数,例如123654789。

按此取法取得的数中,最小的是。

最大的是。

5. 若32只兔子可换4只羊,9只羊可换3头猪,8头猪可换2头牛。

那么,5头牛可换只兔子。

6. 包含数字0的四位自然数共有个。

7. 养殖场将一批鸡蛋装入包装盒,每盒装30枚,恰好全部装完。

后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒。

这批鸡蛋有枚。

8. 一只蜘蛛有8条腿,一只蜻蜓有6条腿。

如果蜘蛛、蜻蜓共有450条,蜘蛛的只数是蜻蜓只数的3倍,那么蜘蛛有只。

9. 甲、乙两个桶中共装有26升水。

先将乙桶中一半倒入甲桶,再将甲桶中的一半水倒入乙桶,然后从乙桶取5升水倒入甲桶。

整个过程中无水溢出。

这时,甲桶中的水比乙桶中的水多2升。

最初甲桶中有水升。

10. 如图,若ABC∆的面积是。

∆的面积是24,D、E、F分别是BC、AD、AB的中点,则BEF11. 数一数贝壳的个数。

若4个4个的数,则剩下1个;若5个5个的数,则剩下2个;若6个6个的数,则剩下3个。

由以上情况可推知,这堆贝壳至少有个。

12. 一个长方体形状的玻璃缸,不计玻璃的厚度,量得长54厘米,宽24厘米、高20厘米,缸内水深12厘米。

将一块正方体形状的石块放入玻璃缸中,水面升高至16厘米。

石块的体积是立方厘米。

二、解答题13. 小明绕操场跑一周用5分钟,妈妈绕操场跑一周用3分钟。

(1)如果小明和妈妈从同一起点同时同向出发,多少分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?(2)如果小明和妈妈同一起点同时同向出发,多少分钟后妈妈第一次追上小明?(3)如果小明和妈妈同一起点同时反向出发,多少分钟后两人第四次相遇?14. 有一批货物,用28辆货车一次运走,货车有载量8吨和载量5吨的两种。

第二届希望杯-五年级-第2试试卷及解析

第二届希望杯-五年级-第2试试卷及解析

第二届小学“希望杯”全国数学邀请赛五年级第2试一、填空题1..2.右边是三个数的加法算式,每个“□”内有一个数字,则三个加数中最大的是__________.3.在一列数2、2、4、8、2、……中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字.按这个规律,这列数中的第2004个数是__________.4.若四位数能被15整除,则代表的数字是.5.、、都是质数,如果=342,那么=.6.如果□=,□□=□×(□+1),……,那么1□□□=.7.甲、乙、丙三个网站定期更新,甲网站每隔一天更新1次;乙网站每隔两天更新1次,丙网站每隔三天更新1次.在一个星期内,三个网站最多更新__________次. 8.“六一”儿童节,几位同学一起去郊外登山.男同学都背着红色的旅行包,女同学都背着黄色的旅行包.其中一位男同学说,我看到红色旅行包个数是黄色旅行包个数的1.5倍.另一位女同学却说,我看到的红色旅行包个数是黄色旅行包个数的2倍.如果这两位同学说的都对,那么女同学的人数是__________.9.王老师昨天按时间顺序先后收到A、B、C、D、E共5封电子邮件,如果他每次都是首先回复最新收到的一封电子邮件,那么在下列顺序①ABECD ②BAECD ③CEDBA④DCABE ⑤ECBAD中,王老师可能回复的邮件顺序是__________(填序号)10.图中的阴影部分是由4个小正方形组成的“L”图形,在图中的方格网内,最多可以放置这样的“L”图形(可以旋转、翻转,图形之间不可有重合部分)的个数是__________.11.如图,正方形每条边上的三个点图1、2、3(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的__________.12.如图3,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼.一只小鸟飞来飞去,四处觅食,它最初停留在0号位,过了一会儿,它跃过水洼,飞到关于A点对称的1号位;不久,它又飞到关于B点对称的2号位;接着,它飞到关于C点对称的3号位,再飞到关于A点对称的 4号位,……,如此继续,一直对称地飞下去.由此推断,2004号位和0号位之间的距离是_______米.13.图中的(A)、(B)、(C)是三块形状不同的铁皮,将每块铁皮沿虚线弯折后焊接成一个无盖的长方体铁桶.其中,装水最多的铁桶是由________铁皮是由铁皮焊接的.14.某年4月所有星期六的日期数之和是54,这年4月的第一个星期六的日期数是_______.15.盒子里放有编号为1至10的十个球,小明先后三次从盒中共取出九个球.如果从第二次开始,每次取出的球的编号之和都是前一次的2倍,那么未取出的球的编号是_______.二、解答题16.暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?17.A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?18.如图,用若干个体积相同的小正方体堆积成一个大正方体,要使大正方体的对角线(正方体八个顶点中距离最远的两个顶点的连线)穿过的小正方体都是黑色的,其余小正方体都是白色的,并保证大正方体每条边上有偶数个小正方体.当堆积完成后,白色正方体的体积占总体积的93.75%,那么一共用了多少个黑色的小正方体?19.图中每个小正方形的边长都是4厘米,四条实线围成的是一个梯形.有一盒长度都是4厘米的火柴,分别取出其中的4根和5根,如图(A)和图(B),都可以将梯形分成面积相等的两部分.现在请你分别取出6、7、8、9、10根火柴,在(C)、(D)、(E)、(F)、(G)图中沿虚线放置(火柴之间不能重叠),将梯形分成面积相等的两部分(用实线表示这些火柴).252参考答案5;819;6;5;7;42;9;6;3;6;3/8;0;B;3;6;850;800;32;答案略,解法不惟一。

2013年第十一届希望杯五年级2试试题及解析

2013年第十一届希望杯五年级2试试题及解析

第十一届小学“希望杯”全国数学邀请赛五年级 第2试试题2013年4月14日 上午9:00-11:00一、填空题(每题5分,共60分)慧更思教育整理一、填空题(每题5分,共60分)1. 请在横线上方填入一个数,使等式成立:()540.8⨯+=。

【答案】25【解析】5420⨯=,200.825÷=。

2. 两个自然数的和与差的积是37,则这两个自然数的积是 。

【答案】342【解析】(1)37137=⨯,两个数的和是37,差是1。

(2)较大数是:()371219+÷=,较小数是:()371218-÷=。

(3)两个数的乘积是:1918342⨯=3. 180的因数共有 个。

【答案】18【解析】(1)180分解质因数:22180235=⨯⨯(2)180的因数个数是:()()()21211118+⨯+⨯+=(个)。

4. 数字1至9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次)组成一个九位数,例如123654789。

按此取法取得的数中,最小的是 。

最大的是 。

【答案】123547896;987563214【解析】(1)从最高位开始,每一位由小到大选择数字,即:123547896(2)从最高位开始,每一位由大到小选择数字,即9875632145. 若32只兔子可换4只羊,9只羊可换3头猪,8头猪可换2头牛。

那么,5头牛可换只兔子。

【答案】480【解析】(1)5头牛可以换猪:82520÷⨯=(头)。

(2)20头猪可换羊:932060÷⨯=(只)。

(3)60只羊可换兔子:32460480÷⨯=(只)6. 包含数字0的四位自然数共有个。

【答案】2439【解析】(1)四位自然数共有:91010109000⨯⨯⨯=(个);(2)不含有0的四位自然数共有:99996561⨯⨯⨯=(个);(3)包含数字0的四位自然数共有:900065612439-=(个)。

希望杯第1-9届五年级数学试题及答案(WORD版)

希望杯第1-9届五年级数学试题及答案(WORD版)

第一届小学“希望杯”全国数学邀请赛五年级第2试一、填空题1.计算:=________ 。

2.一个四位数,给它加上小数点后比原数小2003.4,这个四位数是________ 。

3.六位数2003□□能被99整除,它的最后两位数是__________ 。

4.如图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是________平方厘米。

5.用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付_____种不同的款额。

6.桌面上4枚硬币向上的一面都是“数字”,另一面都是“国徽”,如果每次翻转3枚硬币,至少_____次可使向上的一面都是“国徽”。

7.向电脑输入汉字,每个页面最多可输入1677个五号字。

现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。

每次复制和粘贴为1次操作,要使整修页面都排满五号字,至少需要_____次操作。

8.图2中的每个小方格都是面积为1的正方形,面积为2的矩形有_____个。

9.由于潮汐的长期作用,月球自转周期与绕地球公转周期恰好相同,这使得月球总是以相同的一面对着我们。

在地球上最多能看到50%的月球面积,从一张月球照片中最多能看到_____50%的月球面积。

(填“大于”、“小于”或“等于”)10.三个武术队进行擂台赛,每队派6名选手,先由两队各出1名选手上擂台比武,负者下台,不再上台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的又一位选手上台……继续下去。

当有两个队的选手全部被击败时,余下的队即获胜。

这时最少要进行_____场比武。

11.两种饮水器若干个,一种容量12升水,另一种容量15升水。

153升水恰好装满这些饮水器,其中15升容量的_____个。

12.跳水比赛中,由10位评委评分,规定:最后得分是去掉1个最高分和1个最低分后的平均数。

10位评委给甲、乙两位选手打出的平均数是9.75和9.76,其中最高分和最低分的平均数分别昌9.83和9.84,那么最后得分_____高。

11-15年五年级数学希望杯第二试试题(复赛)

11-15年五年级数学希望杯第二试试题(复赛)

第九届小学“希望杯”全国数学邀请赛五年级第2试2011 年4 月10 日上午9:00至11:00 得分_____________一、填空题(每小题5 分,共60 分)1、计算:0.15÷2.1×56=___________。

2、15+115+1115+……+1111111115=____________。

3、一个自然数除以3,得余数2,用所得的商除以4,得余数3。

若用这个自然数除以6,得余数____________。

4、数一数,图1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数,又是立方数(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是___________。

7、如图2,先将4 黑1 白共5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有____________个白子。

8、甲、乙两人分别从A、B 两地同时相向而行,甲的速度是乙的速度的3 倍,经过60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达B地后,再经过___________分钟,乙到达A 地。

9、如图3,将一个棱长为1 米的正方体木块分别沿长、宽、高三个方向锯开1,2,3 次,得到24 个长方体木块。

这24 块长方体木块的表面积的和是_____________平方米。

10.如图4,小丽和小明的桶中原来各装有3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。

2、 15+115+1115+……+1111111115=____________。

3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。

若用这个自然数除以 6,得余数____________。

4、数一数,图 1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在 1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。

7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。

8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。

9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。

这 24 块长方体木块的表面积的和是_____________平方米。

(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

11.将 1~2011 的奇数排成一列,然后按每组 1,2,3,2,1,2,3,2,1,……个数的规律分组如下(每个括号为一组):(1),(3,5),(7,9,11),(13,15),(17),(19,21),(23,25,27),(29,31),(33)……则最后一个括号内的各数之和是_____。

12.当爷爷的年龄是爸爸年龄的 2倍时,小明 1 岁;当爸爸的年龄是小明年龄的 8倍时,爷爷 61 岁。

那么,爷爷比小明大____________岁;当爷爷的年龄是小明年龄的 20 倍时,爸爸的年龄是___________岁。

(57,31)二、解答题(每小题 15 分,共 60 )每题都要写出推算过程。

13.如图,大、小两个正方形并排放在一起,请分别在图乙和图丙中用阴影标出一个几何图形(不一定是三角形,可以是任意的多边形),使它的面积等于图甲中的阴影面积。

(直接作图,不用写解答过程。

)14.甲、乙、丙、丁 4 人去钓鱼,共钓到 25 条鱼,按数量从多到少的排名是甲、乙、丙、丁。

又知甲钓到的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和。

那么,甲、乙、丙、丁各钓到几条鱼?15.A、B 两地间有一条公路,甲、乙两辆车分别从 A、B 两地同时相向出发,甲车的速度是 60 千米/时。

经过 1 小时,两车第一次相遇。

然后两车继续行驶,各自到达 B、A 两地后都立即返回,第二次相遇点与第一次相遇点的距离是 20 千米。

求:(1)A、B两地的距离;(2)乙车的速度。

16.观察以下的运算:若abc是三位数,因为abc= 100a+10b +c=99a+9b+(a+b+c),所以,若abc能被 9整除,则abc能被 9 整除,这个结论可以推广到任意多位数。

运用以上的结论,解答以下问题:(1)N是2011 位数,每位数字都是 2,求 N被 9除,得到的余数。

(2)N是n位数,每位数字都是 7,n 是被9 除余 3 的数。

求 N 被9 除,得到的余数。

第十届希望杯复赛五年级组二试一、填空题:(每题5分,共60分)1. 计算:3.6×(2.45-1.9)÷0.4=_______。

2. 甲、乙两数的和是231,已知甲数的末位数字是0,如果把甲数末位的0去掉,正好等于一束,那么,甲数是_____,乙数是_______。

3. 如图1,当n=1时,图中有1个圆;当n=2时,图中有7个圆;当n=3时,图中有19个圆;······。

按此规律,当n=5时,图中有_______个圆。

4. 54个小朋友排队做游戏,每轮游戏有12个小朋友参加,游戏结束后,这12个小朋友按原来的先后顺序排到队尾。

如果游戏开始时,小亮站在队首,那么,当小亮再次站在队首时,已经做了______轮游戏。

5. 有一列数,第1个是1,从第2个数起,每个数比它前面相邻的数大3,最后一个数是100,将这些数相乘,则在计算结果的末尾中有_______个连续的零。

6. 公元纪年法中,每四年含有一个闰年,每个平年有365天,每个闰年有366天,2012年是闰年,元旦是星期日,那么,下一个元旦也是星期日的年份是_______年。

7. 在平面上有7个点,其中任意三个点都不在同一条直线上,如果连接这7个点中的每两个点,最多可以得到_______条线段;以这些线段为边,最多能构成______个三角形。

8. 如图2,在一个圆周上放了一枚黑色的围棋子和2012枚白色的围棋子,若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩______枚白子。

9. 正方体木块被砍掉一个角(这里的角,指三条线相交处),剩余部分最多有_____个角,最少有______个角。

10. 如图3,两个形状和大小都相同的直角△ABC与△EDF的面积都是10cm²,每个直角三角形的直角顶点都恰好落在另一个直角三角形的斜边上,这两个直角三角形的重叠部分是一个长方形,那么四边形ABEF的面积是_______cm².11. 某次数学竞赛有52人参加,共考5道题,每道题做错的人数统计如下:,如果每人都至少做对1道题,只做对1道题的有7人,5道题都做对的有6人,只做对2道题和只做对3道题的人数相同,那么做对4道题的有_______人。

12. 如图4,在长、宽、高分别为10cm、10cm、6cm的长方体容器中盛有深4cm的水,若向容器中放入一个棱长为5cm的正方体铁块,则水深变为______。

二、解答题:(每题15分,共60分)13. 将图5分割成两部分,使这两部分恰好能拼成一个正方形。

(1)若图中每个小正方形的边长是1,则拼成的正方形的边长是多少?(2)用粗线表示分割的线路。

14. 甲、乙、丙三辆车同时从A地去B地,甲车的速度是60千米/时,乙车的速度是48千米/时。

于此同时,一辆卡车从B地去A地,卡车在出发6小时、7小时、8小时的时刻分别与甲、乙、丙三车相遇。

求:(1)甲车与卡车相遇时,甲车与乙车的距离;(2)卡车的速度;(3)丙车的速度。

15. 某快递公司从A地发往B地的快件的运费收费标准是:快件重量如果不超过10千克,每千克收费8元;如果超过10千克,超出部分按每千克5元收费。

已知甲、乙二人向该公司各投递一个快件,甲比乙多交了34元,求甲、乙的快件的重量。

(甲、乙的快件的重量都是整数千克)16. 已知各代表一个自然数。

观察下面三个算式呈现的规律:求的值。

第十届希望杯五年级第二试答案解析1. 答案:4.95解析:原式=3.6×0.55÷0.4=3.6÷0.4×0.55=9×0.55=4.952. 答案:210,21解析:由题意有甲数量是乙数量的10倍,所以231÷11=21就是乙数,则甲数为210.3. 答案:61解析:从第一个图开始,后一个图都是在前一个图的基础上增加6的(n-1)倍个圆,所以第5个图共有圆1+6+12+18+24=61个4. 答案:9解析:54和12的最小公倍数为108,也就是说共移动了108人次,已经做了108÷12=9轮游戏。

如图:5. 答案:9解析:这一列数为1,4,7,···,100,要求他们相乘的积中0的个数,找到因数2和5的个数即可,又因为因数2的个数远多于5的个数,所以找到5的个数即为积为0的个数,5的倍数有10,25,40,55,70,85,100共9个5,所以有9个0.6. 答案:2017解析:因为366÷7=52···2,365÷7=52···1,所以从2013年开始,元旦一次是星期二、三、四、五、日,所以2017年的元旦为星期日。

7. 答案:21,35解析:每两个点确定一条线段,共有2C=7×6÷2=21条线段;7每三个点确定一个三角形,共有3C=7×6×5÷3÷2=35个三角形。

78. 答案:503解析:从第1个白子开始编号,则黑子为2013号,第一圈取走的一次为2、4、6、···、2012号,剩下的是奇数号1、3、5、···、2012,第2圈取走的依次为1、5、9、···、2013号,这样的4的倍数余1的号,剩下的是3、7、11、···、2011号这样的4的倍数余3的号共有(2011-3)÷4+1=503个。

9. 答案:10,7解析:横截面如下图(1),剩余部分最多有10个角;横截面如下图(2),剩余部分最多有7个角。

10. 答案:20解析:由题意得四边形ABEF为平行四边形,它的面积就是两倍的已知直角三角形的面积,为20cm²。

11. 答案:31解析:由题意知所有人共做错79人次,只做对2道,3道和4道题的共有39人,只做对1道题的7人共错4×7=28人次,则剩下的39人共错了51人次。

如果都是错2道和3道的,并且各占一半,则错39÷2×5=97.5人次,每有一名错1题的,就少错1.5人次,所以共有(97.5-51)÷1.5=31人错1题(对4题)。

12. 答案:5.25解析:本题要先考虑容器中的水是否溢出和容器中的水是否没过方块。

容器中空余部分的体积是10×10×2=200cm3,大于正方体铁块的体积53=125cm3,可见容器中的水并没有溢出来;如果容器中的水没有没过方块,则容器中水的高度为(10×10×4)÷(10×10-5×5)≈5.3cm>5cm,与题意矛盾,所以容器中的水没过了方块,则水升高125÷100=1.25cm,则水深度变为5.25cm。

相关文档
最新文档