2019-2020年高一期中考试试题(数学)

合集下载

2019-2020年高一期中考试数学试卷含答案

2019-2020年高一期中考试数学试卷含答案

2019-2020年高一期中考试数学试卷含答案本试卷满分150分考试时间120分钟共60分,有一项是符合题目要求的。

1 •集合,集合,则等于(A. B. C. D.A. B. C. D.6•函数的单调递增区间为()A. B. C. D.7•定义运算若函数,则的值域是()A. B. C. D.&若函数f (x) = ax' ::;,blog2(x • ; x2• 1)■■■2在上有最小值-5,(为常数),则函数在上()A.有最大值 5B.有最小值 5C.有最大值 3D.有最大值99•已知是定义在上的偶函数,当时,,则不等式的解集为()A. B. C. D.10.函数f(x)=log2、x log2(2x)的最小值为()A. 0B.C.D.11. 已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B. C. D.12. 设是定义在上的函数,对任意正实数,,且/(x>l-|x-2|, 1<^<3,则使得的最小实数为()2.已知幕函数的图象过点, 则的值为(D.C. 2A. B.-5.函数的图象向右平移个单位长度, )所得图象与曲线关于轴对称,则(王治洪在每小题给出的四个选项中,只、选择题:本大题共12小题,每小题A. 172B. 415C. 557D. 89二、填空题:本大题共4小题,每小题5分,共20分,把答案填在横线上13. 已知”若,则.14 ______________ .若函数满足,则. 15.的定义域是,则函数的定义域是."(3a —2)x +6a —1,x16 .已知函数f(x)=! 在上单调递减,则实数的取值范围0x,xQ是 ____ .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分10分)计算下列各式:f 2 1、f 1 1 >/ 1 5 >(1)2a3b2-6a2b3-3a®b6(a > 0,b > 0 )< 丿< 丿< 丿(2) 2(lgU2f +lg +J(lg — lg2 + 118. (本小题满分12分)已知集合,集合.-(1)求;(2)若集合,且,求实数的取值范围19. (本小题满分12分)已知幕函数f (x)二(-2m2m ■ 2)x m 1为偶函数.(1)求的解析式;(2)若函数在区间(2, 3) 上为单调函数,求实数的取值范围.20. (本小题满分12分)]4 -x2|, x 兰0已知函数f(x)二22二0 ::: x _2 ,log 2 X , x 2(1)画出函数的图象;(2 )求的值;(3)求的最小值.21.(本小题满分12分)二次函数满足,且(1)求的解析式;(2)在区间[-1 , 1]上,的图象恒在的图象上方,试确定实数的范围22 (本小题满分12分)已知定义在上的函数有当时且对任意的有(1)求的值(2)证明在上为增函数(3 )若求的取值范围XX第一学期高一期中考试数学试题答案一•选择题:BABC DACD DCDB二. 填空题:13. 0,-1, 14. 15. 16.三. -计算题:17. (1) 4a (2) 1.18. 解:(1), ,•••,(2)时,2a _ a 1 I 3时,2a •-3 a :::-1 综上:或2 a 1 ::019. (1)由,得可知符合题意,(2)=,对称轴为,则,即20. 解:(1)作出函数图象如右图所示,(2)T f ( 3) =log 23,• 0v f (3)v 2,• f (f (3)) =f (log 23)=.…(3)由函数图象可知f (x)在[1 , 2]上是减函数,在(2, +8)上是增函数,:a 2+1> 1,•••当a2+1=2 时,21. 解:(1 )设f (x)=ax2+bx+c,由f (0) =1 _4 _2得c=1,故f (x) =ax+bx+1 .2 2…因为 f (x+1)- f (x) =2x,所以 a (x+1) +b (x+1) +1 -( ax +bx+1) =2x.即2ax+a+b=2x,所以,•,所以 f (x) =x2- x+1(2)由题意得x2- x+1> 2x+m在[-1, 1]上恒成立.J _____ I_____ X ____ I__________ I __ I __ I__ L-4 -3 -2 -1 O 12 3 4-1 -▼3 ■2即x - 3x+1 - m> 0在[-1, 1]上恒成立.设g (x) =x2- 3x+1 - m其图象的对称轴为直线,所以g (x)在[-1, 1]上递减.故只需g (1 )> 0,即12 - 3X 1+1 - m> 0,解得m<- 1.22.解:(1)令,则f(0) = f(0) f (0) = f2(0),又所以(2)设任意的且,则x^ x10 = f(x2-xj .1f (x )f(X2)= f[(X2 7)幻二f (X2 -xjf (xj 2f (X2 - 为)仁f(xj ::: f(X2)f(xj因此在上为增函数(3 )由f(x) f(2x-x2) 1 二f[x (2x — x2)] 仁f (3x-x2) f (0)在上为增函数23x -x 0 二x(x -3) : 0 二0 ::x 3故的取值范围是2019-2020年高一期中考试生物试卷含答案本试卷满分100分考试时间90分钟徐志宏-、选择题(共60分,每小题2分)1•在下列结构中,其成分不含磷脂分子的一组细胞器是①线粒体②核糖体③叶绿体④细胞核⑤内质网⑥中心体⑦高尔基体A. ①③B.④⑤C.⑤⑦D.②⑥2. 下图是用显微镜观察植物细胞实验中的两个视野,要把视野中的物像从图甲转为图乙,下列操作步骤正确的排序是①转动细准焦螺旋②转动粗准焦螺旋③移动装片④调节光圈(或转换反光镜)⑤转动转换器A. ③一⑤一④一①B. ④一③一②一⑤C. ③—①—④—⑤D. ③—⑤—②—①3. 在洋葱根细胞中,含有双层膜结构的细胞器是A .叶绿体B .叶绿体、线粒体C .线粒体D .线粒体、细胞核4. 细胞是最基本的生命系统,生命系统的各个层次既层层相依,又有各自的组成、结构和功能。

2019年人大附中高一数学期中考试

2019年人大附中高一数学期中考试



x 1 2


x 2
xR Nhomakorabea求f
x 的值域;
(3)若存在 m R 且 m Z ,使得 f m f m ,则称函数 f x 是 函数,若函数 f x x a 是
x 函数,求 a 的取值范围.
5
D.存在 x0 R ,使得 x02 0
5.己知函数
f
x 的图象是两条线段(如图,不含端点),则
f

f
1 3
=(

A. 1
1
B.
3
3
C. 2
2
D.
3
3
1
6.已知 a, b 是实数,则“ a b 0 且 c d 0 ”是“ a b ”的( ) dc
C. 3,3
D. (0, 5]
五、填空题(本大题共 3 小题,每小题 6 分,共 18 分.请把结果填在答题纸上的相应位置.)
21.已知函数 f x 1 x x 3 ,则函数 f x 的最大值为___ __,函数 f x 的最小值点为________.
22.关于 x 的方程 g x t(t R) 的实根个数记 f t .
A. 0,1
B.1, 0,1
2.下列各组函数是同一函数的是( )
A. y x 与 y 1 x
C.0,1, 2
D.1, 0,1, 2
B. y x 12 与 y x 1
C. y x2 与 y x x
D.
y

x3 x2
x 1

y

x
3.下列函数中,在区间 0, 2 是增函数的是( )

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析

2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。

2019-2020年高一下学期期中考试数学试题 含答案(VI)

2019-2020年高一下学期期中考试数学试题 含答案(VI)

2019-2020年高一下学期期中考试数学试题含答案(VI)一、选择题(每题4分,共48分)1.cos420°+sin330°等于()A.1 B.﹣1 C.D.02.一个扇形的面积为,弧长为,则这个扇形中心角为()A B C D3.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数是()A.15,16,19B.15,17,18 C.14,17,19 D.14,16,204.与终边相同的角可表示为()A.B.C.D.5.阅读右边的程序框图,运行相应的程序,则输出s的值为( )A.-1B.0 C.1 D.36.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A、B、C、D、7.已知角ϕ的终边经过点P(﹣4,3),函数f(x)=sin(ωx+)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.C.﹣D.8.已知函数错误!未找到引用源。

,下面结论错误..的是( )A. 函数错误!未找到引用源。

的最小正周期为2错误!未找到引用源。

B. 函数错误!未找到引用源。

在区间[0,错误!未找到引用源。

]上是增函数C.函数错误!未找到引用源。

的图象关于直线错误!未找到引用源。

=0对称D. 函数错误!未找到引用源。

是奇函数9.已知α∈(0,π),sinα+cosα=﹣,则tanα等于()A.B.﹣C.D.﹣10.如果函数的图象关于点中心对称,那么的最小值为()A.B.C.D.11.函数的图象大致是()12.定义在R 上的函数f (x )既是偶函数又是周期函数,若的最小正周期是π,且当x ∈(0,)时,f (x )=sinx ,则=( ) A. B. C. D.二、填空题(每题5分,共20分)13.已知角的终边经过点,且,则14.函数f (x ) =sin ⎝⎛⎭⎫-2x +3π4的单调增区间为 对称轴为 15. 函数的定义域为 .16.已知函数,若当y 取最大值时,;当y 取最小值时,,且,则 . 三、解答题(共6题,52+20分) 17.(本小题满分10分) 已知,计算(1);(2)18. (本题满分10分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(注:此问不要求列出基本事件,但要求说出基本事件有多少个,符合题意的事件有多少个,再计算结果)(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程已知回归直线方程是:,其中1221ni ii nii x y nxyb xnx==-=-∑∑,;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠? 19.(本小题满分10分)从某学校 的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165)……第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部份,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为, 事件,事件,求概率.(注:此问概率问题要求列出基本事件) 20、(本题满分10分)⑴已知角终边经过点P (-4,3),求)29sin()211cos()sin()2cos(απαπαπαπ+---+的值? (2)已知函数,(b >0)在的最大值为,最小值为-,求2a+b 的值?21. (满分12分)已知,函数,2)62sin(2)(b a x a x f +++-=π当时,。

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .1808.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .49.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40二、填空题:本题共4小题,每小题5分,共20分.12.函数1()1f x x =+-的定义域为 . 13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= . 14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 .15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围.20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数.2019-2020学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}【解答】解:因为全集{1U =-,0,1,2},{1A =-,1}, 所以:{0U A =ð,2}, 故选:A .2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…【解答】解:命题“(0,)x ∃∈+∞,13x x+…”的否定是:否定限定量词和结论,故为:(0,)x ∀∈+∞,13x x+<, 故选:C .3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:由|3|1x -<,131x ∴-<-<,解得24x <<. 则由“24x <<” ⇒ “2x >”, 由“2x >”推不出“24x <<”,则“|3|1x -<”是“2x >”的充分不必要条件; 故选:A .4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<【解答】解:()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,()f x ∴在(,0)-∞上单调递减,距对称轴越远,函数值越大, (1)(3)()f f f π-<-<,则c a b <<, 故选:D .5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米【解答】解:2() 4.914.717h t t t =-++, ∴烟花冲出后在爆裂的最佳时刻为14.71.52( 4.9)t =-=⨯-,此时2(1.5) 4.9 1.514.7 1.51728h =-⨯+⨯+≈, 故选:B .6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)【解答】解:对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立, ①当240m -=且20m +≠,即2m =时,104>对x R ∈恒成立, 2m ∴=满足题意;②当2m ≠且2m ≠-时,则有2240(2)4(2)0m m m ⎧->⎨=---<⎩,解得26m <<. 综合①②,可得26m <…,故实数m 的取值范围为[2,6), 故选:D .7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .180【解答】解:本题的大意为:《毛诗》、《春秋》和《周易》共94本,3个人读《毛诗》一册,4个人读《春秋一册》,5个人读《周易》一册,问由多少个学生? 11194()345÷++479460=÷120=(人)故选:A .8.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .4【解答】解:已知a ,b 为正实数,①11a b a b<⇒>⇒>①正确; ②1414414()()14529b b a a b a b a b a a a b+=++=++++=…,所以②不正确; ③1122a a a a +=…,同理12b b +…,11()()4a b a b∴++…,所以③正确;④11111)11111y a a a a a =+=++--=+++…,当且仅当111a a +=+,即0a =时取等号,而0a >,所以1y >,不能取等号,所以 ④不正确. 故选:B .9.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]【解答】解:由奇函数()f x 在[0,)+∞是减函数,可知()f x 在(,0)-∞是减函数,从而可得,()f x 在R 上单调递减, 由(2)1f -=,可知f (2)1=-, f (2)1(1)1(2)f x f =--=-剟,212x ∴--剟,解可得,13x -剟,即解集为[1-,3] 故选:C .10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( ) A .(3,1)--B.(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)【解答】解:设函数22()5(9)2f x x a x a a =-++--,方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内, ∴函数22()5(9)2f x x a x a a =-++--的两个零点分别在区间(0,1)和(1,2)内,∴(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即2222026030a a a a a a ⎧-->⎪--<⎨⎪->⎩,解得:11a -<<-或31x <<+, 故选:B .11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40【解答】解:函数()f x 满足(2)(2)6f x f x -++=的对称中心为(2,3), 函数315()322x g x x x -==+--也关于(2,3)中心对称, 则若交点为1(x ,1)y 时,1(4x -,16)y -也为交点,若交点为2(x ,2)y 时,2(4x -,26)y -也为交点,⋯,所以128128112288()()()x x x y y y x y x y x y ++⋯++++⋯+=++++⋯++1111222288881[()(46)()(46)()(46)]402x y x y x y x y x y x y =++-+-+++-+-+⋯+++-+-=.故选:D .二、填空题:本题共4小题,每小题5分,共20分. 12.函数1()1f x x =+-的定义域为 [2-,1)(1⋃,)+∞ . 【解答】解:由题意得: 2010x x +⎧⎨-≠⎩…, 解得:2x -…且1x ≠,故函数的定义域是[2-,1)(1⋃,)+∞, 故答案为:[2-,1)(1⋃,)+∞.13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= 2 . 【解答】解:因为()f x 是定义在R 上的奇函数,且当0x …时,2()f x x x =-, 所以(2)f f -=-(2)(24)2=--=, 故答案为:2.14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 {|6x x <或1}2x > . 【解答】解:不等式20ax bx c ++>的解集为{|26}x x <<, 所以方程20ax bx c ++=的解为2和6,且0a <; 由根与系数的关系得, 26260b a c a a ⎧+=-⎪⎪⎪⨯=⎨⎪<⎪⎪⎩, 解得8b a =-,12c a =,且0a <;所以不等式20cx bx a ++<化为212810x x -+>, 解得16x <或12x >,所以所求不等式的解集为1{|6x x <或1}2x >. 故选:1{|6x x <或1}2x >. 15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 11[,]22- .【解答】解:(,)B m n 在函数212y x =-的图象上,∴212n m =-,[1x m ∴∀∈-,1]m +,都有2211[1,1]22y m m ∈---+,①10m +…,即1m -…时,212y x =-在[1m -,1]m +上单调递增,∴2211[(1),(1)]22y m m ∈---+,∴22221111[(1),(1)][1,1]2222m m m m ---+⊆---+,∴222211(1)12211(1)122m m m m ⎧----⎪⎪⎨⎪-+-+⎪⎩……,解得12m -…,又1m -…,∴这种情况不合题意; ②1010m m +>⎧⎨-<⎩,即11m -<<时,由[1x m ∈-,1]m +可得21[(1),0]2y m ∈--或21[(1),0]2y m ∈-+,∴222111[(1),0][1,1]222m m m --⊆---+且222111[(1),0][1,1]222m m m -+⊆---+,∴2222211(1)12211(1)1221102m m m m m ⎧----⎪⎪⎪-+--⎨⎪⎪-+⎪⎩………,解得1122m-剟, ③10m -…,即1m …时,212y x =-在[1m -,1]m +上单调递减,∴2211[(1),(1)]22y m m ∈-+--,∴22221111[(1),(1)][1,1]2222m m m m -+--⊆---+,∴222211(1)12211(1)122m m m m ⎧-+--⎪⎪⎨⎪---+⎪⎩……,解得12m …,又1m …,∴这种情况不合题意,综上得,m 的取值范围是11[,]22-.故答案为:11[,]22-.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.【解答】解:(1)由已知可得{|25}AB x x =-剟,{|36}AB x x =-剟.(2)①若C =∅,则121m m +>-,2m ∴<; ②若C ≠∅,则12112215m m m m +-⎧⎪+-⎨⎪-⎩………,解得23m 剟, 综上可得3m …. 17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数. 【解答】解:(1)由题意211x ax --+…, 变形2311011x a x a x x --++=++…, 这等价于(31)(1)0x a x -++…且10x +≠, 解得1x <-或13a x -…,所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取1x ,2[0x ∈,)+∞,且12x x <,则210x x ->, 那么212121*********()()()11(1)(1)x x x x f x f x x x x x ----=-=++++, 210x x ->,12(1)(1)0x x ++>, 21()()0f x f x ∴->,∴函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.【解答】解:(1)由题意知()F x 定义域为R ,关于原点对称, 又()(||)(||)()F x f x f x F x -=-==, ()F x ∴在R 上是偶函数.函数()F x 的大致图象如下图:观察图象可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时, 即()F x 的图象与直线y t =图象有两个交点, 观察函数图象可得3t >或1t =-.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围. 【解答】解:(1)不等式2(1)0x a x a +--<等价于()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -; 当1a =-时,不等式的解集为∅; 当1a >-时,不等式的解集为(1,)a -. (2)22(1)(1)x a x a a x x x +--=-+++, 设g (a )2(1)a x x x =-+++,[1a ∈-,1],要使g (a )0…在[1a ∈-,1]上恒成立, 只需(1)0(1)0g g -⎧⎨⎩……,即22210,10,x x x ⎧++⎨-⎩……解得1x …或1x -…, 所以x 的取值范围为{|1x x -…或1}x ….20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本【解答】解:(1)由题意2(10)1010104000R a =⨯+=,所以300a =, 当040x <<时,22()900(10300)26010600260W x x x x x x =-+-=-+-;当40x …时,22901945010000919010000()900260x x x x W x x x x-+-+-=--=,所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-⎪⎩….(2)当040x <<,2()10(30)8740W x x =--+ 当30x =时,()8740max W x =⋯当40x …,29190100001000010000()9190()9190x x W x x x x x x -+-==--+=-++, 因为0x >,所以10000200x x +=…,当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x -+=…, 所以()8990max W x =万元, 因为87408990<,所以2020年产量为100(千台)时,企业所获利润最大,最大利润是8990万元. 21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数. 【解答】解:(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12bx a=-=-①;(0)3f c ==-②; 设()0f x =的两个根为1x ,2x ,则12b x x a+=-,12c x x a=,12||4x x -===;③由①②③解得1a =,2b =,3c =-,2()23f x x x ∴=+-.(2)2()()(2)2I g x x k x =+++,其对称轴22k x +=-.由题意知:212k +--…或222k +-…, 0k ∴…或6k -….()II ①当0k …时,对称轴212k x +=--…,()g x 在[1-,2]上单调递增,()(1)1h k g k =-=-+, ②当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()()24k k k h k g +--+=-=, ③当6k -…时,对称轴222k x +=-…,()g x 在[1-,2]单调递减,()h k g =(2)210k =+,∴21,0,44(),604210,6k k k k h k k k k -+⎧⎪--+⎪=-<<⎨⎪+-⎪⎩……, 令244m t =--…,即()(4)h m m λ=-…,画出()h m 简图,)i 当1λ=时,()1h m =,4m =-或0,244t ∴-=-时,解得0t =,240t -=时,解得2t =±,有3个零点.)ii 当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =有2个零点. )iii 当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且2m ,3(4m ∈-,2)(2--⋃,0),240m +>,340m +>,224t m ∴-=时,解得t =,234t m -=时,解得t =有4个不同的零点.)iv 当2λ=时,()2h m =,224m t =-=-,∴t =2个零点.)v 当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.。

2019-2020年高一下学期期中学业水平测试数学试题 含答案

2019-2020年高一下学期期中学业水平测试数学试题 含答案

2019-2020年高一下学期期中学业水平测试数学试题 含答案一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求,请将正确的答案填在答题卡上。

) 1.2400化成弧度制是( ) A B C D2.集合{1,2,3}的真子集共有( )A 5个B 6个C 7个3. 函数在区间(,)内的图象是( )4.为了得到函数y =sin(3x +)的图像,只需把函数y =sin3x 的图像 ( ) A. 向左平移 B. 向左平移 C. 向右平移 D. 向右平移5.若角满足,则的取值范围是 ( )6. 设sin α=,cos α=,那么下列的点在角α的终边上的是( )A. (-3,4)B. (-4,3)C. (4,-3)D. (3,-4) 7. 下列函数中,以为π最小正周期的偶函数,且在(0,)内递增的是( ) A y=sin|x| B y=|sinx| C y=|cosx| D y=cos|x| 8.已知,则( )A .2B .1C .4D .9.若集合则a 的取值范围是( ) A . B . C . D .10.以下四个命题中,正确的有几个( )① 直线a ,b 与平面a 所成角相等,则a ∥b ;② 两直线a ∥b ,直线a ∥平面a ,则必有b ∥平面a ;③ 一直线与平面的一斜线在平面a 内的射影垂直,则该直线必与斜线垂直;④ 两点A ,B 与平面a 的距离相等,则直线o32ππ2πy A2-︒Bo32ππ2πy2-︒2-o 32ππ2πyC -︒o 32ππ2πyD2--︒AB∥平面a A0个 B1个 C2个 D3个二、填空题:(本大题共4小题,每小题5分,满分20分.请将正确的答案填在答题卡上。

)11函数的单调减区间是12.在半径为2的圆中,圆心角为所对的弧长是。

13.已知函数内有零点,内有零点,若m为整数,则m的值为14.已知圆,则两圆的外公切线段长等于三、解答题:(本大题共6小题,共80分,请将正确答案写在答题卡相应的位置上,作答时必须详细写出演算过程和逻辑推理过程。

2019—2020学年第二学期期中考试高一数学试题(含答案)

2019—2020学年第二学期期中考试高一数学试题(含答案)

2019—2020学年第二学期期中考试高一数学试题一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在中,已知,则角为( )A .A .C .D .或2.若向量,,且,则( ) A . B .C .D . 3.复数的共轭复数为( )A .B .C .D .4.设两个单位向量,的夹角为,则( ) A .CD .5.已知一条边在x 轴上的正方形的直观图是一个平行四边形,此平行四边形中有一边长为4,则原正方形的面积是( )A .16B . 16或64 C. 64 D .以上都不对6.若实数,,满足,则的值是( ) A .2B .-3C .D.17.在中,若,则的形状是( ) A .等腰直角三角形 B.直角三角形C .等腰三角形D .等边三角形8.已知(,为虚数单位),则“”是“为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9.给出下列结论,则结论正确的为( )A .若向量,,且,则B .,,与的夹角为,则ABC △222a b c bc =++A 2π3π3π6π32π3(3,2)=a (1,)m =-b ∥a b m =23-233232-()2019i 12i z =--2i -2i +2i --2i -+a b 2π334+=a b 17x y ()()1i 1i 2x y ++-=xy 2-ABC △2cos sin sin B A C ⋅=ABC △221(32)i z m m m =-+-+m ∈R i 1m =-z (1,3)=a (2,)x =b ∥a b 6x =||2=a ||4=b a b 60°|2|+=a bC .向量,,m.n=0则 D .已知向量,,则与的夹角为 10.下列命题中,不正确的是( ) A .两个复数不能比较大小;B .若,则当且仅当且时,为纯虚数;C .,则;D .若实数与对应,则实数集与纯虚数集一一对应.11.在中,角的对边分别为,若,且,,则的面积为( ) A .3B .C .D .12.对于两个复数,,则下列说法正确的是( )A .B .C .D .第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.已知复数,,且是实数,则实数等于 .14.如图,在斜度一定的山坡上的一点测得山顶上一建筑物顶端对于山坡的斜度为,向山顶前进后,又从点测得斜度为,假设建筑物高,设山对于平地的斜度,则 .(,2)x =m (4,2)x =+n 23x =-=a =b a b π6i(,)z a b a b =+∈R 0a =0b ≠z 221223()()0z z z z -+-=123z z z ==a i a ABC △,,A B C ,,a b c cos cos a A b B =2c =3sin 5C =ABC △231361α=-+122β=--1αβ=2αβ=||2||αβ=337αβ-=134i z =+2i z t =+12z z ×t A C 15︒100m B 45︒50m θcos θ=15.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,则该圆柱的表面积等于-------------------16.在中角,,的对边分别是,,,且,,若,则的最小值为 .四·解答题:(本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知关于的方程有实根,求这个实数根以及实数的值.18. (12分)如图,组合体下面是一个直三棱柱.△A 1B 1C 1为等腰直角三角形,BC =CE =2.上面是一个三棱锥,且AA 1⊥底面A 1B 1C 1,且AE =A1E =3,求组合体的表面积和体积.19.(12分)已知复数,m是实数,根据下列条件,求值.(1)是实数; (2)是虚数; (3)是纯虚数; (4).ABC△A B C a b c sin sin sin sin sin 3a Ab B cC B C +-=a =[1,3]b ∈c x 2(2i)2i 0x k x k ++++=k 22(232)(2)i z m m m m =+-++-m z z z 0z =20.(12分)在中,角所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围. 21.(12分)已知a =(1,2),b =(-3,1). (1)求a -2b;(2)设a,b 的夹角为θ,求cos θ的值;(3)若向量a +k b 与a -k b 互相垂直,求实数k 的值.22.(12分)已知向量,,且.(1)求及;(2)若的最小值为,求实数的值.高一数学答案一.AACCB DCC二.9.ACD 10,ACD 11,AC 12,BCD17.(12分)已知关于的方程有实根,求这个实数根以及实数的值.【答案】方程的实根为或值为或.【解析】设是方程的实数根,代入方程并整理得,由复数相等的条件得,解得或∴方程的实根为,相应的值为或.ABC△,,A B C ,,a b c222sin sin sin sin sinA C A CB +-=B ABC △ABC △33(cos ,sin )22x x =a (cos ,sin )22x x =-b π[0,]2x ∈⋅a b +a b ()2f x λ=⋅-+a b a b 32-λx 2(2i)2i 0x k x k ++++=k x =x =k k =-k =0x 2000(2)(2)i 0x kx x k ++++=20002020x kx x k ⎧++=⎨+=⎩0x k ⎧=⎪⎨=-⎪⎩0x k ⎧=⎪⎨=⎪⎩x =x =k k =-k =18.19.(10分)已知复数,,根据下列条件,求值.(1)是实数; (2)是虚数; (3)是纯虚数; (4).【答案】(1)或;(2)且;(3);(4). 【解析】(1)当,即或时,为实数. (2)当,即且时,为虚数.(3)当,解得,即时,为纯虚数.(4)令,解得,即时,.20.(12分)在中,角所对的边分别为,且.22(232)(2)i z m m m m =+-++-m R Îm z z z 0z =2m =-1m =2m ≠-1m ≠12m =2m =-220m m +-=2m =-1m =z 220m m +-≠2m ≠-1m ≠z 22232020m m m m ⎧+-=⎨+-≠⎩12m =12m =z 22232020m m m m ⎧+-=⎨+-=⎩2m =-2m =-0z =ABC △,,A B C ,,a b c 222sin sin sin sin sin A C A C B +-=(1)求角的大小;(2)若,求的周长的取值范围. 【答案】(1);(2).【解析】(1)由题意,由正弦定理得,,,即,又∵,. (2)由(1)知,且外接圆的半径为,,解得, 由正弦定理得,又,, 21.(10分)已知a =(1,2),b =(-3,1).(1)求a -2b;(2)设a,b 的夹角为θ,求cos θ的值; (3)若向量a +k b 与a -k b 互相垂直,求k 的值.【答案】(1)(7,0),(2)-√5050.(3)k=±√22.【解析】(1)a -2b =(1,2)-2(-3,1)=(1+6,2-2)=(7,0). (2)cos θ=a ·b|a |·|b |=√2√2=-√5050.(3)因为向量a +k b 与a -k b 互相垂直, 所以(a +k b)·(a -k b)=0,即a 2-k 2b 2=0,因为a 2=5,b 2=10,所以5-10k 2=0,解得k=±√22.B ABC △ABC △π3B =(5+⎤⎦222sin sin sin sin sin A C A C B +-=222a c acb +-=222a b b ac +-=222122a b b ac +-=1cos 2B =()0,πB ∈π3B =π3B =323=⨯5b =2sin sin a c A C ===sin )a c A C +=+2π3A C +=2ππsin()]10sin()336a c A A A +=+-=+22.(12分)已知向量,,且. (1)求及;(2)若的最小值为,求的值. 【答案】(1),;(2). 【解析】(1)由已知可得, , ,,.(2)由(1)得,,.①当时,当且仅当时,取得最小值,这与已知矛盾; ②当,当且仅当时,取得最小值,由已知可得,解得;③当时,当且仅当时,取得最小值, 由已知可得,解得,与矛盾, 综上所得,. 为锐角三角形,且, 又,得,,, 33(cos ,sin )22x x =a (cos ,sin )22x x =-b π[0,]2x ∈⋅a b +a b ()2f x λ=⋅-+a b a b 32-λcos2x ⋅=a b 2cos x +=a b 12λ=33coscos sin sin cos 22222x xx x x ⋅=⋅-⋅=ab +===a b π[0,]2x ∈Q cos 0x ∴≥2cos x ∴+=a b 222()cos 24cos 2cos 4cos 12(cos )12f x x x x x x λλλλ=-=--=---π[0,]2x ∈Q 0cos 1x ≤≤0λ<cos 0x =()f x 1-01λ≤≤cos x λ=()f x 12λ--23122λ--=-12λ=1λ>cos 1x =()f x 14λ-3142λ-=-58λ=1λ>12λ=ABC △π02A <<π02C <<2π3C A =-ππ62A <<πsin()62A +∈(a c +∈⎤⎦故的周长的取值范围是.ABC△(5+⎤⎦。

2019-2020年高一下学期期中联考数学试题 含答案

2019-2020年高一下学期期中联考数学试题 含答案

2019-2020年高一下学期期中联考数学试题 含答案一 、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 某校高二年级有10个班,若每个班有50名同学,均随机编号1,2,…50,为了了解他们对体育运动的兴趣,要求每班第15号同学留下来进行问卷调查,这里运用的抽样方法是( )A .抽签法B .系统抽样C .随机数表法D .分层抽样2.某数学兴趣小组有3名男生和2名女生,从中任选出2名同学参加数学竞赛,那么对立的两个事件是( ) A .恰有1名男生与恰有2名女生 B .至少有1名男生与全是男生 C .至少有1名男生与至少有1名女生 D .至少有1名男生与全是女生3.下列叙述随机事件的频率与概率的关系中正确的是( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会稳定在一个常数附近D .概率是随机的,在试验前不能确定4.方程2222(4)00x y Dx Ey F D E F ++++=+->表示的曲线关于成轴对称图形,则( )A. D+E=0B. D+F=0C. E+F=0D. D+E+F=05.如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,其中茎为十位数,叶为个位数,甲、乙两人得分的中位数为则下列判断正确的是( ) A .X 乙﹣X 甲=5,甲比乙得分稳定 B .X乙﹣X 甲=5,乙比甲得分稳定C .X 乙﹣X 甲=10,甲比乙得分稳定D .X 乙﹣X 甲=10,乙比甲得分稳定6.点与圆上任一点连线的中点轨迹方程是( )A .B .C .D .7.如图一个边长为4的正方形及其内切圆,若随机向正方形内 丢一粒豆子,则豆子落入圆内的概率是( ) A . B . C . D . 8. 已知直线与圆相切,则三条边长分别为的三角形是 ( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不存在9.某铁路客运部门规定甲、乙两地之间旅客托运行李的费用:不超过50kg 按0.53元/kg 收费,超过50kg 的部分按0.85元/kg 收费.相应收费系统的流程图如右图所示,则①处应填( ) A.B.C.D.10.已知直线经过点,当截圆所得弦长最长时,直线的方程为()A. B.C.D.11. 直线与半圆有两个不同的交点,则的取值范围是()A.B.C.D.12.若圆上至少有三个不同点到直线:的距离为,则直线的斜率的取值范围是 ( )A.[]B.C.[D.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分)13. 已知空间直角坐标系中两点,则两点间的距离是 .14. 已知一组正数,,,的方差,则数据,,,的平均数为.15.由曲线围成的图形的面积为_______.16.若圆与圆相切,则实数的取值集合是 .三、解答题:解答应写出文字说明、证明过程或演算步骤。

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)

2019-2020学年市第六中学高一上学期期中数学试题(解析版)2019-2020学年市第六中学高一上学期期中数学试题一、单选题1.设集合M=[1,2],N={x∈Z|-1A.[1,2]B.(-1,3)C.{1}D.{1,2}【答案】D【解析】集合N为整数集,所以先用列举法求出集合N,然后根据交集的定义求出即可.【详解】解:,.故选:D.【点睛】本题考查交集的概念和运算,解题的关键是先分析出集合中的代表元素是整数,属于基础题.2.已知集合A={x|x>2},B=,则B∩∁RA等于()A.{x|2≤x≤5}B.{x|-1≤x≤5}C.{x|-1≤x≤2}D.{x|x≤-1}【答案】C【解析】已知集合A,B,则根据条件先求出,然后根据交集的定义求出即可.【详解】解:集合A={x|x>2},所以,又集合,则.故选:C.【点睛】本题考查交集和补集的概念和计算,属于基础题.3.函数f(x)=+lg(3x+1)的定义域是()A.(-∞,1)B.C.【答案】B【解析】函数f(x)的定义域即:即被开方数大于等于0,分母不为0,且对数函数的真数有意义,根据条件列出方程组,解出的范围即为所求.【详解】解:函数f(x)=+lg(3x+1)的定义域是,解得:,所以函数f(x)的定义域是.故选:B.【点睛】本题考查求复合函数的定义域,解题的关键是保证每部分都有意义,属于基础题.4.已知f()=x-x2,则函数f(x)的解析式为()A.f(x)=x2-x4B.f(x)=x-x2C.f(x)=x2-x4(x≥0)D.f(x)=-x(x≥0)【答案】C【解析】令(),解出,利用换元法将代入解析式即可得出答案.【详解】解:令(),则,所以(),所以f(x)=x2-x4().故选:C.【点睛】本题考查利用换元法求函数解析式,解题的关键是注意换元之后的定义域,属于基础题.5.与函数相同的函数是()A.B.C.D.【答案】D【解析】试题分析:A中对应关系不同;B中定义域不同;C中定义域不同;D中对应关系,定义域均相同,是同一函数【考点】函数是同一函数的标准6.下列函数中,既是偶函数又在区间上单调递减的是()A.C.D.【答案】C【解析】试题分析:因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数的图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C。

2019-2020学年高一数学下学期期中试题(含解析)

2019-2020学年高一数学下学期期中试题(含解析)

2019-2020学年高一数学下学期期中试题(含解析)一、选择题(本大题共10小题,共50分)1.设复数满足,则()A. B. C. D. 2【答案】A【解析】【分析】化简得到,得到模长.【详解】,故.故选:.【点睛】本题考查了复数的化简,复数模,意在考查学生的计算能力.2.已知向量与向量共线,则实数的值是()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】直接根据向量共线公式得到答案.【详解】向量与向量共线,则,故.故选:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.3.下列问题中,最适合用简单随机抽样方法抽样的是()A. 某县从该县中、小学生中抽取200人调查他们的视力情况B. 从15种疫苗中抽取5种检测是否合格C. 某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D. 某学校兴趣小组为了了解移动支付在大众中的熟知度,要对岁的人群进行随机抽样调查【答案】B【解析】【分析】依次判断每个选项的合适的抽样方法得到答案.【详解】A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:.【点睛】本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.4.在中,若,则是()A. 正三角形B. 等腰三角形C. 等腰直角三角形D. 有一内角为60°的直角三角形【答案】C【解析】【分析】根据正弦定理得到,,故,得到答案.【详解】根据正弦定理:,故,,即,,故,故.故选:.【点睛】本题考查了利用正弦定理判断三角形形状,意在考查学生的计算能力和应用能力.5.在中,角所对的边分别为.若,则()A. B. C. D.【答案】C【解析】【分析】根据余弦定理得到,再利用正弦定理计算得到答案.【详解】根据余弦定理:,故,根据正弦定理:,即,解得.故选:.【点睛】本题考查了正弦定理余弦定理解三角形,意在考查学生的计算能力和应用能力.6.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用表示,方差分别为表示,则()A. B.C D.【答案】B【解析】【分析】计算,,,得到答案.【详解】,,故.;,故.故选:B.【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.7.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为和,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为()A. B. C. D.【答案】A【解析】【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案.【详解】根据题意:.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.8.抛掷一枚质地均匀的骰子,记事件为“向上的点数是偶数”,事件为“向上的点数不超过3”,则概率()A. B. C. D.【答案】D【解析】【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,得到答案.【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,故.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.9.对某自行车赛手在相同条件下进行了12次测试,测得其最大速度(单位:)的数据如下:27,38,30,36,35,31,33,29,38,34,28,36,则他的最大速度的第一四分位数是()A. 29B. 29.5C. 30D. 36【答案】B【解析】【分析】数据从小到大排列,,计算得到答案.【详解】数据从小到大排列为:,,故最大速度第一四分位数是.故选:.【点睛】本题考查了分位数,意在考查学生的计算能力和应用能力.10.已知是边长为2的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B. C. D.【答案】C【解析】【分析】计算得到,,计算得到答案.【详解】根据题意:,,故.故选:.【点睛】本题考查了向量的数量积,将向量作为基向量是解题的关键.二、填空题(本大题共9小题,共50分)11.某学院的三个专业共有1500名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为100的样本.已知该学院的专业有700名学生,专业有500名学生,则在该学院的专业应抽取_____________名学生.【答案】【解析】【分析】直接根据分层抽样的比例关系得到答案.【详解】该学院的专业应抽取:.故答案为:.【点睛】本题考查了分层抽样,意在考查学生计算能力和应用能力.12.已知i为虚数单位,复数为纯虚数,则a的值为__________.【答案】2【解析】【分析】首先把复数化简为代数形式,然后根据复数分类求解.【详解】,它为纯虚数,则且,解得.故答案为:2.【点睛】本题考查复数的运算,考查复数的分类,掌握复数的除法运算是解题关键.13.已知向量,满足,,若,则=_____________.【答案】5【解析】【分析】根据即可得到,再由即可求出,从而可得出的值.【详解】∵;∴,且;∴;∴.故答案为5.【点睛】本题考查向量垂直的充要条件,向量的数量积运算,向量长度的概念.14.从装有2个红球和2个白球口袋内任取2个球,是互斥事件的序号为___________.(1)至少有1个白球;都是白球;(2)至少有1个白球;至少有1个红球;(3)恰有1个白球;恰有2个白球;(4)至少有1个白球;都是红球【答案】(3)(4)【解析】【分析】根据互斥事件的概念依次判断每个选项中是否为互斥事件得到答案.【详解】(1)至少有1个白球,都是白球,都是白球的情况两个都满足,故不是互斥事件;(2)至少有1个白球,至少有1个红球,一个白球一个红球都满足,故不是互斥事件;(3)恰有1个白球,恰有2个白球,是互斥事件;(4)至少有1个白球;都是红球,是互斥事件.故答案为:(3)(4).【点睛】本题考查了互斥事件,意在考查学生对于互斥事件的理解和掌握.15.袋中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,第二次摸到红球的概率是____________.【答案】【解析】【分析】分为第一次是红球和第一次是黄球两种情况,计算得到答案.【详解】第一次是红球:;第一次是黄球:.故.故答案为:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.已知点,则向量在上的投影向量的模为___________.【答案】【解析】【分析】计算,,根据投影公式得到答案.【详解】根据题意:,,向量在上的投影向量的模为.故答案为:.【点睛】本题考查了向量的投影,意在考查学生的计算能力和转化能力.17.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图,如图,估计这次测试中数学成绩的平均分约为______________、众数约为____________、中位数约为__________.(结果不能整除的精确到0.1)【答案】 (1). (2). (3).【解析】【分析】根据平均值,众数,中位数的概念依次计算得到答案.详解】根据频率分布直方图:平均数为:;众数约为;前三个矩形概率和为,设中位数为,则,解得.故答案为:;;.【点睛】本题考查了平均值,众数,中位数的计算,意在考查新学生的计算能力和应用能力.18.甲船在岛处南偏西50°的处,且的距离为10海里,另有乙船正离开岛沿北偏西10°的方向以每小时8海里的速度航行,若甲船要用2小时追上乙船,则速度大小为__________海里.【答案】【解析】【分析】计算,根据余弦定理得到,得到速度.【详解】根据题意知:,,根据余弦定理:,故,故速度为.故答案为:.【点睛】本题考查了余弦定理的应用,意在考查学生的计算能力和应用能力.19.中,角所对的边分别为.已知.则角的大小为___________,若,则的值为___________.【答案】 (1). (2).【解析】【分析】根据正弦定理得到,计算,再利用余弦定理计算得到答案.【详解】,故,,故,即,即,,故.,故.故答案为:;.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和应用能力.2019-2020学年高一数学下学期期中试题(含解析)一、选择题(本大题共10小题,共50分)1.设复数满足,则()A. B. C. D. 2【答案】A【解析】【分析】化简得到,得到模长.【详解】,故.故选:.【点睛】本题考查了复数的化简,复数模,意在考查学生的计算能力.2.已知向量与向量共线,则实数的值是()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】直接根据向量共线公式得到答案.【详解】向量与向量共线,则,故.故选:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.3.下列问题中,最适合用简单随机抽样方法抽样的是()A. 某县从该县中、小学生中抽取200人调查他们的视力情况B. 从15种疫苗中抽取5种检测是否合格C. 某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D. 某学校兴趣小组为了了解移动支付在大众中的熟知度,要对岁的人群进行随机抽样调查【答案】B【解析】【分析】依次判断每个选项的合适的抽样方法得到答案.【详解】A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:.【点睛】本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.4.在中,若,则是()A. 正三角形B. 等腰三角形C. 等腰直角三角形D. 有一内角为60°的直角三角形【答案】C【解析】【分析】根据正弦定理得到,,故,得到答案.【详解】根据正弦定理:,故,,即,,故,故.故选:.【点睛】本题考查了利用正弦定理判断三角形形状,意在考查学生的计算能力和应用能力.5.在中,角所对的边分别为.若,则()A. B. C. D.【答案】C【解析】【分析】根据余弦定理得到,再利用正弦定理计算得到答案.【详解】根据余弦定理:,故,根据正弦定理:,即,解得.故选:.【点睛】本题考查了正弦定理余弦定理解三角形,意在考查学生的计算能力和应用能力.6.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用表示,方差分别为表示,则()A. B.C D.【答案】B【解析】【分析】计算,,,得到答案.【详解】,,故.;,故.故选:B.【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.7.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为和,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为()A. B. C. D.【答案】A【解析】【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案.【详解】根据题意:.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.8.抛掷一枚质地均匀的骰子,记事件为“向上的点数是偶数”,事件为“向上的点数不超过3”,则概率()A. B. C. D.【答案】D【解析】【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,得到答案.【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,故.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.9.对某自行车赛手在相同条件下进行了12次测试,测得其最大速度(单位:)的数据如下:27,38,30,36,35,31,33,29,38,34,28,36,则他的最大速度的第一四分位数是()A. 29B. 29.5C. 30D. 36【答案】B【解析】【分析】数据从小到大排列,,计算得到答案.【详解】数据从小到大排列为:,,故最大速度第一四分位数是.故选:.【点睛】本题考查了分位数,意在考查学生的计算能力和应用能力.10.已知是边长为2的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B. C. D.【答案】C【解析】【分析】计算得到,,计算得到答案.【详解】根据题意:,,故.故选:.【点睛】本题考查了向量的数量积,将向量作为基向量是解题的关键.二、填空题(本大题共9小题,共50分)11.某学院的三个专业共有1500名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为100的样本.已知该学院的专业有700名学生,专业有500名学生,则在该学院的专业应抽取_____________名学生.【答案】【解析】【分析】直接根据分层抽样的比例关系得到答案.【详解】该学院的专业应抽取:.故答案为:.【点睛】本题考查了分层抽样,意在考查学生计算能力和应用能力.12.已知i为虚数单位,复数为纯虚数,则a的值为__________.【分析】首先把复数化简为代数形式,然后根据复数分类求解.【详解】,它为纯虚数,则且,解得.故答案为:2.【点睛】本题考查复数的运算,考查复数的分类,掌握复数的除法运算是解题关键.13.已知向量,满足,,若,则=_____________.【答案】5【解析】【分析】根据即可得到,再由即可求出,从而可得出的值.【详解】∵;∴,且;∴;∴.故答案为5.【点睛】本题考查向量垂直的充要条件,向量的数量积运算,向量长度的概念.14.从装有2个红球和2个白球口袋内任取2个球,是互斥事件的序号为___________.(1)至少有1个白球;都是白球;(2)至少有1个白球;至少有1个红球;(3)恰有1个白球;恰有2个白球;(4)至少有1个白球;都是红球【答案】(3)(4)根据互斥事件的概念依次判断每个选项中是否为互斥事件得到答案.【详解】(1)至少有1个白球,都是白球,都是白球的情况两个都满足,故不是互斥事件;(2)至少有1个白球,至少有1个红球,一个白球一个红球都满足,故不是互斥事件;(3)恰有1个白球,恰有2个白球,是互斥事件;(4)至少有1个白球;都是红球,是互斥事件.故答案为:(3)(4).【点睛】本题考查了互斥事件,意在考查学生对于互斥事件的理解和掌握.15.袋中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,第二次摸到红球的概率是____________.【答案】【解析】【分析】分为第一次是红球和第一次是黄球两种情况,计算得到答案.【详解】第一次是红球:;第一次是黄球:.故.故答案为:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.已知点,则向量在上的投影向量的模为___________.【答案】【解析】【分析】计算,,根据投影公式得到答案.【详解】根据题意:,,向量在上的投影向量的模为.故答案为:.【点睛】本题考查了向量的投影,意在考查学生的计算能力和转化能力.17.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图,如图,估计这次测试中数学成绩的平均分约为______________、众数约为____________、中位数约为__________.(结果不能整除的精确到0.1)【答案】 (1). (2). (3).【解析】【分析】根据平均值,众数,中位数的概念依次计算得到答案.详解】根据频率分布直方图:平均数为:;众数约为;前三个矩形概率和为,设中位数为,则,解得.故答案为:;;.【点睛】本题考查了平均值,众数,中位数的计算,意在考查新学生的计算能力和应用能力.18.甲船在岛处南偏西50°的处,且的距离为10海里,另有乙船正离开岛沿北偏西10°的方向以每小时8海里的速度航行,若甲船要用2小时追上乙船,则速度大小为__________海里.【答案】【解析】【分析】计算,根据余弦定理得到,得到速度.【详解】根据题意知:,,根据余弦定理:,故,故速度为.故答案为:.【点睛】本题考查了余弦定理的应用,意在考查学生的计算能力和应用能力.19.中,角所对的边分别为.已知.则角的大小为___________,若,则的值为___________.【答案】 (1). (2).【解析】【分析】根据正弦定理得到,计算,再利用余弦定理计算得到答案.【详解】,故,,故,即,即,,故.,故.故答案为:;.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和应用能力.。

2019-2020学年度第二学期期中考试 高一数学试卷及答案

2019-2020学年度第二学期期中考试 高一数学试卷及答案

一、选择题:(本题共10小题,每题4分,共40分.每题有且只有一个正确答案) 1.下列命题正确的是( )A .终边与始边重合的角是零角B .终边与始边都相同的两个角一定相等C .小于90的角是锐角D .若120α=-,则α是第三象限角 2.已知某地区中小学生人数和近视情况分别如图(1)和图(2)所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .200,20 B .200,10C .100,10D .100,203.下列区间中是使函数sin()4y x π=+单调递增的一个区间是( )A .2ππ⎡⎤⎢⎥⎣⎦,B .04π⎡⎤⎢⎥⎣⎦,C .[]π-,0D .42ππ⎡⎤⎢⎥⎣⎦,4.已知扇形的半径为1,中心角为30°,关于弧长l 与扇形面积S 正确的结果为( ) A . 12l π=B . 3l π=C . 6S π=D . 12S π=5.下列既是偶函数又是以π为周期的函数( )A .cos y x =B .sin(2)2y x π=-C .2sin()2y x π=+D .32cos(2)2y x π=+6.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A .110B .15C .310D .257.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一个白球;③两2019-2020学年度第二学期期中考试高一数学(平行班)试题球至多有一个白球”中的哪几个( )A .①③B .②③C . ①②D .①②③8.将函数4cos(2)5y x π=+的图像上各点向右平行移动2π个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图像的函数解析式是( )A .4cos(4)5y x π=+B .4sin(4)5y x π=+C .4cos(4)5y x π=-D .4sin(4)5y x π=-+9.已知1sin cos 8αα=-,且344ππα<<,则cos sin αα+的值等于( )A .32 B .32- C .34 D .34- 10.任意ABC ∆中,给出下列4个式子,其中为常数的是( ) ①sin()sin A B C ++;②cos()cos A B C ++;③sin(22)sin 2A B C ++; ④cos(22)cos 2A B C ++;A .①②B . ②③C . ③④D .①④二、填空题:(本题共5小题,每题4分,共20分.)11.在半径为1的圆O 内任取一点A ,则12OA <的概率为_____________.12.如果sin 0tan 0θθ><,,那么角θ所在象限是_____________. 13.已知1cos(75)6α︒+=,则sin(15)α︒-=_____________. 14.为了科普“新型冠状病毒”相关知识,增强中学生预防意识,某中学随机抽取30名学生参加相关知识测试,得分(十分制)如图所示,假设得分的中位数为m ,众数为n ,平均数为x ,则m ,n ,x 的大小关系为 .(用“<”连接)15.已知函数2()sin cos f x x x a =++,a R ∈,若对区间02π⎡⎤⎢⎥⎣⎦,上任意x ,都有()1f x ≤成立,则实数a 的取值范围_____________.三、解答题:(本题共5小题,每题12分,共60分.) 16.化简计算:(1)已知tan 2x =,计算221sin 2cos x x+;(2)化简sin()cos()cos(2)cos()2πααπαππα+---+17.已知函数()sin()24x f x π=+.(1)写出函数()f x 的单调递增区间;(2)求函数()f x 在区间263ππ⎡⎤-⎢⎥⎣⎦,上的值域.18.下表数据为某地区某种农产品的年产量x (单位:吨)及对应销售价格y (单位:千元/吨) .(1)若y 与x 有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程.(2)若该农产品每吨的成本为13.1千元,假设该农产品可全部卖出,利用上问所求的回归方程,预测当年产量为多少吨时,年利润Z 最大?(参考公式:回归直线方程为ˆˆˆy bx a =+,1122222212n n n x y x y x y nx y b x x x nx +++-=+++-,a y bx =-) 19.高老师需要用“五点法”画函数()sin()(00)2f x A x A πωϕωϕ=+>><,,在一个(1) 请同学们帮助高老师写出表格中的两个未知量a 和b 的值,并根据表格所给信息写出函数解析式(只需在答题卡的相应位置填写答案,无需写出解析过程);(2) 将()y f x =图像上所有点向左平行移动6π个单位长度,得到()g x 图像,求()y g x =距离原点O 最近的对称中心.20.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了某地2020年某月10天的AQI 的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共有30天计算)(2)若从样本中的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.一、选择题:(4分⨯10=40分)题号 1 2 3 4 5 6 7 8 9 10 答案DABDBDCCAB2019-2020学年度第二学期期中考试 高一数学(平行班)试题答案二、填空题:(4分⨯5=20分) 11.14; 12. 第二象限; 13. 16; 14. n <m <x ; 15. 14⎛⎤-∞- ⎥⎝⎦, 三、解答题:(12分⨯5=60分)16.解:(1)222222221sin cos tan 15==sin 2cos sin 2cos tan 26x x x x x x x x ++=+++ (2)=cos (cos )cos (cos )0αααα---=原式17.解:(1)要求()f x 的单调递增区间,只需满足22()2242x k k k Z πππππ-+≤+≤+∈,解得:344()22k x k k Z ππππ-+≤≤+∈,所以函数()f x 的单调递增区间344()22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,. (2)因为263x ππ-≤≤,所以762412x πππ≤+≤,又因为7sin sin sin 6122πππ<<,所以函数()f x 在区间7612ππ⎡⎤-⎢⎥⎣⎦,上的值域为112⎡⎤⎢⎥⎣⎦,18.解:(1)由所给数据计算得()()()552113,50,123,10i i i i i x y x x y y x x====--=--=∑∑,代入公式解得12.3,86.9b a =-=,所以ˆ12.386.9yx =-+.(2)因为年利润2(12.386.9)13.112.373.8Z x x x x =⋅-+-=-+,所以当x =3时,年利润Z 取得最大值,故预测当年产量为3吨时,年利润Z 大.19.解:(1)131212a b ππ==,,有表格所给数据可知52A ω==,,因此函数解析式可以确定为()5sin(2)f x x ϕ=+,再将点(5)3π,带入函数得:=2()6k k Z πϕπ-+∈,又因为2πϕ<,所以6πϕ=-,所以()5sin(2)6f x x π=-.(2)由题意的()5sin(2)6g x x π=+,令2()6x k k Z πππ+=+∈,解之得5()122k x k Z ππ=+∈,即对称中心为5(0)()122k k Z ππ+∈,, 当50(0)12k π=,对称中心为,,当1(0)12k π=--,对称中心为,,因此距离坐标原点最近的对称中心为(0)12π-,.20.解 (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为410=25,估计该月空气质量优良的概率为25,从而估计该月空气质量优良的天数为30×25=12.(2)该样本中为轻度污染的共4天,分别记为a 1,a 2,a 3,a 4; 为中度污染的共1天,记为b ;为重度污染的共1天,记为c .从中随机抽取两天的所有可能结果有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,b ),(a 1,c ),(a 2,a 3),(a 2,a 4),(a 2,b ),(a 2,c ),(a 3,a 4),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共15个.其中空气质量等级恰好不同的结果有(a 1,b ),(a 1,c ),(a 2,b ),(a 2,c ),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共9个.9 15=3 5.所以该两天的空气质量等级恰好不同的概率为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一期中考试试题(数学)一、填空题(每小题5分,计70分)1.在ABC △中,已知1AB =,2BC =,60ABC ∠=°,则AC = . 2.不等式204x x -≥+的解集是 . 3.在等比数列{a n }中,若a 4,a 8是方程x 2+11x +9=0的两根,则a 6的值是 .4.在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=,则角A 的大小为 . 5.若2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+= . 6.函数()sin cos f x x x =+的单调递增区间是 .7.已知两个点A(-3,-1)和B(4,-6)分布在直线-3x+2y+a=0的两侧,则a 的取值范围为 .8.数列{a n }的前n 项和S n =n 2+1,则a n = .9.已知数列—1,a 1,a 2,—4成等差数列,—1,b 1,b 2,b 3,—4成等比数列,则212b a a -的值为 .10.一飞机沿水平方向飞行,在位置A 处测得正前下方地面目标C 的俯角为30°,向前飞行了10000米,到达位置B 时测得正前下方地面目标C 的俯角为75°,这时飞机与地面目标的距离为 米.11.在数列{n a }中,1a = 1,nn n a a a +=+221 ( n ∈N * ),则2011a 等于 . 12.若关于x 的不等式1420x x a +--≤在[]2,1上恒成立,则实数a 的取值范围为 .13. 已知函数x x x f sin cos )(=)(R x ∈,下列四个命题:其中正确的序号是 . ①若)()(21x f x f -=,则21x x -= ②)(x f 的最小正周期是π2 ③在区间]4,4[ππ-上是增函数. ④)(x f 的图象关于直线43π=x 对称14.在n 行m 列矩阵12321234113451212321n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪ ⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。

当9n =时,11223399a a a a +++⋅⋅⋅+= .二、解答题15. (本题满分14分)已知集合{2|23A x x x =--≤}{220,,|24x R B x x mx m ∈=-+-≤}0,,.x R m R ∈∈ (1) 若[0,3]A B =,求实数m 的值;(2) 若R A B ⊆ð,求实数m 的取值范围.16. (本题满分14分)已知函数2()sin 2sin cos f x x x x x π⎛⎫=+++ ⎪3⎝⎭. (1)求()f x 的最小正周期;(2)求()f x 的最大值及此时x 的值.17. (本题满分14分)已知等差数列{a n }中,36181817,38a a a a a a +==-<且.(1)求{a n }的通项公式;(2)调整数列{a n }的前三项a 1、a 2、a 3的顺序,使它成为等比数列{b n }的前三项,求{b n }的前n 项和.18. (本题满分16分)在ABC ∆中,角B 为锐角,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2s i n (3,m AC =+2c o s 2,2c o s 1,2B n B ⎛⎫=- ⎪⎝⎭且向量,m n 共线. (1)求角B 的大小;(2)如果1b =,且ABC S ∆=,求a c +的值.19. (本题满分16分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为)(x C ,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不小于80千件时,14501000051)(-+=xx x C (万元).现已知此商品每件..售价为500元,且该厂年内生产此商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?20. (本题满分16分)数列}{n a 是首项14a =的等比数列,且3S ,2S ,4S 成等差数列,(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)若2log n n b a =,设n T 为数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和,若n T ≤1n b λ+对一切*n N ∈恒成立,求实数λ的最小值.江苏省淮安五校2010—2011学年度第二学期高一期中考试数 学 试 题 参 考 答 案一、填空题(每小题5分,计70分)1. 2. {}|42x x -<≤ 3.-3 4. 6π 5. 322 6. 312,244k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ 7. (-7,24) 8. =⎩⎨⎧-122n 21≥=n n 9. 1210. 11.1100612. 0≤a 13. ③④ 14. 45 二、解答题 15解:解析:由已知得{|1A x =-≤x ≤}{3,|2B x m =-≤x ≤}2m +. …………4分(1) 因为[0,3].A B =所以2023,m m -=⎧⎨+≥⎩ 所以2,1.m m =⎧⎨≥⎩ ………6分 所以 2.m =…………7分(2) {|2R B x x m =<-ð,或}2.x m >+…………9分因为R A B ⊆ð,所以23m ->或2 1.m +<-…………12分∴5m >或 3.m <-…………14分16.解析:(1)化简得()sin 2f x x x =………………5分2sin 2x π⎛⎫=+ ⎪3⎝⎭………………7分 T π∴=………………9分(2) 由22,32x k k z πππ+=+∈,得,12x k k z ππ=+∈……………12分故max ()2f x =,此时,12x k k z ππ=+∈……………14分17. 解析:(1)由已知,得求得12a =-,819a =………………………………2分 ∴{a n }的公差d=3…………………………………………………………4分 ∴a n =a 1+(n -1)d=-2+3(n -1)=3n -5.………………………………………………………………6分(2)由(1),得a 3=a 2+d=1+3=4,∴a 1=-2,a 2=1,a 3=4.依题意可得:数列{b n }的前三项为b 1=1,b 2=-2,b 3=4或b 1==4,b 2=-2,b 3=1………………8分(i )当数列{b n }的前三项为b 1=1,b 2=-2,b 3=4时,则q=-2 .])2(1[31)2(1])2(1[11)1(1n n n n qq b S --=----⋅=--=∴.………………………………11分(ii )当数列{b n }的前三项为b 1=4,b 2=-2,b 3=1时,则21-=q . ])21(1[38)21(1])21(1[41)1(1n n n n q q b S --=----=--=∴…………………14分 18. 解析:(1)由向量,m n →→共线有:22sin()2cos 12,2B A C B ⎛⎫+-= ⎪⎝⎭即tan 2B =………………5分又02B π<<,所以02B π<<,则2B =3π,即6B π= ………………8分 (2)由1sin 26ABC S ac π∆==,得ac =………………10分 由余弦定理得2222cos ,b a c ac B =+-得()27a c +=+……………15分故2a c +=分19.解:(1)当*,800N x x ∈<<时, …………3分当80≥x ,*N x ∈时,…………6分 *),80(*),800()10000(12002504031)(2N x x N x x x x x x x L ∈≥∈<<⎪⎩⎪⎨⎧+--+-=∴ …………8分 (2)当*,800N x x ∈<<时,950)60(31)(2+--=x x L ,当60=x 时,)(x L 取得最大值950)60(=L …………10分当,,80N x x ∈≥ 25040312501031100001000500)(22-+-=---⨯=x x x x x x L )10000(120025014501000051100001000500)(xx x x x x L +-=-+--⨯=,100020012001000021200)10000(1200)(=-=⋅-≤+-=xx x x x L (也可以利用函数性质作答)∴当xx 10000=,即100=x 时,)(x L 取得最大值.9501000)100(>=L …………14分 综上所述,当100=x 时)(x L 取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. …………16分20. 解:(1)当1q =时,32412816S S S ===,,,不成等差数列。

…………2分当1q ≠时,234111(1)(1)(1)2111a q a q a q q q q---=+--- , (若没用求和公式则无需上面分类讨论)∴2342q q q =+ , ∴220q q +-=,∴2q =- …………6分∴114(2)(2)n n n a -+=-=- …………7分(2)122log log (2)1n n n b a n +==-=+ 11111(1)(2)12n n b b n n n n +==-++++…………9分 11111111233412222(2)n n T n n n n =-+-+⋅⋅⋅⋅⋅⋅+-=-=++++ …………12分 n T ≤1n b λ+ ,∴2(2)n n +≤(2)n λ+ …………14分 ∴λ≥22(2)n n + 又2142(2)2(4)n n n n=+++≤112(44)16=+ ,(也可以利用函数的单调性解答) ∴λ的最小值为116…………16分。

相关文档
最新文档