2019最新高等数学(上册)期末考试试题(含答案)TF

合集下载

2019最新高等数学(上册)期末考试试题(含答案)AEE

2019最新高等数学(上册)期末考试试题(含答案)AEE

2019最新高等数学期末考试试题(含答案)一、解答题1.求曲线x =a cos 3t ,y = a sin 3t 在t =t 0处的曲率.解: 22d d 3sin cos d tan d d 3cos sin d y y a t tt t x x a t t t===--, 22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x ta t t a t t t--=-=⋅==-,故 423/2123sin cos [1(tan )]3sin 2a t t k t a t==+- 且当t =t 0时, 023sin 2k a t =.2.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn nn ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-,级数1nn U ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+.故可得1n n U U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛.当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛. 当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则 ()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.3.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散.(2) ()1lim01ln 1n n n →∞==<+,故原级数收敛. (3)121lim1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.4.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学(上册)期末考试试题(含答案)LO

2019最新高等数学期末考试试题(含答案)一、解答题1.利用泰勒公式求下列极限:⑴ 30sin lim ;x x x x →- ⑵ tan 0e 1lim ;x x x →- (3) 21lim[ln(1)].x x x x→∞-+ 解:⑴ 34sin 0()3!x x x x =-+ 343300[0()]sin 13!lim lim 6x x x x x x x x x x →→--+-∴== ⑵tan 2e 1tan 0(tan )x x x =++tan 200e 11tan 0(tan )1lim lim 1x x x x x x x→→-++-∴== (3) 令1x t=,当x →∞时,0t →, 2222022011111lim[2ln(1)]lim[ln(1)]lim{[()]}21()1lim().22x t t t t x x t t o t x t t t t o t t →∞→∞→→-+=-+=--+=-=2.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑; (3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑; 解:(1)因为11lim lim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x n n →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1). (2)因为()()1111!11lim lim lim lim e 1!11n n n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n n n n n ∞=∑;应用洛必达法则求得()10e e 1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-< ⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1. 当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212n n t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]3.求下列各曲线所围图形的面积: (1) y =12x 2 与x 2+y 2=8(两部分都要计算); 解:如图D 1=D 2解方程组⎩⎨⎧y =12x 2x 2+y 2=8得交点A (2,2) (1)D 1=⎠⎛02⎝⎛⎭⎫8-x 2-12x 2d x =π+23 ∴ D 1+D 2=2π+43, D 3+D 4=8π-⎝⎛⎭⎫2π+43=6π-43.。

2019最新高等数学(上册)期末考试试题(含答案)QQ

2019最新高等数学(上册)期末考试试题(含答案)QQ

2019最新高等数学期末考试试题(含答案)一、解答题1. 确定下列函数的单调区间:(1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x '=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =;解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加. (4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加. (5) e (0,0)n x y x n x -=>≥;解: 函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少. (6) sin 2y x x =+;解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++. 2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈-- 1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈, 函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+.解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+-- 函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加, 在111[,]218-上, 0y '<,函数单调减少, 在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.2.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑; (3) 2341111111153535353⋅-⋅+⋅-⋅+;。

2019最新高等数学(上册)期末考试试题(含答案)NJ

2019最新高等数学(上册)期末考试试题(含答案)NJ

2019最新高等数学期末考试试题(含答案)一、解答题1.求函数1()f x x=在01x =-处的n 阶泰勒公式. 解: 121211(1)(1)1(1)n n n n n x x x x x x θ+++=--++-+-++ 12211()1[(1)](1) {1(1)(1)(1)} (01).[1(1)]n n n f x x x x x x x x θθ++∴==-+-++=-++++++++<<-+2.将函数()0arctan d xt F t x t =⎰展开成x 的幂级数. 解:由于()210arctan 121n n n t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n x n n n n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1) 3.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232333331222322n n n +++++⋅⋅⋅⋅;(4) 12!n n n n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散. (3) ()()11132lim lim 2313lim21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散. (4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n n n n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.4.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力。

2019最新高等数学(上册)期末考试试题(含答案)ABQ

2019最新高等数学(上册)期末考试试题(含答案)ABQ

2019最新高等数学期末考试试题(含答案)一、解答题1.设()f x 在[,]a b 上有(1)n -阶连续导数,在(,)a b 内有n 阶导数,且(1)()()()()0.n f b f a f a f a -'=====试证:在(,)a b 内至少存在一点ξ,使()()0n f ξ=.证明:首先,对()f x 在[,]a b 上应用罗尔定理,有1(,)a a b ∈,即1a a b <<,使得1()0f a '=;其次,对()f x '在[,]a b 上应用罗尔定理,有21(,)a a b ∈,即12a a a b <<<, 使得2()0;,f a ''=一般地,设在(,)a b 内已找到1n -个点121,,,,n a a a -其中121,n a a a a b-<<<<<使得(1)1()0n n f a --=,则对(1)()0n f x -=在1[,]n a b -上应用罗尔定理有1(,)(,),n a b a b ξ-∈⊂使得()()0n f ξ=.2.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰。

2019最新高等数学(上册)期末考试试题(含答案)JM

2019最新高等数学(上册)期末考试试题(含答案)JM

2019最新高等数学期末考试试题(含答案)一、解答题1.计算0.2e 的近似值,使误差不超过310-. 解:234e e 1 (01)2624xxx x x x θθ=++++<< 230.2(0.2)(0.2)e 10.2 1.2213 1.22126≈+++=≈ 0.2444e 31(0.2)(0.2)(0.2)0.20.00020.00124248R θ⨯=⨯<⨯=⨯≈<2.用根值判别法判别下列级数的敛散性: (1) 1531n n n n ∞=⎛⎫ ⎪+⎝⎭∑; (2) ()[]11ln 1n n n ∞=+∑; (3) 21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4) 1n n n b a ∞=⎛⎫ ⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim 1313n n n n →∞==>+, 故原级数发散.(2) ()1lim 01ln 1n n n →∞==<+, 故原级数收敛.(3)121lim 1931n n n n n -→∞⎛⎫==< ⎪-⎝⎭, 故原级数收敛.(4) lim lim n n n b b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,b a =1,无法判定其敛散性.3.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133222213333n n n --+-++-;(4)155n +++++; 解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.4.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台).(1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少?解:(1) 当C ′(x )=R ′(x )时总利润最大.即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为ΔL (x )= 772255222(52)d 51x x x x -=-=-⎰.即此时总利润减少1万元.5.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少?解:如图21,以切点为原点建立坐标系,则圆的方程为(x -R )2+y 2=R 2将球从水中取出需作的功相应于将[0,2R ]区间上。

2019最新高等数学(上册)期末考试试题(含答案)CM

2019最新高等数学(上册)期末考试试题(含答案)CM

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列函数的极值:(1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =.(2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==, 126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-.(3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+,令0y '=,得驻点121,3x x =-=. 1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-.(4) ln(1)y x x =-+;解: 1101y x'=-=+,令0y '=,得驻点0x =. 201,0(1)x y y x =''''=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-,令0y '=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x =+解: 1y '=-,令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点. (7)y =解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =(8) 223441x x y x x ++=++; 解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++, 令0y '=,得驻点122,0x x =-=.2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++ 200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos x y x =;解: e (cos sin )x y x x '=-,令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±±. 2e sin x y x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()e 2k k y x +++=-. (10) 1xy x =;解: 11211ln (ln )x x x y x x x x x-''==, 令0y '=,得驻点e x =. 当e x >时, 0y '<,当e x <时, 0y '>, 故极大值为1e (e)e y =.。

2019最新高等数学(上册)期末考试试题(含答案)GT

2019最新高等数学(上册)期末考试试题(含答案)GT

2019最新高等数学期末考试试题(含答案)一、解答题1.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlim sin x x x x →; ⑵ lim (1)x x k x →+∞+; ⑶ sin lim sin x x x x x →∞-+; ⑷ e e lim .e e x x x xx --→+∞-+ 解:⑴ ∵200111sin2sin cos lim lim sin cos x x x x x x x x x →→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1lim lim sin 0sin x x x x x x x →→==, 故不能使用洛必达法则.⑶ ∵sin 1cos lim lim sin 1cos x x x x x x x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x xx x x x x x x →∞→∞--==++ 故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xx x x x x x x x x ------→+∞→+∞→+∞-+-==+-+ 利用洛必达法则无法求得其极限. 而22e e 1e lim lim 1e e 1e x x xx x xx x ----→+∞→+∞--==++. 故答案选(2).2.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133********3nn n --+-++-;(4)155n ++++;解:(1)(11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.3.已知电压u (t )=3sin2t ,求(1) u (t)在π0,2⎡⎤⎢⎥⎣⎦上的平均值; 解: π2026()3sin2d .ππu t tt ==⎰ (2) 电压的均方根值.解:均方根公式为()f x =故 ()u t ===4. 设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B ,求这截锥体的体积。

2019最新高等数学(上册)期末考试试题(含答案)AKL

2019最新高等数学(上册)期末考试试题(含答案)AKL

13.利用函数的图形的凹凸性,证明下列不等式:
;
证明:令

则曲线y=f(x)是凹的,因此 ,
,
即 .
;
证明:令f(x)=ex
.
则曲线y=f(x)是凹的,

即 .
证明:令f(x)=xlnx(x>0)
则曲线 是凹的, ,x≠y,有
即 ,
即 .
14.将f(x) = 2+|x| (-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数 的和.
(x-R)2+y2=R2将球从水中取出需作的功相应于将[0,2R]区间上的许多薄片都上提2R的高度时需作功的和的极限。取深度x为积分变量,典型小薄片厚度为dx,将它由A上升到B时,在水中的行程为x;在水上的行程为2R-x。因为球的比重与水相同,所以此薄片所受的浮力与其自身的重力之和x为零,因而该片在水中由A上升到水面时,提升力为零,并不作功,由水面再上提到B时,需作的功即功元素为
解:⑴

19.设 ,且 与 相比是很小的量,证明:
证明:利用近似公式 ,有
.
20.利用微分求下列各数的近似值:
⑴ ;⑵ ;
⑶ .
解:⑴利用近似公式 ,有
.
⑵利用近似公式 ,有
⑶取 ,令 ,
而 ,则
21.求下列函数的微分:
⑴ ;⑵ ;
⑶ ;⑷ ;
⑸ ;⑹ .
解:
⑴ ;
⑵ ;
⑶ ;


⑸ ;
⑹ ;
22.求由下列参数方程所确定函数的二阶导数 :
解:f(x)在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f(x)是偶函数,故bn=0,(n=1,2,…)

2019最新高等数学(上册)期末考试试题(含答案)FX

2019最新高等数学(上册)期末考试试题(含答案)FX

2019最新高等数学期末考试试题(含答案)一、解答题1.设()()()f a f c f b ==,且a c b <<,()f x ''在[a ,b ]内存在,证明:在(a ,b )内至少有一点ξ,使()0f ξ''=.证明:()f x ''在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c ξ∃∈,使得1()0f ξ'=,2(,)c b ξ∃∈,使得2()0f ξ'=,又()f x '在12[,]ξξ上连续,在12(,)ξξ内可导,由罗尔定理知,12(,)ξξξ∃∈,使()0f ξ''=,即在(a ,b )内至少有一点ξ,使()0f ξ''=.2.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x x l n i n in i n ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰ 故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in x n in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)3.将函数f (x ) = x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn n n x n x a f x x x x n n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑ (0≤x ≤2)4.设f (x ) = x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数.解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn n b f x nx x x nx x n==+--+=⋅⎰⎰ 从而()()()1111π2sin πn n f x nx n∞=--+=∑ (0<x <π) 若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n x f x n ∞=-+=--∑ (0≤x ≤π)5.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42x f x x =--<<(2)()()sin 02πf x xx =≤≤ 解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nx f x n∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n n a f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以 ()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)6.将函数()0arctan d x t F t x t=⎰展开成x 的幂级数. 解:由于()210arctan 121n n n t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n x n n n n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)7.证明,若21n n U ∞=∑收敛,则1n n U n ∞=∑绝对收敛. 证:∵222211111222n n n n U U n U U n n n +=⋅≤=+⋅ 而由21n n U ∞=∑收敛,211n n ∞=∑收敛,知22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛, 因而1n n U n ∞=∑绝对收敛.8.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台).(1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少?解:(1) 当C ′(x )=R ′(x )时总利润最大.即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为ΔL (x )= 772255222(52)d 51x x x x -=-=-⎰.即此时总利润减少1万元.9.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力。

2019最新高等数学(上册)期末考试试题(含答案)RW

2019最新高等数学(上册)期末考试试题(含答案)RW

2019最新高等数学期末考试试题(含答案)一、解答题1.证明下列不等式: (1) 当π02x <<时, sin tan 2;x x x +> 证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x-++'=,当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时, 2e sin 1.2xx x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos xf x x x -'-+-,()=e sin 1e (sin 1)0x x f x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x -+<+2.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1) f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以112πn n =(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰ ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)3.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x(4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于44022⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]4.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+5.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+6.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn +++++++++++ (3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n Un=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111nn a ∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.7.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年8.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为 ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.9.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

2019最新高等数学(上册)期末考试试题(含答案)F

2019最新高等数学(上册)期末考试试题(含答案)F

2019最新高等数学期末考试试题(含答案)一、解答题1.已知函数()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()0f a f b ==,试证:在(a ,b )内至少有一点ξ,使得()()0, (,)f f a b ξξξ'+=∈.证明:令()()e ,x F x f x =⋅()F x 在[a ,b ]上连续,在(a ,b )内可导,且()()0F a F b ==,由罗尔定理知,(,)a b ξ∃∈,使得()F ξ'=,即()e ()ef f ξξξξ'+=,即()()0, (,).f f a b ξξξ'+=∈2.将函数()f x =(x -1)的幂级数.解:因为()()()()()2111111!2!m nm m mm m m x xx x n---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnnnn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑18.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001);(2)cos2o (误差不超过0.0001)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯ 61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈3.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1). 记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nxx ∞-==∑则()1011xn n x S x x x∞===-∑⎰于是()()12111x S x x x'⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011n n S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰即()()1111ln 021xS S x x +-=-,()100S =,所以()()()11ln 121x x S xS x x x x+==<-4.(1)解:112xn n=∞相当于P 级数中P x = 当1P >时112p n n =∞收敛,1P ≤时,112pn n=∞发散. 从而当1x >时,112x n n =∞收敛,1x ≤时,112xn n=∞发散. 从而112xn n=∞的收敛域为(1,)+∞ 从而111(1)2n x n n+=∞-的收敛域为(0,1)(1,)+∞. (2)解:当1x >时,112x n n =∞收敛,则111(1)2n xn n +=∞-收敛.当0x ≤时,111(1)2n x n n+=∞-发散,(0)n U当01x <<时,111(1)2n x n n+=∞-收敛.(莱布尼兹型级数)5.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nnnn ∞=⎛⎫-++++ ⎪⎝⎭∑. 解:(1)()11n n U -=-1n nU ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n nn n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+.故可得1n n U U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛. 当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则 ()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪⎪⎝⎭+++⎝⎭>即1n n U U +> 又01111lim lim12311d n n n n Un n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.6.写出下列级数的一般项: (1)1111357++++;2242468x x ++⋅⋅⋅⋅;(3)35793579a a a a -+-+;解:(1)121n U n =-; (2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+;7.求正弦交流电0i I sin t ω=经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

2019最新高等数学(上册)期末考试试题(含答案)AKS

2019最新高等数学(上册)期末考试试题(含答案)AKS

2019最新高等数学期末考试试题(含答案)一、解答题1.椭圆22169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x y x y t t ⋅+⋅= 由d d d d x y t t -=. 得 161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.2.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩ (2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cos ππ2=-≤≤xf x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰ 于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑ (x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππn n a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3n n f x nx n∞==+-⋅∑ (-∞<x <∞) (3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n n b f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos 2x f x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),。

2019最新高等数学(上册)期末考试试题(含答案)FQ

2019最新高等数学(上册)期末考试试题(含答案)FQ

2019最新高等数学期末考试试题(含答案)一、解答题1.一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快?解:当水深为h 时,横截面为212s h == 体积为22212V sh '====d d 2d d V h h t t=⋅ 当h =0.5m 时,31d 3m min d V t-=⋅. 故有d 320.5d h t =⋅, 得d d h t = (m 3·min -1).2.设函数 f (x ) = x 2(0≤x <1),而()1s i n πn n s x b n x ∞==∑,-∞<x <+∞,其中()102sin πd n b f x n x x =⎰ (n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 3.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑; (3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑;解:(1)因为11lim lim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x n n →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1). (2)因为()()1111!11lim lim lim lim e 1!11n n n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n n n n n ∞=∑;应用洛必达法则求得()10e e 1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-< ⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1. 当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212n n t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]4.(1)解:112x n n =∞相当于P 级数中P x =。

2019最新高等数学(上册)期末考试试题(含答案)AAF

2019最新高等数学(上册)期末考试试题(含答案)AAF
8.无
9.无
10.无
11.无
12.无
13.无
14.无
15.无
16.无
17.无
18.无
19.无
20.无
21.无
22.无
23.无
24.无
25.无
26.无
27.无
28.无
29.无
30.无

16.设 ,求 .
解:
17.球的半径以速率v改变,球的体积与表面积以怎样的速率改变?
解:
18.计算 的近似值,使误差不超过 .
解:
19.求函数 在 处的 阶泰勒公式.
解:
20.利用泰勒公式求下列极限:
⑴ ⑵ (3)
解:⑴

(3)令 ,当 时, ,
21.求下列函数的微分:
⑴ ;⑵ ;
⑶ ;⑷ ;
⑸ ;⑹ .
当 时 ,
因此,曲线有三个拐点(-1,-1), .
因为 =0
因此三个拐点在一条直线上.
11.利用函数的图形的凹凸性,证明下列不等式:
;
证明:令

则曲线y=f(x)是凹的,因此 ,
,
即 .
;
证明:令f(x)=ex
.
则曲线y=f(x)是凹的,

即 .
证明:令f(x)=xlnx(x>0)
则曲线 是凹的, ,x≠y,有
证明: 在[a,b]内存在,故 在[a,b]上连续,在(a,b)内可导,且 ,故由罗尔定理知, ,使得 , ,使得 ,又 在 上连续,在 内可导,由罗尔定理知, ,使 ,即在(a,b)内至少有一点 ,使 .
【参考答案】***试卷处理标记,请不要删除
一、解答题

2019最新高等数学(上册)期末考试试题(含答案)KV

2019最新高等数学(上册)期末考试试题(含答案)KV

2019最新高等数学期末考试试题(含答案)一、解答题1.证明恒等式:222arctan arcsinπ (1).1x x x x +=≥+ 证明:令22()2arctan arcsin 1x f x x x =++, 22222222(1)22()1(1)22 011x x x f x x x x x +-⋅'=++=-=++ 故()f x C ≡,又因(1)πf =,所以()πf x =,即222arctan arcsin π.1x x x +=+2.将函数()0arctan d xt F t x t=⎰展开成x 的幂级数. 解:由于()210arctan 121n n n t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n x n n n n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)3.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++ 122111111()[1()](1)!212(1)2n n n n +<++++++ 1111()1(1)!212(1)n n n +=+-+ 11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+4.判定下列级数的敛散性:(1)1n ∞=∑; (2) ()()11111661111165451n n +++++⋅⋅⋅-+; (3) ()23133222213333n n n --+-++-;(4)155n +++++; 解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭ 从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.5.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台).(1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少?解:(1) 当C ′(x )=R ′(x )时总利润最大.即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为ΔL (x )= 772255222(52)d 51x x x x -=-=-⎰.即此时总利润减少1万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019最新高等数学期末考试试题(含答案)
一、解答题
1.国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少? 解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.
习题三
2.(1)解:
112x n n
=∞相当于P 级数中P x = 当1P >时
112p n n =∞收敛,1P ≤时,1
12p n n =∞发散. 从而当1x >时,
112x n n =∞收敛,1x ≤时,1
12x n n =∞发散. 从而
112x n n
=∞的收敛域为(1,)+∞ 从而
111(1)2n x n n
+=∞-的收敛域为(0,1)(1,)+∞. (2)解:当1x >时,1
12x n n =∞收敛,则111(1)2n x
n n +=∞-收敛. 当0x ≤时,
111(1)2n x n n +=∞-发散,(0)n U
当01x <<时,
111(1)2n x n n
+=∞-收敛.(莱布尼兹型级数)
3.证明,若21n n U
∞=∑收敛,则1n n U n ∞=∑绝对收敛. 证:∵
2222
11111222n n n n U U n U U n n n +=⋅≤=+⋅ 而由21n n U ∞=∑收敛,21
1n n ∞=∑收敛,知
22111122n n U n ∞
=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛, 因而1n n U n ∞
=∑绝对收敛.
4.用比值判别法判别下列级数的敛散性: (1) 2
13n n n ∞=∑; (2)1!31
n n n ∞=+∑; (3)23
23
33331222322n n
n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑ 解:(1) 23n n n U =,()2112311lim lim 133
n n n n n n U n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.
(2) ()()111!311lim lim 31!31lim 131
n n n n n n
n n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞
所以原级数发散.
(3) ()()11132lim lim 2313lim
21312
n n
n n n n n n
n U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.
(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n n
n n n n n n
n
n n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭
==<⎛⎫+ ⎪⎝⎭
故原级数收敛.。

相关文档
最新文档