Top pair invariant mass distribution a window on new physics
物理学名词
1/4波片quarter-wave plateCG矢量耦合系数Clebsch-Gordan vector coupling coefficient; 简称“CG[矢耦]系数”。
X射线摄谱仪X-ray spectrographX射线衍射X-ray diffractionX射线衍射仪X-ray diffractometer[玻耳兹曼]H定理[Boltzmann] H-theorem[玻耳兹曼]H函数[Boltzmann] H-function[彻]体力body force[冲]击波shock wave[冲]击波前shock front[狄拉克]δ函数[Dirac] δ-function[第二类]拉格朗日方程Lagrange equation[电]极化强度[electric] polarization[反射]镜mirror[光]谱线spectral line[光]谱仪spectrometer[光]照度illuminance[光学]测角计[optical] goniometer[核]同质异能素[nuclear] isomer[化学]平衡常量[chemical] equilibrium constant[基]元电荷elementary charge[激光]散斑speckle[吉布斯]相律[Gibbs] phase rule[可]变形体deformable body[克劳修斯-]克拉珀龙方程[Clausius-] Clapeyron equation[量子]态[quantum] state[麦克斯韦-]玻耳兹曼分布[Maxwell-]Boltzmann distribution[麦克斯韦-]玻耳兹曼统计法[Maxwell-]Boltzmann statistics[普适]气体常量[universal] gas constant[气]泡室bubble chamber[热]对流[heat] convection[热力学]过程[thermodynamic] process[热力学]力[thermodynamic] force[热力学]流[thermodynamic] flux[热力学]循环[thermodynamic] cycle[事件]间隔interval of events[微观粒子]全同性原理identity principle [of microparticles][物]态参量state parameter, state property[相]互作用interaction[相]互作用绘景interaction picture[相]互作用能interaction energy[旋光]糖量计saccharimeter[指]北极north pole, N pole[指]南极south pole, S pole[主]光轴[principal] optical axis[转动]瞬心instantaneous centre [of rotation][转动]瞬轴instantaneous axis [of rotation]t 分布student's t distributiont 检验student's t testK俘获K-captureS矩阵S-matrixWKB近似WKB approximationX射线X-rayΓ空间Γ-spaceα粒子α-particleα射线α-rayα衰变α-decayβ射线β-rayβ衰变β-decayγ矩阵γ-matrixγ射线γ-rayγ衰变γ-decayλ相变λ-transitionμ空间μ-spaceχ 分布chi square distributionχ 检验chi square test阿贝不变量Abbe invariant阿贝成象原理Abbe principle of image formation阿贝折射计Abbe refractometer阿贝正弦条件Abbe sine condition阿伏伽德罗常量Avogadro constant阿伏伽德罗定律Avogadro law阿基米德原理Archimedes principle阿特伍德机Atwood machine艾里斑Airy disk爱因斯坦-斯莫卢霍夫斯基理论Einstein-Smoluchowski theory 爱因斯坦场方程Einstein field equation爱因斯坦等效原理Einstein equivalence principle爱因斯坦关系Einstein relation爱因斯坦求和约定Einstein summation convention爱因斯坦同步Einstein synchronization爱因斯坦系数Einstein coefficient安[培]匝数ampere-turns安培[分子电流]假说Ampere hypothesis安培定律Ampere law安培环路定理Ampere circuital theorem安培计ammeter安培力Ampere force安培天平Ampere balance昂萨格倒易关系Onsager reciprocal relation凹面光栅concave grating凹面镜concave mirror凹透镜concave lens奥温电桥Owen bridge巴比涅补偿器Babinet compensator巴耳末系Balmer series白光white light摆pendulum板极plate伴线satellite line半波片halfwave plate半波损失half-wave loss半波天线half-wave antenna半导体semiconductor半导体激光器semiconductor laser半衰期half life period半透[明]膜semi-transparent film半影penumbra半周期带half-period zone傍轴近似paraxial approximation傍轴区paraxial region傍轴条件paraxial condition薄膜干涉film interference薄膜光学film optics薄透镜thin lens保守力conservative force保守系conservative system饱和saturation饱和磁化强度saturation magnetization本底background本体瞬心迹polhode本影umbra本征函数eigenfunction本征频率eigenfrequency本征矢[量] eigenvector本征振荡eigen oscillation本征振动eigenvibration本征值eigenvalue本征值方程eigenvalue equation比长仪comparator比荷specific charge; 又称“荷质比(charge-mass ratio)”。
数学专业英语词汇(T)_数学物理英语词汇
t distribution 学生t分布t number t数t statistic t统计量t test t检验t1topological space t1拓扑空间t2topological space t2拓扑空间t3topological space 分离空间t4topological space 正则拓扑空间t5 topological space 正规空间t6topological space 遗传正规空间table 表table of random numbers 随机数表table of sines 正弦表table of square roots 平方根表table of values 值表tabular 表的tabular value 表值tabulate 制表tabulation 造表tabulator 制表机tacnode 互切点tag 标签tame 驯顺嵌入tame distribution 缓增广义函数tamely imbedded 驯顺嵌入tangency 接触tangent 正切tangent bundle 切丛tangent cone 切线锥面tangent curve 正切曲线tangent function 正切tangent line 切线tangent of an angle 角的正切tangent plane 切平面tangent plane method 切面法tangent surface 切曲面tangent vector 切向量tangent vector field 切向量场tangent vector space 切向量空间tangential approximation 切线逼近tangential component 切线分量tangential curve 正切曲线tangential equation 切线方程tangential stress 切向应力tangents method 切线法tape 纸带tape inscription 纸带记录tariff 税tautology 重言taylor circle 泰勒圆taylor expansion 泰勒展开taylor formula 泰勒公式taylor series 泰勒级数technics 技术technique 技术telegraph equation 电报方程teleparallelism 绝对平行性temperature 温度tempered distribution 缓增广义函数tend 倾向tendency 瞧tension 张力tensor 张量tensor algebra 张量代数tensor analysis 张量分析tensor bundle 张量丛tensor calculus 张量演算法tensor density 张量密度tensor differential equation 张量微分方程tensor field 张量场tensor form 张量形式tensor form of the first kind 第一张量形式tensor function 张量函数tensor of torsion 挠率张量tensor product 张量乘积tensor product functor 张量乘积函子tensor representation 张量表示tensor space 张量空间tensor subspace 张量子空间tensor surface 张量曲面tensorial multiplication 张量乘法term 项term of higher degree 高次项term of higher order 高次项term of series 级数的项terminability 有限性terminable 有限的terminal decision 最后判决terminal edge 终结边terminal point 终点terminal unit 级端设备terminal vertex 悬挂点terminate 终止terminating chain 可终止的链terminating continued fraction 有尽连分数terminating decimal 有尽小数termination 终止terminology 专门名词termwise 逐项的termwise addition 逐项加法termwise differentiation 逐项微分termwise integration 逐项积分ternary 三元的ternary connective 三元联结ternary form 三元形式ternary notation 三进制记数法ternary number system 三进制数系ternary operation 三项运算ternary relation 三项关系ternary representation og numbers 三进制记数法tertiary obstruction 第三障碍tesseral harmonic 田形函数tesseral legendre function 田形函数test 检验test for additivity 加性检验test for uniform convergence 一致收敛检验test function 测试函数test of dispersion 色散检验test of goodness of fit 拟合优度检验test of hypothesis 假设检验test of independence 独立性检验test of linearity 线性检验test of normality 正规性检验test point 测试点test routine 检验程序test statistic 检验统计量tetracyclic coordinates 四圆坐标tetrad 四元组tetragon 四角形tetragonal 正方的tetrahedral 四面角tetrahedral angle 四面角tetrahedral co ordinates 四面坐标tetrahedral group 四面体群tetrahedral surface 四面曲面tetrahedroid 四面体tetrahedron 四面形tetrahedron equation 四面体方程theorem 定理theorem for damping 阻尼定理theorem of alternative 择一定理theorem of identity for power series 幂级数的一致定理theorem of implicit functions 隐函数定理theorem of mean value 平均值定理theorem of principal axes 轴定理theorem of residues 残数定理theorem of riemann roch type 黎曼洛赫型定理theorem on embedding 嵌入定理theorems for limits 极限定理theoretical curve 理论曲线theoretical model 理论模型theory of automata 自动机理论theory of cardinals 基数论theory of complex multiplication 复数乘法论theory of complexity of computations 计算的复杂性理论theory of correlation 相关论theory of differential equations 微分方程论theory of dimensions 维数论theory of elementary divisors 初等因子理论theory of elementary particles 基本粒子论theory of equations 方程论theory of errors 误差论theory of estimation 估计论theory of functions 函数论theory of games 对策论theory of hyperbolic functions 双曲函数论theory of judgment 判断论theory of numbers 数论theory of ordinals 序数论theory of perturbations 摄动理论theory of probability 概率论theory of proportions 比例论theory of relativity 相对论theory of reliability 可靠性理论theory of representations 表示论theory of sets 集论theory of sheaves 层理论theory of singularities 奇点理论theory of testing 检验论theory of time series 时间序列论theory of transversals 横断线论theory of types 类型论thermal 热的thermodynamic 热力学的thermodynamics 热力学theta function 函数theta series 级数thick 厚的thickness 厚度thin 薄的thin set 薄集third boundary condition 第三边界条件third boundary value problem 第三边界值问题third fundamental form 第三基本形式third isomorphism theorem 第三同构定理third proportional 比例第三项third root 立方根thom class 汤姆类thom complex 汤姆复形three body problem 三体问题three dimensional 三维的three dimensional space 三维空间three dimensional torus 三维环面three eighths rule 八分之三法three faced 三面的three figur 三位的three place 三位的three point problem 三点问题three series theorem 三级数定理three sheeted 三叶的three sided 三面的three sigma rule 三规则three termed 三项的three valued 三值的three valued logic 三值逻辑three valued logic calculus 三值逻辑学threshold logic 阈逻辑time interval 时程time lag 时滞time series analysis 时序分析timesharing 分时toeplitz matrix 托普利兹矩阵tolerance 容许tolerance distribution 容许分布tolerance estimation 容许估计tolerance factor 容许因子tolerance level 耐受水平tolerance limit 容许界限tolerance region 容许区域top digit 最高位数字topological 拓扑的topological abelian group 拓扑阿贝耳群topological algebra 拓扑代数topological cell 拓扑胞腔topological circle 拓扑圆topological completeness 拓扑完备性topological complex 拓扑复形topological convergence 拓扑收敛topological dimension 拓扑维topological direct sum 拓扑直和topological dynamics 拓扑动力学topological embedding 拓扑嵌入topological field 拓扑域topological group 拓扑群topological homeomorphism 拓扑同胚topological index 拓扑指数topological invariant 拓扑不变量topological limit 拓扑极限topological linear space 拓扑线性空间topological manifold 拓扑廖topological mapping 拓扑同胚topological pair 拓扑偶topological polyhedron 曲多面体topological product 拓扑积topological residue class ring 拓扑剩余类环topological ring 拓扑环topological simplex 拓扑单形topological skew field 拓扑非交换域topological space 拓扑空间topological sphere 拓扑球面topological structure 拓扑结构topological sum 拓扑和topological type 拓扑型topologically complete set 拓扑完备集topologically complete space 拓扑完备空间topologically equivalent space 拓扑等价空间topologically nilpotent element 拓扑幂零元topologically ringed space 拓扑环式空间topologically solvable group 拓扑可解群topologico differential invariant 拓扑微分不变式topologize 拓扑化topology 拓扑topology of bounded convergence 有界收敛拓扑topology of compact convergence 紧收敛拓扑topology of uniform convergence 一致收敛拓扑toroid 超环面toroidal coordinates 圆环坐标toroidal function 圆环函数torque 转矩torsion 挠率torsion coefficient 挠系数torsion form 挠率形式torsion free group 非挠群torsion group 挠群torsion module 挠模torsion of a curve 曲线的挠率torsion product 挠积torsion subgroup 挠子群torsion tensor 挠率张量torsion vector 挠向量torsionfree connection 非挠联络torsionfree module 无挠模torsionfree ring 无挠环torus 环面torus function 圆环函数torus group 环面群torusknot 环面纽结total 总和total correlation 全相关total curvature 全曲率total degree 全次数total differential 全微分total differential equation 全微分方程total error 全误差total graph 全图total image 全象total inspection 全检查total instability 全不稳定性total inverse image 全逆象total matrix algebra 全阵环total matrix ring 全阵环total order 全序total predicate 全谓词total probability 总概率total probability formula 总概率公式total regression 总回归total relation 通用关系total space 全空间total stability 全稳定性total step iteration 整步迭代法total step method 整步迭代法total stiefel whitney class 全斯蒂费尔惠特尼类total subset 全子集total sum 总和total variation 全变差totally bounded set 准紧集totally bounded space 准紧空间totally differentiable 完全可微分的totally differentiable function 完全可微函数totally disconnected 完全不连通的totally disconnected graph 完全不连通图totally disconnected groupoid 完全不连通广群totally disconnected set 完全不连通集totally disconnected space 完全不连通空间totally geodesic 全测地的totally nonnegative matrix 全非负矩阵totally ordered group 全有序群totally ordered set 线性有序集totally positive 全正的totally positive matrix 全正矩阵totally quasi ordered set 完全拟有序集totally real field 全实域totally reflexive relation 完全自反关系totally regular matrix method 完全正则矩阵法totally singular subspace 全奇异子空间totally symmetric loop 完全对称圈totally symmetric quasigroup 完全对称拟群touch 相切tournament 竞赛图trace 迹trace form 迹型trace function 迹函数trace of dyadic 并向量的迹trace of matrix 矩阵的迹trace of tensor 张量的迹tracing point 追迹点track 轨迹tractrix 曳物线trajectory 轨道transcendence 超越性transcendence basis 超越基transcendence degree 超越次数transcendency 超越性transcendental element 超越元素transcendental equation 超越方程transcendental function 超越函数transcendental integral function 超越整函数transcendental number 超越数transcendental singularity 超越奇点transcendental surface 超越曲面transfer 转移transfer function 转移函数transfinite 超限的transfinite diameter 超限直径transfinite induction 超限归纳法transfinite number 超限序数transfinite ordinal 超限序数transform 变换transformation 变换transformation equation 变换方程transformation factor 变换因子transformation formulas of the coordinates 坐标的变换公式transformation function 变换函数transformation group 变换群transformation of air mass 气团变性transformation of coordinates 坐标的变换transformation of parameter 参数变换transformation of state 状态变换transformation of the variable 变量的更换transformation rules 变换规则transformation theory 变换论transformation to principal axes 轴变换transgression 超渡transient response 瞬态响应transient stability 瞬态稳定性transient state 瞬态transient time 过渡时间transition function 转移函数transition graph 转换图transition matrix 转移矩阵transition probability 转移函数transitive closure 传递闭包transitive graph 传递图transitive group of motions 可迁运动群transitive law 可迁律transitive permutation group 可迁置换群transitive relation 传递关系transitive set 可递集transitivity 可递性transitivity laws 可迁律translatable design 可旋转试验设计translate 转移translation 平移translation curve 平移曲线translation group 平移群translation invariant 平移不变的translation invariant metric 平移不变度量translation number 殆周期translation of axes 坐标轴的平移translation operator 平移算子translation surface 平移曲面translation symmetry 平移对称translation theorem 平移定理transmission channel 传输通道transmission ratio 传输比transport problem 运输问题transportation algorithm 运输算法transportation matrix 运输矩阵transportation network 运输网络transportation problem 运输问题transpose 转置transposed inverse matrix 转置逆矩阵transposed kernel 转置核transposed map 转置映射transposed matrix 转置阵transposition 对换transversal 横截矩阵胚transversal curve 横截曲线transversal field 模截场transversal lines 截线transversality 横截性transversality condition 横截条件transverse axis 横截轴transverse surface 横截曲面trapezium 不规则四边形trapezoid 不规则四边形trapezoid formula 梯形公式trapezoid method 梯形公式traveling salesman problem 转播塞尔斯曼问题tree 树trefoil 三叶形trefoil knot 三叶形纽结trend 瞧trend line 瞧直线triad 三元组trial 试验triangle 三角形triangle axiom 三角形公理triangle condition 三角形公理triangle inequality 三角形公理triangulable 可三角剖分的triangular decomposition 三角分解triangular form 三角型triangular matrix 三角形矩阵triangular number 三角数triangular prism 三棱柱triangular pyramid 四面形triangular surface 三角曲面triangulate 分成三角形triangulation 三角剖分triaxial 三轴的triaxial ellipsoid 三维椭面trichotomy 三分法trident of newton 牛顿三叉线tridiagonal matrix 三对角线矩阵tridimensional 三维的trigammafunction 三函数trigonometric 三角的trigonometric approximation polynomial 三角近似多项式trigonometric equation 三角方程trigonometric function 三角函数trigonometric moment problem 三角矩问题trigonometric polynomial 三角多项式trigonometric series 三角级数trigonometrical interpolation 三角内插法trigonometry 三角学trihedral 三面形的trihedral angle 三面角trihedron 三面体trilateral 三边的trilinear 三线的trilinear coordinates 三线坐标trilinear form 三线性形式trinomial 三项式;三项式的trinomial equation 三项方程triplanar point 三切面重点 ?triple 三元组triple curve 三重曲线triple integral 三重积分triple point 三重点triple product 纯量三重积triple product of vectors 向量三重积triple root 三重根triple series 三重级数triple tangent 三重切线triply orthogonal system 三重正交系triply tangent 三重切线的trirectangular spherical triangle 三直角球面三角形trisecant 三度割线trisect 把...三等分trisection 三等分trisection of an angle 角的三等分trisectrix 三等分角线trivalent map 三价地图trivector 三向量trivial 平凡的trivial character 单位特贞trivial cohomology functor 平凡上同弹子trivial extension 平凡扩张trivial fibre bundle 平凡纤维丛trivial graph 平凡图trivial homogeneous ideal 平凡齐次理想trivial knot 平凡纽结trivial solution 平凡解trivial subset 平凡子集trivial topology 密着拓扑trivial valuation 平凡赋值triviality 平凡性trivialization 平凡化trochoid 摆线trochoidal 余摆线的trochoidal curve 摆线true error 真误差true formula 真公式true proposition 真命题true sign 直符号true value 真值truncated cone 截锥truncated cylinder 截柱truncated distribution 截尾分布truncated pyramid 截棱锥truncated sample 截样本truncated sequence 截序列truncation 舍位truncation error 舍位误差truncation point 舍位点truth 真值truth function 真值函项truth matrix 真值表truth set 真值集合truth symbol 真符号truth table 真值表truthvalue 真值tube 管tubular knot 管状纽结tubular neighborhood 管状邻域tubular surface 管状曲面turbulence 湍流turbulent 湍聊turing computability 图灵机可计算性turing computable 图灵机可计算的turing machine 图录机turn 转向turning point 转向点twice 再次twice differentiable function 二次可微函数twin primes 素数对twisted curve 空间曲线twisted torus 挠环面two address 二地址的two address code 二地址代码two address instruction 二地址指令two body problem 二体问题two decision problem 二判定问题two digit 二位的two dimensional 二维的two dimensional laplace transformation 二重拉普拉斯变换two dimensional normal distribution 二元正态分布two dimensional quadric 二维二次曲面two dimensional vector space 二维向量空间two fold transitive group 双重可迁群two person game 两人对策two person zero sum game 二人零和对策two phase sampling 二相抽样法two place 二位的two point distribution 二点分布two point form 两点式two sample method 二样本法two sample problem 二样本问题two sample test 双样本检验two sheet 双叶的two sided condition 双边条件two sided decomposition 双边分解two sided divisor 双边因子two sided ideal 双边理想two sided inverse 双边逆元two sided module 双边模two sided neighborhood 双侧邻域two sided surface 双侧曲面two sided test 双侧检定two stage sampling 两阶段抽样法two termed expression 二项式two valued logic 二值逻辑two valued measure 二值测度two variable matrix 双变量矩阵two way array 二向分类two way classification 二向分类twopoint boundary value problem 两点边值问题type 型type problem 类型问题typenumber 型数typical mean 典型平均。
c Gamma
2
5 University of Illinois, Urbana-Champaign, Illinois 61801 6 Carleton University, Ottawa, Ontario, Canada K1S 5B6
and the Institute of Particle Physics, Canada 8 Ithaca College, Ithaca, New York 14850 9 University of Kansas, Lawrence, Kansas 66045 10 University of Minnesota, Minneapolis, Minnesota 55455 11 State University of New York at Albany, Albany, New York 12222 12 Ohio State University, Columbus, Ohio 43210 13 University of Oklahoma, Norman, Oklahoma 73019 14 Purdue University, West Lafayette, Indiana 47907 15 University of Rochester, Rochester, New York 14627 16 Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 17 Southern Methodist University, Dallas, Texas 75275 18 Syracuse University, Syracuse, New York 13244 19 Vanderbilt University, Nashville, Tennessee 37235 20 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 21 Wayne State University, Detroit, Michigan 48202 22 California Institute of Technology, Pasadena, California 91125 23 University of California, San Diego, La Jolla, California 92093 24 University of California, Santa Barbara, California 93106 25 University of Colorado, Boulder, Colorado 80309-0390
大型强子对撞机中顶夸克对的产生
大型强子对撞机中顶夸克对的产生阿布力克木·吐尔孙;沙依甫加马力·达吾来提【摘要】通过分析质心能量为8TeV的质子质子对撞实验,对大型强子对撞机上的ATLAS探测器,测量了顶夸克对产生过程pp→t t的归一化微分散射截面,该实验数据对胶子部分子分布函数的确定非常重要.采用蒙特卡罗数值计算程序MadGraph 以及CT10NNLO和CT14NNLO部分子分布函数,分别计算此过程的归一化微分散射截面,得到了与ATLAS实验相符的结果.进一步,用ATLAS实验数据和本文的理论计算结果,更新CT14NNLO部分子分布函数.结果显示,顶夸克对归一化微分散射截面对部分子分布函数不敏感.理论计算结果与ATLAS实验测量结果在误差范围内相符,该过程胶子部分子分布函数无明显变化.【期刊名称】《浙江大学学报(理学版)》【年(卷),期】2018(045)006【总页数】5页(P702-706)【关键词】顶夸克对产生;散射截面;部分子分布函数【作者】阿布力克木·吐尔孙;沙依甫加马力·达吾来提【作者单位】新疆大学物理科学与技术学院 ,新疆乌鲁木齐830046;新疆大学物理科学与技术学院 ,新疆乌鲁木齐830046【正文语种】中文【中图分类】O572.20 引言顶夸克是迄今为止质量最重的基本粒子, 其质量接近于金原子. 因此,顶夸克具有独特的性质,在电弱对称性自发破缺中将发挥重要作用,其产生和衰变过程对标准模型以外的新物理非常敏感. 因此,对顶夸克的研究是检验标准模型的有效方法,也是探索新物理现象的有效手段. 在大型强子对撞机质子-质子非弹性碰撞实验中,顶夸克对产生过程的散射截面主要来源于夸克对的淹灭和胶子融合硬散射过程:→,(1)g+g→,(2)图1 顶夸克和反顶夸克产生的领头费曼图:夸克和反夸克的湮没(pp→和胶子融合(gg→Fig.1 Hard scattering Feynman diagram of top pair production:Annihilation of the quark and anti-quark(pp→→其中,q和分别代表夸克和反夸克;t和是顶夸克和反顶夸克;g是胶子. 在大型强子对撞机中提供足够的碰撞能量,可产生质量较高的粒子,夸克对可以通过强相互作用产生顶夸克对或通过电弱过程产生顶夸克. 其中,最可能的产生机制是轻夸克对湮灭产生胶子,胶子衰变成顶夸克和反顶夸克,此过程见费曼图 1. 另一个产生机制是W玻色子衰变成顶夸克和底夸克. 所以,顶夸克对的产生或者单顶夸克的产生强烈依赖于加速器提供的碰撞能量. 顶夸克对有2种产生方式. 在Tevatron对撞机中,湮灭是主导过程,但在大型强子对撞机中恰恰相反,胶子-胶子融合过程是主导,其原因是在大型强子对撞机中相撞的质子-质子具有更高的质心能量. 首先,在大型强子对撞机中轻夸克-反轻夸克的淹没过程较在 Tevatron 对撞机中容易发生,因为反轻夸克在大型强子对撞机中必须是海夸克,而在 Tevatron 对撞机中可以是反质子中的价夸克之一,因此,任何质心能量均可能发生. 此外,在Tevatron,顶夸克对正好产生在2mt的阈值上. 要求参与碰撞的部分子携带质子动量的比例x必须要大,在质心能量为8 TeV的大型强子对撞机中,小于x时能产生顶夸克对,所以在大型强子对撞机中,胶子融合成了主导过程. 因此,顶夸克对产生过程pp→的实验数据为胶子部分子分布函数的确定提供了重要信息.欧洲大型强子对撞机上的ATLA[1] 和CMS[2] 实验组在质心能量为的情况下,测量了顶夸克对产生的归一化微分散射截面,但ATLAS实验组在测量过程中未使用任何边界条件.下文的结构如下:第1节,在标准模型框架下,计算了顶夸克对产生的硬散射过程 (1)和 (2)的领头阶微分散射截面;第2节,使用蒙特卡罗数值计算程序MadGraph 计算该过程的次领头阶的归一化微分散射截面,并研究该过程对胶子部分子分布函数的影响;第3节,进行了总结.1 顶夸克对的产生和微分散射截面计算在大型强子对撞机中,顶夸克对主要通过轻夸克-反轻夸克淹灭 (1)和胶子-胶子融合 (2) 产生,相应的树图费曼图见图1, 相互作用的拉氏量为γμDμ,(3)其中,ψi(x)表示夸克场,m为夸克质量,表示胶子场. 夸克-反夸克淹灭 (1)过程的不变振幅为:→, λ1)γμu(p2, λ2)]×, λ4)γμυ(p3,λαλαc3),(4)其中,gs代表强相互作用耦合常数,p1和p2分别为初态的夸克和反夸克的四动量,p3和p4分别为末态顶夸克和反顶夸克的四动量. 胶子融合的过程有3个树图费曼图,分别为t道, u道, s道. t道的不变振幅可写成:M1(g+g→εμ×[υ(p3,,×λβγν][εν,(5)其中,q=p1-p3,并且··p3. 因此,M1(g+g→υ(p3, λ3)×[ε/(p1)(p/1-p/3+m)ε/(p2)]×u(p4,λαλβ.(6)u道的不变振幅可写成:M2(g+g→, λ4)×[ε/(p1)(p/1-p/4+m)ε/(p2)]×υ(p3,λαλβc3).(7)s道的不变振幅可写成:M3(g+g→, λ4)×[(ε(p2)·ε(p1))(p/1-p/2)+2(p2·p1)ε/(p2)-2(p1·ε(p2))ε/(p4)]×υ(p3,λγc3).(8)利用方程 (6)~(8),得到总不变振幅:M(g+g→→M2(g+g→→,(9)其中,和c1为色空间的基矢量;εμ(p, λ)为规范玻色子g的极化矢量.→夸克-反夸克湮灭产生顶夸克和反顶夸克领头阶过微分散射截面为→·,(10)其中,,和为洛伦兹不变的Mandelstam变量,分别为,和,pi为夸克的四动量. 胶子-胶子融合过程的微分散射截面为→××3×3×.(11)2 计算方法及结果用蒙特卡罗数值计算程序MadGraph[3] 计算顶夸克对产生过程pp→次领头阶归一化的微分散射截面. CTEQ-TEA 研究组研发了领头阶、次领头阶以及次次领头阶的部分子分布函数. 计算中笔者分别使用了CTEQ-TEA 组的CT10NNLO[4] 和CT14NNLO[5]部分子分布函数,并只考虑质子中夸克、反夸克和胶子的贡献,重整化标度μR和因子化标度μF为:(12)其中,mt代表顶夸克质量,pT, t为顶夸克的横动量. 整个过程的领头阶费曼图如图2所示.图2 pp→过程的领头阶费曼图Fig.2 Leading order Feynman diagram for the process pp→图2(a)为pp→过程的领头阶费曼图,(c)、(b)和(d)分别为gg→过程的领头阶费曼图. 顶夸克对产生的总散射截面σ为:σ, x2,, μR)×fq/p(x,,, x2,, μR)×fg/p(x1, μF)fg/p(x2, μF)]+x1↔x2},(13)其中,, x2,, μR)为硬散射过程(1)的领头阶散射截面;, x2,, μR)为硬散射过程(2) 的领头阶散射截面;fq/p(x1, μF)代表质子中夸克的部分子分布函数;fg/p(x2, μF)代表质子中胶子的部分子分布函数.图3 归一化微分散射截面和顶夸克对的不变质量之间的关系Fig.3 Normalized differential cross section in a bins of top quark pair invariant mass利用MadGraph@NLO计算了顶夸克对的归一化微分散射截面随顶夸克对的不变质量的分布,在计算过程中将顶夸克对的不变质量划分为6个范围: [345, 400],[400, 470],[470, 550],[550, 650],[650, 800],[800, 1 100]. 在计算中使用了CTEQ-TEA 组的CT14NNLO[5]和CT10NNLO[4]部分子分布函数. 图3为顶夸克对的归一化微分散射截面随顶夸克对的不变质量变化的分布图,图中红色和黑色竖线表示理论计算结果,绿色横线表示实验结果,理论计算结果的误差来自于部分子分布函数误差. 将MadGraph@NLO 计算得到的顶夸克对的归一化微散射截面的结果和ATLAS实验组的实验数据加到原来的部分子分布函数中生成新的部分子分布函数的误差,图4为CT14nn+MttW3与原来的部分子分布函数以及胶子部分子分布函数的不确定度在不同Q值下的比较图. 图5为新的部分子分布函数CT14nn+MttW3 与原来部分子分布函数CT14nn对胶子部分子分布函数在不同Q值下的比值图.图4 Q=1.3 GeV和Q=100 GeV时CT14nn+MttW3与CT14nnlo胶子部分子分布不确定度带的比较Fig.4 Comparison of gluon PDF uncertainty bands of CT14nn+MttW3 and CT14nnlo when Q=1.3 GeV and Q=100 GeV图5 Q=1.3 GeV和Q=100 GeV时CT14nn+MttW3与CT14nnlo胶子部分子分布函数的比率Fig.5 Gluon PDF ratio of CT14nn+MttW3 to CT14nnlo PDF for Q=1.3 GeV and Q=100 GeV3 结论在标准模型框架下,用数值计算程序 MadGraph、CT10nnlo和CT14nnlo部分子分布函数,对顶夸克对的产生过程进行了理论研究,提供了次领头阶归一化的微分散射截面,重整化标度和因子化标度分别为, ,给出了归一化微分散射截面的理论计算和实验结果. 基于ATLAS实验数据和本文的理论计算结果,并利用 error PDF Updating Method Package 工具[6]对CT14nnlo 部分子分布函数进行了更新;此外,比较了CT14nnlo 和新的CT14nnlo 部分子分布函数;得到 ATLAS 顶夸克对的归一化微分散射截面实验数据对胶子部分子分布函数不敏感的结论.参考文献(References):【相关文献】[1] GEORGES A,BRAD A,JALAL A,et al. Measurements of top-quark pair differential cross sections in the lepton+jets channel in pp collisions at TeV using the ATLAS detector[J]. European Physical Journal C,2016,76(10): 538-577.[2] KHACHATRYAN V,APRESYAN A,BORNHEIM A,et al. Measurement of the differential cross section for top quark pair production in pp collisions at . European Physical Journal C, 2015,75(11): 542-581.[3] ALWALL J,HERQUET M,MALTONI F,et al. MadGraph 5: Going beyond[J]. Journal of High Energy Physics,2011,2011(6): 1-37.[4] GAO J,GUZZI M,HUSTON J, et al. CT10 next-to-next-to-leading order global analysis of QCD[J]. Physical Review D,2014,89(3): 033009.[5] DULAT S,HOU T J,GAO J,et al. New parton distribution functions from a global analysis of quantum chromodynamics[J]. Physical Review D,2016,93(3): 033006-0330456.[6] ACHMIDT C, PUMPLIN J, YUAN C P, et al. Updating and optimizing error PDFs in the Hession approach[J]. Physics Rev D, 2018: 1-41. e-print: arXiv: 1806-07950.。
在Bethe-Salpeter方程框架下研究DK分子态
在Bethe-Salpeter方程框架下研究DK分子态谢振兴【期刊名称】《首都师范大学学报(自然科学版)》【年(卷),期】2012(033)002【摘要】本文研究了BaBar合作组在分析正负电子湮灭的不变质量时发现的一个很窄的峰结构,该峰结构被命名为D(*s0)+(2317).首先假定它是S波的DK分子束缚态,利用Bethe-Salpeter方程研究了其结构并研究了其同位旋破缺衰变过程D(*s0)+ (2317)→D(s+)+π0,同时在末态考虑了η-π0混合效应对衰变宽度的影响.研究结果表明,D(*s0)+(2317)可以具有DK的分子束缚态结构,而且η-π0混合效应对衰变宽度影响非常明显,D(*s0)+(2317)→D(s+)π0衰变宽度的理论结果与实验结果相符.其它的理论模型也对D(*s0)+(2317)的结构和性质进行了研究,认为D(*s0)+ (2317)可能存在其它形式的结构,并且得到的理论结果和实验结果相符.因此的结构存在多种形式,或者是几种结构的混合.该研究结果对未来的实验进一步确定D(*s0)(2317)的结构有指导意义.%We analyze the state D++s0(2317) ,which was discovered as a very narrow peak by the Babar collaboration while analyzing the invariant mass distribution of the decay final state D++,0. Assuming D++s0(2317) that is composed of DK, we use the Bethe-Salpeter equation to study the structure of D++s0(2317) andthe isospin breaking decay process D++s0 (2317)→Ds+π0. We also consider the η -π0 mixing effect in the decay. It is shown that D++s0 (2317) can be formed as a molecular bound state of DK and the mixing effect has significant influence on the decay. The decay width in our model agreeswith the resolution of the detector. Other theoretical models are also used to study the property and the structure of D++s0(2317) .assuming thatD++s0(2317) may have other forms, and the results agree with the experimental data too. So the structure of may be other forms or the mixing of them. Our results will give important instructions to the forthcoming experiments.【总页数】3页(P31-33)【作者】谢振兴【作者单位】北京市东直门中学,北京100007【正文语种】中文【中图分类】O572.25【相关文献】1.原子分子物理学——高里德伯态氢原子与氢分子的全量子态分辨的散射动力学研究:费米模型的精确性 [J], 戴东旭;吴国荣;杨学明2.直链共轭高分子的分子轨道理论(Ⅳ)——一维重复单元体系本征方程的单频约化条件及体系的边界态 [J], 李加波3.利用分子束和激光技术研究电子激发态原子、分子的态-态传能(I)--转动态-态传能和电子态产物的分支比 [J], 李学初4.利用分子束和激光技术研究电子激发态原子、分子的态-态传能(II)--亚稳态原子传能和激发态分子内能量传递 [J], 李学初5.凝聚态物理学基础研究领域中的新理论Ⅰ纯质的分子结构与液体Cp,1理论方程及3个定理 [J], 张克武;张宇英因版权原因,仅展示原文概要,查看原文内容请购买。
SPSS名词解释
SPSS(统计)名词解释2007-11-13 16:29:16| 分类:学习| 标签:|举报|字号大中小订阅Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP 统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数标准Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换文案。
核能专业英语词汇
核能专业英语词汇2 ionization chamber 2电离室2pulse counting assembly 2脉冲计数装置4 ionization chamber 4电离室4 pulse counting assembly 4脉冲计数装置a battery a电池组a bomb 原子弹a.c. 吸收系数a.m.u. 原子质量单位a.w.u. 原子量单位aarr 阿贡先进研究堆aas 原子吸收光谱法abc neutron source abc中子源abc weapons 原子abernathyite 砷钾铀矿aberration 象差abmr 原子束磁共振abnormal 异常的abnormal exposure 异常照射abnormal exposure condition 异常照射条件abnormal radiation 异常辐射above critical 超临界的above water nuclear explosion 水上核爆炸abrasion 研磨abrasive 研磨材料abscissa 横座标absolute activity 绝对放射性absolute age 绝对年龄absolute assay 绝对鉴定absolute atomic weight 原子的绝对重量absolute blackbody 黑体absolute calibration 绝对校准absolute counting 绝对计数absolute disintegration rate 绝对蜕变速度absolute electrometer 绝对静电计absolute error 绝对误差absolute ether 无水醚absolute humidity 绝对湿度absolute measurement 绝对测量absolute temperature 绝对温度absolute unit 绝对单位absolute value 绝对值absolute zero 绝对零度absorb 吸收absorbability 吸收能力absorbed dose index 吸收剂量指标absorbed dose rate 吸收剂量率absorbent 吸收剂absorber 吸收体absorber element 吸收元件absorbing agent 吸收剂absorbing material 吸收物质absorbing medium 吸收介质absorbing power 吸收能力absorbing rod 吸收棒absorption 吸收absorption analysis 吸收分析absorption band 吸收带absorption coefficient 吸收系数absorption column 吸收柱absorption control 吸收控制absorption cross section 吸收截面absorption curve 吸收曲线absorption dose 吸收剂量absorption edge 吸收端absorption equivalent 吸收当量absorption extraction 吸收分离absorption factor 吸收系数absorption index 吸收指数absorption length 吸收长度absorption limit 吸收端absorption line 吸收线absorption mean free path 吸收平均自由程absorption method 吸收法absorption model 吸收模型absorption monte carlo reactor computer code 吸收蒙特卡罗反应堆计算机代码absorption of beta particles 粒子吸收absorption of gamma radiation 射线吸收absorption of radiant energy 辐射能吸收absorption probability 吸收概率absorption spectrum 吸收谱absorptive 吸收的absorptive power 吸收能力absorptivity 吸收能力abundance 丰度abundance of isotopes 同位素的丰度abundance ratio 丰度比ac 交流ac bridge 交羚桥ac voltage 交羚压acc 活性区辅助冷却accel decel aperture 加速减速孔accelerated particle 加速粒子accelerating agent 促进剂accelerating chamber 加速箱accelerating electrode 加速电极accelerating force 加速力accelerating period 加速周期accelerating tube 加速管accelerating voltage 加速电压acceleration 加速度acceleration cavity 加速谐振腔acceleration voltage 加速电压accelerator 促进剂accelerator breeding 加速砌殖accelerator dynamics 加速漂力学accelerator focusing 加速欺焦accelerator mass spectrometry 加速剖谱法accelerator technology 加速萍术accelerometer 加速计acceptance 接收箱面积acceptor 受主access for inspection 为监察的接近accessory 附件accident 事故accident analysis 事故分析accidental coincidence 偶然符合accidental coincidence correction 偶然符合校正accidental detonation 事故爆炸accidental error 偶然误差accidental exposure 事故照射accidental high exposure 事故高照射accidental loss 事故损失accompanying element 伴生元素account 会计account balance 会计差额account total 会计总计accountability 可计量性accountability tank 衡算计量槽accountancy detection probability 衡算计量发现概率accounting for and control of material 物料衡算与管理accounting records 会计记录accounting report 会计报告accumulated dose 累积剂量accumulation 累积accumulation effect 累积效应accumulation ring 累积环accumulator 蓄电池accumulator tank 储蓄槽accuracy 准度accuracy of measurement 测量准度accuracy of reading 读数准度accurate x ray structure analysis 精密x 射线结构分析acd 锕铅achromat 消色差透镜achromatic lens 消色差透镜achromaticity 消色差achromatism 消色差acid 酸acid resistance 耐酸性ack 锕kaclinic line 无倾线acoustic 声的acoustic emission 声发射acoustic frequency 声频acoustic heating 声加热acoustical 声的acoustics 声学acpr 环形堆芯脉冲反应堆acs 辅助冷却系统actinic rays 光化射线actinide 铜系元素actinide element 铜系元素actinide elements 锕系元素actinide lanthanide separation 锕系镧系元素分离actinide metallide 锕系元素金属化物actinide series 锕系actinides 锕系元素actinium 锕actinium a 锕aactinium b 锕bactinium c 锕cactinium emanation 锕射气actinium family 锕系actinium group 锕系actinium k 锕kactinium lead 锕铅actinium series 锕系actinium x 锕xactino uranium 锕铀actino uranium series 锕系actinodermatitis 辐射性皮炎actinogenics 射线发生学actinoid contraction 锕系元素收缩actinology 放射线学actinometer 太阳光能计actinon 锕射气action at a distance 远距离酌action variable 酌变数activable tracer 可活化示踪剂activate 激活activated adsorption 活性吸附activated complex 活化络合物activated molecule 活化分子activated sludge 活性污泥activated water 受过辐射的水activating agent 活化剂activation 放射活化activation cross section 激活截面activation curve 活化曲线activation detector 活化探测器activation energy 激活能activation foil 活化箔activation method 激活法activation method of cross section determination 截面测定活化法activator 活化剂active 放射性的active area 放射性区域active carbon 放射性碳active center 活性中心active deposit 放射性沉降物active element group 放射性元素群active fall out 放射性沉降物active hydrogen 活性氢active lattice 堆芯active laundry 放射性洗衣房active length 活性段长度active loop 放射性回路active mass 有效质量active neutron method 有源中子法active poison 放射性毒物active power 有效功率active solvent 活性溶剂active valence 有效化合价active well coincidence counter 有源井式符合计数器active zone 堆芯activited carbon 活性碳activity 放射性activity build up 放射性积累activity coefficient 活度系数activity concentration 放射性浓度activity curve 放射性衰变曲线activity decay 放射性衰变activity mass formula 放射性质量公式activity meter with automatic changer 自动换样的放射性测量仪activity range 放射性范围activity unit 放射性单位actual 实际的actual ground zero 实际地面零点actual routine inspection effort 实际日常检查工卓actual yield 实际威力acu 锕铀acute effect 急性效应acute exposure 急性照射acute radiation injury 强烈辐射损伤acute radiation sickness 急性放射性疾病acute radiation syndrome 急性放射性综合症ad hoc inspection 特别监查adamantine 金刚石的adaptatior 适应adapter sleeve 紧固套adaptive control 自适应控制adc 模拟数字转换器adherence 附着adhesive force 附着力adhesive power 附着力adhesiveness 胶粘性adhesives 胶粘剂adhesivity 胶粘性adiabatic 绝热的adiabatic change 绝热变化adiabatic compression 绝热压缩adiabatic containment 绝热约束adiabatic curve 绝热曲线adiabatic expansion 绝热膨胀adiabatic heating 绝热加热adiabatic invariance 绝热不变性adiabatic invariant 绝热式不变量adiabatic line 绝热曲线adiabatic nuclear demagnetization 核绝热去磁adiabatic potential 绝热势adiabatic potential curve 绝热势曲线adiabatic principle 寝渐原理adiabatic process 绝热过程adiabatic trap 磁瓶adion 吸附离子adjacent element 相邻元素adjoint flux 伴随中子通量adjoint function 共轭函数adjustment 第adm 原子爆破弹药admissible error 容许误差admixture 混合adp 自动数据处理adps 自动数据处理系统ads 自动减压系统adsorb 吸附adsorbate 吸附质adsorbent 吸附剂adsorption 吸附adsorption capacity 吸附能力adsorption chromatography 吸附色谱法adsorption coprecipitation 吸附共沉淀adsorption method of separation 吸附分离法adsorption potential 吸附势adsorption power 吸附能力adsorption probability 吸附概率adsorption stage 吸附段adu 重铀酸铵advanced epithermal thorium reactor 改进型超热钍反应堆advanced gas cooled reactor 改进型气冷反应堆advanced pressure tube reactor 新型压力管反应堆advanced pressurized water reactor 改进压水反应堆advanced reactivity measurement facility 先进反应性测量设备advanced reactor technology 尖端反应堆技术advanced stellarator 改进型仿星器advanced test reactor 改进型试验反应堆advanced test reactor critical experiment 先进试验堆临界实验装置advanced thermal reactor 改进型热中子反应堆advanced very high resolution radiometer 先进型甚高分辨辐射仪advantage factor 有利因子ae 激活能aecm 原子能委员会手册aeds 原子能探测系统aeg 放射性元素群aeolotropic 蛤异性的aeration 充气aerial radiological measuring system 航空放射测量系统aerodynamic diameter 气体动力学直径aerogel 气凝胶aerometer 量气计aerosol 气溶胶aerosol filter 气溶胶过滤器aerosol sampler 气溶胶取样器aerosol sampling 气溶胶取样aerospace systems test reactor 宇宙空间系统试验反应堆aes 原子发射光谱法aetr 改进型超热钍反应堆af 衰减系数affinity 亲合力affinity labelling 亲和标记afs 原子荧光光谱法after cut 后馏份after effect 滞后效应after heat 残热after power 剩余功率after pulse 寄生脉冲after settler 二次澄清器after treatment 后处理aftercooling 后冷却afterglow 余辉afterloading source 后装源afterloading technique 后装技术afterloading unit 后装机afterpulse 跟随脉冲aftershock 余震age 年龄age determination 测定年代age diffusion approximation 年龄扩散近似age diffusion kernel 年龄扩散核age distribution 年龄分布age equation 费米年龄方程age equation without capture 非俘获年龄方程age hardening 时效硬化age of cosmic ray irradiation 宇宙线辐照年代age theory 年龄理论aged fission product 老裂变产物agent 剂aggregate recoil 集合反冲aggregation 聚集aging 老化agitate 激励agitation 激发agr 改进型气冷反应堆agreement 协定agz 实际地面零点ahf 无水氢氟酸ahr 水均匀反应堆air bath 空气浴air blast 鼓风air bubble 气泡air burst 空中爆炸air compressor 空气压缩机air contamination indicator 空气污染指示器air contamination meter 空气污染测量仪air coolant 空气冷却剂air cooled 空气冷却的air cooled graphite moderated reactor 空气冷却石墨慢化反应堆air cooled oil vapor diffusion pump 空气冷却油扩散泵air cooled reactor 空气冷却反应堆air cooler 空气冷却器air cooling 空气冷却air course 空气流air dose 空气剂量air elutriation 空气淘析air equivalent 空气当量air equivalent ionization chamber 空气等效电离室air equivalent material 空气等效物质air filter 空气过滤器air gamma survey 航空勘测air gap 空隙air gas 风煤气air ionization 空气离子化air ionization chamber 自由空气电离室air ionizing electrode 空气电离电极air lift 空气升液器空气提升器air lift extractor 空气升液萃取器air lift mixer settler 空气升液式混合澄清槽air liquefier 空气液化器air lock 气闸air locked 气密的air monitor 空气污染监测器air monitoring 大气污染监测air oven 空气浴air pollution 大气污染air pressure 空气压力air purifier 空气净化器air radiation 空气辐射air sampler 空气取样设备air sampling 空气取样air sampling equipment 空气取样设备air sampling technique 空气取样技术air shower 空气簇射air thermometer 空气温度计air tight 气密的air wall ionization chamber 空气等效电离室air zero 原子弹空中爆炸中心airblast 空气冲花airblast damage 空气冲火伤airblast decay 冲花衰减airblast induced acceleration 冲花诱导加速airborne contaminants 大气污染物airborne contamination 空气污染;空气沾染airborne debris 空气中核爆炸碎片airborne dust 气载尘埃airborne particulates 气载微粒;在空气中的悬浮粒子airborne plutonium 气飘钚airborne radioactive prospecting 航空放射性勘探airborne radioactivity 大气中的放射性aircraft reactor experiment 飞机用实验反应堆airox process 埃罗克斯过程airplane reactor 飞机用反应堆airshock 空气冲花al 事故损失alabamine 砹alabamium 砹alamogordo bomb 阿拉莫高尔土炸弹alap 尽实际可能的低alara 按实际可达到的尽可能低alara principle 按实际可达到的尽可能低原理alarm circuit 报警回路alarm dosimeter 报警剂量计alarm limit 报警限alarm set 报警回路albedo 反照率alcali 碱alchemy 炼金术alcohol 醇alcohol lamp 酒精灯alcohol thermometer 酒精温度计alcoholic extract 酒精提出物alcoholometer 酒精比重计aldanite 钍铀铅矿aldebaranium 镱alfven velocity 阿尔芬速度alfven wave 阿尔芬波alfven wave instability 阿尔芬波不稳定性ali 年摄入量极限aligning 布置aliquot 等分试样alkali 碱alkali earth metal 碱土金属alkali liquor 碱液alkali metal 碱金属alkali proof 耐碱的alkali resistance 耐碱性alkali resisting 耐碱的alkalimeter 碱量计alkaline accumulator 碱性蓄电池alkaline battery 碱性蓄电池alkaline liquor 碱液alkaline metal 碱金属alkaline solution 碱性溶液alkaline storage battery 碱性蓄电池alkalinity 碱度all metal 全金属的all time record 全时记录allobars 同素异重体allomerism 异质同晶allomorphism 同质异晶allotrope 同素异形体allotropic modification 同素异形变化allotropic transformation 同素异形变化allotropy 同素异形allowable error 容许误差allowed band 容许带allowed beta decay 容许衰变alloy 合金alloy steel 合金钢alluvial deposit 冲积矿床alpha 阿尔法alpha absorption 粒子吸收alpha activity 放射性alpha bearing waste 放射性的废物alpha beta standard source 标准源alpha bombardment 用粒子轰击alpha contamination indicator 污染指示器alpha counter 计数管alpha decay 衰变alpha decay energy 衰变能量alpha disintegration 衰变alpha emission 粒子发射alpha emitter 辐射体alpha emitting foil 放出射线薄膜alpha hand contamination monitor 手污染监测器alpha heating 粒子加热alpha meter 射线表alpha neutron reaction 中子反应alpha particle 粒子alpha particle binding energy 粒子结合能alpha particle dosimetry 粒子剂量测定法alpha particle model 粒子模型alpha particle model of nucleus 核的粒子模型alpha phase 相alpha plutonium 相钚alpha proton reaction 质子反应alpha pulse counting assembly 脉冲计数装置alpha pulse height analysis 脉冲幅度分析alpha radiation 辐射alpha radiator 辐射体alpha radioactive 放射性的alpha radioactive nucleus 放射核alpha ratio 比alpha ray emitter 辐射体alpha ray shield 射线屏蔽alpha ray spectrometer 射线谱仪alpha ray spectrum 粒子谱alpha rays 射线alpha source 射线源alpha spectrometry 粒子谱测定法alpha spectroscopy 粒子谱学alpha spectrum 粒子谱alpha uranium 相铀alphatopic 差氦的alphatron 电离真空计alternate energy source 代用能源alternating 交替alternating current 交流alternating current bridge 交流电桥alternating current voltage 交流电压alternating field 交变场alternating gradient focusing 交变梯度聚焦alternating gradient focusing accelerator 交变梯度聚焦加速器alternating gradient focusing principle 强聚焦原理alternating gradient synchrotron 交变磁场梯度同步加速器alternation 交替altitude curve 高度曲线altitude effect 高程效应alumina 氧化铝alumina cement 矾土水泥aluminium alloy 铝合金aluminium base alloy 铝基合金aluminium foil 铝箔aluminium nitrate 硝酸铝aluminium oxide 氧化铝aluminothermic process 铝热法aluminothermy 铝热法aluminous cement 矾土水泥aluminum 铝aluminum boride 硼化铝aluminum can 铝包壳aluminum jacket 铝包壳alundum 刚铝石alvarez type accelerator cavity 阿尔瓦雷兹加速撇振腔am 镅amalgam 汞齐ambient 周围的ambipolar diffusion 双极扩散americium 镅americium beryllium neutron source 镅铍中子源amine extraction 胺萃取ammeter 安培计ammonia 氨ammonia gas 氨气ammonia water 氨水ammonium diuranate 重铀酸铵ammonium diuranate process 重铀酸铵法ammonium uranyl tricarbonate 三碳酸铀酰铵amorphism 无定形amorphous 无定形的amorphous carbon 无定形碳amorphous substance 非晶形物质amount 量ampangabeite 铌钛铁铀矿amperage 安培数ampere 安ampere hour 安时ampere meter 安培计ampholyte 两性电解质ampholytoid 两性胶体amphoteric colloid 两性胶体amphoteric compound 两性化合物amphoteric electrolyte 两性电解质amphoteric ion 两性离子amplification 放大amplification constant 放大系数amplification factor 放大系数amplified spontaneous emission 放大式自发射amplifier 放大器amplifying valve 放大管amplitude analyzer 脉冲分析器amplitude analyzing assembly 幅度分析装置amplitude discriminator 脉冲幅度甄别器ampoule 安瓿ampulla 安瓿ams 加速剖谱法anabatic wind fall out 上坡风放射性沉降物analog to digital converter 模拟数字转换器analogous 类似的analysis 分析analytic 分析的analytical 分析的analytical balance 分析天平analytical chemistry 分析化学analytical equipment 分析装置analyzing magnet 磁分析器andersonite 碳钠钙铀矿aneroid barometer 空盒气压表anggstrom 埃angle 角angle of emission 发射角angle of friction 摩擦角angle of incidence 入射角angle of reflection 反射角angle of refraction 折射角angle of scattering 散射角angle of torsion 扭转角angle straggling 角分散anglesobaryte 北投石angstrom 埃angstrom unit 埃angular 角的angular acceleration 角加速度angular coordinates 角座标angular correlation 角相关angular dependence of scattering 散射角度相依angular displacement 角位移angular distribution 角分布angular frequency 角频angular kinetic energy 旋转动能angular magnification 角放大率angular momentum 角动量angular momentum conservation law 角动量守恒定律angular momentum quantum number 角量子数angular momentum transfer 角动量转移angular monentum conservation law 动量矩守恒定律angular quantum number 角动量量子数angular resolution 角分辨率angular velocity 角频anhydride 酐anhydrous 无水的anhydrous ether 无水醚anhydrous hydrochlorination of zirconium bearing fuel 含锆燃料的无水氢氯化anhydrous hydrofluoric acid 无水氢氟酸animal black 骨炭animal charcoal 骨炭anion 阴离子anion exchange resin 阴离子交换尸anion exchanger 阴离子交换剂anisotopic element 无同位素的元素anisotropic 蛤异性的anisotropic liquid 蛤异性液体anisotropism 蛤异性anisotropy 蛤异性annealing 退火annihilation 湮没annihilation gamma quantum 湮没光子annihilation photon 湮没光子annihilation radiation 湮没辐射annual 全年的annual dose equivalent limit 年等效剂量极限annual limit on intake 年摄入量极限annual throughput 年物料通过量annualized capital cost 年度投资费annualized energy cost 年度能量费annular core pulse reactor 环形堆芯脉冲反应堆annular counter 环状计数管annulus 环状空间anode 阳极anode battery 阳极电池anode characteristic 屏极特性曲线anode circuit 阳极电路anode circuit efficiency 屏极电路效率anode drop 阳极降anode effect 阳极效应anode load 阳极负载anode loop 阳极电路anode rays 极隧射线anode resistance 阳极电阻anode scrap 阳极降anode supply 屏极电源anode voltage drop 阳极降anodic reaction 阳极反应anodising 阳极处理anodizing 阳极处理anolyte 阳极电解液anomalous 异常的anomalous absorption 反常吸收anomalous atomic scattering method 反常原子散射法anomalous diffusion 反常扩散anomalous magnetic moment 反常磁矩anomalous scattering 反常散射anomalous transmission 反常透射anomalous valence 反常价anthracene 蒽anthracite 无烟煤anthraxolite 碳沥青anti baryon 反重子anti carrier 反载体anti compton gamma ray spectrometer 反康普顿射线谱仪anti electron 正电子anti explosion valve 防爆阀anti seismic site 抗地震试验场antibonding orbital 反键轨函数anticatalyst 反催化剂anticatalyzer 反催化剂anticathode 对阴极anticoagulant 阻凝剂anticoagulating action 阻凝酌anticoincidence 反符合anticoincidence circuit 反符合电路anticoincidence counter 反符合计数器anticoincidence method 反符合法anticoincidence selector 反符合选择器anticoincidence selector unit 反符合选择单元anticontamination clothing 防沾污服anticorrosive 防蚀的anticorrosive paint 防腐涂料antidiffusion grid 反扩散栅格antiferromagnet 反铁磁体antiferromagnetism 反铁磁性antifouling paint 防污涂料antifreeze 阻冻剂antihyperon 反超子antilepton 反轻子antimatter 反物质antimeson 反介子antimony 锑antineutrino 反中微子antineutron 反中子antinucleon 反核子antioxidant 抗氧化剂antioxygen 阻氧化剂antiparallel 逆平行的antiparallel spin 反平行自旋antiparticle 反粒子antiproton 反质子antiproton beam 反质子束antiprotonic atom 反质子原子antisepsis 防腐antiseptic 防腐剂antishadowing 反荫蔽antisymmetry 反对称ao 原子轨道aortography 织脉x光摄影术apdms 轴向功率分布监测系统aperiodic 非周期性的aperiodicity 非周期性aperture 口径aperture diaphragm 孔径光阑apex 顶apex process 阿派克斯过程apha 脉冲幅度分析apparatus 仪谱爸明apparent lifetime 表观寿命appearance potential 出现电位application 应用application of radioisotopes and radiation 放射性同位素和辐射的应用applicator 局部辐照器applied nuclear physicochemistry 应用核物理化学applied nuclear physics 应用核物理学applied nuclear spectroscopy 应用核谱学approach 接近approach to criticality 接近临界approximate solution 近似解approximate value 近似值approximation 近似approximation calculus 近似计算aprd 大气层微粒放射性探测器aprm 平均功率区段监测aptr 新型压力管反应堆apu 辅助动力装置aqua destillata 蒸馏水aqua regia 王水aquarium reactor 水池式反应堆aqueous 水的aqueous ammonia 氨水aqueous emulsion 水乳状液aqueous homogeneous reactor 水均匀反应堆aqueous reprocessing 湿法后处理aqueous solution 水溶液aqueous vapour 蒸汽arbitrary 任意的arbor 阿贡沸水反应堆arc 电弧arc discharge 电弧放电arc furnace 电弧炉arc melting 电弧熔炼ardometer 光测高温计are 飞机用实验反应堆area density 表面密度area monitor 区域辐射监测器area monitoring 区域监测areal velocity 面积速度areometer 比重计areopycnometer 稠液比重计arg 放射自显影法argillaceous 泥质的argm 自动辐射照相argon 氩argon laser 氩激光器argon method 氩法argonaut type research reactor 阿贡诺型研究反应堆argonne advanced research reactor 阿贡先进研究堆argonne boiling water reactor 阿贡沸水反应堆argument 幅角arid 干燥的arie 实际日常检查工卓arithmetic mean 算术均数arm 大气辐射监测器armor 铠装armour 铠装arms 航空放射测量系统aromatic nucleus 芳香基核aromatic ring 芳香基核arrangement 布置array 布置arsenic 砷arsenious acid 亚砷酸art 尖端反应堆技术article 论说artificial 人工的artificial diamond 人造金刚石artificial disintegration 人工蜕变artificial element 人工放射性元素artificial energy source 人工能源artificial graphite 人造石墨artificial illumination 人工照明artificial intelligence 人工智能artificial lighting 人工照明artificial load 仿真负载artificial neutron 人工中子artificial nuclear disintegration 人工核衰变artificial nuclear transformation 人工核转化artificial radioactive 人工放射性的artificial radioactive isotope 人造放射性同位素artificial radioactivity 人工放射性artificial radionuclide 人造放射性核素artificial transformation of element 元素的人工转换artificial ventilation 人工通风as 砷as low as practicable 尽实际可能的低as low as reasonably achievable 按实际可达到的尽可能低asbestos 石棉asbestos thread 石棉线asbestus 石棉ascs 稳定和控制自动系统ase 放大式自发射asepsis 防腐ash content 灰分含量ash free 无灰的ashless filter paper 无灰滤纸asphalt 沥青asphaltic cement 地沥青膏aspirator 吸气器assay 被分析物assay balance 分析天平assay map 试样图assaying 试金assemblage 装配assembler language 汇编程序语言assembling 装配assembly 装配assembly fuel element exchange 组件燃料元件交换assimilation of nitrogen 氮素同化associate 使联合associated corpuscular emission 伴生微粒辐射associated wave 缔合波assumption 假定assurance 保证astatine 砹aston's mass spectrograph 阿斯顿质谱仪astr 宇宙空间系统试验反应堆asymmetric 非对称的asymmetric fission 非对称裂变asymmetrical 非对称的asymmetry 不对称asymptotic distribution 渐近分布asymptotic evaluation method 渐近求值法asymptotic formula 渐近公式asymptotic solution 渐近解asynchronous motor 感应电动机at 砹at.ht. 原子热at.no. 原子序数at.vol. 原子体积at.wt. 原子量atc 自动温度补偿器athenium 锿atmosphere 大气atmosphere particulate radioactivity detector 大气层微粒放射性探测器atmosphere radiation monitor 大气辐射监测器atmospheric attenuation 大气衰减atmospheric depth 大气的深度atmospheric fall out 大气沉降atmospheric pollution 大气污染atmospheric precipitation 大气沉降atmospheric pressure 大气压atom 原子atom bomb 原子弹atom bomb plant 原子弹工厂atom model 原子模型atom physics 原子物理学atom powered ship 原子动力船atom smasher 原子粒子加速器atom structure 原子结构atomdef 原子防御atomic 原子的atomic absorption analysis 原子吸收分析atomic absorption coefficient 原子吸收系数atomic absorption method 原子吸收法atomic absorption photometer 原子吸收光度计atomic absorption spectrochemical analysis 原子吸收光谱分析atomic absorption spectrophotometer 原子吸收分光光度计atomic absorption spectrophotometry 原子吸收分光光度法atomic absorption spectroscopy 原子吸收光谱学atomic absorption spectrum 原子吸收光谱atomic accelerator 原子粒子加速器atomic age 原子时代atomic air burst 空中核爆炸atomic arrangement 原子排列atomic automobile 原子汽车atomic battery 核能电池atomic beam 原子束atomic beam frequency standard 原子束频率标准atomic beam magnetic resonance 原子束磁共振atomic beam resonating method 原子束共振法atomic beam scattering 原子束散射atomic blast 原子弹爆炸atomic bomb 原子弹atomic bomb injury 原子弹损害atomic bombardment 原子轰炸;原子轰击atomic bond 共价键atomic burst 原子弹爆炸atomic car 原子汽车atomic centre 原子中心部分atomic charge 原子序数atomic chart 原子量表atomic chemistry 原子化学atomic clock 原子钟atomic cloud 原子烟云atomic collision 原子碰撞atomic collision physics 原子碰撞物理学atomic constants 原子常数atomic core 原子中心部分atomic cross section 原子截面atomic defence 原子防御atomic demolition munitions 原子爆破弹药atomic density 原子密度atomic diameter 原子直径atomic diffusion 原子扩散atomic disintegration 原子衰变atomic dispersion 原子分散atomic distance 原子距离atomic electron 原子中的电子atomic electron shell 原子的电子壳层atomic emission spectroscopy 原子发射光谱学atomic energy agreement 原子能协定atomic energy commission 原子能委员会atomic energy commission manual 原子能委员会手册atomic energy detection system 原子能探测系统atomic energy economics 原子能经济学atomic energy law 原子能法律atomic energy plant 原子能发电站atomic energy reaktor 动力反应堆atomic energy science 原子能科学atomic energy storage battery 核能电池atomic engineering 原子工程学atomic envelope 原子的电子壳层atomic excitation 原子激发atomic excitation function 原子激发函数atomic explosion 原子弹爆炸atomic explosion test 原子爆炸试验atomic explosion trial 原子爆炸试验atomic field 原子场atomic fireball 火球atomic fluorescence analysis 原子荧光分析atomic fluorescence spectrometry 原子荧光光谱法atomic fluorescence spectroscopy 原子荧光光谱学atomic fraction 原子分率atomic fragments 原子碎片atomic frequency standard 原子频率标准atomic fuel 核燃料atomic furnace 板应堆atomic group 原子团atomic heat 原子热atomic hydrogen 原子氢atomic hydrogen chemistry 原子氢化学atomic hydrogen welding 原子氢焊接atomic hypothesis 原子假说atomic industry 原子能工业atomic interaction 原子间相互酌atomic interior mechanics 原子内部力学atomic ion 原子离子atomic ionization 原子电离atomic jump 原子跳跃atomic kernel 原子中心部分atomic laser spectroscopy 原子激光光谱学atomic lattice 原子栅格atomic level 原子能级atomic line 原子谱线atomic magnetic moment 原子磁矩atomic mass 原子质量atomic mass constant 原子质量常数atomic mass conversion factor 原子质量换算因子atomic mass formula 原子质量公式atomic mass number 原子质量数atomic mass unit 原子质量单位atomic medicine 原子医学atomic migration 原子迁移atomic moderation ratio 原子慢化比atomic nucleus 核atomic number 原子序数atomic orbit 原子轨道atomic orbital 原子轨函数atomic percent 原子百分率atomic photoelectric effect 光电电离atomic pile 板应堆atomic plane 原子飞机atomic polarization 原子极化atomic powered aircraft 原子动力飞机atomic powered heart pacemaker 原子能心脏起搏器atomic properties 原子特性atomic propulsion 核推进atomic radiation 原子辐射atomic radius 原子半径atomic ratio 原子比atomic ratio of moderator to fuel 原子慢化比atomic ray 原子束atomic reaction 原子反应atomic reactor 板应堆atomic scale 原子标度atomic scattering coefficient 原子散射系数atomic scattering factor 原子散射因子atomic shell 原子的电子壳层atomic shell structure 原子壳层结构atomic ship 原子动力船atomic species 原子种类atomic spectrum 原子光谱atomic state 原子态atomic stopping power 原子阻止本领atomic structure factor 原子结构因素atomic submarine 原子潜艇atomic susceptibility 原子磁化率atomic symbol 原子符号atomic theory 原子论atomic time 原子时atomic transformation 核转变atomic trunk 原子中心部分atomic underground burst 地下爆炸atomic underwater burst 水下爆炸atomic vapor laser isotope separation 原子蒸汽激光同位素分离atomic volume 原子体积atomic weight 原子量atomic weight conversion factor 原子量换算因子atomic weight unit 原子量单位atomical 原子的atomicity 价atomics 原子工艺学atomistics 原子论atomization 原子化atomizer 喷雾器atomizing nozzle 雾化喷嘴atr 改进型热中子反应堆atrce 先进试验堆临界实验装置attachment 附件attachment coefficient 附着系数attenuation 衰减attenuation coefficient 衰减系数attenuation distance 衰减距离attenuation factor 衰减系数attenuation length 衰减距离attenuator 衰减器attraction 引力attractive force 引力attribute test 属性检验auger effect 俄歇效应auger electron 俄歇电子auger shower 俄歇簇射auger yield 俄歇电子产额aut 三碳酸铀酰铵autocatalysis 自动催化autocatalytic reaction 自动催化反应autoclave 压热七压釜autocollimation 自准直autoelectronic emission 自动电子放射autoelectronicemission 自动电子放射autoignition 自发点火autoionization 自电离automatic 自动的automatic burette 自给滴定管automatic control 自动控制automatic counting and printing assembly 自动计数与印刷装置automatic data processing 自动数据处理automatic data processing system 自动数据处理系统automatic depressurization system 自动减压系统automatic double beam spectrometer 自动双光束分光计automatic filter activity meter 过滤圃动放射性测定仪automatic period control 周期自动控制automatic radiochromatogram analyzer 自动放射色谱分析器automatic range switching linear amplifier 自动量程转换线性放大器automatic reactor power control 反应堆功率自动控制automatic regulator 自动第器automatic remote control 自动遥控automatic sample changer 自动换样器automatic scaler 自动定标器automatic shutter 自动快门automatic stabilization and control system 稳定和控制自动系统automatic temperature compensator 自动温度补偿器automatic titration 自动滴定automation 自动化autoradiogram 自动辐射照相autoradiograph 放射自显影autoradiography 放射自显影法autoradiolysis 自辐射分解autorotation 自转autostereogram 自动立体体视图autosyn 自动同步机autosyn motor 自动同步机autotransformer 自耦变压器autunite 钙铀云母auxiliary 辅助的auxiliary coolant system 辅助冷却系统auxiliary core cooling 活性区辅助冷却auxiliary equipment 辅助设备auxiliary gap 电极间距auxiliary power unit 辅助动力装置auxiliary safety device 辅助安全设备available energy 有效能量avalanche 雪崩avalanche breakdown 雪崩破坏。
计量经济学中英文词汇对照
Common variance Common variation Communality variance Comparability Comparison of bathes Comparison value Compartment model Compassion Complement of an event Complete association Complete dissociation Complete statistics Completely randomized design Composite event Composite events Concavity Conditional expectation Conditional likelihood Conditional probability Conditionally linear Confidence interval Confidence limit Confidence lower limit Confidence upper limit Confirmatory Factor Analysis Confirmatory research Confounding factor Conjoint Consistency Consistency check Consistent asymptotically normal estimate Consistent estimate Constrained nonlinear regression Constraint Contaminated distribution Contaminated Gausssian Contaminated normal distribution Contamination Contamination model Contingency table Contour Contribution rate Control
Threshold Perspectives on Meson Production
a rXiv:n ucl-e x /31111v112N ov23Threshold Perspectives on Meson Production M.Wolke 1The Svedberg Laboratory,Uppsala University,Box 533,75121Uppsala,Sweden ∗Abstract.Studies of meson production in nucleon–nucleon collisions at threshold are characterised by few degrees of freedom in a configuration of well defined initial and final states with a transition governed by short range dynamics.Effects from low–energy scattering in the exit channel are inherent to the data and probe the interaction in baryon–meson and meson–meson systems otherwise difficult to access.From dedicated experiments at the present generation of cooler rings precise data are becoming available on differential and eventually spin observables allowing detailed comparisons between complementary final states.To discuss physics implications of generic and specific properties,recent experimental results on meson production in proton–proton scattering obtained at CELSIUS and COSY serve as a guideline.INTRODUCTION High precision data from the present generation of cooler rings,IUCF,CELSIUS,and COSY ,have contributed significantly over the last decade to our present knowledge and understanding of threshold meson production (for a recent review see [1]).Due to the high momentum transfers required to create a meson or mesonic system in production experiments close to threshold the short range part of the interaction is probed.In nucleon–nucleon scattering,for mesons in the mass range up to 1GeV /c 2distances from 0.53fm (π0)down to less than 0.2fm (φ)are involved.At such short distances it is a priori not clear,whether the relevant degrees of freedom are still baryons and mesons,or rather quarks and gluons.As there is no well defined boundary,one goalof the threshold production approach is to explore the limits in momentum transfer for a consistent description using hadronic meson exchange models.Within this framework,questions concerning both the underlying meson exchange contributions and especially the role of intermediate baryon resonances have to be answered.Another aspect which enriches the field of study arises from the low relative centre–of–mass velocities of the ejectiles:Effects of low energy scattering are inherent to the observables due to strong final state interactions (FSI)within the baryon–baryon,baryon–meson,and meson–meson subsystems.In case of short–lived particles,low energy scattering potentials are otherwise difficult or impossible to study directly.DYNAMICS OF THE TWO PION SYSTEMInγandπinduced double pion production on the nucleon the excitation of the N∗(1440) P11resonance followed by its decay to the Nσchannel,i.e.N∗(1440)→p(ππ)I=l=0, is found to contribute non–negligibly close to threshold[2,3,4].Nucleon–nucleon scattering should provide complementary information,eventually on theππdecay mode of the N∗(1440),which plays an important part in understanding the basic structure of the second excited state of the nucleon[5,6,7].Exclusive CELSIUS data from the PROMICE/W ASA setup on the reactions pp→ppπ+π−,pp→ppπ0π0and pp→pnπ+π0[8,9,10]are well described by model cal-culations[11]:For theπ+π−andπ0π0channels,the reaction preferentially proceeds close to threshold via heavy meson exchange and excitation of the N∗(1440)Roper resonance,with a subsequent pure s–wave decay to the Nσchannel1.While nonres-onant contributions are expected to be small,resonant processes with Roper excita-tion and decay via an intermediate∆(pp→pN∗→p∆π→ppππ)and∆∆excitation (pp→∆∆→pπpπ)are strongly momentum dependent and vanish directly at thresh-old.Double∆excitation,which is expected to dominate at higher excess energies be-yond Q=250MeV[11]involves higher angular momenta and consequently strongly anisotropic proton and pion angular distributions.On the other hand,the Roper decay amplitude via an intermediate∆depends predominantly on a term symmetric in the pion momenta(eq.(1)),leading to the p(π+π−)I=l=0channel and an interference with the direct Nσdecay.Experimentally,for the reaction pp→ppπ+π−at excess energies of Q=64.4MeV and Q=75MeV angular distributions give evidence for only s–waves in thefinal state,in line with a dominating pp→pN∗→pp(π+π−)I=l=0process,with the initial inelastic pp collision governed by heavy meson(σ,ρ)exchange.Roper excitation is disclosed in the pπ+π−invariant mass distribution(Fig.1a),where the data are shifted towards higher invariant masses compared to phase space in agreement with resonance excitation in the low energy tail of the N∗(1440).Compared with Monte Carlo simulations including both heavy meson exchange for N∗excitation,and pp S–wave final state interaction,but only the direct decay N∗→p(π+π−)I=l=0(dotted lines),the production process involves additional dynamics,which is apparent from discrepancies especially in observables depending on theπmomentum correlation k1· k2,i.e.π+π−invariant mass Mππ(Fig.1b)and opening angleδππ=1For the pnπ+π0final state,this reaction mechanism is trivially forbidden by isospin conservation.An underestimation of the total cross section data[9]by the model predictions[11]might be explained by the neglect of effects from the pnfinal state interaction in the calculation[12].M π+π- [MeV/c 2]d σ/d M π+π- [n b /(M e V /c 2)]-π+πδcos d σ/d c o s δπ+π- [n b ]a)M p π+π- [MeV/c 2]d σ/d M p π+π- [n b /(M e V /c 2)]b)c)FIGURE 1.Differential cross sections for the reaction pp →pp π+π−at an excess energy of Q =75MeV.Experimental data (solid circles)for invariant mass distributions of the (p π+π−)–(a)and(π+π−)–subsystems (b),and the π+π−opening angle (c)are compared to pure phase space (shaded areas)and Monte Carlo simulations for direct decays N ∗→N σ(dotted lines),decays via an intermediate ∆resonance N ∗→∆π→N σ(dashed lines)and an interference of the two decay routes (solid lines)according to eq.(1).Figures are taken from [10].allows to determine the ratio of partial decay widths R (M N ∗)=ΓN ∗→∆π→N ππ/ΓN ∗→N σat average masses <M N ∗>corresponding to excess energies Q =64.4MeV and Q =75MeV relative to the π+π−threshold.The numerical results,R (1264)=0.034±0.004and R (1272)=0.054±0.006,exhibit the clear dominance of the direct decay to the N σchannel in the low energy region of the Roper resonance.On the other hand they indicate the strong energy dependence of the ratio from the momentum dependence in the decay branch via an intermediate ∆,which will surpass the direct decay at higher energies [10].A model dependent extrapolation based on the validity of ansatz (1)leads to R (1440)=3.9±0.3at the nominal resonance pole in good agreement with the PDG value of 4±2[13].Within the experimental programme to determine the energy dependence of the N ∗→N ππdecay exclusive data (for details see [14])have been taken simultaneously at the CELSIUS/W ASA facility on both the pp π+π−and pp π0π0final states.In case of the π+π−system the preliminary results at an excess energy of Q =75MeV are in good agreement with the relative strength of the decay routes adjusted to an extrapolated ratio R (1440)=3.However,at slightly higher excess energy (Q =127MeV)the data might be equally well described by a value R (1440)=1,which is noticeably favoured at both excess energies by the data on π0π0production,indicating distinct underlying dynam-ics in π0π0and π+π−production.One difference becomes obvious from the isospin decomposition of the total cross section [9]:An isospin I =1amplitude in the ππsys-tem,and accordingly a p–wave admixture,is forbidden by symmetry to contribute to the neutral pion system in contrast to the charged complement.A p–wave component was neglected so far in the analysis,since the unpolarized angular distributions show no devi-ation from isotropy.However,there is evidence for small,but non–negligible analysing powers from a first exclusive measurement of π+π−production with a polarized beam at the COSY–TOF facility [14,15],suggesting higher partial waves especially in the ππsystem.At higher energies,i.e.Q =208MeV and Q =286MeV with respect to the π+π−threshold,preliminary data for both π+π−and π0π0from CELSIUS/W ASA rather fol-low phasespace than expectations based on a dominating pp →pN ∗→pp σreaction mechanism[14].At these energies,the ∆∆excitation process should influence observ-ables significantly,and,thus,a phase space behaviour becomes even more surprising,unless the ∆∆system is excited in a correlated way.THE PROTON–PROTON–ETA FINAL STATEAs a general trait in meson production in nucleon–nucleon scattering,the primary pro-duction amplitude,i.e.the underlying dynamics can be regarded as energy independent in the vicinity of threshold [16,17,18].Consequently,for s–wave production processes,the energy dependence of the total cross section is essentially given by a phase space behaviour modified by the influence of final state interactions.In Fig.2total cross sec-tion data obtained in proton–proton scattering are shown for the pseudoscalar isosinglet mesons ηand η′[19].In both cases,the energy dependence of the total cross sec-σ[n b ]10101010excess energy [MeV]110102FIGURE 2.Total cross section data for η(squares [20,21,22,23,24,25])and η′(circles [24,26,27,28,29])production in proton–proton scattering versus excess energy Q [19].In comparison,the energy dependences from a pure phase space behaviour (dotted lines,normalized arbitrarily),from phase space modified by the 1S 0proton–proton FSI including Coulomb interaction (solid lines),and from additionally including the proton–ηinteraction phenomenologically (dashed line),are shown.Meson exchange calculations for ηproduction including a P–wave component in the proton–proton system [30]are depicted by the dashed–dotted line,while the dashed–double–dotted line corresponds to the arbitrarily normalized energy dependence from a full three–body treatment of the pp ηfinal state [31](see also [32]).tion deviates significantly from phase space expectations.Including the on–shell 1S 0proton–proton FSI enhances the cross section close to threshold by more than an order of magnitude,in good agreement with data in case of η′.As expected from kinemat-ical considerations[1]the cross section for ηproduction deviates from phase space including the pp FSI at excess energies Q ≥40MeV,where the 1S 0final state is no longer dominant compared to higher partial waves.Deviations at low excess energies seem to be well accounted for by an attractive proton–ηFSI (dashed line),treated phe-nomenologically as an incoherent pairwise interaction [1,17,33].In comparison to the proton–η′(Fig.2)and proton–π0systems only the p ηinteraction is strong enough to become apparent in the energy dependence of the total cross section [34].In differen-tial observables,effects should be more pronounced in the phase space region of low proton–ηinvariant masses.However,to discern effects of proton–ηscattering from the influence of proton–proton FSI,which is stronger by two orders of magnitude,requires high statistics measurements,which have only become available recently [19,35,36]:Close to threshold,the distribution of the invariant mass of the proton–proton subsys-s pp [GeV 2/c 4]d σ/d s p p [µb /(Ge V 2/c 4)]FIGURE 3.Invariant mass squared of the (pp )–subsystem in the reaction pp →pp ηat excess energies of Q =15.5MeV (COSY–11,solid circles [19],Q =15MeV (COSY–TOF,open circles [36]and Q =16MeV (PROMICE/W ASA,open triangles [35]).The dotted and dashed lines follow a pure phase space behaviour and its modification by the phenomenological treatment of the three–body FSI as an incoherent pairwise interaction,respectively.The latter was normalized at small invariant mass values.Effects from including a P–wave admixture in the pp system are depicted by the dashed–dotted line [30],while the dashed–double–dotted line corresponds to a pure s–wave final state with a full three–body treatment [32].tem is characteristically shifted towards low invariant masses compared to phase space (dotted line in Fig.3).This low–energy enhancement is well reproduced by modifying phase space with the 1S 0pp on–shell interaction.A second enhancement at higher pp invariant masses,i.e.low energy in the p ηsystem,is not accounted for even when including additionally the proton–ηinteraction incoherently (dashed line).However,in-cluding a P–wave admixture in the pp system by considering a 1S 0→3P 0s transition in addition to the 3P 0→1S 0s threshold amplitude,excellent agreement with the ex-perimental invariant mass distribution is obtained (dashed–dotted line [30]).In return,with the P–wave strength adjusted to fit the invariant mass data,the approach fails to reproduce the energy dependence of the total cross section (Fig.2)below excess ener-gies of Q =40MeV.Preliminary calculations considering only s–waves in the final statebut using a rigorous three–body treatment of the ppηfinal state actually decrease the cross section at large values of the pp invariant mass(dashed–double–dotted lines[32]) compared to an incoherent two–body calculation within the same framework.However, close to threshold the energy dependence of the total cross section is enhanced com-pared to the phenomenological incoherent treatment and the data(Fig.2).Although part of this enhancement has to be attributed to the neglect of Coulomb repulsion in the pp system,consequently overestimating the pp invariant mass at low values,qualitatively the full three–body treatment has opposite effects compared to a P–wave admixture in the proton–proton system in view of both the total cross section as well as the pp in-variant mass distribution.In the approximate description of the total cross section by the phenomenological s–wave approach with an incoherent FSI treatment these two effects seem to cancel casually.Close to threshold,resonance excitation of the S11(1535)and subsequent decay to the pηfinal state is generally2believed to be the dominantηproduction mechanism [17,30,38,39,40,41,42,43].In this context,the issue of the actual excitation mechanism of the S11(1535)remains to be addressed.Theηangular distribution is sensitive to the underlying dynamics:A dominantρexchange favoured in[41]results in an inverted curvature of theηangular distribution compared toπandηexchanges which are inferred to give the largest contribution to resonance excitation in[42].In the latter approach the interference of the pseudoscalar exchanges in the resonance current with non–resonant nucleonic and mesonic exchange currents turns the curvature to the same angular dependence as expected forρexchange.Presently,due to the statistical errors of the available unpolarised data at an excess energy of Q≈40MeV[35,36]it is not possible to differentiate between a dominantρorπ,ηexchange,as discussed in [36].Data recently taken at the CELSIUS/W ASA facility with statistics increased by an order of magnitude compared to the available data might provide an answer in the near future[44].Spin observables,like theηanalyzing power,should even disentangle a dominantρmeson exchange and the interference ofπandηexchanges in resonance excitation with small nucleonic and mesonic currents[42],which result in identical predictions for the unpolarisedηangular distribution.First data[45]seem to favour the vector dominance model,butfinal conclusions both on the underlying reaction dynamics and the admixture of higher partial waves[30]have to await the analysis of data taken with higher statistics for the energy dependence of theηanalysing power[46].ASSOCIATED STRANGENESS PRODUCTIONIn elementary hadronic interactions with no strange valence quark in the initial state the associated strangeness production provides a powerful tool to study reaction dynamicsby introducing a“tracer”to hadronic matter.Thus,quark model concepts might even-tually be related to mesonic or baryonic degrees of freedom,with the onset of quark degrees of freedom expected for kinematical situations with large enough transverse momentum transfer.First exclusive close–to–threshold data onΛandΣ0production[47,48]obtained at the COSY–11facility showed at equal excess energies below Q=13MeV a cross section ratio ofRΛ/Σ0(Q≤13MeV)=σ(pp→pK+Λ)3For further complementary theoretical approaches see references in[1,58,59].Σ0p FSI being much weaker compared to the Λp system.However,the interpretation implies dominant S–wave production and reaction dynamics that can be regarded as energy independent.Within the present level of statistics,contributions from higher partial waves can be neither ruled out nor confirmed at higher excess energies for Σ0production.The energy dependence of the production ratio RΛ/Σ0is shown in Fig.4in comparisonwith theoretical calculations obtained within the approach of [50]assuming a destructive interference of πand K exchange and employing different choices of the microscopic hyperon nucleon model to describe the interaction in the final state [61].The resultexcess energy [MeV]4060200σ (p p → p K +Λ)σ (p p→p K +Σ)010203040FIGURE 4.Λ/Σ0production ratio in proton–proton scattering as a function of the excess energy.Data are from [48](shaded area)and [60].Calculations [61]within the Jülich meson exchange model imply a destructive interference of K and πexchange using the microscopic Nijmegen NSC89(dashed line [62])and the new Jülich model (solid line [63])for the Y N final state interaction.crucially depends on the details —especially the off–shell properties —of the hyperon–nucleon interaction employed.At the present stage both the good agreement found in[50]with the threshold enhancement (2)and for the Nijmegen model (dashed line in Fig.4)with the energy dependence of the cross section ratio should rather be regarded as accidental 4.Calculations using the new Jülich model (solid line in Fig.4)do not reproduce the tendency of the experimental data.It is suggested in [61]that neglecting the energy dependence of the elementary amplitudes and higher partial waves might no longer be justified beyond excess energies of Q =20MeV.However,once the reaction mechanism for close–to–threshold hyperon production is understood,exclusive data should provide a strong constraint on the details of hyperon–nucleon interaction models.PRESENT AND FUTUREIntermediate baryon resonances emerge as a common feature in the dynamics of the exemplary cases for threshold meson production in nucleon–nucleon scattering dis-cussed in this article.However,this does not hold in general for meson production in the1GeV/c2mass range(for a discussion onη′production see[64]).Moreover,the extent to which resonances are evident in the observables or actually govern the reaction mechanism depends on the specific channels,which differ in view of the level of present experimental and theoretical understanding.The N∗(1440)resonance dominatesπ+π−production at threshold,and exclusive data allow to extract resonance decay properties in the low–energy tail of the Roper. Dynamical differences between the different isospin configurations of theππsystem and the behaviour at higher energies remains to be understood withfirst experimental clues appearing.With three strongly interacting particles in thefinal state,a consistent description ofηproduction close to threshold requires an accurate three–body approach taking into account the possible influence of higher partial waves.High statistics differential cross sections and polarization observables coming up should straighten out both the excitation mechanism of the N∗(1535)and the admixture of higher partial waves.At present,the available experimental data on the elementary strangeness produc-tion channels give evidence for both an important role of resonances coupling to the hyperon–kaon channels and on a dominant non–resonant kaon exchange mechanism. Experiments on different isospin configurations,high statistics and spin transfer mea-surements close to threshold should disentangle the situation in future.From the cornerstone of total cross section measurements,it is apparent from the above examples to what extent our knowledge is presently enlarged by differential observables and what will be the impact of polarization experiments in future to get new perspectives in threshold meson production.ACKNOWLEDGMENTSThe author gratefully acknowledges the pleasure to work with the CELSIUS/W ASA and COSY–11collaborations,and,in particular,thanks M.Bashkanov,H.Clement,R. Meier,P.Moskal and W.Oelert for helpful discussions.This work has been supported by The Swedish Foundation for International Cooperation in Research and Higher Education(STINT Kontrakt Dnr02/192).REFERENCES1.Moskal,P.,Wolke,M.,Khoukaz,A.,and Oelert,W.,Prog.Part.Nucl.Phys.,49,1–90(2002).2.Oset,E.,and Vicente-Vacas,M.J.,Nucl.Phys.,A446,584–612(1985).3.Bernard,V.,Kaiser,N.,and Meißner,U.-G.,Nucl.Phys.,B457,147–174(1995).4.Gómez Tejedor,J.A.,and Oset,E.,Nucl.Phys.,A600,413–435(1996).5.Morsch,H.P.,and Zupranski,P.,Phys.Rev.,C61,024002(2000).6.Krehl,O.,Hanhart,C.,Krewald,S.,and Speth,J.,Phys.Rev.,C62,025207(2000).7.Hernández,E.,Oset,E.,and Vicente Vacas,M.J.,Phys.Rev.,C66,065201(2002).8.Brodowski,W.,et al.,Phys.Rev.Lett.,88,192301(2002).9.Johanson,J.,et al.,Nucl.Phys.,A712,75–94(2002).10.Pätzold,J.,et al.,Phys.Rev.,C67,052202(2003).11.Alvarez-Ruso,L.,Oset,E.,and Hernández,E.,Nucl.Phys.,A633,519–546(1998).12.Alvarez-Ruso,L.(2002),private communications.13.Hagiwara,K.,et al.,Phys.Rev.,D66,010001(2002).14.Bashkanov,M.,et al.,proceedings of this conference(2003).15.Clement,H.,et al.,Annual Report2002,Forschungszentrum Jülich(2003),Jül–4052.16.Moalem,A.,Gedalin,E.,Razdolskaja,L.,and Shorer,Z.,Nucl.Phys.,A600,445–460(1996).17.Bernard,V.,Kaiser,N.,and Meißner,U.-G.,Eur.Phys.J.,A4,259–275(1999).18.Gedalin,E.,Moalem,A.,and Razdolskaja,L.,Nucl.Phys.,A650,471–482(1999).19.Moskal,P.,et al.,e–Print Archive:nucl–ex/0307005(2003),Phys.Rev.C,in print.20.Bergdolt,A.M.,et al.,Phys.Rev.,D48,2969–2973(1993).21.Chiavassa,E.,et al.,Phys.Lett.,B322,270–274(1994).22.Calén,H.,et al.,Phys.Lett.,B366,39–43(1996).23.Calén,H.,et al.,Phys.Rev.Lett.,79,2642–2645(1997).24.Hibou,F.,et al.,Phys.Lett.,B438,41–46(1998).25.Smyrski,J.,Wüstner,P.,et al.,Phys.Lett.,B474,182–187(2000).26.Moskal,P.,et al.,Phys.Rev.Lett.,80,3202–3205(1998).27.Moskal,P.,et al.,Phys.Lett.,B474,416–422(2000).28.Balestra,F.,et al.,Phys.Lett.,B491,29–35(2000).29.Khoukaz,A.,et al.,Annual report2000/01,Institute of Nuclear Physics,University of Münster(2001),URL http://www.uni-muenster.de/Physik/KP/anrep.30.Nakayama,K.,Haidenbauer,J.,Hanhart,C.,and Speth,J.,Phys.Rev.,C68,045201(2003).31.Fix,A.(2003),private communications.32.Fix,A.,and Arenhövel,H.,Nucl.Phys.,A697,277–302(2002).33.Schuberth,U.,Phd thesis,Uppsala University(1995).34.Moskal,P.,et al.,Phys.Lett.,B482,356–362(2000),and references therein.35.Calén,H.,et al.,Phys.Lett.,B458,190–196(1999).36.Abdel-Bary,M.,et al.,Eur.Phys.J.,A16,127–137(2003).37.Peña,M.T.,Garcilazo,H.,and Riska,D.O.,Nucl.Phys.,A683,322–338(2001).38.Batini´c,M.,Švarc,A.,and Lee,T.-S.H.,Phys.Scripta,56,321–324(1997).39.Santra,A.B.,and Jain,B.K.,Nucl.Phys.,A634,309–324(1998).40.Gedalin,E.,Moalem,A.,and Razdolskaja,L.,Nucl.Phys.,A634,368–392(1998).41.Fäldt,G.,and Wilkin,C.,Phys.Scripta,64,427–438(2001).42.Nakayama,K.,Speth,J.,and Lee,T.-S.H.,Phys.Rev.,C65,045210(2002).43.Baru,V.,et al.,Phys.Rev.,C67,024002(2003).44.Zlomanczuk,J.(2003),private communications.45.Winter,P.,et al.,Phys.Lett.,B544,251–258(2002).46.Czy˙z ykiewicz,R.,et al.,proceedings of this conference(2003).47.Balewski,J.T.,et al.,Phys.Lett.,B420,211–216(1998).48.Sewerin,S.,Schepers,G.,et al.,Phys.Rev.Lett.,83,682–685(1999).49.Baldini,A.,Flaminio,V.,Moorhead,W.G.,and Morrison,D.R.O.,Total Cross-Sections forReactions of High–Energy Particles,vol.12B of Landolt–Börnstein:New Series.Group1,edited by H.Schopper,Springer,Heidelberg,Germany,1988,ISBN3–540–18412–0.50.Gasparian,A.,et al.,Phys.Lett.,B480,273–279(2000).51.Siebert,R.,et al.,Nucl.Phys.,A567,819–843(1994).52.Tan,T.H.,Phys.Rev.Lett.,23,395–398(1969).53.Balestra,F.,et al.,Phys.Rev.Lett.,83,1534–1537(1999).54.Maggiora,M.,πN Newslett.,16,273–279(2002).get,J.M.,Phys.Lett.,B259,24–28(1991).56.Ro˙z ek,T.,and Grzonka, D.,COSY Proposal117,IKP,FZ Jülich,Germany(2002),URLhttp://www.fz-juelich.de/ikp/en/publications.shtml.57.Shyam,R.,Penner,G.,and Mosel,U.,Phys.Rev.,C63,022202(2001).58.Kowina,P.,et al.,proceedings of this conference(2003).59.Wagner,M.,et al.,proceedings of this conference(2003).60.Kowina,P.,Wolke,M.,et al.,e–Print Archive:nucl–ex/0302014(2003).61.Gasparyan,A.,Symposium on Threshold Meson Production in pp and pd Interaction,Forschungs-zentrum Jülich,Germany,2002,vol.11of Matter and Material,pp.205–211.62.Maessen,P.M.M.,Rijken,T.A.,and de Swart,J.J.,Phys.Rev.,C40,2226–2245(1989).63.Haidenbauer,J.,Melnitchouk,W.,and Speth,J.,AIP Conf.Proc.,603,421–424(2001).64.Moskal,P.,et al.,proceedings of this conference(2003).。
物理专业英语词汇(I)题库
物理专业英语词汇(I)ice 冰ice calorimeter 冰量热计ice model 冰模型iconoscope 光电摄象管icosahedron 二十面体ideal black body 理想黑体ideal constraints 理想拘束ideal crystal 理想晶体ideal fluid 完整铃ideal gas 理想气体ideal gas law 理想气体定律ideal lattice 理想晶格ideal liquid 理想液体ideal solid 理想固体ideal solution 理想溶液ideally imperfect crystal 理想非完满晶体ideally perfect crystal 理想完满晶体identity parameter 晶体参数ignition 点火ignition potential 点火电位ignitron 点火管illuminance 光照度illuminant 光源illuminating engineering 照盲程学illuminating lamp照闷illumination 光照度illumination curve 照度曲线illumination photometer 照度计illumination photometry 照度丈量illuminator 照冒置illuminometer 照度计image 象image analyzer 图象剖析器image charge 象电荷image contrast 象对照度image converter 变象管image converter tube 变象管image distortion 图象失真image force 象力image formation 成象image frequency 象频image hologram 象全息图image iconoscope 图象光电摄象管image intensifier 影象加强器影象放大器image intensifier tube 影象加强器影象放大器image orthicon 超正析象管image parameter 成象参数image pickup tube 摄象管image plane 象平面image point 象点image processing 图象办理image ratio 镜频波道的相对增益image restoration 象恢复image space 象空间image surface 象曲面imagelyzer 图象剖析器immersion 淹没immersion lens 淹没透镜immersion method 淹无法immersion microscope 油浸显微镜immersion objective 淹没物镜immersion refractometer 淹没折射计impact 冲击impact ionization 碰撞电离impact matrix 碰撞矩阵impact parameter 碰撞参数impact parameter method 碰撞参数法impact strength 冲豢度impact stress 冲沪力impact test 冲辉验impedance 阻抗impedance bridge 阻抗电桥impedance matching 阻抗般配imperfect crystal 非完满晶体imperfect gas 非理想气体impressed forces 外力imprisonment of resonance radiation 共振辐射陷获improper variable 准变星impulse 冲击冲量impulse approximation 冲稽似impulse function 脉冲函数impulse generator 脉冲发生器impulse of force 冲量impulsive current 脉冲电流impulsive force 冲力impulsive sound 冲基impulsive tone 撞霍impurity 杂质impurity atom 杂质原子impurity band 杂质能带impurity center 杂质中心impurity conduction 杂质导电impurity level 杂质能级impurity scattering 杂质散射impurity semiconductor 杂质半导体in clockwise direction 向顺时针的方向in counter colckwise direction 向反时针的方向in situ observation 就地察看incandescence 白炽incandescent lamp 白炽灯inch 英寸incidence 入射incidence angle 入射角incident beam 入射束incident light 入射光incident particle 入射粒子incident plane 入射面incident ray 入射光芒incident wave 入射波inclination factor 倾斜因子inclinometer 磁倾计incoherence 非相关性incoherent light 非相关光incoherent scatteering 非相关散射incommensurate structure 不相应构造incompressibility 不行压缩性incompressible flow 不行压缩流indefinite metric 不定胸怀independent atom model 独立原子模型independent particle 独立粒子independent particle model 独立粒子模型independent variable 自变数indeterminancy 不确立性indeterminancy principle 测禁止原理index 指数index of refraction 折射率indicating lamp 指示灯indicator 指示器指示剂indifferent equilibrium 中性均衡indirect exchange interaction 间接交换互相酌indirect illumination 间接照明indirect measurement间接丈量indirect transition 间接跃迁indirectly heated cathode 旁热式阴极indistinguishability of identical particles 全同粒子的不行分辨性indium 铟individual error 人为偏差individual excitation 独自激发induced current 感觉电流induced electromotive force 感觉电动势induced emission 感觉发射induced radioactivity 感觉放射性induced representation 引诱表示inductance 电感感觉系数inductance coil 感觉线圈induction 感觉; 概括induction accelerator 感觉加快器induction coefficient 感觉系数induction coil感觉线圈induction field 感觉磁场induction furnace 感觉电炉induction heating 感觉加热induction method 概括法induction motor 感觉电动机inductive 感觉的inductor coil 感觉线圈indus 印第安座inelastic collision 非弹性碰撞inelastic scattering 非弹性散射inert gas 惰性气体inertia 惯性inertial force 惯性力inertial frame of reference 惯性系inertial mass 惯性质量inertial resistance 惯性阻力inertial system 惯性系inertial wave 惯性波inferior conjunction 下合inferior mirage 下现幻景inferior planet 地行家星infinite medium 无穷介质infinite universe 无穷宇宙infinitesimal rotation 无量小转动infinitesimal transformation 无量小变换inflationary universe 狂涨宇宙inflector 偏转器influence machine感觉起电机information processing 信息办理information quantity 信息量information retrieval 信息恢复information theory 信息论infra acoustic 声下的infra acoustic frequency 亚声频infra sound 次声infranics 红外线电子学infrared 红外线的infrared active 红外激活的infrared astronomical satellite 红外天文卫星infrared astronomy 红外天文学infrared catastrophe 红外灾变infrared divergence 红外发散infrared lamp 红外灯infrared laser 红外激光器infrared magnitude 红外星等infrared microscope 红外线显微镜infrared photocell 红外线光电管infrared photography 红外拍照infrared radiation 红外辐射infrared rays 红外线infrared spectrophotometer 红外分光光度计infrared spectroscopy 红外光谱学infrared spectrum 红外光谱inhomogeneous broadening 非平均增宽inhomogeneous plasma 非平均等离子体inhomogeneous superconductor 非均质超导体inhomogeneous universe 非平均宇宙initial black hole 原始黑洞initial permeability 初始磁导率initial phase 初相initial state 初态initial stress 初应力initial velocity 初速度injection 注入injection laser 注入型激光器注入型二极管激光器injector accelerator 注入加快器injury 损害inlet pressure 入口压力inner bremsstrahlung 内韧致辐射inner corona 内冕inner electron 内层电子inner product 内积inner quantum number 内量子数inner shell 内壳层input 输入input output channel 输入输出通道input output unit 输出输入装置input program 输入程序input routine 输入程序insolation 日射inspection 检查instability 不稳固性instability energy 不稳固能instantaneous axis of rotation 刹时转动轴instantaneous neutron 瞬发中子instantaneous pole 刹时极instantaneous power 刹时功率instanton 瞬子instruction 指令instrument 仪器仪表instrument transformer 仪表变换器instrumental error 仪企差instrumental function 仪漂数insulating paper绝缘纸insulating transformer 绝缘变压器insulation 绝缘insulation resistance 绝缘电阻insulator 绝缘体integral calculus 积分学integral equation 积分方程integral invariant 积分不变式integral transform 积分变换integrated circuit 集成电路integrated optics 集成光学integrated reflection intensity 积分反射强度integrating sphere 乌布利希球integrating wattmeter 积累瓦特计integration circuit 积分电路integration type analog to digital conversion 积分型模拟数字变换intense slow positron beam 强慢速阳电子束intensifier 加厚剂intensity 强度intensity alternation 强度交变intensity factors of spectral lines 谱线强度因子intensity modulation 亮度灯intensity of magnetic field 磁场强度intensity of magnetization 磁化强度intensity of radioactivity 放射性强度intensity of sound 声强intensity region 强度范围intensive quantity 内包量intensive variable 示强变量interaction 互相酌interaction energy 互相酌能interaction force 互相酌力interaction potential 互相酌势interaction range 互相酌区interatomic 原子间的interatomic distance 原子间距离interatomic forces 原子间力intercalation 夹层interchange instability 变换不稳固性interchangeability 交换性intercombination 互相组合intercrystalline 晶粒间的interdiffusion 互扩散interface 界限面interfacial electric phenomenon 界面电现象interfacial potential 界面势interfacial tension 界面张力interfacial viscosity 界面粘性interference 干预interference color 扰乱色interference filter 扰乱滤光片interference fringe 干预条纹interference microscope 干预显微镜interference of equal inclination 等倾角干预interference of equal thickness 等厚度干预interference of light 光的干预interference of polarized light 偏振光的干预interference refractometer 干预折射计interference spectroscope 干预分光镜interferometer 干预仪interferometry 干预胸怀学intergalactic matter 星系际物质intergalactic space 星系际空间intermediate coupling 中间耦合intermediate energy 中间能量intermediate energy physics 中能物理学intermediate frequency 中频intermediate frequency transformer 中频变换器intermediate image 中间影象intermediate neutron 中速中子intermediate nucleus 复核intermediate orbit 中间轨道intermediate state 中间态intermediate vector boson 弱玻色子intermetallic compounds 金属间化合物intermittent discharge 间歇放电intermolecular 分子间的intermolecular force 分子间力intermolecular interaction 分子间互相酌internal adsorption 内吸附internal conversion 内变换internal conversion electron 内变换电子internal electron pair creation 内电子对产生internal energy 内能internal exposure 内照耀internal force 内力internal friction 内摩擦internal impedance 内阻抗internal ionization 内电离internal magnetic field 内磁场internal photoelectric effect 内光电效应internal pressure 内压internal quantum number 内量子数internal reflection 内反射internal resistance 内阻internal rotation 内旋转internal storage 内部储存器internal stress 内应力internal target 内靶internal viscosity 内粘滞international atomic time 国际原子时international geophysical year 国际地球物理年international latitude service 国际纬度服务international practical temperature scale 国际适用温标international prototype metre 国际米原器international standard atomsphere 国际标准大气international system of units 国际单位制international temperature scale 国际温标international thermonuclear experimental reactor 国际热核实验反响堆international unit 国际单位interpenetration 互相穿透interplanar crystal spacing 晶面间距interplanetary dust 行星际灰尘interplanetary magnetic field 行星际磁场interplanetary matter 行星际物质interplanetary space 行星际空间interpolation formula 内插公式interrupt 中止interrupter 断续器interspace 缝隙interstellar absorption 星际汲取interstellar absorption line 星际线interstellar cloud 星际云interstellar dust 星际灰尘interstellar gas 星际气体interstellar line 星际线interstellar magnetic field 星际磁场interstellar matter 星际物质interstellar molecule 星际分子interstellar reddening 星际红化interstellar space 星际空间interstice 缝隙interstitial alloy 填隙式合金interstitial atom 填隙原子interstitial diffusion 填隙式扩散interstitial ion 填隙离子interstitial solid solution 填隙式固溶体interval间隔interval rule 间隔规则intraatomic 原子内的intracrystalline 晶体内的intramolecular分子内的intramolecular bond 分子内键intramolecular forces 分子内力intramolecular rotation 分子内转动intrinsic conduction 本占电intrinsic energy 内能intrinsic magnetic moment 固有磁矩intrinsic magnetization 内倥化intrinsic parity 内兕称intrinsic permeability 固有磁导率intrinsic semiconductor 本针导体intrinsic viscosity 本粘性intrinsic wavelength 固有波长invar 殷钢invariable plane 不变平面invariance 不变性invariant 不变式invariant of strain 应变不变量invariant subgroup 不变子群inverse circuit 反演电路inverse compton effect 逆康普顿效应inverse fluorite structure 逆萤石构造inverse photoelectric effect 逆光电效应inverse photoelectron spectroscopy 逆光电光谱学inverse piezoelectric effect 逆压电效应inverse predissociation 逆前级离解inverse problem 逆问题inverse process 逆过程inverse proportion 反比率inverse raman effect 反转喇曼效应inverse raman spectroscopy反转喇曼光谱学inverse reaction 逆反响inverse scattering method 逆散射法inverse spinel 反尖晶石inverse spinel structure 反尖晶石型构造inverse square law 平方反比律inverse transformation 逆变换inverse voltage 逆电压inverse zeeman effect 反向塞曼效应inversion 反演inversion axis 反演轴inversion doublet 反转两重线inversion formula 反演公式inversion layer 反转层 ; 逆温层inversion spectrum 反转光谱inversion system 倒象系inversion temperature 变换温度invert 反演inverted magnetron gage 逆磁控管计inverted multiplet 反转多重态inverted term颠倒项inverter 逆变换装置inviscid flow 无粘性流invisible radiation 不行见的辐射invisible rays 不行见的射线iodine 碘ion 离子ion accelerator 离子加快器ion acceptor 离子接受体ion acoustic instability 离子声波不稳固性ion activity 离子活度ion avalanche 离子雪崩ion beam 离子束ion beam probe 离子束探针ion bombardment 离子轰击ion channelling 离子沟道效应ion cloud 离子云ion cluster 离子簇ion concentration 离子浓度ion condensation 离子凝集ion cyclotron frequency 离子盘旋频次ion cyclotron resonance heating 离子盘旋共振加热ion cyclotron resonance method 离子盘旋共振法ion density 离子密度ion diffusion 离子扩散ion electron recombination 离子电子再化合ion exchange 离子交换ion exchange resin 离子交换尸ion impact 离子碰撞ion implantation 离子注入ion implanted junction 离子注入结ion induced desorption 离子感觉退吸ion induced x ray analysis 离子感觉 x 射线剖析ion lattice 离子晶格ion loss 离子消耗ion microprobe analyzer 离子微探针剖析器ion microscope 离子显微镜ion molecule 离子型分子ion neutralization 离子中和ion neutralization spectroscopy 离子中和波谱学ion optics 离子光学ion orbit 离子轨道ion pair 离子对ion pair formation 离子对生成ion plasma frequency 离子等离子体频次ion pump 离子泵ion recombination 离子复合ion saturation current 离子饱和电流ion scattering spectroscopy 离子散射能谱学ion selective electrode 离子选择电极ion sheath 离子鞘ion source 离子源ion temperature 离子温度ion trap 离子圈套ion yield 离子产额ionic atmosphere 离子氛围ionic bond 异极键ionic charge 离子电荷ionic compound 离子化合物ionic conduction 离子导电ionic crystal 离子晶体ionic current 离子电流ionic laser 离子激光器ionic migration 离子迁徙ionic mobility 离子迁徙率ionic molecule 离子型分子ionic polymerization 离子聚合ionic radius 离子半径ionic recombination 离子复合ionic strength 离子强度ionic structure 离子构造ionium 锾ionization 电离ionization by collision 碰撞电离ionization chamber 电离室ionization current 电离电流ionization density 电离密度ionization fluctuation 电离涨落ionization limit 电离极限ionization loss 电离损失ionization potential 电离电势ionization power 致电离能力ionization rate 电离率ionization vacuumgage 电离真空计ionized atom 电离原子ionized layer 电离层ionizer 电离装置ionizing energy 电离能量ionizing power 致电离能力ionizing radiation 电离线ionoluminescence 离子发光ionometer离子计ionosphere电离层ionospheric disturbance电离层扰动ionospheric storm 电离层暴iras object iras 天体iridescence 虹色iridium 铱iris 可变光栏iris diaphragm锁定光栏iris type accelerator guide 隔阂型加快波导管iron 铁iron constantan thermocouple 铁康铜热电偶iron group elements 铁族元素iron loss 铁耗irradiation 辐照irradiation damage 辐照损害irradiation hardening 辐照硬化irradiation reactor 辐照用堆irreducible representation 不行约表示irregular galaxy 不规则星系irregular nebula 不规则星云irregular reflection 不规则反射irregular variable 不规则变星irreversibility 不行逆性irreversible process 不行逆过程irreversible reaction 不行逆反响irrotational field 非旋场isentrope 等熵线isentropic analysis 等熵剖析isentropic surface 等熵面ising model 伊辛模型isoanomalous line 等异样线isobar 等压线isobaric 等压的isobaric analog resonance同质异位素相像共振isobaric analog state 同质异位素相像态isobaric process 等压过程isobaric surface 等压面isocandle diagram 等烛光图isochor 等容线isochromatic 等色的isochromatic line 等色线isochromatic surface 等色面isochrone 等时线isochronism 等时性isochronous cyclotron 等时性盘旋加快器isoclinal 等倾线isoclinal line 等倾线isoclinic line 等倾线isodiaphere 同差素isodynamic line 等力线isoelectric point 等电点isogon 等偏线isolated point 孤点isolation 隔绝isolator 隔绝器绝缘体isolux curve 等照度线isomagnetism 等偏isomer 同质异能素isomer shift 同质异能位移isomeric state 同质异能态isomeric transition 同质异能跃迁isomerism 同质异能性isomerization energy 同质异能化能isometric process 等容过程isomorphism 同构isopycnic 等密度的isopycnic line 等密度线isospace 电荷空间isospin 同位旋isostasy 地壳均衡说isostere 等比容线isosteric molecule 电子等排分子isotherm 等温线isothermal 等温的isothermal atmosphere 等温大气isothermal change 等温变化isothermal equilibrium 等温均衡isothermal expansion 等温膨胀isothermal process 等温过程isotone 同中子素isotope 同位素isotope analysis 同位素剖析isotope effect 同位素效应isotope incoherence 同位素非相关性isotope separation 同位素分别isotope separator 同位素分别器isotope shift 同位素位移isotopic abundance 同位素丰度isotopic dating 同位素测年纪isotopic invariance 同位旋不变性isotopic spin同位旋isotopic tracer 示踪同位素isotropic scattering 蛤同性散射isotropic turbulence 蛤同性湍流isotropic universe 蛤同性宇宙isotropy 蛤同性iterative method 迭代法itinerant electron 巡回电子itinerant electron magnetism 遍历电子磁性。
Wave-particleduality
1. Wave Particle Dualitya. Write the relationship for the kinetic energy and momentum for particle moving at speeds much slower than the speed of light.b. Find the wavelength of an electron in an x -ray machine having a kinetic energy 10 keV.c. Write the relationship for the kinetic energy and momentum for a particle moving at speeds which are on the order of the speed of light.d. Write the relationship for the kinetic energy and momentum for a photon.e . The maximum energy of an x -ray photon produced by a 10 keV electron is 10 keV. Find the wavelength of such an x -ray photon.2. Schroedinger’s EquationA completely free beam of electrons is moving in the +x direction with a kinetic energy of 10 keV. a. Write the Schroedinger equation for a particle moving in the x direction. b. Show that the wave function in a. is a solution to the Schroedinger equation.3. Schroedinger’s EquationAn electron is confined to move freely in a one dimensional box of length L =1.0 nm having infinite potential walls.a. Write the space part wave function for the ground state, and draw it in the upper left provided axes.b. Write the space part probability density and draw it in the lower left provided axes.c. Draw the wave function and probability density for the same situation but for the case where the height of the potential walls is finite.d. Which state, a. or c., has the lower energy. Explain in one sentence.4. In momentum space (k -space) the separation of states is given by Δk x =Δk y =Δk z =π/L .a. Find the number of states in a volume V =L 3 with momentum less than k and kinetic energy less than E .b. Find the Fermi energy for neutrons in a neutron star having 5×1057neutrons with radius 10 km.c. Find the total zero-point kinetic energy of the neutrons at temperature T =0 K.ψx ψxP x P x1. R elativityA s tar i s e mitting l ight i n t he p ositive x d irection. T he w avelength o f t he l ight i s 400 n m.a. (5 p t) W hat i s t he p eriod Δt i n n s o f o ne o scillation o f l ight i n t he s tar’s f ixed reference f rame.Assuming t he w ave t urns o n a t t=0b. (5 p t) H ow f ar d oes i t g o i n t =100 n s i n t he s tar’s f ixed f rame?c. (5 p t) W rite t he 4-‐vector f or t he s pace-‐time p osition a fter a t ime 100 n s.d. (5 p t) O btain t he s pace-‐time i nvariant i nterval t hat t he l ight t ravels i n 100 n s. Suppose t he s tar m oves a way f rom t he e arth i n t he p ositive x d irection w ith a v elocity 0.8c.e. (5 p t) W hat i s t he p eriod Δ′t i n n s o f o ne o scillation o f l ight i n t he e arth’s m oving r eference f rame?f. (5 p t) H ow f ar d oes t he l ight t ravel a fter o ne o scillation a s s een b y t he e arth.f. (5 p t) W rite t he 4-‐vector f or t he s pace-‐time p osition a fter a t ime ′t corresponding t o one o scillation a s s een f rom t he e arth’s r eference f rame.g. (5 p t) O btain t he s pace-‐time i nvariant i nterval i n t he e arth’s f rame t hat t he l ight travels i n 100 n s2.) B ohr m odel.According t o t he B ohr m odel o f t he h ydrogen a tom, a n e lectron i n t he g round s tateorbits a t a r adius o f a bout 0.5 A o. S uppose t he e lectron i s r eplaced b y a m uon( mµc2=105 MeV) t o f orm a m uonic a tom.a. (10 p t) W hat i s t he r adius o f o rbit f or t he m uonic a tom i n i ts g round s tate?b. (10 p t) W hat a re t he e nergies o f t he g round a nd f irst a nd f irst e xcited s tates?c. (10 p t) W hat i s t he w avelength c orresponding t o t he t ransition b etween t he f irst exciteds tate a nd t he g round s tate?3.)Schroedinger e quation.A s imple h armonic o scillator (SHO) h as a m ass m a nd s pring c onstant K. T he p otential e nergy is 1/2Kx2.a. (10 p t) W rite t he S chroedinger e quation f or t he s pace p art o f t he S HO.b. (10 p t) T he w ave f unction f or t he g round s tate h as t he f orm Ae bx2. B y d irects ubstitution s how t his i s a s olution, a nd t hereby f inding t he c onstant b i n t erms o f m a nd Kc. (10 p t) W rite t he p robability d istribution f or t he g round s tate, a nd c arefullyg raph i t.d. (10 p t) W rite a n i ntegral w hichwould b e u sed t o o btain t he n ormalizing c onstantA.You d o n ot n eed t o s olve t his i ntegral)4.)Schroedinger E q. i n 3 d imensions.Consider a t hree d imensional c ubic p otential w ell w ith r igid (infinite) w alls, h avingsides o f d imension L x = L y = L z = L=0.1 n m.a. (5 p t) W rite t he S chroedinger e quation f or a p article w ithin t he w ell.b. (5 p t) W rite t he q uantum c onditions o n k x , k y a nd k z.c. (5 p t) O btain t he q uantum c ondition o n t he w ave n umber k2.d. (5 p t) O btain t he q uantum c ondition o n t he a llowed e nergies E.e. (5 p t) W rite t he g round s tate s olution Ψ(x,y,z)to t he S chroedingere quationf or a p article w ithin t he w ell.f. (5 p t) W rite t he p robability d ensity f or a p article w ithin t he w ell i n t he g roundstate.g. (5 p t) O btain t he n umerical r esult o n t he a llowed e nergies E i n u nits o f e V.h. (5 p t) O btain t he n umber o f e lectrons w hich c an b e a ccommodated a t e ach o ft he l owest 3 e nergy l evels. T ake i nto a ccount t hat d ifferent c ombinations o fq uantum n umbers c an h ave t he s ame e nergy, a nd t hat t wo e lectrons,c orresponding t o s pin u p a nd d own c an f it i ntoe ach c ombination of s patialq uantum n umbers.2006 Exam. 21. A b aby s eal i n t he p acific o cean h as a b ody t emperature o f 310 K. I f t he m ean temperature o f t he w ater i s 287 K a t w hat r ate w ill t he s eal l ose e nergy b y r adiating p hotons? (σ=5.7×10−8 W⋅m-2⋅K-4)2. W ave p article d uality.Compare t he w avelength a nd f requency o f a p hoton a nd e lectron, e ach w ith k ineticenergy 10 K eV.3. B ohr m odel.a. U se t he B ohr m odel o f t he a tom t o e stimate t he e nergy l evels o f p ositronium, i n w hich a n electron o rbits a p ositron.b. T he i onization e nergy (binding e nergy) o f a n e lectron i n h ydrogen i s 13.6 e V.What i s t he i onization e nergy o f p ositronium?4. P article i n a b ox.Approximate a n a tomic n ucleus a s a n i nfinite c ubical b ox o f s ide L=2 f m, w here1 f m = 10-‐15 m, i n w hich t he n ucleons m ove f reely.a. O btain a n e xpression f or t he w avelength o f t he g round, o r l owest l ying e nergy s tate.b. W hat i s t he k inetic e nergy o f a n eutron i n t he g round s tate o f t his a tom. T he r estenergy o f a n eutron i s m c2=939 M eV.5. S imple h armonic o scillator.A n a pproximate r epresentation o f t he i nteraction b etween t wo a toms i n a d iatomicm olecule i s a s pring l ike f orce F=-Kx w ith o scillator f requency ω=. T ake t he f orcec onstant t o b e 8×103 e V/nm2 = 1000 N/m, a nd t he m ass of e ach a tom a round t o b e5×10−27kg(mc2=4.69 G eV). T he w ave f unction f or t he g round s tate o f a s imple h armonic o scillatori s ψ0(x)=mωπ⎛⎝⎜⎞⎠⎟1/4e−mω2x2.a. W hat i s t he e nergy o f t he g round s tate?b. F ind t he w ave f unction i n m omentum s pace b y p erforming a F ourier t ransformation.6. D ensity o f s tates a nd F ermi e nergy.a. F ind t he a verage e nergy o f a n e lectron i n a w hite d warf s tar o f r adius 10,000 k mcontaining 2×1057 n ucleons, h alf o f w hich a re p rotons. T he d ensity o f s tates d istribution i sdNdE=E1/2.b. F rom t he r esults i n p art a, c omment o n w hether i t i s a pproporiate t o u se n on-‐relativistickinematics.Other p roblems f rom p revious e xams:1. A f ree e lectron h as k inetic e nergy 1000 e V. I t m oves i n t he x-y p lane i n a d irection w hichmakes a n a ngle 30 d eg. r elative t o t he x a xis.a. F ind i ts m omentum p, w avelength λ a nd w ave n umber k.b. W rite t he w ave f unction Ψ(x,y,z,t) i n s ymbols (not n umerical v alues) i n C artesiancoordinates.c. W rite t he p robability d ensity P(x,y,z).d. W hat c an y ou s ay a bout t he u ncertainty i n t he e lectron’s p osition.Approximate a n ucleus c onsisting o f f ree n ucleons i n a s pherical r igid w all p otential w ith radius R=4 f m. F or t he i sotope 17O:a. W hat a re t he q uantum n umbers o f e ach o f t he n eutrons a nd p rotons?b. W hat a re t he e nergies o f e ach o f t he n eutrons a nd p rotons i n t he i sotope 17O?2. a. W rite t he w ave f unction f or a f ree p article m oving i n 3-‐dimensional C artesiancoordinates.b. T he r elativistic v ersion o f t he S chroedinger e quation i s c alled t he K lein-‐Gordon e quation.Using E2=p2c2+m2c4, c onstruct t he K lein-‐Gordon e quation b y e xpressing t he e nergy a nd momentum i n t erms o f d ifferential o perators.c. S how t hat t he w ave f unction i n p art a. i s a s olution t o t he K lein-‐Gordon w ave f unction t hatwas c onstructed i n p art c.3.) C onsider a n e lectron w hich m oves f reely i n a 2 d imensional i nfinite s quare w ell o f s ide a . a. W rite t he S chroedinger e quation f or t his c ase. b. W hat a re t he a llowed v alues o fk x and k yc. W hat a re t he a llowed e nergy l evels?d. I f a =10Angstroms, w hat i s t he l owest e nergy.e. W rite t he w ave f unction f or t his s tate.4.) T he t hree p rimary t erms w hich d etermine t he b inding e nergy o f a n ucleusare v olume , s urface a nd C oulomb , E V , E S , E C e nergies.a. W hat i s t he R a nd Z d ependence o f e ach, w here R i s t he n uclear r adius a nd Z t he a tomic number.Also i ndicate t he s ign o f e ach. i E V ∝ii E S ∝iii E C ∝b. W hat i s t he A a nd Z d ependence o f e ach, w here A i s t he n umber o f n ucleons. A lso i ndicate the s ign o f e ach. i E V /A ∝ii E S /A ∝iii E C /A ∝c. D raw t he m agnitude o f e ach a s a f unction o f A , a s w ell a s t he s um o f e ach. B e s ure t o c learly fill i n t he e nergy s cale i n t he v ertical a xis a nd t he n umber o f n ucleons i n the h orizontal a xis a t t he p osition o f t he t ic m arks.5.) I n t he b lank s paces p rovided i n t he t able, f ill i n t he p roperties o f t he p article s hown, a s w ell a s t he energy s cales a nd q uark m akeup w here a ppropriate.6.Draw a g raph f or t he s hape o f t he n ucleon-‐nucleon a ttractive p otential e nergy, i ndicating the a pproximate r ange a nd d epth.particl e Charge Rest m ass energy Units o f energy QuarkFlavor c ontent p +1 .93 GeV uud nπ−.139 π+ e 0.511 ν γ W 89 g7. a . 92238U c aptures a n eutron, f ollowed b y a symmetric f ission i nto 2 u nbound n eutrons a nd3892Sr a nd 54140Xe . O btain t he d ifference i n t he b inding e nergy b etween t he i nitial 92238U and t he f inal 3892Sr a nd 54140Xe n uclides, a nd t herefore t he e nergy r eleased.b . C alculate t he k inetic e nergyd ue t o t he e lectrostatic r epulsion b etween t he 3892Sr a nd 54140Xe w hen t hey a re s till t ouching, a nd s how t hat i t i s t he s ame o rder a s y our a nswerin p art a . a bove. (note:r =r 0A 1/3with r 0≈1.2fm.)8.Fill i n t he t able b elow:9. a . T he m ajor s ource o f e nergy p roduction i n t he s un i s t he p roton-‐proton c ycle. Trace t he s teps o f t he p -p c ycle a s w e d iscussed i n c lass.b . I f t he f inal r esult i s t he f usion o f 4 p rotons i nto 4He ,c alculate t he t otal e nergy r eleased in t he c ycle.10. D raw a F eynman d iagram f or e ach o f t he f ollowing p rocesses, a nd i dentify t he e xchanged quantum:a. e - +µ+♑e - +µ+via t he e lectromagnetic i nteraction. b. e - +µ+♑e + +µ- v ia t he w eak i nteraction.c. u +u →s +s v ia t he s trong i nteraction.6. F rom t he i nformation o n s pin, b aryon n umber a nd s trangeness g iven i n t he t ablebelow, f ill i n t he q uark f lavor c ontent a nd d ecay i nteraction o f e ach o f t he f ollowing h adrons.Decay interact we。
机械工程学专业词汇英语翻译(P)2
pneumatic chuck ⽓动卡盘 pneumatic conveying ⽓动输送 pneumatic drive ⽓动驱动 pneumatic governor ⽓动蒂器 pneumatic hammer 空⽓锤 pneumatic hoist 风动起重滑车 pneumatic press ⽓动压⼒机 pneumatic rammer ⽓动夯锤 pneumatic shell 耐压壳 pneumatic shock absorber 空⽓缓冲器⽓⼒减震器 pneumatic starting ⽓压起动 pneumatic transport ⽓⼒输送 pneumonics 压⽓学 poinsot motion 潘怂动 poinsot theorem 潘栓理 point mass 质点质量 point mechanics 质点⼒学 point of action 酌点 point of admission 进⽓点 point of application 酌点 point of branching 分⽀点 point of detachment 分离点 point of division 分割点 point of emergency 初始点 point of inflection 拐点 point of inflexion 拐点 point of resonance 共振点 point of support ⽀承点 point of zero moment 拐点 point source explosion 点爆炸 point transfer matrix 点变换矩阵 point vortex 点涡 pointed corrosion 坑蚀 pointer 指针 poise 泊 poiseuille flow 泊肃叶怜 poiseuille's law 泊肃叶定律 poisson bracket 泊松括号 poisson equations 泊松⽅程 poisson kinematic equations 泊松运动⽅程 poisson's ratio 泊松⽐ poisson's theorem 泊松定理 polar 极线 polar coordinates 极坐标 polar equation 极⽅程 polar moment of inertia 极惯性矩 polar motion 极运动 polar resisting moment 极阻⼒矩 polarimetry 测偏振术 polariscope 偏光镜 polarization 偏光 polarization by deformation 依变形极化 polarization by refraction 折射偏振 polarization energy 极化能量 polarization fading 偏振衰减 polarization force 极化⼒ polarization modulation 偏振灯 polarization wave 极化波 polarized light 偏振光 pole 杆 pole curve 本体极迹 pole strength 极强 polhode 本体极迹 polhode cone 本体极迹锥⾯ polished section 抛光磨⽚ poloidal magnetic field ⾓向磁场 poloidal mode 极向模型 polycrystalline material 多晶物质 polycrystalline substance 多晶物质 polydimensional 多维的 polygon 多边形 polygon of forces ⼒多边形 polygonal connection 多⾓联结 polyhedral 多⾯体的 polyhedral angle 多⾯⾓ polyhedron 多⾯体 polymer 聚合物 polymer degradation 解聚酌 polymeric liquids 聚合物液体 polymorphism 多形现象 polymorphy 同质多形 polyphase 多相的 polyslip 复滑移 polytrope 多变曲线 polytropic atmosphere 多元⼤⽓ polytropic exponent 多变指数 polytropic index 多变指数 ponderomotive force 有质动⼒ pore fluid 充液多孔体 pore pressure 孔隙压⼒ pore space 孔隙空间 pore water pressure 孔隙⽔压⼒ porewater 孔隙⽔ porosity 孔隙度 porous 多孔的 porous diaphragm 多孔膜 porous diffusion 多孔扩散 porous disc 透⽔板 porous flow 渗流 porous material 多孔性材料 porous media 多孔介质 porous membrane 多孔膜 porous slab 多孔板 porous structure 多孔结构 portal bracing 桥门撑杆架 position head 位置⽔头 position of rest 静⽌位置 position vector 位⽮ positive feedback 正反馈 positive pressure 正压 positive pressure head 正压头 positive pressure wave 正压⼒波 positive pulse 正脉冲 positive rotation 正旋 positivity wave 正波 possible displacement 可能位移 post buckling behavior 屈曲后⾏为 potential 势 potential difference 势差 potential energy 位能 potential energy of stress 应⼒势能 potential field 势场 potential flow 势流位流 potential force 有势⼒ potential function 势函数 potential function of airy 爱⾥势函数 potential gradient 势梯度 potential head 位势头 potential internal energy 内势能 potential motion 位势运动 potential of central forces 有⼼⼒势 potential of discontinuity 不连续势 potential of simple layer 单层势 potential operator 位势算符 potential scattering 势散射 potential stability 势稳定性 potential theory 位势论 potential variability 势可变性 potential vector 势⽮ potential vortex 势涡 potential vorticity 位势涡度 pothole 地⾯深⽳ power 功率 power extraction 功率提取 power factor 功率因数 power law 指数定律 power law of distribution 指数分布定律 power loss 功率损耗 power of force ⼒功率 power spectrum 密度谱 poynting effect 坡印廷效应 practical efficiency 实际效率 practical system of units 实⽤单位制 prager theory of plasticity 普拉格塑性理论 prandtl body 普朗特体 prandtl boundary layer 普朗特边界层 prandtl glauert law 普朗特格劳厄脱规则 prandtl glauert rule 普朗特格劳厄脱规则 prandtl lifting line theory 普朗特升⼒线理论 prandtl meyer flow 普朗特迈耶流 prandtl meyer wave 普朗特迈耶波 prandtl mixing length 普朗特混合长度 prandtl number 普朗特数 prandtl relation 普朗特关系式 prandtl torsion function 普朗特扭转函数 prandtl tube 普朗特管 pratt truss 普拉特桁架 pre combustion chamber 预燃室 preacceleration 预加速 preadaptation 预适应 preageing 预时效 preamplifier 前置放⼤器 precession 旋进 precession cone 旋进锥 precession of a top 陀螺的旋进 precession of earth 地球的旋进 precession of gyroscope 陀螺旋进 precession of orbit 轨道旋进 precession time 旋进时间 precessional motion 旋进运动 prechamber 预燃室 precipitability 沉淀性 precipitate 沉淀物 precipitation 沉淀 precipitation hardening 沉淀硬化 precision measurement 精确测量 precision of measurement 测量准确度 precision type instrument 精密仪器 precompression 预压缩 preconsolidation 预固结 precooling 预冷却 predeflection 预偏转 preexpansion saturation 膨胀前饱和 preheated air 预热空⽓ preheating 预热 preliminary design 初步设计 preliminary load 预加载 preload 预加载 preoscillation 预振荡 preoscillation time 预振荡时间 press in method 尖端压⼊⽅法 press pump 增压泵 pressductor 压⼒传感器 pressing 压模 pressure 压⼒ pressure amplitude 压幅 pressure angle 压⼒⾓ pressure balance 压⼒秤 pressure center 压⼒中⼼ pressure coefficient 压⼒系数 pressure compensation 压⼒补偿 pressure conduit 压⼒管道 pressure controller 压⼒第器 pressure converter 压⼒变换器压⼒转换器 pressure curve 压⼒曲线 pressure diagram 压⼒曲线 pressure difference 压⼒差 pressure diffusion 压差扩散 pressure distribution 压⼒分布 pressure distribution curve 压⼒分布曲线 pressure drag 压⼒阻⼒ pressure drop 压降 pressure elasticity 压缩弹性 pressure energy 压⼒能量 pressure equalizing 均压 pressure equation 压⼒⽅程 pressure fall 压降 pressure feed 压送 pressure field 压⼒场 pressure filter 压滤机 pressure flow 压⼒流 pressure fluctuation 压⼒波动 pressure force 压⼒ pressure front 激波前沿 pressure function 压⼒函数 pressure gage 压⼒计 pressure gradient 压⼒梯度 pressure head 压头 pressure intensity 压强 pressure jump 压⼒跃变 pressure line 压⼒线 pressure loss 压⼒损耗 pressure lubrication 压⼒润滑 pressure maximum 压⼒ pressure measuring device 压⼒计 pressure meter 压⼒计 pressure method 压⼒法 pressure minimum 最⼩压⼒ pressure nozzle 压⼒喷嘴 pressure outside 外压⼒ pressure piping 压⼒管道 pressure propagation 压⼒传播 pressure pump 压送泵 pressure recovery 压⼒恢复 pressure reducing valve 减压阀 pressure regulator 压⼒蝶器 pressure relief 卸压 pressure resistance 压⼒阻⼒ pressure response 压⼒响应 pressure rise 增压 pressure sensitivity 压⼒灵敏度 pressure shift 压致位移 pressure shock 压缩激波 pressure side 压⼒⾯ pressure stress 压应⼒ pressure tank 压⼒槽 pressure tensor 压⼒张量 pressure test 压⼒试验 pressure transducer 压⼒变换器 pressure tube 压⼒管 pressure turbine 反唤⽔轮机 pressure valve 压⼒阀 pressure vessel 压⼒容器 pressure volume diagram 压容图 pressure water 加压⽔ pressure wave 压⼒波 pressurized gas 压缩⽓体 prestrain 预应变 prestress 预应⼒ prestressed concrete 预应⼒混凝⼟ pretensioning system 先张法 primary back reaction 初级反酌 primary consolidation 初始固结 primary creep 初始蠕变 primary stress 初始应⼒ primary system 值统 primary wave 初波 primaryload 知荷载 principal axes of an area ⾯积轴 principal axis 轴 principal axis of inertia 惯性轴 principal axis of strain 应变轴 principal axis transformation 轴变换 principal bending moment 咒矩 principal contour 秩⾼线 principal coordinate system 著标系 principal coordinates 著标 principal curvature 助率 principal deformation 枝变 principal direction of glide 脂移⽅向 principal direction of oscillation ⽵荡⽅向 principal extension ratio 朱长⽐ principal function 哈密顿酌 principal glide system 脂移系统 principal invariant 只变量 principal line 诌 principal load 知荷载 principal minor 钟式 principal moment of inertia 诌性矩 principal motion 炙动 principal net of the flow 著柳 principal normal 吱线 principal plane 纸⾯ principal plane of flexure 钟曲⾯ principal plane of glide 脂移平⾯ principal plane of inertia 诌性平⾯ principal plane of stress 枝⼒平⾯ principal problem of dynamics 动⼒学知问题 principal radius of curvature 助率半径 principal section 重⾯ principal shear stress 拄应⼒ principal shock 逐 principal simulation error 郑拟误差 principal strain 枝变 principal strain direction 枝变⽅向 principal strain ratio 枝变⽐ principal stress 枝动 principal stress axis 枝⼒轴 principal stress direction 枝⼒⽅向 principal stress method 枝⼒法 principal stress moment 枝⼒矩 principal stress ratio 枝⼒⽐ principal surface tension 猪⾯张⼒ principal symmetry plane 衷称⾯ principal tensile stress 汁应⼒ principal trajectory 朱迹 principal value 值 principal vector 指量 principle 原理 principle of conservation of area ⾯积守恒原理 principle of conservation of energy 能量守恒原理 principle of continuity 连续性原理 principle of dissipation 耗散原理 principle of hydrodynamic images 铃⼒学镜像原理 principle of least action 最⼩酌原理 principle of least constraint 最⼩约束运动原理 principle of least curvature 最⼩曲率原理 principle of least work 最⼩功原理 principle of linear momentum 线性动量定理 principle of linear superposition 线性叠加原理 principle of minimum 最⼩值原理 principle of minimum complementary energy 最⼩余能原理 principle of minimum dissipation of entropy 最⼩耗熵原理 principle of minimum potential energy 最⼩势能原理 principle of minimum virtual mass 最⼩虚质量原理 principle of mobile equilibrium 动态平衡原理 principle of moment 矩原理 principle of momentum conservation 动量守恒原理 principle of parallel flow 平⾏镰理 principle of phase stability 相位稳定性原理 principle of quasi continuity 准连续性原理 principle of relativity 相对性原理 principle of similitude 相似律 principle of solidification 固化原理 principle of statics 静⼒学原理 principle of superposition 叠加原理 principle of the inertia of energy 能量惯性原理 principle of the maximum 值原理 principle of the parallelogram of forces ⼒平⾏四边形定律 principle of transfer 转移原理 principle of using travelling waves ⾏波前进原理 principle of virtual displacement 虚位移原理 principle of virtual power 虚功原理 principle of virtual stress 虚应⼒原理 principle of virtual work 虚功原理 probability 概率 probability amplitude 概率幅度 probability current 概率量 probability current density ⼏率淋度 probability density ⼏率密度 probability distribution 概率分布 probability frequency function 概率频率函数 probability of collision 碰撞⼏率 probability of state 态的概率 probable error 概率误差 procedure 程序 process 过程 product moment 积矩 product moment correlation 积矩关联 product of inertia 惯性积 profile 轮廓 profile chart 轮廓图 profile coefficient 翼型系数 profile curve 轮廓曲线 profile drag 理想铃中的阻⼒ profile error 廓形误差 profile flow 翼型绕流 profile gage 轮廓量规 profile mean line 翼型中线 profilogram 轮廓曲线 program control 程序控制 program debugging 程序翟 programming error 程序设计错误 progressive loading 逐步加载 progressive motion 前进运动 progressive nutation 正章动 progressive precession 正旋进 progressive wave 前进波 project 设计 projectile 抛射体 projectile motion 抛射体运动 projection 射影 projection operator 投影算符 projection plane 投影平⾯ proof stress 容许应⼒ proof test 加压试验 prop 螺旋桨 prop jet 涡轮螺旋桨发动机 propagation 传播 propagation of pressure 压⼒传递 propagation of the tide 潮汐传播 propagation velocity 传播速度 propellant 推进剂 propeller 螺旋桨 propeller blade 螺旋桨叶⽚ propeller effect 螺桨效应 propeller fan 螺桨式风机 propeller pump 螺旋桨式泵 propeller shaft 螺旋桨轴 propeller thrust 螺旋桨推⼒ propeller turbine 螺旋桨式⽔轮机 propeller type flowmeter 螺桨型量计 propelling force 推进⼒ propelling nozzle 推⼒喷管 proper boundary value problem 本者值问题 proper function 本寨数 proper mass 固有质量 proper moment 固有矩 proper motion 固有运动 proper power 固有功率 proper rate 正常速率 proper rotation 固有转动 proper value 本盏 proper vector 本崭量 proper velocity 固有速度 property tensor 特性张量 property to oscillation 振荡特性 proportion ⽐ proportion by weight 重量⽐ proportional limit ⽐例极限。
Cosmic
" #
Our idea is to consider just this theory ( 4) without the Higgs potential (VHiggs (j j) = 0) but in the presence of the Einstein gravity theory with a conformally coupled scalar eld
On the Cosmological Origin of the Homogeneous Scalar Field in Uni ed Theories
V.N.Pervushin, V.I Smirichinski
Joint Institute for Nuclear Research, 141980, Dubna, Russia.
LG (g; A0 ; j o
To nd minimum of the action with the Lagrangian (5), we express it in terms of the conformal invariant variables, marked by (c), extracting the space-scale factor 6] 1
? cr + 0 +
(14)
The geometrical observables of the Friedmann Universe, in comoving frame of reference, are constructed by using the inverse conformal transformation (7) of the dynamical variables and coordinates, including the Friedmann time interval dtF = a0 d and distance DF = a0 Dc 6, 7]. 2
物理学名词
中文又称
[coefficient of] stiffness 劲度[系数]
又称刚度系数 (rigidity);曾称:倔 强系数
[constant] current source 恒流源 [constant] voltage source 恒压源 [crystal] lattice [crystal] whisker [crystalline] grain [electric] bridge [electric] polarization [electron] avalanche ionization 晶格 晶须 晶粒 电桥 [电]极化强度 [电子]雪崩电离
accelerated reference frame accelerating tube accelerating voltage acceleration acceleration mechanism acceleration of gravity accelerator Accelerator mass spectrometer, AMS accelerometer acceptance angle acceptor acceptor acceptor acceptor density acceptor doping acceptor impurity acceptor ionization energy acceptor level accessible state accidental accuracy accidental coincidence accidental degeneracy accidental error accommodation accretion accretion disk accumulated dose accumulated error accumulation layer accumulator, [storage] battery accuracy acetylene
f R
Generalized Sampling:A Variational Approach Jan Kybic,Thierry Blu,and Michael UnserMarch12,2001Biomedical Imaging Group,IOA,DMT Swiss Federal Institute of Technology Lausanne CH-1015Lausanne,SwitzerlandJan.Kybic@epfl.chAbstractWe consider the problem of reconstructing a multi-dimensional and multivariate function f:R m→R n from the discretely and irregularly sampled responses of q linear shift-invariantfilters.Unlike traditional approaches which reconstruct the function in some signal space V,our reconstruction is optimal in the sense of a plausibility criterion J.The reconstruction is either consistent with the measures,or minimizes the consistence error.There is no band-limiting re-striction for the input signals.We show that impor-tant characteristics of the reconstruction process are induced by the properties of the criterion J.We give the reconstruction formula and apply it to several practical cases.1IntroductionWe will deal with the problem offinding a reconstruc-tion f∈F of a multidimensional function f:R m→R n,using a set of samples y ij= k h jk∗∗f k (x i)= h j∗f (x i)from afilter bank H=[h1...h q]sam-pled at N locations x i.The Shannon theory states that a band-limited sig-nal f o can be reconstructed exactly from its regularly spaced ideal samples(h=δ).Papoulis[1]has shown that f o may also be recovered from the output of q linear shift-invariant systems sampled at(1/q)-th theNyquist rate.This theory has been further extendedto multivariate[2](m>1)and multidimensional[3] (n>1)functions.Unser and Zerubia[4]generalized this framework by dropping the band-limiting con-straint.They sought an approximation f in the more general space V(ϕ),generated by integer translates of a functionϕ.Their approximation f is consistentin the sense of producing the same measurements y ij as∗f.Forϕ=sinc,their reconstruction formulas areequivalent to those of Papoulis.We will take a slightly different approach in the present paper.We keep the consistency constraint; we require that f and f be indistinguishable throughour measurement system,i.e., h j∗f (x i)=y ij= h j∗f (x i).However,instead of prescribing a re-construction space V,we seek a solution optimal inthe sense of a plausibility criterion(penalty function) J(f).In other words,we replace the sub-space con-straint f∈V by a variational formulation.The crite-rion J(f)provides the regularization needed to over-come the ambiguity of the reconstruction problem. It may also represent the a priori knowledge in the Bayesian framework,quantifying our confidence that a particular function f is close to the input f.2Variational criterionWe define the solution to the reconstruction prob-lem to be a function f minimizing J(f)under the consistency constraints.Thus,the behavior of the re-construction algorithm is completely described by the criterion J.We will work in a space F of functions for which J is defined.We will assume that J is a semi-norm and can be written as J(f)=B(f,f)1/2, where B is a bilinear form on F.This not only sim-1plifies the subsequent analysis,but also insures the convexity and continuity of the criterion,which im-plies that all local minima are also global minima. As J is a semi-norm,not a norm,there is a kernel K⊆F for which J(f)=0.It can be shown that if two functions f1,f2solve the reconstruction prob-lem,then f1−f2∈K.The bilinearity of B also makes the superposition principle applicable on the reconstruction process:a solution corresponding to a linear combination of sampling values corresponds to the same linear combination of solutions.In the multidimensional case(n>1),it is usually desirable that all components be treated equally.Then the su-perposition principle implies invariance with respect to the rotation of the sampled values,and any other linear operation on them.It can be shown that the invariance properties of the semi-norm J and thefilter bank H translate di-rectly to the invariance properties of the reconstruc-tion problem solution.For example,if the value of J(f)and remains unchanged when f is subject to translation and rotation,then translating or rotat-ing the sampling points results in a solution which is a translation or rotation of the original solution, provided that the sampling is also translation and rotation invariant.In fact,instead of demanding complete invariance,it is enough to have a pseudo-invariance,where J(f)is allowed to be transformed by an arbitrary increasing function independent of f,such as multiplied by a constant.This greatly simplifies the task of having a scale change invari-ant reconstruction problem,because creating a scale pseudo-invariant J is straightforward,while truly scale-invariant J does not exist,except in the trivial cases.Finally,in many applications,we do not want to penalize linear polynomials,as they correspond to the purest form of the solution.2.1Proposed criterionIs there a criterion corresponding to all the above mentioned requirements?The simplest one in the univariate/unidimensional case(m=n=1)is the criterion proposed by Duchon[5]:J(f)= ∂2f/∂x2 2d x 1/2with a corresponding bilinearformB(f,g)= (∂2f/∂x2)(∂2g/∂x2)d xFor arbitrary higher m and n this generalizes asB(f,g)= n i=1 j k=2∂2f i∂x j11···∂x j m m d x J(f)=∂x j11···∂x j m mg i d x= g T∆2f d x(2) A large class of translation invariant bilinear forms can be(under suitable restrictions on f)expressed as B= U∗f,g ,where U is an n×n-matrix of m-variate distributions,a convolutional kernel of the bilinear form[6].In our case U=∆∗∆def=∆2, with Fourier transformˆU= ω 4I.For example for n=m=1and n=1,m=2,we have U=δ(IV)and U=δ(IV)(x1)δ(x2)+2δ′′(x1)δ′′(x2)+δ(IV)(x2)δ(x1), respectively,whereδis Dirac’s mass distribution cen-tered at0andδ′′,δ(IV)are its second and fourth derivatives.3Explicit solutionA solution to the reconstruction problem is given by a remarkably simple formula:f(x)=p(x)+Ni=1qj=1λijϕj(x−x i)(3) 2It consists of two parts.Thefirst part(p)belongs tothe kernel K.If it has a countable basis,we can write it as p(x)= k a k p k(x).It does not contribute to the criterion(J(p)=0),so we intuitively see thatit is useful to accommodate as much as possible of f in this part.The second part consists of a lin-ear combination of generating functionsϕj shifted to all the sampling points.There are q generating functions,where q is the number of samplingfilters h.In the case of regularly spaced x i and q=1,we recover the solution of Unser and Zerubia[4],pro-vided that we use a criterion corresponding to the adequate generating functionϕ.For q>1,we have a multi-wavelet-like representation with several basis functions.As a consequence of the minimization process,thesolution f must satisfyB(f,g)= ijλij h j∗g (x i)for any g∈F(4)where g is an arbitrary variation around the opti-mal f andλij a Lagrange multiplier corresponding to a sample y ij.It is enough to consider g only from among test functions,assuming that the test func-tions are dense in F,which is normally the case.This justifies our earlier restriction.Provided thatϕj are fundamental solutions as de-tailed in the next section,the condition(4)translates into two sets of constraints.Thefirst set makes f sat-isfy the interpolation conditions y ij= h j∗f (x i). This leads to qN equations.The second set must en-sure that the criterion J(f)is defined,that is,f must belong to F.This implies an orthogonality condition B(f,k)=0,for all k from the kernel K.If we know its basis,then also B(f,p k)=0for all p k.There-fore,the second set contains dim K equations,which makes qN+dim K equations for as many unknown coefficientsλij and a k.For the criterion J from(1),the second set of con-straints implies that the second derivatives of f are square integrable.Therefore,they tend to zero(on the average,not necessarily pointwise)towards infin-ity and thus f tends to a linear polynomial.3.1Generating functionsThe generating functionsϕj are fundamental solu-tions satisfying∀g∈F;B(ϕj,g)= h j∗g (0).In the distributional setting,this condition translates to U∗ϕj=h j.This corresponds toˆUˆϕj=ˆh j,pro-vided that the Fourier transformsˆU,ˆϕj andˆh j exist. More concisely,in the matrix form,we get U∗Φ=H andˆUˆΦ=ˆH,whereΦ=[ϕ1...ϕq].It can be inferred that rotationally invariant semi-norms correspond to radial kernels U which in turn lead to radial generating functionsϕ,provided that thefilters h j are also radial.We can then write ϕ(x)=ρ( x )=ρ(r).Fundamental solutions for the iterated Laplacian kernel∆2and h=δare well-known and can be found taking the inverse Fourier transform of ω 4(we are omitting some technical details here).For n=1and m=1,2,3we getρ=r3,ρ=r2log r,andρ=r, respectively,neglecting the multiplicative constant. In the multidimensional case,as the components are treated equally,we simply use the same function for all components,i.e.Φ=ρ(r)I.We have found the fundamental solutionϕδfor ideal(zero-order)sampling h=δ.For other sam-plers,we have simplyϕ=ϕδ∗h.3.2Approximation problemWhen the measures are not exact(for example cor-rupted by noise),it might be more appropriate to drop the consistency constraints and minimize in-stead a weighted sum of a plausibility criterion J p and some measure of the consistency error,that is, the difference between the desired and actual sampled values.The approximation problem then consists of minimizingJ a(f)=J p(f)+ ij d ij y ij,z ij ;z ij= h j∗f (x i)where d is a suitable distance measure.As the con-sistency error depends only on z ij,the minimization min f J(f)can be decomposed as min{zij}min f J(f). The inner minimization is equivalent to the recon-struction problem we have solved already.Therefore3the solution to the approximation problem has also the form(3).Let us now consider an approximation problem cre-ated by adding a least-squares consistency error mea-sure to a criterion J2(f)from(1):J a(f)=J2(f)+γ ij(z ij−y ij)2By standard variational technique wefind that the solution f must verifyB(f,g)=γ ij(z ij−y ij) h j∗g (x i)∀g∈F Comparing this equation with(4),wefind a linear set of equationsλij=γ(z ij−y ij)=γ k a k h j∗p k (x i)++γ klλkl h j∗ϕl (x i−x k)−γy ijwhich permits us,together with the orthogonality constraints B(f,p k)=0,to determineλij and a i.4Examples4.1Reconstruction from irregularsamplesLet us consider the problem offinding a function f: R→R,passing through afinite number of points (x i,y i)and minimizing a criterion J(f)= (f′′)2d x. We have seen that the corresponding bilinear form is B(f,g)= f′′g′′d x with kernel U=δ(IV).The fundamental solution is proportional to|x|3,which can be localized(convolved with a discretefilter)to obtain a cubic B-spline.The reconstruction is thusf(x)=a0+a1x+Ni=1λi|x−x i|3which has N+2unknown parameters.The second derivative is f′′(x)=6 iλi(x−x i).This leads to orthogonality conditions λi=0and λi x i=0,Figure1:Interpolation from function values. because if either of them were not satisfied we would have lim x→±∞f′′=0and consequently f∈F.The remaining N equations come from the consistency conditions f(x i)=y i.The results by Micchelli[7] imply that for distinct points,there is always a unique solution.An example of a reconstruction result is shown in Figure1.4.2Derivative samplingLet us add derivative constraints y′i=f′(x i)to the preceding example.The samplingfilters will then be H= δδ′ .Thefirst fundamental solution corre-sponding to h1=δremainsϕ1=|x|3.The secondone,corresponding to h2=δ′,is obtain by convolving ϕ1with h2which givesϕ2=|x|x.The reconstruction formula is thusf(x)=a0+a1x++Ni=1λi,1|x−x i|3+λi,2|x−x i|(x−x i)The2N+2unknown parameters can be determined from2N consistency equations f(x i)=y i and y′i= f′(x i)and two orthogonality conditions λi,1=0 and λi,2−3λi,1x i=0.An example of reconstruc-tion from derivative sampling is shown in Figure2.45101520251234567Figure 2:Interpolation from function values and derivatives.4.3Reconstruction consistent withLaplace equationThe problem treated in [8]by numerical integration—which we shall be able to solve explicitly here—consists of reconstructing a function from R 3→R while minimizing the norm of the 3D Laplacian oper-ator J ′(f )2= ∆f 2d x .The problem is ill-posed without additional constraints,because the kernel K ′is too big,permitting an infinity of solutions with zero cost.To avoid the ambiguity,we impose f ∈F .We then minimize the criterion (1),because for f ∈F ,the two criteria are equivalent.As expected,the so-lution will have the formf (x )=a 0+3 j =1a i x i +N i =1λi x −x i (5)where x =(x 1,x 2,x 3),with auxiliary conditionsλi =0, λi x i,1=0,and λi x i,2=0.5ConclusionsWe can reconstruct arbitrary multidimensional and multivariate functions from sampled outputs of an arbitrary filter bank.Unlike previous methods ([1–3]),our approach handles irregular sampling,does not impose band-limiting constraints,the solution isoptimal in the sense of a variational criterion,can be made invariant to translations,rotations and scale changes,implicitly specifies the reconstruction space,and is usable also for noisy measurements.This comes at the cost of slightly more involved compu-tation and less numerical stability.References[1] A.Papoulis,“Generalized sampling expansion,”IEEETransactions Circ.Syst.,vol.24,pp.652–654,1977.[2]J.L.Brown Jr.and K.Sangsari,“Sampling reconstructionof n -dimensional band-limited images after multi-linear fil-tering,”IEEE Transactions Circ.Syst.,pp.1035–1038,July 1989.[3] D.Seidner,M.Feder, D.Cubanski,and S.Blackstock,“Introducing to vector sampling expansions,”IEEE Signal Process.Lett.,vol.5,pp.115–117,May 1998.[4]M.Unser and J.Zerubia,“A generalized sampling theorywithout band-limiting constraints,”IEEE Transactions on Circuits and Systems—II:Analog and digital signal pro-cessing ,vol.45,pp.959–969,Aug.1998.[5]J.Duchon,“Splines minimizing rotation-invariant semi-norms in Sobolev spaces,”in Constructive Theory of Func-tions of Several Variables (W.Schempp and K.Zeller,eds.),(Berlin),pp.85–100,Springer-Verlag,1977.[6]L.Schwartz,Th´e orie des Distributions .Paris,France:Hermann,1966.in French.[7] C. A.Micchelli,“Interpolation of scattered data:Dis-tance matrices and conditionally positive definite func-tions,”Constr.Approx.,no.2,pp.11–22,1986.[8]J.Maltz,R.De Mello Koch,and A.Willis,“Reproducingkernel Hilbert space method for optimal interpolation of potential field data,”IEEE Transactions on Image Pro-cessing ,vol.7,Dec.1998.5。
N=4 Super-Yang-Mills Theory, QCD and Collider Physics
a rXiv:h ep-th/04121v12O ct24SLAC–PUB–10739,IPPP/04/59,DCPT/04/118,UCLA/04/TEP/40Saclay/SPhT–T04/116,hep-th/0410021October,2004N =4Super-Yang-Mills Theory,QCD and Collider Physics Z.Bern a L.J.Dixon b 1 D.A.Kosower c a Department of Physics &Astronomy,UCLA,Los Angeles,CA 90095-1547,USA b SLAC,Stanford University,Stanford,CA 94309,USA,and IPPP,University of Durham,Durham DH13LE,England c Service de Physique Th´e orique,CEA–Saclay,F-91191Gif-sur-Yvette cedex,France1Introduction and Collider Physics MotivationMaximally supersymmetric (N =4)Yang-Mills theory (MSYM)is unique in many ways.Its properties are uniquely specified by the gauge group,say SU(N c ),and the value of the gauge coupling g .It is conformally invariant for any value of g .Although gravity is not present in its usual formulation,MSYMis connected to gravity and string theory through the AdS/CFT correspon-dence[1].Because this correspondence is a weak-strong coupling duality,it is difficult to verify quantitatively for general observables.On the other hand, such checks are possible and have been remarkably successful for quantities protected by supersymmetry such as BPS operators[2],or when an additional expansion parameter is available,such as the number offields in sequences of composite,large R-charge operators[3,4,5,6,7,8].It is interesting to study even more observables in perturbative MSYM,in order to see how the simplicity of the strong coupling limit is reflected in the structure of the weak coupling expansion.The strong coupling limit should be even simpler when the large-N c limit is taken simultaneously,as it corresponds to a weakly-coupled supergravity theory in a background with a large radius of curvature.There are different ways to study perturbative MSYM.One approach is via computation of the anomalous dimensions of composite,gauge invariant operators[1,3,4,5,6,7,8].Another possibility[9],discussed here,is to study the scattering amplitudes for(regulated)plane-wave elementaryfield excitations such as gluons and gluinos.One of the virtues of the latter approach is that perturbative MSYM scat-tering amplitudes share many qualitative properties with QCD amplitudes in the regime probed at high-energy colliders.Yet the results and the computa-tions(when organized in the right way)are typically significantly simpler.In this way,MSYM serves as a testing ground for many aspects of perturbative QCD.MSYM loop amplitudes can be considered as components of QCD loop amplitudes.Depending on one’s point of view,they can be considered either “the simplest pieces”(in terms of the rank of the loop momentum tensors in the numerator of the amplitude)[10,11],or“the most complicated pieces”in terms of the degree of transcendentality(see section6)of the special functions entering thefinal results[12].As discussed in section6,the latter interpreta-tion links recent three-loop anomalous dimension results in QCD[13]to those in the spin-chain approach to MSYM[5].The most direct experimental probes of short-distance physics are collider experiments at the energy frontier.For the next decade,that frontier is at hadron colliders—Run II of the Fermilab Tevatron now,followed by startup of the CERN Large Hadron Collider in2007.New physics at colliders always contends with Standard Model backgrounds.At hadron colliders,all physics processes—signals and backgrounds—are inherently QCD processes.Hence it is important to be able to predict them theoretically as precisely as possi-ble.The cross section for a“hard,”or short-distance-dominated processes,can be factorized[14]into a partonic cross section,which can be computed order by order in perturbative QCD,convoluted with nonperturbative but measur-able parton distribution functions(pdfs).For example,the cross section for producing a pair of jets(plus anything else)in a p¯p collision is given byσp¯p→jjX(s)= a,b1 0dx1dx2f a(x1;µF)¯f b(x2;µF)׈σab→jjX(sx1x2;µF,µR;αs(µR)),(1)where s is the squared center-of-mass energy,x1,2are the longitudinal(light-cone)fractions of the p,¯p momentum carried by partons a,b,which may be quarks,anti-quarks or gluons.The experimental definition of a jet is an in-volved one which need not concern us here.The pdf f a(x,µF)gives the prob-ability forfinding parton a with momentum fraction x inside the proton; similarly¯f b is the probability forfinding parton b in the antiproton.The pdfs depend logarithmically on the factorization scaleµF,or transverse resolution with which the proton is examined.The Mellin moments of f a(x,µF)are for-ward matrix elements of leading-twist operators in the proton,renormalized at the scaleµF.The quark distribution function q(x,µ),for example,obeys 10dx x j q(x,µ)= p|[¯qγ+∂j+q](µ)|p .2Ingredients for a NNLO CalculationMany hadron collider measurements can benefit from predictions that are accurate to next-to-next-to-leading order(NNLO)in QCD.Three separate ingredients enter such an NNLO computation;only the third depends on the process:(1)The experimental value of the QCD couplingαs(µR)must be determinedat one value of the renormalization scaleµR(for example m Z),and its evolution inµR computed using the3-loopβ-function,which has been known since1980[15].(2)The experimental values for the pdfs f a(x,µF)must be determined,ide-ally using predictions at the NNLO level,as are available for deep-inelastic scattering[16]and more recently Drell-Yan production[17].The evolu-tion of pdfs inµF to NNLO accuracy has very recently been completed, after a multi-year effort by Moch,Vermaseren and Vogt[13](previously, approximations to the NNLO kernel were available[18]).(3)The NNLO terms in the expansion of the partonic cross sections must becomputed for the hadronic process in question.For example,the parton cross sections for jet production has the expansion,ˆσab→jjX=α2s(A+αs B+α2s C+...).(2)The quantities A and B have been known for over a decade[19],but C has not yet been computed.Figure 1.LHC Z production [22].•real ×real:וvirtual ×real:וvirtual ×virtual:וdoubly-virtual ×real:×Figure 2.Purely gluonic contributionsto ˆσgg →jjX at NNLO.Indeed,the NNLO terms are unknown for all but a handful of collider puting a wide range of processes at NNLO is the goal of a large amount of recent effort in perturbative QCD [20].As an example of the im-proved precision that could result from this program,consider the production of a virtual photon,W or Z boson via the Drell-Yan process at the Tevatron or LHC.The total cross section for this process was first computed at NNLO in 1991[21].Last year,the rapidity distribution of the vector boson also be-came available at this order [17,22],as shown in fig.1.The rapidity is defined in terms of the energy E and longitudinal momentum p z of the vector boson in the center-of-mass frame,Y ≡1E −p z .It determines where the vector boson decays within the detector,or outside its acceptance.The rapidity is sensitive to the x values of the incoming partons.At leading order in QCD,x 1=e Y m V /√s ,where m V is the vector boson mass.The LHC will produce roughly 100million W s and 10million Z s per year in detectable (leptonic)decay modes.LHC experiments will be able to map out the curve in fig.1with exquisite precision,and use it to constrain the parton distributions —in the same detectors that are being used to search for new physics in other channels,often with similar q ¯q initial states.By taking ratios of the other processes to the “calibration”processes of single W and Z production,many experimental uncertainties,including those associated with the initial state parton distributions,drop out.Thus fig.1plays a role as a “partonic luminosity monitor”[23].To get the full benefit of the remarkable experimental precision,though,the theory uncertainty must approach the 1%level.As seen from the uncertainty bands in the figure,this precision is only achievable at NNLO.The bands are estimated by varying the arbitrary renormalization and factorization scales µR and µF (set to a common value µ)from m V /2to 2m V .A computation to all orders in αs would have no dependence on µ.Hence the µ-dependence of a fixed order computation is related to the size of the missing higher-order terms in the series.Althoughsub-1%uncertainties may be special to W and Z production at the LHC, similar qualitative improvements in precision will be achieved for many other processes,such as di-jet production,as the NNLO terms are completed.Even within the NNLO terms in the partonic cross section,there are several types of ingredients.This feature is illustrated infig.2for the purely gluonic contributions to di-jet production,ˆσgg→jjX.In thefigure,individual Feynman graphs stand for full amplitudes interfered(×)with other amplitudes,in order to produce contributions to a cross section.There may be2,3,or4partons in thefinal state.Just as in QED it is impossible to define an outgoing electron with no accompanying cloud of soft photons,also in QCD sensible observables require sums overfinal states with different numbers of partons.Jets,for example,are defined by a certain amount of energy into a certain conical region.At leading order,that energy typically comes from a single parton, but at NLO there may be two partons,and at NNLO three partons,within the jet cone.Each line infig.2results in a cross-section contribution containing severe infrared divergences,which are traditionally regulated by dimensional regula-tion with D=4−2ǫ.Note that this regulation breaks the classical conformal invariance of QCD,and the classical and quantum conformal invariance of N=4super-Yang-Mills theory.Each contribution contains poles inǫranging from1/ǫ4to1/ǫ.The poles in the real contributions come from regions ofphase-space where the emitted gluons are soft and/or collinear.The poles in the virtual contributions come from similar regions of virtual loop integra-tion.The virtual×real contribution obviously has a mixture of the two.The Kinoshita-Lee-Nauenberg theorem[24]guarantees that the poles all cancel in the sum,for properly-defined,short-distance observables,after renormal-izing the coupling constant and removing initial-state collinear singularities associated with renormalization of the pdfs.A critical ingredient in any NNLO prediction is the set of two-loop ampli-tudes,which enter the doubly-virtual×real interference infig.2.Such ampli-tudes require dimensionally-regulated all-massless two-loop integrals depend-ing on at least one dimensionless ratio,which were only computed beginning in 1999[25,26,27].They also receive contributions from many Feynman diagrams, with lots of gauge-dependent cancellations between them.It is of interest to develop more efficient,manifestly gauge-invariant methods for combining di-agrams,such as the unitarity or cut-based method successfully applied at one loop[10]and in the initial two-loop computations[28].i,ij+ i iFigure3.Illustration of soft-collinear(left)and pure-collinear(right)one-loop di-vergences.3N=4Super-Yang-Mills Theory as a Testing Ground for QCDN=4super-Yang-Mills theory serves an excellent testing ground for pertur-bative QCD methods.For n-gluon scattering at tree level,the two theories in fact give identical predictions.(The extra fermions and scalars of MSYM can only be produced in pairs;hence they only appear in an n-gluon ampli-tude at loop level.)Therefore any consequence of N=4supersymmetry,such as Ward identities among scattering amplitudes[29],automatically applies to tree-level gluonic scattering in QCD[30].Similarly,at tree level Witten’s topological string[31]produces MSYM,but implies twistor-space localization properties for QCD tree amplitudes.(Amplitudes with quarks can be related to supersymmetric amplitudes with gluinos using simple color manipulations.)3.1Pole Structure at One and Two LoopsAt the loop-level,MSYM becomes progressively more removed from QCD. However,it can still illuminate general properties of scattering amplitudes,in a calculationally simpler arena.Consider the infrared singularities of one-loop massless gauge theory amplitudes.In dimensional regularization,the leading singularity is1/ǫ2,arising from virtual gluons which are both soft and collinear with respect to a second gluon or another massless particle.It can be char-acterized by attaching a gluon to any pair of external legs of the tree-level amplitude,as in the left graph infig.3.Up to color factors,this leading diver-gence is the same for MSYM and QCD.There are also purely collinear terms associated with individual external lines,as shown in the right graph infig.3. The pure-collinear terms have a simpler form than the soft terms,because there is less tangling of color indices,but they do differ from theory to theory.The full result for one-loop divergences can be expressed as an operator I(1)(ǫ) which acts on the color indices of the tree amplitude[32].Treating the L-loop amplitude as a vector in color space,|A(L)n ,the one-loop result is|A(1)n =I(1)(ǫ)|A(0)n +|A(1),finn ,(3)where |A (1),fin nis finite as ǫ→0,and I (1)(ǫ)=1Γ(1−ǫ)n i =1n j =i T i ·T j 1T 2i 1−s ij ǫ,(4)where γis Euler’s constant and s ij =(k i +k j )2is a Mandelstam invariant.The color operator T i ·T j =T a i T a j and factor of (µ2R /(−s ij ))ǫarise from softgluons exchanged between legs i and j ,as in the left graph in fig.3.The pure 1/ǫpoles terms proportional to γi have been written in a symmetric fashion,which slightly obscures the fact that the color structure is actually simpler.We can use the equation which represents color conservation in the color-space notation, n j =1T j =0,to simplify the result.At order 1/ǫwe may neglect the (µ2R /(−s ij ))ǫfactor in the γi terms,and we have n j =i T i ·T j γi /T 2i =−γi .So the color structure of the pure 1/ǫterm is actually trivial.For an n -gluon amplitude,the factor γi is set equal to its value for gluons,which turns out to be γg =b 0,the one-loop coefficient in the β-function.Hence the pure-collinear contribution vanishes for MSYM,but not for QCD.The divergences of two-loop amplitudes can be described in the same for-malism [32].The relation to soft-collinear factorization has been made more transparent by Sterman and Tejeda-Yeomans,who also predicted the three-loop behavior [33].Decompose the two-loop amplitude |A (2)n as|A (2)n =I (2)(ǫ)|A (0)n +I (1)(ǫ)|A (1)n +|A (2),fin n,(5)where |A (2),fin n is finite as ǫ→0and I (2)(ǫ)=−1ǫ+e −ǫγΓ(1−2ǫ)ǫ+K I (1)(2ǫ)+e ǫγT 2i µ22C 2A ,(8)where C A =N c is the adjoint Casimir value.The quantity ˆH(2)has non-trivial,but purely subleading-in-N c ,color structure.It is associated with soft,rather than collinear,momenta [37,33],so it is theory-independent,up to color factors.An ansatz for it for general n has been presented recently [38].3.2Recycling Cuts in MSYMAn efficient way to compute loop amplitudes,particularly in theories with a great deal of supersymmetry,is to use unitarity and reconstruct the am-plitude from its cuts [10,38].For the four-gluon amplitude in MSYM,the two-loop structure,and much of the higher-loop structure,follows from a sim-ple property of the one-loop two-particle cut in this theory.For simplicity,we strip the color indices offof the four-point amplitude A (0)4,by decomposing it into color-ordered amplitudes A (0)4,whose coefficients are traces of SU(N c )generator matrices (Chan-Paton factors),A (0)4(k 1,a 1;k 2,a 2;k 3,a 3;k 4,a 4)=g 2 ρ∈S 4/Z 4Tr(T a ρ(1)T a ρ(2)T a ρ(3)T a ρ(4))×A (0)4(k ρ(1),k ρ(2),k ρ(3),k ρ(4)).(9)The two-particle cut can be written as a product of two four-point color-ordered amplitudes,summed over the pair of intermediate N =4states S,S ′crossing the cut,which evaluates toS,S ′∈N =4A (0)4(k 1,k 2,ℓS ,−ℓ′S ′)×A (0)4(ℓ′S ′,−ℓS ,k 3,k 4)=is 12s 23A (0)4(k 1,k 2,k 3,k 4)×1(ℓ−k 3)2,(10)where ℓ′=ℓ−k 1−k 2.This equation is also shown in fig.4.The scalar propagator factors in eq.(10)are depicted as solid vertical lines in the figure.The dashed line indicates the cut.Thus the cut reduces to the cut of a scalar box integral,defined byI D =4−2ǫ4≡ d 4−2ǫℓℓ2(ℓ−k 1)2(ℓ−k 1−k 2)2(ℓ+k 4)2.(11)One of the virtues of eq.(10)is that it is valid for arbitrary external states in the N =4multiplet,although only external gluons are shown in fig.4.Therefore it can be re-used at higher loop order,for example by attaching yet another tree to the left.N =41234=i s 12s 231234Figure 4.The one-loop two-particle cuts for the four-point amplitude in MSYM reduce to the tree amplitude multiplied by a cut scalar box integral (for any set of four external states).i 2s 12s121234+s 121234+perms Figure 5.The two-loop gg →gg amplitude in MSYM [11,39].The blob on theright represents the color-ordered tree amplitude A (0)4.(The quantity s 12s 23A (0)4transforms symmetrically under gluon interchange.)In the the brackets,black linesare kinematic 1/p 2propagators,with scalar (φ3)vertices.Green lines are color δab propagators,with structure constant (f abc )vertices.The permutation sum is over the three cyclic permutations of legs 2,3,4,and makes the amplitude Bose symmetric.At two loops,the simplicity of eq.(10)made it possible to compute the two-loop gg →gg scattering amplitude in that theory (in terms of specific loop integrals)in 1997[11],four years before the analogous computations in QCD [36,37].All of the loop momenta in the numerators of the Feynman di-agrams can be factored out,and only two independent loop integrals appear,the planar and nonplanar scalar double box integrals.The result can be writ-ten in an appealing diagrammatic form,fig.5,where the color algebra has the same form as the kinematics of the loop integrals [39].At higher loops,eq.(10)leads to a “rung rule”[11]for generating a class of (L +1)-loop contributions from L -loop contributions.The rule states that one can insert into a L -loop contribution a rung,i.e.a scalar propagator,transverse to two parallel lines carrying momentum ℓ1+ℓ2,along with a factor of i (ℓ1+ℓ2)2in the numerator,as shown in fiing this rule,one can construct recursively the external and loop-momentum-containing numerators factors associated with every φ3-type diagram that can be reduced to trees by a sequence of two-particle cuts,such as the diagram in fig.7a .Such diagrams can be termed “iterated 2-particle cut-constructible,”although a more compact notation might be ‘Mondrian’diagrams,given their resemblance to Mondrian’s paintings.Not all diagrams can be computed in this way.The diagram in fig.7b is not in the ‘Mondrian’class,so it cannot be determined from two-particle cuts.Instead,evaluation of the three-particle cuts shows that it appears with a non-vanishing coefficient in the subleading-color contributions to the three-loop MSYM amplitude.ℓ1ℓ2−→i (ℓ1+ℓ2)2ℓ1ℓ2Figure 6.The rung rule for MSYM.(a)(b)Figure 7.(a)Example of a ‘Mondrian’diagram which can be determined re-cursively from the rung rule.(b)Thefirst non-vanishing,non-Mondrian dia-grams appear at three loops in nonplanar,subleading-color contributions.4Iterative Relation in N =4Super-Yang-Mills TheoryAlthough the two-loop gg →gg amplitude in MSYM was expressed in terms of scalar integrals in 1997[11],and the integrals themselves were computed as a Laurent expansion about D =4in 1999[25,26],the expansion of the N =4amplitude was not inspected until last fall [9],considerably after similar investigations for QCD and N =1super-Yang-Mills theory [36,37].It was found to have a quite interesting “iterative”relation,when expressed in terms of the one-loop amplitude and its square.At leading color,the L -loop gg →gg amplitude has the same single-trace color decomposition as the tree amplitude,eq.(9).Let M (L )4be the ratio of this leading-color,color-ordered amplitude to the corresponding tree amplitude,omitting also several conventional factors,A (L ),N =4planar 4= 2e −ǫγg 2N c2 M (1)4(ǫ) 2+f (ǫ)M (1)4(2ǫ)−12(ζ2)2is replaced by approximately sixpages of formulas (!),including a plethora of polylogarithms,logarithms and=+f(ǫ)−12(ζ2)2+O(ǫ)f(ǫ)=−(ζ2+ǫζ3+ǫ2ζ4+...)Figure8.Schematic depiction of the iterative relation(13)between two-loop and one-loop MSYM amplitudes.polynomials in ratios of invariants s/t,s/u and t/u[37].The polylogarithm is defined byLi m(x)=∞i=1x i t Li m−1(t),Li1(x)=−ln(1−x).(14)It appears with degree m up to4at thefinite,orderǫ0,level;and up to degree4−i in the O(ǫ−i)terms.In the case of MSYM,identities relating these polylogarithms are needed to establish eq.(13).Although the O(ǫ0)term in eq.(13)is miraculously simple,as noted above the behavior of the pole terms is not a miracle.It is dictated in general terms by the cancellation of infrared divergences between virtual corrections and real emission[24].Roughly speaking,for this cancellation to take place,the virtual terms must resemble lower-loop amplitudes,and the real terms must resemble lower-point amplitudes,in the soft and collinear regions of loop or phase-space integration.At the level of thefinite terms,the iterative relation(13)can be understood in the Regge/BFKL limit where s≫t,because it then corresponds to expo-nentiation of large logarithms of s/t[40].For general values of s/t,however, there is no such argument.The relation is special to D=4,where the theory is conformally invariant. That is,the O(ǫ1)remainder terms cannot be simplified significantly.For ex-ample,the two-loop amplitude M(2)4(ǫ)contains at O(ǫ1)all three independent Li5functions,Li5(−s/u),Li5(−t/u)and Li5(−s/t),yet[M(1)4(ǫ)]2has only the first two of these[9].The relation is also special to the planar,leading-color limit.The subleading color-components of thefinite remainder|A(2),finn defined by eq.(5)show no significant simplification at all.For planar amplitudes in the D→4limit,however,there is evidence that an identical relation also holds for an arbitrary number n of external legs, at least for certain“maximally helicity-violating”(MHV)helicity amplitudes. This evidence comes from studying the limits of two-loop amplitudes as two of the n gluon momenta become collinear[9,38,41].(Indeed,it was by analyzing these limits that the relation for n=4wasfirst uncovered.)The collinear limits turn out to be consistent with the same eq.(13)with M4replaced by M n everywhere[9],i.e.M(2)n(ǫ)=12(ζ2)2+O(ǫ).(15)The collinear consistency does not constitute a proof of eq.(15),but in light of the remarkable properties of MSYM,it would be surprising if it were not true in the MHV case.Because the direct computation of two-loop amplitudes for n>4seems rather difficult,it would be quite interesting to try to examine the twistor-space properties of eq.(15),along the lines of refs.[31,42].(The right-hand-side of eq.(15)is not completely specified at order1/ǫandǫ0for n>4.The reason is that the orderǫandǫ2terms in M(1)n(ǫ),which contribute to thefirst term in eq.(15)at order1/ǫandǫ0,contain the D=6−2ǫpentagon integral[43],which is not known in closed form.On the other hand, the differential equations this integral satisfies may suffice to test the twistor-space behavior.Or one may examine just thefinite remainder M(L),finn definedvia eq.(5).)It may soon be possible to test whether an iterative relation for planar MSYM amplitudes extends to three loops.An ansatz for the three-loop planar gg→gg amplitude,shown infig.9,was provided at the same time as the two-loop re-sult,in1997[11].The ansatz is based on the“rung-rule”evaluation of the iterated2-particle cuts,plus the3-particle cuts with intermediate states in D=4;the4-particle cuts have not yet been verified.Two integrals,each be-ginning at O(ǫ−6),are required to evaluate the ansatz in a Laurent expansion about D=4.(The other two integrals are related by s↔t.)The triple ladder integral on the top line offig.9was evaluated last year by Smirnov,all the way through O(ǫ0)[44].Evaluation of the remaining integral,which contains a factor of(ℓ+k4)2in the numerator,is in progress[45];all the terms through O(ǫ−2)agree with predictions[33],up to a couple of minor corrections.5Significance of Iterative Behavior?It is not yet entirely clear why the two-loop four-point amplitude,and prob-ably also the n-point amplitudes,have the iterative structure(15).However, one can speculate that it is from the need for the perturbative series to=i3s12s212+s223+2s12(ℓ+k4)+2s23(ℓ+k1)21Figure9.Graphical representation of the three-loop amplitude for MSYM in the planar limit.be summable into something which becomes“simple”in the planar strong-coupling limit,since that corresponds,via AdS/CFT,to a weakly-coupled supergravity theory.The fact that the relation is special to the conformal limit D→4,and to the planar limit,backs up this speculation.Obviously it would be nice to have some more information at three loops.There have been other hints of an iterative structure in the four-point correlation func-tions of chiral primary(BPS)composite operators[46],but here also the exact structure is not yet clear.Integrability has played a key role in recent higher-loop computations of non-BPS spin-chain anomalous dimensions[4,5,6,8].By imposing regularity of the BMN‘continuum’limit[3],a piece of the anoma-lous dimension matrix has even been summed to all orders in g2N c in terms of hypergeometric functions[7].The quantities we considered here—gauge-invariant,but dimensionally regularized,scattering amplitudes of color non-singlet states—are quite different from the composite color-singlet operators usually treated.Yet there should be some underlying connection between the different perturbative series.6Aside:Anomalous Dimensions in QCD and MSYMAs mentioned previously,the set of anomalous dimensions for leading-twist operators was recently computed at NNLO in QCD,as the culmination of a multi-year effort[13]which is central to performing precise computations of hadron collider cross sections.Shortly after the Moch,Vermaseren and Vogt computation,the anomalous dimensions in MSYM were extracted from this result by Kotikov,Lipatov,Onishchenko and Velizhanin[12].(The MSYM anomalous dimensions are universal;supersymmetry implies that there is only one independent one for each Mellin moment j.)This extraction was non-trivial,because MSYM contains scalars,interacting through both gauge and Yukawa interactions,whereas QCD does not.However,Kotikov et al.noticed, from comparing NLO computations in both leading-twist anomalous dimen-sions and BFKL evolution,that the“most complicated terms”in the QCDcomputation always coincide with the MSYM result,once the gauge group representation of the fermions is shifted from the fundamental to the adjoint representation.One can define the“most complicated terms”in the x-space representation of the anomalous dimensions—i.e.the splitting kernels—as follows:Assign a logarithm or factor ofπa transcendentality of1,and a polylogarithm Li m or factor ofζm=Li m(1)a transcendentality of m.Then the most complicated terms are those with leading transcendentality.For the NNLO anomalous dimensions,this turns out to be transcendentality4.(This rule for extracting the MSYM terms from QCD has also been found to hold directly at NNLO,for the doubly-virtual contributions[38].)Strikingly,the NNLO MSYM anomalous dimension obtained for j=4by this procedure agrees with a previous result derived by assuming an integrable structure for the planar three-loop contribution to the dilatation operator[5].7Conclusions and OutlookN=4super-Yang-Mills theory is an excellent testing ground for techniques for computing,and understanding the structure of,QCD scattering amplitudes which are needed for precise theoretical predictions at high-energy colliders. One can even learn something about the structure of N=4super-Yang-Mills theory in the process,although clearly there is much more to be understood. Some open questions include:Is there any AdS/CFT“dictionary”for color non-singlet states,like plane-wave gluons?Can one recover composite operator correlation functions from any limits of multi-point scattering amplitudes?Is there a better way to infrared regulate N=4supersymmetric scattering amplitudes,that might be more convenient for approaching the AdS/CFT correspondence,such as compactification on a three-sphere,use of twistor-space,or use of coherent external states?Further investigations of this arena will surely be fruitful.AcknowledgementsWe are grateful to the organizers of Strings04for putting together such a stim-ulating meeting.This research was supported by the US Department of En-ergy under contracts DE-FG03-91ER40662(Z.B.)and DE-AC02-76SF00515 (L.J.D.),and by the Direction des Sciences de la Mati`e re of the Commissariat `a l’Energie Atomique of France(D.A.K.).。
Understanding the newly observed Y(4008) by Belle
a r X i v :0708.4167v 3 [h e p -p h]19N o v 2007Understanding the newly observed Y (4008)by BelleXiang Liu ∗School of Physics,Peking University,Beijing 100871,China(Dated:February 1,2008)Very recently a new enhancement around 4.05GeV was observed by Belle experiment.In this short note,we discuss some possible assignments for this enhancement,i.e.ψ(3S )and D ∗¯D ∗molecular state.In these two assignments,Y (4008)can decay into J/ψπ0π0with comparable branching ratio with that of Y (4008)→J/ψπ+π−.Thus one suggests high energy experimentalists to look for Y (4008)in J/ψπ0π0channel.Furthermore one proposes further experiments to search missing channels D ¯D ,D ¯D ∗+h.c.and especially χcJ π+π−π0and ηc π+π−π0,which will be helpful to distinguish ψ(3S )and D ∗¯D∗molecular state assignments for this new enhancement.PACS numbers:13.30.Eg 13.75.Lb Very recently Belle Collaboration observed an en-hancement with mass m =4008±40+114−28MeV and width Γ=226±44±87MeV besides confirming Y (4260)by studying initial state radiation (ISR)process e +e −→γISR J/ψπ+π−[1].Belle experiment also indicated that a fit using two interfering Breit-Wigner shapes describes the data better than one that uses only the Y (4260)[1].In this work,we named this new structure as Y (4008).Recently a series of observations of charmonium like states X ,Y ,Z [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]is challenging our understanding for non-perturbative QCD.At present how to understand this new structure is one of intriguing and challengeable topics.In this short note,we are dedicated to the discussion of the possible interpretations for Y (4008).I.A POSSIBLE CANDIDATE FOR ψ(3S )?In the known charmonium states listed in Particle Data Book,only the mass of ψ(4040)is close to that of Y (4008)[22].At present ψ(4040)is usually considered as the can-didate for ψ(3S ).The central value of width of Y (4008)is larger than that of ψ(4040)around 100MeV.However,due to the large error given by Belle experiment,the massand width of this new enhancement are consistent withthat of ψ(4040).For Y (4008),Belle experiment also gave B (J/ψπ+π−)·Γe +e −=5.0±1.4+6.1−0.9eV and 12.4±2.4+14.8−1.1eV corre-sponding to two solutions in fitting the data [1].As thecandidate of ψ(3S ),the decay width of ψ(4040)→e +e −is 0.86±0.07keV [22].Using the above values,we canroughly estimate B [Y (4008)→J/ψπ+π−]=5.8×10−3and 1.4×10−2for the above two solutions if Y (4008)r +br [25]2andΓ[ψ(3S )→J/ψππ]=12.38keV ,(3)Γ[ψ(3S )→ψ(2S )ππ]=8.84keV ,(4)by adopting amodified Cornell potential which includes a spin-related term [26]V (r )=−κ3m 2q δσ(r )S q ·S ¯q +V 0,where δσ(r )=(σπ)3e −σ2r2and V 0is the zero-point en-ergy (for more detail,see Ref.[24]).The above numerical results by two potential show that there exists large un-certainty for the estimate of ψ(3S )→J/ψππby QCDME method,which is indicated in Ref.[24].However the es-timate of ψ(3S )→ψ(2S )ππwithout spin-related term is consistent with that with spin-related term.If we trust the estimate of ψ(3S )→ψ(2S )ππby QCDME method,it is hopeful to search Y (4008)in ψ(2S )ππchannel in future experiments.Furthermore,if Y (4008)is ψ(3S ),we know that J/ψπ+π−is not its maindecay channel.Y (4008)canmainly decay into D ¯D and D ¯D ∗+h.c..Due to the factthat Y (4008)is of wide decay width with about 200MeV,Y (4008)can also decay into D ∗¯D ∗through its mass tail.II.A D ∗¯D ∗MOLECULAR STATE?There has been a long history about the molecular structure of hadrons.To explain some phenomena which are hard to find natural interpretations in the canonical framework,people have tried to search for new structure beyond it.The molecular structure is one of the possible candidates.Because the massof Y (4008)is close to the thresh-old of D ∗¯D ∗,and Y (4008)is of about 200MeV widewidth,thus Y (4008)can be assumed as a D ∗¯D ∗molecu-lar state.In the history,Okun and Voloshin studied the interaction between charmed mesons and proposed possi-bilities of the molecular states involving charmed quarks[27].Rujula,Geogi and Glashow once suggested ψ(4040)as a D ∗¯D ∗molecular state [28].In Ref.[29,30],Dubyn-skiy and Voloshin proposedthat there exists a possiblenew resonance at the D ∗¯D ∗threshold.Because Y (4008)is observed along with Y (4260)which is of J P C =1−−,thus the most possible quantum number of Y (4008)is J P C =1−−.Furthermore Y(4008)must be a p-waveD ∗¯D ∗.At present one can not use the experimental infor-mation to determine the quantum number I G of Y (4008).Thus Y (4008)can be isosinglet state with I G =0−or isovector state with I G =1+.If Y (4008)is a D ∗¯D ∗molecular state,Y (4008)falls apart into D ∗¯D ∗by its mass tail,which is depicted in Fig. 2.In the following we will discus its other possible decay modes.(i)Y (4008)as an isoscalar D ∗¯D ∗molecular state FIG.2:The diagrams depicting the Y (4008)→D ∗¯D ∗decay.By the D ∗¯D ∗recattering effect,Y (4008)with I G =0−can decay into J/ψ+η,J/ψ+σand J/ψ+f 0(980)by the mechanism depicted in Fig.3,and into χcJ ω(J =0,1,2),ηc ωby Fig.4.Here J/ψcan be also replaced as ψ(2S )and ψ(3770).By the same mechanism,Y (4008)(980)FIG.3:The diagrams depicting the Y (4008)→J/ψη,J/ψσ,J/ψf 0(980)decays.FIG.4:The diagrams depicting the Y (4008)→χcJ ω,ηc ωdecays.also decay into D ¯D and D ¯D ∗+h.c.by exchanging πand ρmesons between D ∗and ¯D ∗.In fact,as secondary decay,the branching ratio of Y (4008)→D ∗¯D ∗→D ¯D,D ¯D ∗+h.c.is comparable with that of Y (4008)→D ∗¯D ∗→J/ψη,J/ψω.Because σand f 0(980)dominantly decay into ππ,thus,according to the isospin symmetry,one can roughly esti-3 mateB[Y(4008)→J/ψπ0π0]2.(5)Furthermore the decay mechanism depicted by Fig.3can be test in further experiments by analyzing theππinvariant mass spectrum.If this mechanism is correct, theππinvariant mass distribution should show the sig-nature ofσor f0(980).The branching ratio ofω→π+π−π0is almost89.1%, thusωtoπ+π−π0is overwhelming.χcJπ+π−π0and ηcπ+π−π0are expected as special and main decay modes of Y(4008).Meanwhileωalso decay intoπ+π−andπ0γwith the branching ratio B(ω→π+π−)=1.7%and B(ω→π0γ)=8.9%respectively[22].ThusχcJπ+π−,χcJπ0γ,ηcπ+π−,ηcπ0γare important decay modes for Y(4008).The typical decay modes of Y(4008)with the assign-ment of D∗¯D∗molecular state(I G(J P C)=0−(1−−)) mainly include J/ψη,J/ψππ,χcJπ+π−π0,χcJπ0γ,χcJπ+π−,ηcπ+π−π0,ηcπ0γ,ηcπ+π−,D¯D,D¯D∗+h.c.. As one of the main decay modes,χcJ(ηc)π+π−π0should be seen if Y(4008)is a D∗¯D∗molecular state with I G=0−.However there exists the difficulty to distin-guish Y(4008)→χcJ(ηc)π0γin the experiment.Here index J ofχcJ can be0,1,2.(ii)Y(4008)as an isovector D∗¯D∗molecular state For isovector D∗¯D∗molecular state,Y(4008)can de-cay intoπ0J/ψ,ρ0χcJ(J=0,1,2)andρ0ηc,which are depicted in Fig. 5.The branching ratio ofρ0→π+π−FIG.5:The diagrams depicting the Y(4008)→χcJρ,ηcρdecays.is almost100%[22].Thus the typical decay modes of Y(4008)as an isovector D∗¯D∗molecular state areπ0J/ψ,χcJπ+π−andηcπ+π−.Besides these decays,of course Y(4008)can also decay into D¯D and D¯D∗+h.c..Because J/ψπ+π−is forbidden for an isovector D∗¯D∗molecular state,thus one can exclude the assignment of isovector D∗¯D∗molecular state for Y(4008).III.BRIEF CONCULSIONIn the above sections,we discuss possible assignments for Y(4008):ψ(3S)and D∗¯D∗molecular state.In these two possible pictures,onefinds that the branching ra-tio of Y(4008)→J/ψπ0π0is comparable with that of Y(4008)→J/ψπ+π−.Thus one suggests further ex-periments to search Y(4008)in J/ψπ0π0invariant mass distribution.How to distinguish these two assignments becomes a key problem.In the following we will illustrate the dif-ferences of Y(4008)decays for two assignments,which will be helpful to distinguishψ(3S)and D∗¯D∗molecular state pictures:(1)Search for D¯D,D¯D∗+h.c.decay channels.If Y(4008)isψ(3S),D¯D,D¯D∗+h.c.are main decay channels.If Y(4008)is a D∗¯D∗molecular state,D¯D, D¯D∗+h.c.,as the secondary decay modes,are compara-ble withχcJπ+π−π0andηcπ+π−π0.Thus one suggests experiments to search these missing decay channels. (2)Search forχcπ+π−π0andηcπ+π−π0decay chan-nels.In the picture of D∗¯D∗molecular state,χcJπ+π−π0 andηcπ+π−π0are main decay modes.However,as ψ(3S),besides decaying to D¯D,D¯D∗+h.c.and D∗¯D∗, Y(4008)mainly decays into J/ψππ.It will be a decisive factor to distinguishψ(3S)and D∗¯D∗molecular state as-signments if the Y(4008)→χcJπ+π−π0,ηcπ+π−π0can be found in further experiments.One strongly urges our experimental colleague to design more accurate experi-ments tofind Y(4008)→χcJπ+π−π0,ηcπ+π−π0.AcknowledgmentsWe thank H.W.Ke for useful communication about their work.We also thank Prof.S.L.Zhu for interest-ing discussions and useful suggestions.This project was supported by the National Natural Science Foundation of China under Grants10421503,1062552110705001,and the China Postdoctoral Science foundation under Grant No20060400376.4[1]Belle Collaboration,C.Z.Yuan et al.,arXiv:07072541v1[hep-ex].[2]Belle Collaboration,S.K.Coi et al.,Phys.Rev.Lett.91,262001(2003).[3]CDF Collaboration,D.Acosta et al.,Phys.Rev.Lett.93,072001(2004).[4]D0Collaboration,V.M.Abazov et al.,Phys.Rev.Lett.93,162002(2003).[5]Babar Collaboration,B.Aubert et al.,Phys.Rev.D 71,071103(2005);[6]Belle Collaboration,K.Abe et al.,arXiv:hep-ex/0505037.[7]Babar Collaboration, B.Aubert,Phys.Rev.D 74,071101(2006).[8]Belle Collaboration,G.Gokhroo et al.,Phys.Rev.Lett.97,162002(2006).[9]Babar Collaboration,talk given by P.Gre-nier in Moriond QCD 2007,17-24March,http://moriond.in2p3.fr/QCD/2007/SundayAfternoon/Grenier.pdf.[10]CDF Collaboration,A.Abulencia et al.,Phys.Rev.Lett.96,102002(2006).[11]Belle Collaboration,K.Abe et al.,arXiv:hep-ex/0505038.[12]CDF Collaboration,A.Abulencia,Phys.Rev.Lett 98,132002(2007).[13]Babar Collaboration,B.Aubert et al.,Phys.Rev.Lett.95,142001(2005).[14]CLEO Collaboration,T.E.Coan et al.,Phys.Rev.Lett.96,162003(2006).[15]CLEO Collaboration,Q.He et al.,Phys.Rev.D 74,091104(2006).[16]Belle Collaboration,K.Abe et al.,arXiv:hep-ex/0612006.[17]Babar Collaboration,B.Aubert et al.,Phys.Rev.D 73,011101(2006).[18]Babar Collaboration,B.Aubert,et al.,Phys.Rev.Lett.98,212001(2007).[19]Belle Collaboration,K.Abe et al.,arXiv:hep-ex/0507019.[20]Belle Collaboration,S.K.Choi et al.,Phys.Rev.Lett.94,182002(2005).[21]Belle Collaboration,S.Uehara et al.,Phys.Rev.Lett.96,082003(2006).[22]W.M.Yao et al.,Particle Data Group,J.Phys.G 33,1(2006).[23]K.Gottfried,Phys.Rev.Lett.40,598(1978);Y.P.Kuang and T.M.Yan,Phys.Rev.D 24,2874(1981);Y.P.Kuang ,Front.Phys.China 1,19(2006);T.M.Yan,Phys.Rev.D 22,1652(1980);Y.P.Kuang,Y.P.Yi and B.Fu,Phys.Rev.D 42,2300(1990).[24]H.W.Ke,J.Tan,X.Q.Hao and X.Q.Li,Phys.Rev.D 76,074035(2007).[25]E.Eichten,K.Gottfried,T.Kinoshita,ne and T.M.Yan ,Phys.Rev.D 17,3090(1978);ibid,D 21,203(1980).[26]T.Barnes ,S.Godfrey and E.S.Swanson,Phys.Rev.D 72,054026(2005).[27]M.B.Voloshin and L.B.Okun,JETP Lett.23,333(1976).[28]A.D.Rujula,H.Georgi and S.L.Glashow,Phys.Rev.Lett.38,317(1977).[29]M.B.Voloshin,arXiv:hep-ph/0602233.[30]S.Dubynskiy and M.B.Voloshin,Mod.Phys.Lett.A 21,2779(2006).。
Charmonium Suppression with cc~ Dissociation by Strings
J. Geiss, C. Greiner, E. L. Bratkovskaya, W. Cassing and U. Mosel Institut f¨ ur Theoretische Physik, Universit¨ at Giessen D-35392 Giessen, Germany
Байду номын сангаас
then address the dissociation process of the cc ¯ states on baryons and the chromoelectric flux tube of the strings (section 4). We conclude with a summary of our investigations.
2
The covariant transport approach
In this work we perform our analysis along the line of the HSD approach [16] in the cascade modus which is based on a coupled set of covariant transport equations for the phase-space distributions fh (x, p) of hadron h [16], i.e. ∂ p1 + ∇ f1 (x, p1 ) ∂t m =
arXiv:nucl-th/9803008v1 3 Mar 1998
Abstract We study the production of cc ¯ pairs in nuclear reactions at SPS energies within the covariant transport approach HSD. The production of cc ¯ is treated perturbatively employing experimental cross sections while the interactions of cc ¯ pairs with baryons are included by conventional cascade-type two-body collisions. Adopting 6 mb for the cc ¯-baryon cross sections the data on J/Ψ suppression in p + A reactions are reproduced in line with calculations based on the Glauber model. Additionally the dissociation of the cc ¯ pairs by strings is included in a purely geometrical way. We find good agreement with experimental data from the NA38 and NA50 collaboration with an estimate for the string radius of Rs ≈ 0.2 − 0.3 f m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0712.2355v 2 [h e p -p h ] 9 J u l 2008CP3-07-29July 9,2008Top pair invariant mass distribution:a window on new physics Rikkert Frederix and Fabio Maltoni Centre for Particle Physics and Phenomenology (CP3)Universit´e Catholique de Louvain Chemin du Cyclotron 2B-1348Louvain-la-Neuve,Belgium Abstract We explore in detail the physics potential of a measurement of the t ¯t invariant mass distribution.First,we assess the accuracy of the best available predictions for this observable and find that in the low invariant mass region,the shape is very well predicted and could be used to perform a top mass measurement.Second,we study the effects of a heavy s -channel resonance on the t ¯tinvariant mass distribution in a model independent way.We provide the necessary Monte Carlo tools to perform the search and outline a simple three-step analysis.1IntroductionThe top quark is unique among the so-far-discovered matter constituents:it is the only fermion whose mass is very close to the scale of electroweak symmetry breaking(EWSB), m t≃v/√1Another numerical coincidence is also often mentioned,namely m t≃m W+m Z,with somewhat less inspirational effects.2The Monte Carlo and a wide collection of parton-level data samples(Les Houches format)suitableThe strategies and the difficulties associated to the accuracy which will be needed for the reconstruction of m t¯t have been the subject of several investigations[34,35]and are left to dedicated experimental studies.However,we briefly comment on them in Appendix A.The paper is organized as follows.In Section2,we perform an analysis of the theoretical uncertainties on the QCD predictions for m t¯t,in the low-as well as high-mass regions.We find that the shape of the m t¯t distribution has very little theoretical uncertainties(in contrast to its normalization,i.e.,the total cross section)and we argue it could provide a new handle on the top mass determination.In Sections3,4and5we explore a three-step analysis.In Section3the effects on m t¯t induced by new heavy resonances in the s-channel,pp→X→t¯t,from the presence of simple peaks,to non-trivial patterns arising from interference between signal and SM background.In the following section we assume that a resonance is found and study how the spin structure of a resonance affects the angular distributions of the top and anti-top quarks.In Section5we discuss how spin-correlations are affected by nature of the coupling of the resonances to SM particles,by simulating the full matrix elements including the decay,pp→X→t¯t→6f.We leave to Section6the discussion of the results and our conclusions.2SM theoretical predictions at NLOIn this section we study the theoretical uncertainties on the available predictions for the invariant mass spectrum and their dependence on the top mass.We mainly focus on the LHC and refer to the results of Ref.[36]for the Tevatron.We start by considering the invariant mass spectrum of the t¯t pair calculated up to next-to-leading order(NLO),as implemented in MCFM[37].We use the CTEQ6M PDF-set[38]and do not apply cuts on thefinal state particles.Here and in the following we always assume that the invariant mass can be fully reconstructed,see also Appendix6.In Fig.1results at the LHC are plotted for three different top quark masses with uncertainty bands associated to the PDF errors and renormalization and factorization scale variations.The PDF uncertainty is estimated by running the41members of CTEQ6PDF set, with the scales set equal toµR=µF=m t,and found to be about±3.2%.The scale uncertainty is obtained by varying independently the renormalization and factorization scales in the region betweenµR=µF=m t/2andµR=µF=2m t.The associated total scale uncertainty at NLO is about±13%.Thus,the theoretical errors at the LHC are completely dominated by the scale uncertainty.This is contrast to the Tevatron where scale and PDF errors are comparable,of the order6%[36].NLL resummed calculations suggest that the dependence on the scales could go down to±6%[39,40],however in that analysis the scales were not varied independently.A more(a)(b)(c)Figure1:Scale(dashed)and PDF(dotted)uncertainties in the t¯t invariant mass spectrum for top masses(a)m t=165GeV,(b)m t=170GeV and(c)m t=175GeV at NLO for the LHC using the CTEQ6M pdf set.(a)(b)Figure2:The MC@NLO m t¯t distribution compared with the LO(blue)and NLO(red)fixed order predictions.The distributions are normalized to the MC@NLO cross section. We set m t=170GeV,include no cuts,and use CTEQ6M for the NLO and MC@NLO, and CTEQ6L1for the LO calculations.recent study suggests that changing the scales independently might increase the error to a size similar to that estimated through the NLOfixed order calculation[41].Next we compare the NLO shapes for the invariant mass distribution with those ob-tained at LO and MC@NLO[42],Fig.2,both at the Tevatron and the LHC.Wefind that the differences are minimal at the LHC,and well within the uncertainty bands of the theoretical errors on the NLO cross section.On the other hand,at the Tevatron the differences between LO and NLO,fixed and dynamic renormalization and factorization scales are larger.In the high invariant mass region for the LHC,Fig.3,the LO approximation starts toFigure3:Scale(dashed)and PDF(dotted)uncertainties in the t¯t invariant mass spectrum for m t=170GeV at NLO in QCD,with the CTEQ6M PDF-sets.Also plotted are the LO distribution(light dash-dotted),the LO including NLO Electro-Weak corrections(dark dash-dotted)with CTEQ6L1PDF-set.The LO distribution is normalized to the NLO total cross section.deviate from the NLO order and clearly underestimates the NLO distribution(note that curves here are normalized to the total cross section at NLO).Also,as expected,the PDF uncertainties start to increase and dominate the theoretical errors as the most important contributions come from the large x region.Next-to-leading order electroweak corrections to the LO distribution are also included in thisfigure[43,44].Their effect is to decrease the cross section by a few percent for invariant masses below1000GeV and up to15% for invariant masses around4TeV(the Higgs mass dependence is mild).This means that EW effects on this distribution are negligible compared to the current PDF uncertainties and give only a minor deviation from the LO curve.We conclude this section by mentioning the other sources of potentially large uncertain-ties in the determination of the t¯t invariant mass.Thefirst is related to its reconstruction from the decay products.In general the uncertainty on the m t¯t distribution will depend on thefinal state signature(fully-hadronic,single-lepton and double-leptonfinal states), which determine the reconstruction technique and,more importantly,on the detector ef-ficiencies and resolutions.For completeness we briefly discuss the current proposals for reconstruction in the various decay channels in Appendix6.The second is due to both QCD backgrounds,i.e.multi-jet,W,Z+jets and W W+jets,and top backgrounds,i.e. single-top and t¯t itself as coming from afinal state different signature than the one con-sidered.While the QCD backgrounds at the Tevatron are severe but very well studied,it has been shown that at the LHC their impact at low t¯t invariant mass is negligible when at least one lepton is present in thefinal state[45].In the high invariant mass tail,some QCD backgrounds,and in particular W+one or two jets,become important due to thefact that the tops are highly boosted and can give rise to single jet-like topologies when they decay hadronically.The interested reader canfind a detailed study for the single leptonfinal state signature in Refs.[35,46].2.1Top quark mass dependenceAs can be clearly seen from Fig.1,the normalization,as well as the shape of the t¯t invariant mass distribution depends on the mass of the top quark.It is then natural to wonder whether such a rather strong dependence could provide another way to determine the mass of the top quark.The aim of this subsection is to provide a quantitative answer, based only on the theoretical uncertainties.In Fig.4we have plotted the t¯t production cross sectionσas a function of the top quark mass at the Tevatron(a)and the LHC(b).The scale uncertainties are rather large. Afit to the central curve for the LHC gives∆m t/m t∼0.2∆σ/σ+0.03(LHC).(1) This means that a measurement of the cross section with an uncertainty of5%would lead to a4%uncertainty of the top quark mass,the error being mainly given by the constant term in Eq.1,associated with scale variations.At the Tevatron the situation is slightly different.The scale dependence is milder,∆m t/m t∼0.2∆σ/σ+0.016(Tevatron),(2) and known to be reduced at NLL[36],but the PDF errors,which are not included in the plot,are not negligible and are found to be of a similar size[36].It is therefore worth investigating whether information on the top mass can be extracted from some other quantity besides the total cross section.A quick look at the plots of Fig.1 suggests that the scale uncertainties sizably affect the normalization of the t¯t invariant mass distribution,but not the shape.To quantify to which extent the shape is sensitive to the top mass vs the theoretical uncertainties we perform an analysis based on thefirst few moments of the normalized t¯t invariant mass distributions∂σ∂m t¯t norm.,s=√µ3/22andγ2=µ4(a)(b)Figure 4:The t ¯tproduction cross section as a function of the top quark mass m t including scale dependence at the Tevatron (a)and the LHC (b).respectively.The central moments µn are defined as µn = d m t ¯t m t ¯t − m t ¯tn ∂σ(a)(b)(c)(d)Figure5:The average value(a),standard deviation(b),skewness(c)and kurtosis(d)ofthe t¯t invariant mass distribution as a function of the top quark mass m t including the scale dependence at the LHC.statistical nor systematics effects in the data,which should also be carefully considered.Eventually,thefinal uncertainty on the top quark mass will depend on how well the abovequantities can be measured.If for simplicity we assume that all the moments are measured with the same uncertainty,then the mean m t¯t leads to the smallest uncertainty on the top quark mass,only if its uncertainty is smaller than0.2%.On the other hand,if theuncertainty is larger the kurtosis gives the most precise measurement.It is plausible to expect that a combined analysis based on the above quantities might lead to an even smaller uncertainty for the top quark mass.For completeness we show the same analysis performed at the Tevatron energies.Alsoin this case,we have used afixed order NLO calculation to estimate the scale uncertainties. However,as we have already mentioned,at the Tevatron the t¯t pairs are produced almost at threshold,hence a resummed calculation which predicts a smaller scale uncertainty,is preferred[36].The Tevatron results(Fig.6)are similar to those obtained in the LHC study,but the reduction in the scale uncertainties by analyzing the(higher)moments is smaller compared to the LHC.Thefirst moment,i.e.,the mean value,is probably the best estimator for the top quark mass among all the moments,due to its small constant value of0.004,and the reasonably good proportionality factor of1.2.The higher moments are more sensitive to statisticalfluctuations and might be less suitable with a limited sample.The lack of events in the higher invariant mass regions might give rise to larger errors for the skewness and worse the kurtosis.In these plots we restrict the t¯t invariant mass to below m t¯t<600 GeV.Finally,we mention that even though using thefixed order NLO calculation we have overestimated the scale uncertainties,we have neglected the PDF errors which at the Tevatron can reach the6-7%[36]and errors coming from the reconstruction of the t¯t invariant mass from the(anti-)top quark decay products,see Appendix6.3Effects from BSM resonancesIn this section we investigate the effects of(model-independent)new resonances on the t¯t invariant mass spectrum.All the numerical results presented here have been obtained with MadGraph/MadEvent,through the implementation of a dedicated“model”,topBSM, which is publicly accessible on the MadGraph servers for on-line event generation and for download.3topBSM offers the possibility of studying a wide range of new physics resonances and efficiently exploits theflexibility and the possibilities of MadGraph:•SM effects are consistently included,i.e.,possibly non-trivial interference effects be-tween new resonances and the t¯t background are taken into account.As it will be shown in the following,in some cases such effects can be important and might lead to very distinctive signatures(cf.the case of the peak-dip structure arising in m t¯t due to the presence of a(pseudo-)scalar state).In general,they should be always included.•The full matrix elements2→6including the decays of the top quarks can be generated,which is crucial for spin correlation studies.•The generated events can be automatically interfaced to parton showers programs, such as Pythia[47]or Herwig[48],to shower and hadronize the events after which these events can be processed by a detector simulation for full experimental analyses.(a)(b)(c)(d)Figure6:The average value(a),standard deviation(b),skewness(c)and kurtosis(d)of the t¯t invariant mass distribution as a function of the top quark mass m t including the scale dependence at the Tevatron.For the skewness and kurtosis we restricted the integration region in Eq.4to m t¯t<600GeV.We have considered s-channel spin-0,spin-1and spin-2resonances,of different color and CP parity,as listed in Table1.The parameters related to each resonance are simply the mass,the width and the relevant values of the couplings to standard model particles which enter in the production process(to the partons and to the top quark).Spin parity(1,γ5)0(1,0)0MSSM/2HDM,Ref.[50,51]0(1,0)8Ref.[52,53]0Z′1(1,0)0axial vector1(1,1)0vector-right1(1,0)8axigluon,Ref.[55]0graviton“continuum”,Ref.[17] 2–v +a2m qFigure7:Feynman diagram for the(pseudo-)scalar contribution to t¯t production. peak-dip structure for the interference terms between the QCD background and the signal [49,50,51].The possibility to detect a signal in the t¯t invariant mass depends on the width of the spin-0resonance.In general,a scalar particle couples also to the electroweak bosons.In the SM the decay rate to W,Z is much larger than the decay rate to t¯t,and therefore the t¯t channel is suppressed.Moreover,the presence of a destructive interference between the signal and the QCD background and the relatively large width of the scalar makes detection very difficult.An enhanced coupling to top would not help much because the improvement in the branching ratio would be compensated by an increase of the total width.In conclusion,there is little hope to see a SM-like scalar by looking at the t¯t invariant mass spectrum,even if the coupling to top quark were(much)larger than in the SM.On the other hand,the case of a pseudo-scalar or a‘boson-phobic’scalar resonance that does not couple to the heavy vector bosons is more promising.For such a state,the branching ratio to t¯t can be taken unity,BR(φ→t¯t)=1,i.e.,the total width of the scalar spin-0resonance is equal to the SM partial width to t¯t.SUSY models with this feature can be constructed[57].The smaller widths of the pseudo-scalar and the boson-phobic scalar give a narrow resonance peak in the t¯t invariant mass spectrum.The interference between the signal and the QCD t¯t production leads to a dip in t¯t production at an invariant mass just above the mass of the spin-0particle.In this case the signal together with the interference terms sum to the characteristic peak-dip structure,Fig.8.The dot-dashed line in Fig.8shows the effect of a400GeV color singlet spin-0particle on the t¯t invariant mass spectrum with couplings a1=1,a2=0and a1=0,a2=1for the left and the right plots,paring with the QCD t¯t production,the dark solid line,a peak-dip structure is visible when the spin-0particle is a pseudo-scalar,a1=0 and a2=1.In the case where it is a scalar,a1=1and a2=0,there is only a peak and a very small dip.If the coupling to the top quark is enhanced,the peak as well as the dip becomes broader due to the larger decay width.The peak increases in the case the spin-0is a scalar,but remains the same for the pseudo-scalar.The dashed line shows the effect of enhancing the ttH coupling by a factor of two.If the coupling to the top quarks is taken even larger,the increasing width of the(pseudo-)scalar starts to dominate the effects on the invariant mass.This results in the disappearance of the dip,as shown by the light solid line in Fig.8.(a)(b)(c)(d)Figure8:Invariant t¯t mass spectrum for the boson-phobic scalar(left)and pseudo-scalar (right).Bottom:The interesting region withfiner binning.Different colors represent different coupling strength of the Higgs to top quarks:dot-dashed for the standard model coupling and dotted,dashed and light solid for0.5,2and4times the standard model coupling strength,respectively.Dark solid is QCD t¯t production,i.e.,without the Higgs signal.All plots were produced using the CTEQ6L1pdf set withµR=µF=400GeV.No acceptance cuts are applied.In the case where the coupling to the top is smaller than in the SM,the peak of the scalar gets smaller and the dip completely disappears.The effect of varying the coupling for the pseudo-scalar are much smaller.Even if the coupling to top quarks is reduced by a factor of two,a1=0and a2=0.5,a very clear peak-dip structure is still visible,as shown by the dotted line in Fig.8.(a)(b)Figure9:Invariant t¯t spectrum for pp→t¯t including a s-channel S0R scalar color octet(a)and a pseudo-scalar scalar S0I color octet(b)with masses m S0R =m S0I=400GeV.Darksolid line is QCD t¯t production,dash-dotted line is with standard coupling between the scalar and t¯t,dashed,light solid and dotted the coupling is2,4and0.5times as large, respectively.All plots were produced using the CTEQ6L1pdf set withµR=µF=400 GeV.No acceptance cuts are applied.3.1.2Color octetThe case of a color octet resonance is very similar.Here we shall study scalar S0R and a pseudo-scalar S0I color octets,similar to those introduced in Refs.[52,53].In these models the(pseudo-)scalar color octet couples only to quarks,with the same SM coupling but for the colorg S0R qq=ηU im qvT a ij,(6)whereηU is a coupling proportionality factor and of order1.The production and decay mechanism for the(pseudo-)scalar color octet are similar to the‘peak-dip’color singlets, i.e.,the resonance is produced through a top quark loop by gluon-gluon fusion,and the decay is mainly to top quarks.Wefind that compared to the‘peak-dip’color singlet the‘signal’cross section is5/72times smaller,i.e.,σ(gg→S0R,I→t¯t)=5Figure10:Invariant t¯t spectrum for pp→t¯t including a s-channel Z′color singlet vector boson and color octet(axial)vector bosons with masses m X=2000GeV that coupleswith standard model strength to quarks.Solid QCD t¯t production,dotdashed with a color singlet(Z′),dotted with a color octet axial vector(axigluon g∗A),dashed with a color octetvector boson(KK gluon/coloron g∗V).All plots were produced using the CTEQ6L1pdf set withµR=µF=2000GeV.No cuts were applied in making any of the plots.could also arise from bound states of meta-stable gluinos in split SUSY scenarios[58].Also in this case gg→φwould be the dominant production channel and it could be describedwithin the same framework.3.2Spin-1resonancesIn this section we discuss a spin-1resonance produced by q¯q annihilation.This resonancecan either be a color singlet or a color octet.For the color octet case we distinguish between a vector and an axial-vector.Although both the vector and the axial-vector interfere withthe QCD t¯t production,only the vector shows interference effects in the t¯t invariant mass spectrum.Including an s-channel color singlet vector boson(a“model-independent”Z′)in the t¯tproduction process gives a simple peak in the invariant mass spectrum as can be seen from the dot-dashed line in Fig.10.The precise width and height of the peak depends on the model parameters in the model for the Z′.As a benchmark we show a Z′vector bosonwith mass m Z′=2TeV that couples with the same strength to fermions as a standard model Z boson.The interference effects with the SM Z boson can be neglected in the t¯tchannel,so the peak is independent of the parity of the coupling.In general,for the color octet spin-1particles the interference with the SM t¯t production cannot be neglected.Two cases are to be considered:a color octet vector particle(e.g.,aKK gluon[56]or coloron[55]),and an axial-vector particle(e.g.,an axigluon[59,60,55]). It is natural to assume a coupling strength equal to the strong(QCD)coupling g s for their coupling to quarks.In Fig.10the effects of a color octet spin-1particle on the t¯t invariant mass spectrum are presented.The interference effects of the axial vector(dotted line)with the QCD t¯t production does not change the shape of the t¯t invariant mass spectrum.Hence the effects of the color octet axial vector and the color singlet are very similar,apart from the size due to the different coupling constant.The interference of the color octet vector particle with the QCD t¯t production does effect the t¯t invariant mass distribution.There is negative interference in the invariant mass region below the resonance mass and positive interference for heavier invariant masses. This slightly changes the shape of the peak as can be seen from Fig.10.Other quantities, such as the charge asymmetry between the top and the anti-top quarks could be more sensitive to axial vectors[61]and could help their discovery at higher invariant masses.3.3Spin-2resonancesThe interactions between spin-2particles,or gravitons,and ordinary matter is in general Planck suppressed,which makes it impossible to see effects of the gravitons at TeV ener-gies.There are,however,models with extra dimensions where the contributions from the gravitons might be large enough to make a discovery at the LHC.In this case a model-independent approach is not really appropriate.Instead we consider two scenarios that have distinct signals in the t¯t invariant mass.First the ADD model[17,62],where the effect of a the large number of graviton KK states contributing to a cross sections could be important and,secondly,the RS model[18,63]where only a limited number of KK modes contribute,but the coupling constant itself is enhanced by a large“warp”factor.In the so-called ADD models[17,62]all SMfields are confined to a four-dimensional brane,letting only gravitons propagate through the bulk.The extra n bulk dimensions are compactified on a n-torus with a radius R.If the radius R is large enough,(of the order of0.1mm for2extra dimensions)the(4+n)dimensional Planck scale can be as small as the TeV scale.Due to the fact that the radius of the extra dimensions is large,the graviton KK states can be almost degenerate in mass.So,although all graviton couplings are Planck suppressed,the sum of all the KK states can contribute significantly to the t¯t invariant mass spectrum.All states are summed up to the cut-offscale M S,defined byλ2R n=8π(4π)n/2Γ(n/2)M−n+2S ,whereλis related to the four dimensional Newton’s constantλ=√Figure11:Invariant t¯t spectrum for pp→t¯t including s-channel gravitons.The distribu-tions show the effect of the almost degenerate tower of KK gravitons in the ADD model with n=3extra dimensions and,from top to bottom,with a cut-offscale M S=800,900, 1100and1300GeV.The bottom line are contributions from SM only.We used CTEQ6L1 and set the scales toµR=µF=m t.compactified to a S1/Z2orbifold.There are two branes on specific points of the orbifold: a“Planck”brane atφ=0and a“TeV”brane atφ=πwhere the physical SMfields are confined.The bulk space is warped in such a way that the(reduced)Planck mass is warped down on the“TeV”brane toΛ=M pl.The resonances are clearly visible over the QCD background.Higher KK states are characterized by larger widths. 4Spin information from(anti-)top quark directions A useful,yet simple,quantity sensitive to the spin of the intermediate heavy state into a t¯t pair,is the Collins-Soper angleθ[64].This angle is similar to the angle between the top quark and the beam direction,but minimizes the dependence on initial state radiation.Figure12:Invariant t¯t spectrum for pp→t¯t including s-channel gravitons.The distribu-tion shows the effect of a couple of KK resonances in the RS extra dimensions model.The mass of thefirst KK mode is m1=600GeV and the colored lines represent various choices for the ratioκ/sc−+4m2t cos2θ 2 s2c+c−+2sm2t 3c2−+c2+ −4m4t 3c2−+c2++c− ,(8)Figure13:Normalized distribution for cosθ,whereθis the Collins-Soper angle,for SM production at the LHC.Different lines represent different cuts on t¯t invariant mass. where c+=1+cos2θand c−=1−cos2θ.4.2Spin-0resonancesIn Fig.14(a)the normalized cross section as a function of cosθis plotted for a spin-0 resonance.The distribution is independent of the mass and parity of the resonance.The matrix element squared for the spin-0resonance H is at leading order proportional to |M(gg/q¯q→H→t¯t)|2∼(|a1|2+|a2|2)p t·p¯t−(|a1|2−|a2|2)m2t,(9) where p t and p¯t are the momenta of the top and anti-top quarks,respectively,and a1and a2are the coupling constants,see Eq.5,for the scalar and pseudo-scalar,respectively.The matrix element squared is clearly independent of the angle cosθ,which explains theflat distribution.4.3Spin-1resonancesFor a generic spin-1resonance Z′the matrix element squared is proportional to|M(q¯q→Z′→t¯t)|2∼2(|a L|4+|a R|4)p q·p¯t p¯q·p t+4|a L|2|a R|2p q·p t p¯q·p¯t+m2t(|a L|2+|a R|2)(a L a∗R+a R a∗L)p q·p¯q,(10) where a L and a R are the left and right handed part of the couplings of the Z′resonance to quarks,i.e.,g Z′q¯q∼a L1−γ52and where p q and p¯q are the momenta of the(a)(b)(c)(d)Figure14:Normalized distributions for cosθ,whereθis the Collins-Soper angle,for spin-0 (a),spin-2(b),vector(c)and axial-vector(d)resonances of mass M X.All plots were produced using the CTEQ6L1pdf set withµR=µF=M X.incoming quark and anti-quark,respectively.In terms of cosθthe matrix element squared is proportional to|M(q¯q→Z′→t¯t)|2∼(|a L|2+|a R|2)(s−4m2t)(1+cos2θ)+4m2t|a L+a R|2.(11) The normalized cosθdistribution is independent of the mass of the resonance for a axial vector,a R=−a L(see Fig.14(d)),while for a pure vector resonance the dependence is maximal Fig.14(c).However,for heavy resonances,M X 800GeV the difference between the curves for the vector and the axial-vector is less then8%which makes it challenging to get any information about parity of the coupling from this distribution.In Ref.[34]a similar polar angle has been studied.That polar angle is also sensitive to the chirality of the coupling.However,the Collins–Soper angle used here has the advantage that it minimizes the effects from initial state radiation.4.4Spin-2resonancesIn the case of the spin-2resonance Gµν,both the q¯q and gg initial states contribute.The matrix element squared for the q¯q initial state is proportional to|M(q¯q→Gµν→t¯t)|2∼s(1−3cos2θ+4cos4θ)+16m2t cos2θ(1−cos2θ),(12) and for the gg initial state|M(gg→Gµν→t¯t)|2∼ s(1+cos2θ)+4m2t(1−cos2θ) (1−cos2θ).(13) The large differences in the distributions for the spin-2resonances between light compared to heavy spin-2particles,see Fig.14(b),is due to the fact that the relatively light spin-2 particles are mainly produced by gluon fusion,while the very heavy spin-2particles by quark-antiquark annihilation.5Spin correlations in(anti-)top-quark decaysIn the standard model,the semi-weak top-quark decay width is rather largeΓ≈1.5GeV>ΛQCD and top quarks do not form bound hadronic states.At present,we do not have any direct measurement of the top width and the formation of top hadrons is not excluded. This could happen for example,if V tb were much smaller than what is predicted in the standard model,as discussed in Ref.[65].Note,however,that even if this were to happen, the information on the spin of the top quark would be anyway fully inherited by its decay products[66],as spin-flip would occur at time scales of the order m t/Λ2QCD,i.e.,much later than the lifetime of the top quark.In this respect,spin correlation effects are a very robust probe of new physics entering in the production cross section.For standard model leptonic top decays,the directions of the leptons are100%corre-lated with the polarization of the top quarks.The spin analyzing power of the direction of the b quark(W+boson)is not as good,around−0.4(0.4).In hadronic top decays the anti-down(or anti-strange)quarks coming from the W+boson decay have the same full spin analyzing power as the lepton.On the other hand,the up(or charm)quarks have a spin analyzing power of only−0.3,i.e.,the same as the neutrino in leptonic decays.For the decay of anti-top quarks or spin-down top quarks,all spin analyzing powers change sign. The angular distributions of the two down-type fermions(leptons in leptonic top decays or jets coming from down-type quarks in hadronic W decays)give maximal information about the spin of the(anti-)top quarks in t¯t events[67,68].。