结构力学第3章作业-题4道
结构力学 第三章 静定结构的内力计算(典型例题练习题).
[例题3-2-1]作简支梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-2-2]作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-2-3]作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-3-1]作多跨静定梁的内力图。
解:求支座反力荷载叠加法[例题3-3-2]作三跨静定梁的内力图。
解:求支座反力[例题3-3-3] 作多跨静定梁的内力图。
解:求支座反力[例题3-4-1] 作静定刚架的内力图解:求支座反力[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3]作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力[例题3-4-5]作三铰刚架的内力图解:求支座反力[例题3-4-6]作三铰刚架的内力图解:求支座反力??[例题3-4-7]作静定刚架的内力图解:求支座反力[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:[例题3-4-12]作静定刚架的图解:[例题3-4-13]作静定刚架的图解:[例题3-4-14]作静定刚架的图解:求支座反力?[例题3-4-15]作静定刚架的图解:[例题3-5-1]???求支座反力当时?????? ? ?????[例3-5-2]??? 试求对称三铰拱在竖向均布荷载作用下的合理轴线。
解:相应简支梁的弯矩方程为水平推力合理轴线方程为合理轴线为一抛物线。
[例3-6-1]用结点法求桁架各杆的内力。
解:求支座反力解题路径:以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-2]用结点法求桁架各杆的内力。
解:求支座反力平衡方程荷载叠加法解题路径:以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-3]用结点法求桁架各杆的内力。
解:利用对称性,求支座反力解题路径:以结点为对象?以结点为对象以结点为对象以结点为对象例3-6-4]指出桁架的零杆。
结构力学 第三章 作业参考答案
B
M图(kN m)
(1) (2)
解: (1)求支座反力
∑M = 0 ∑F = 0
A y
取左边或者右边为隔离体,可得:
∑M ∑F
x
C
=0
⇒ FBx =
M h
(3) (4)
=0
最后容易做出结构的弯矩图。
3—18 试作图示刚架的 M 图。
C 0.8kN/m 0.5kN/m D E
14.625 4.225 12.8375
3—19 试作图示刚架的 M 图。
20kN
24 16
C
24
16
B FAx A FBy FAy
FBx
1m
2m
2m
2m
M图(kN m)
(1) (2) (3)
解:对整体:
∑M ∑F
y
A
=0
FBy × 4 + FBx ×1 = 20 × 2 FAy + FBy = 20 FAx − FBx = 0 FBx × 2 − FBy × 2 = 0
40kN m
10kN m M图(kN m)
32.5kN
20kN
20kN F(kN) S
解:求支座反力。取整体:
47.5kN
∑M ∑F
A
=0
FB × 8 − 20 ×10 − 10 ×10 × 3 − 40 = 0 FAy + FB − 10 ×10 − 20 = 0
然后即可做出弯矩图,利用弯矩图即可作出剪力图。
然后即可做出整个刚架的弯矩图。结点受力校核如下图。
D
qL 4 qL 2 qL 2
qL 4
qL 4
E
qL 2 qL 2
(完整版)哈工大结构力学题库三章
第三章 虚功原理和结构的位移一 判 断 题1. 已知P M ,Mk 图,用图乘法 求位移的结果为:(ω1у1+ω2у2)/(EI )。
( ) (X ) 题1图 题2图 题3图2. 图示结构中B 点挠度不等于零。
( )(√)3. 图示桁架中腹杆截面的大小对C 点的竖向位移影响。
( )(X )4. 求图示A 点竖向位移可用图乘法。
( )(X )题4图 题5图5. 图示梁的跨中挠度为零。
( )(√)6. 在位移互等定理中,可以建立线位移和角位移的互等关系:12δ=21ϕ。
这里12δ,21ϕ与只是数值相等而量纲不同。
( )(X )7. 三个刚片用不在同一直线上的三个虚铰两两相联,则所组成的体系是无多余约束的几何不变体系。
( )(√)8. 几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
( )(X )9. 在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
( )(√)10. 两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
( )(√)11. 在非荷载因素(支座移动,温度变化,材料收缩等)作用下,静定结构不产生内力,但会有位移,且位移只与杆件相对刚度有关。
( )(X )12. 虚功中的力状态和位移状态是彼此独立无关的,这两个状态中的任一个都可看作是虚设的。
( )(√)13. 温度改变,支座位移,材料收缩和制造误差不会使静定结构产生内力,因而也不产生位移。
( )(X )14. 计算自由度W 小于等于零是体系几何不变的充要条件。
( )(X )15.若体系计算自由度W<0,则它一定是几何可变体系。
( )(X )16.平面几何不变体系的三个基本组成规则是可以相互沟通的。
( )(√)17.三刚片由三个单铰或任意六根链杆两两相联,体系必为几何不变。
( )(X )18.图示三铰刚架,EI 为常数,A 铰无竖向位移。
同济结构力学3-6章习题共14页文档
第 3 章 习 题3-1~3-3 3-2题3-3图3-4 要求所有支座弯矩和跨度中点的弯矩的绝对值都相等,试确定铰C 、D 、G 和H 的位置a 及伸臂长度b (设跨长l 为已知)。
3-4图 3-5~3-13 求作M 、V 、N 图。
3-5 3-6图3-8图3-10图图3-14~3-16AE2m6m2m 4m 2m B CD2m4m 2m 2m 2m 4m 2mB D E FG H 2m b B C D EF G Hla l -2a ala l -2aa A 3m10kN40kN 2kN C 2kN4kN A C 4kN D 1kN/m3m 8kN20kN题3-14图题3-15图3-17求图示三铰拱的支座反力。
题3-18图3-18求图示圆弧形三铰拱的支座反力及、剪力F Q D及轴力F N D。
3-19,试求截面D的弯矩M D、剪力F Q D及轴力F N D。
3-19图3-20D、F Q D、F N D及E点左、右截面的剪力3-21~3-22求合理拱轴。
3-23题3-24~3-29用图解法求指定各杆轴力。
)(42xlxlfy-=Q EF3m3m2m2m2m20kN/m4m4m100kN/m4m4mx8mq题3-243-30~试选用两种途径解求指定杆轴力。
题图 3-34~3-37~ 图3-39~试选定求解杆件轴力的合适步骤。
A C 4a A 4×A B C题3-39图题3-40图 题3-41图题3-42图 题3-43图3-44 分别指出桁架各弦杆、各腹杆中受拉、受压的最大值发生在何处。
题3-44图3-45~3-46 求解组合结构中链杆轴力和受弯杆弯矩图。
题3-45图 题3-46图 3-47~3-49 试确定各组合结构的计算步骤并求F N1。
题3-47图 题3-48图题3-49图 3-50~3-51 求作弯矩图及扭矩图。
题3-50图 题3-51图第 4 章 题4-1 试回答:影响线的含义是什么?它在某一位置的竖标代表什么物理意aDqC BAF Pq212d 2d 4×31 2 2 31d2 d 2dd1 235d213a 3a 2 14×10kN/m14a12a a 4aq 1义?4-2 试从图形自变量的含义、竖标的意义、量纲以及图形的范围等方面说出影响线与内力图之间的区别。
结构力学第三版王焕定第3章习题及参考答案
w.
cos α = 2 5
隔离体(b)
FN7 = FN8 = 35 kN
FN6 = FN5 = 65 kN
更多考研资料下载:
co
FN10
FN4
FN3
α α
隔离体(d)
m
40 kN FN4
课后答案网
2-2(b) Fp
θ
再取结点 B 作隔离体
FN4 = 26.67 kN
ww
更多教材下载:
w.
kh
更多考研资料下载:
da
课
后
答
w.
案 网
5 FN3 = − FN1 =33.33 kN 3 4 FN2 = FN1 = − 26.67 kN 3
1 0 8
12
13 6
4 5
7 4×2.5 m
17.5 kN 依次取结点为隔离体,受力图如下所示。 10 kN FN1 FN2
32.5 kN
2×1.25 m
2-2(a) 先求反力,结果如图所示。 10 kN 2
40 kN 3
α
FN8
FN1
α α
α
FN5
案 网
17.5 kN 隔离体(a)
FN9
32.5 kN 隔离体(c)
FN 2 = −30 2 kN=42.42 kN
FN3 = −15 2 kN= − 21.21 kN
更多教材下载:
更多考研资料下载:
co
FN4 45o FN1 FN3 (c)隔离体图
2-6(b)取 2、3 杆件相交的结点作隔离体图(a)所示,往FN2方向投影,列方程得:
( FN3 − FN4 ) sin 2α − 40 kN × cos α = 0, FN3 = 20 kN/sinα + FN4 = − 27.951 kN
结构力学(王焕定第三版)教材习题第三章答案全解——哈工大老师提供
( ) ↓ x∈[0,l]
⎡ 46 ⎡
3-12 答:因为 AB 杆应力-应变关系非线性,因此非线性杆需要根据式(3-4)计算
FP
0
FP
B
+ FP
2F
-FP
l
A0 l
0
1
B
0
2
1
A0
NF 图
F
N
图
P
22
⎡
δε=⎡ ⎡
σE⎡⎡
=⎡ 对于 AB 杆件: ⎡ EA ⎡⎡ = EA
MP
图(k N y)=
8 3
⋅m
1
2y =
2
7
4y = 5 5.
3y =
M图
B
m 4 A
2E I
3 m
6 kN m
E I
6 / kN
C
4 m
则根据图示的面积和对应的形心坐标,按位移计算公式计算可得
Mp M EI ds =
∑∫ A1y1 − A2y2 + A3y3 + A4y4 1985 ∆C y = EI = EI (↓)
We =∆K y
2Wi =− ×5 mm= − 5 2 mm 2 52 2
We =Wi
2
( ) ∆K y =− mm= − mm ↑
3-9 答:求出单位水平力作用在 K 点时的支座反力,利用支座移动引起的位移计算公 式有:
K l
K 1
单位力状
态
1
b
l
a
ϕ l
0
K∆ = − ∑FR i c = − 1(×a + 0×b + l×ϕ =)−a −lϕ →( )
结构力学第3章-第9章在线测试题及答案
《结构力学》第03章在线测试剩余时间:46:42答题须知:1、本卷满分20分。
2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。
3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。
第一题、单项选择题(每题1分,5道题共5分)1、在梁的弯矩图发生突变处作用有什么外力?A、轴向外力B、横向集中力C、集中力偶D、无外力2、静定结构的内力与刚度A、无关B、绝对大小有关C、比值有关D、有关3、温度变化对静定结构会产生A、轴力B、剪力C、弯矩D、位移和变形4、桁架计算的结点法所选分离体包含几个结点A、单个B、最少两个C、任意个D、最多两个5、桁架计算的截面法所选分离体包含几个结点A、单个B、只能有两个C、两个或两个以上D、无穷多个第二题、多项选择题(每题2分,5道题共10分)1、外力作用在基本梁上时,附属梁上的A、内力为零B、变形为零C、位移为零D、反力为零E、位移不为零2、下列哪些因素对静定梁不产生内力A、荷载B、温度改变C、支座移动D、制造误差E、材料收缩3、梁上横向均布荷载作用区段的内力图的特征是A、剪力图平行轴线B、剪力图斜直线C、剪力图二次抛物线D、弯矩图平行轴线E、弯矩图二次抛物线4、如果某简支梁的剪力图是一平行轴线,则梁上荷载可能是A、左支座有集中力偶作用B、右支座有集中力偶作用C、跨间有集中力偶作用D、跨间均布荷载作用E、跨间集中力作用5、静定梁改变截面尺寸,下列哪些因素不会发生改变?位移A、轴力B、剪力C、弯矩D、支座反力E、位移第三题、判断题(每题1分,5道题共5分)1、对于静定结构,改变材料的性质,或改变横截面的形状和尺寸,不会改变其内力分布,也不会改变其变形和位移。
正确错误2、静定结构在支座移动作用下,不产生内力。
正确错误3、刚架内杆件的截面内力有弯矩、轴力和剪力。
正确错误4、静定结构满足平衡方程的内力解答由无穷多种。
正确错误5、零杆不受力,所以它是桁架中不需要的杆,可以撤除。
结构力学第三章习题参考解答
FAy 6 FAx 2 0
1 ql 2A
1 ql 4
取整体:M A 0
Fy 0
取AC: MC 0
取整体: Fx 0
l
l
0.45ql
FBy
1 2l
ql 3l 2
3 ql 4
FAy
ql
3 4
ql
1 4
ql
FAx
2 ql 2 l4
1 ql 2
FBx
1 ql 2
l 2
1 ql B2 3 ql 4
取左段
FNK
ql cos
3l 4
1 q 3 l 2 2 4
9 ql 2 32
D
C
q
3 ql
4
A
1 ql
l
4
1 ql
4
1 ql 4
3 ql
4
FQ KN
1 ql 2
E
4
1 ql 2 4
9 ql2 32
1 ql
B
4
ql 2 8
M KNm
l
1 ql
4
1 ql
4
1 ql
4
FN KN
1 ql2 4
1 ql 4
3-12解:
q C
q
3 ql
4
A
l
1 ql
B
4
Fy 0
FAy
1 ql 4
1 ql 4
l
l
1 ql
4
取BC:
MC 0
FBx
1 4
ql
取整体:
Fx 0
FAx
ql
1 ql 4
3 ql 4
AD段的最大弯矩 M x 3 qlx 1 qx2 dM 3 ql qx 0
结构力学第3章习题及参考答案
由此解得
按上述思路,再求C截面两侧的转角,为此作出单位弯矩图,如图(c)所示,则
3-15已测得在图示荷载作用下各点竖向位移为H点1.2 cm,G、I点0.1 cm,F、C、J点0.06 cm,D、B点0.05 cm。试求当10 kN竖向力平均分布作用于15个结点上时,H点的竖向位移。
3-6 (a)
解将悬臂梁在K截面切开,取左边部分,并将K截面内力作为荷载作用在K截面上,如图(a-1)所示。(a-1)所示结构悬臂端的竖向位移就是原结构K截面的竖向位移。作出(a-1)所示结构的Mp和 图,并将Mp图按荷载分解。图乘结果为
3-6 (b)
解
3-6 (c)
解
3-6 (d)
解
3-6 (e)
解
3-9试求图示刚架在温度作用下产生的D点的水平位移。梁为高度h=0.8m的矩形截面梁,线膨胀系数为 =10-5 oC-1。
解
3-10图示桁架各杆温度上升t,已知线膨胀系数 。试求由此引起的K点竖向位移。(画出需要的图)
解
*3-11图示梁截面尺寸为b×h=0.2m×0.6m,EI为常数,线膨胀系数为 ,弹簧刚度系数k=48EI/l3(l=2m)。梁上侧温度上升10℃,下侧上升30℃,并有图示支座移动和荷载作用。试求C点的竖向位移。
解
3-6 (f)
解(1)相对水平位移
(2)相对竖向位移
对称结构在对称荷载作用下的反对称位移等于零
解
3-7试求图示结构在支座位移下的指定位移。
3-7 (a)
解
3-7 (b)
解
3-8图示结构各杆件均为截面高度相同的矩形截面,内侧温度上升t,外侧不变。试求C点的竖向位移。线膨胀系数为 。
结构力学章节习题及参考答案
习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(a)
习题3.7改正习题3.7图所示刚架的弯矩图中的错误部分。
(a)(b)(c)
(d)(e)(f)
习题3.7图
习题3.8作习题3.8图所示刚架的内力图。
(a)
(b)
习题3.8图
第4章 静定拱习题解答
习题4.1是非判断题
(1) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( )
(2) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( )
习题3.2(2)图
习题3.3作习题3.3图所示单跨静定梁的M图和 图。
(a) (b)
(c) (d)
(e) (f)
习题3.3图
习题3.4作习题3.4图所示单跨静定梁的内力图。
(c)
习题3.4图
习题3.5作习题3.5图所示斜梁的内力图。
习题3.5图
习题3.6作习题3.6图所示多跨梁的内力图。
(a)
习题3.6图
(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。( )
(5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。( )
习题 2.1(5)图
结构力学第三章习题及答案
静定结构计算习题3—1 试做图示静定梁的M 、F Q 图。
解:首先分析几何组成:AB 为基本部分,EC 为附属部分。
画出层叠图,如图(b )所示。
按先属附后基本的原则计算各支反力(c)图。
之後,逐段作出梁的弯矩图和剪力图。
36.67KN15KN •m 20KNM 图(单位:KN/m )13.323.313.33F Q 图(单位:KN )3—3 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =48kN (→) M A =60 KN •m (右侧受拉) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—7 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =20kN (←) F AY =38kN(↑) F BY =62kN(↑) (2)逐杆绘M 图BCM 图(单位:KN/m ) F Q 图(单位:KN )3030F AX F N图(单位:60)20)(3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—9 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =0.75qL (←) F AY =-0.25qL( ) F BY =0.25qL(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—11试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F BX =40KN (←) F AY =30KN (↑) F BY =50kN(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)C(a )qBY 23—17 试求图示抛物线三铰拱的支座反力,并求截面D 和E 的内力。
南京航空航天大学结构力学课后习题答案第3章
第三章 能量原理(习题解答)3-1 写出下列弹性元件的应变能和余应变能的表达式。
(a )等轴力杆;(b )弯曲梁;(c )纯剪矩形板。
解:(a )等轴力杆 应变能{}{}2220111()2222T VV VEf U AdV d dV dV E Lf E Lf L L εσεεσεε∆∆⎡⎤======⎢⎥⎣⎦⎰⎰⎰⎰余应变能22*21()2222V V fL fL N N L U BdV dV E E f Efσεσ=====⎰⎰其中L 为杆的长度,f 为杆的截面积,Δ为杆的变形量,E 为材料的弹性模量。
(b )弯曲梁 应变能{}{}{}{}222222222220111()()22211()()22TTx V V V V l V d w d w U dV dV z dV Ez dVdx dxd w d w E z dydzdx EJ dx dx dxσεσεσ==-===⎰⎰⎰⎰⎰⎰⎰⎰线性余应变能222*220111111()2222l x x V V V My M y M U dV dV dzdydx dx J E E EJJ σε===⋅=⎰⎰⎰⎰⎰⎰(c )纯剪矩形板 应变能{}{}t b a G dV G dV dV U V V VT⋅⋅⋅⋅=⋅=⋅==⎰⎰⎰22212121γγγτεσ 余应变能Gtfq t b a G dV G dV U V V 222*21212121=⋅⋅⋅==⋅=⎰⎰ττγτ3-2 求图3-2所示桁架的应变能及应变余能,应力—应变之间的关系式为 (a ) E σε= (b )σ=解:取节点2进行受力分析,如图3-2a 所示。
根据平衡条件,有132131122113cos 45cos 45sin 45sin 4522N N P N N P N N ︒︒︒︒⎧+=⎨=+⎩⇒== (1)311313N Nf f σσ== (2)(a ) E σε=时311313N N Ef Ef εε==(3) 0VU AdV fl d εσε==⎰⎰ (4) 0VU BdV fl d σεσ*==⎰⎰ (5)联立(1)、(2)、(3)、(4),得到桁架的应变能为()()2222121231131322P P P P N N l l U f f f f ⎤+-⎫=+=+⎥⎪⎢⎥⎝⎭⎣⎦联立(1)、(2)、(3)、(5),得到桁架的余应变能为()()222212123113132224P P P P N N l l U E f f E f f *⎡⎤+-⎛⎫=+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦(b ) σε=223113222213N N E f E f εε== (6)联立(1)、(2)、(4)、(6),得到桁架的应变能为()()331221222133P P P P l U E f f ⎡⎤+-=+⎢⎥⎢⎥⎣⎦联立(1)、(2)、(5)、(6),得到桁架的应变能为()()331221222136P P P P l U E f f *⎡⎤+-=+⎢⎥⎢⎥⎣⎦3-3 一种假想的材料遵循如下二维的应力—应变规律()()222x x y y y x xy xy EE εσμσεσμσγτ=-=-= 其中E 、G 和μ是材料常数。
结构力学第三版课后习题答案精选全文
20kN/m
M图
4.5kN
8.98
4
4.5
6 11
4.5 FQ图
M图 (kN.m)
FQ图(kN)
37
3.3 静定平面刚架
必作题: P.109 3-3 (b) (d) (f) (j) P.110 3-4 (a — i) P.111 3-7 (a) P.112 3-8 (a) (d)
选作题: P.109 3-3 (a) (e) (g) (l) P.112 3-8 (c) P.112 3-9 (a) P.113 3-11
2
P.37 2-1(b)
1
2
3
三链杆交于一点,瞬变
3
P.37 2-2(b)
4几何不变,无多余约束5P.37 2-3(c)
有一个多余 约束
1
2 3
几何不变,有一个多余约束
6
P.37 2-4(d)
O(I、III) O(II、III) I
II
1
2
O(I、II)
III
铰O(I、II)、 O(II、III)的连线与1、2两链 杆不平行,体系几何不变,无多余约束
2.5m 5m 5m 2.5m
FN图
60
3.4 静定平面桁架
必作题:
P.113 P.114 P.115
选作题:
P.116 P.117
3-13 (b) (d) (f) 3-14 (a) (b) (c) 3-17 (a) (d)
3-18 (a) 3-20
P.116 3-18 (b)
61
P.113 3-13 (b) 分析桁架类型,指出零杆
FP
联合桁架,10根零杆。
62
P.113 3-13 (d) 分析桁架类型,指出零杆
结构力学 第三章 作业参考答案
∑M = 0 ∑F = 0 ∑F = 0
A
FBy × l − q × l ×
l =0 2
(1) (2) (3)
y
FAy + FBy = 0 FAx + FBx − q × l = 0
FBx × l − FBy × l =0 2
x
取右边部分为隔离体:
∑M
C
=0
(4)
解以上方程可得:
ql ⎧ ⎪ FAx = 4 ⎪ 3ql ⎪ => ⎨ FBx = 4 ⎪ ql ⎪ ⎪ FAy = FBy = 2 ⎩
3—10 试不计算反力绘出梁的 M 图。
16
12
4
A
B
8 2m 2m 4m 4m
12 4m
6m
2m
解:从悬臂端和 AB 开始作图。利用区段叠加法和铰结点的弯矩为零,即可做出全部的弯矩图。
3—12 试不计算反力绘出梁的 M 图。
5
华南农业大学 水利与土木工程学院(College of water conservancy and Civil Engineering, SCAU)
1m
D 80
30
40 E
20 40
40 C F
80 E
40
A
解: (1) 求支座反力
B
40
∑F = 0 ∑M = 0 ∑F = 0
y A x
FC − 10 × 4 − 20 = 0 FA − FB = 0
⇒ FC = 60 kN ⇒ FC = 10 kN
(1) (2) (3)
FB ×1 − 50 − 10 × 4 × 6 − 20 × 10 = 0 ⇒ FB = 10 kN
(1)
结构力学课后练习题+答案
2cm
A CB 2cm 2cm
42、求图示结构 A 点竖向位移(向上为正) AV 。
M EI
EI A
a
EI
EI = ∞ 1
3 EI
K = a3
a
a
43、求图示结构 C 点水平位移 CH ,EI = 常数。
M B
2l
C 6 EI k=
l3
A l
44、求图示结构 D 点水平位移 DH 。EI= 常数。
a/ 2 D
a
A
c1
A'
a
B B'
aห้องสมุดไป่ตู้
c2
35、图示结构 B 支座沉陷 = 0.01m ,求 C 点的水平位移。
C l
A
B
l/2 l/2
—— 25 ——
《结构力学》习题集
36、结构的支座 A 发生了转角 和竖向位移 如图所示,计算 D 点的竖向位移。
A
D
l
l l/ 2
37、图示刚架 A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求 D 截面的角位移。
P
P
l
l
l
l
18、用力法计算图示结构并作弯矩图。
—— 31 ——
100 kN C EI
《结构力学》习题集
100 kN D
2 EI A
2 EI
4m
B
1m
6m
1m
19、已知 EI = 常数,用力法计算并作图示对称结构的 M 图。
q
q
EA=
l
l
l
20、用力法计算并作图示结构的 M 图。EI =常数。
a
P q
结构力学教材习题第三章答案全解——哈工大老师提供
结构力学(王焕定第三版)教材习题答案全解第三章习题答案3-1 (a) 答:由图(a)、(b)可知结构对称(水平反力为零)荷载对称,因此内力对称。
所以可只对一半进行积分然后乘以 2 来得到位移。
如图示F P R(1−cos θ)M P = θ∈[0,π/2];M=R sin θθ∈[0,π/2]2 代入位移计算公式可得M P M 1 π2 M P M 2 π2 F P R(1−cos θ)∆Bx = ∑∫ EI d s = 2⋅EI ∫0 EI R dθ= EI ∫0 2 R sin θR dθ=F P R3 =(→)2EI3-1 (b) 答:如图(a)、(b)可建立如下荷载及单位弯矩方程pR ∆Bx =∑∫ MEIM d s =∫0π2 MEI P M R dθ= qEI 4 ∫0π2 (1−2cosθ+cos 2 θ)R dθqR 4 ⎡ θ 1 ⎡3π ⎡ qR 4= EI ×⎡θ−2sinθ+ 2 + 4sin2θ⎡⎡0 =⎡⎡ 4 − 2⎡⎡ 2EI (→)2 ⎡3-2 答:作M P 图和单位力弯矩图如下图: 由此可得内力方程代入位移公式积分可得2 2 P 0s i n ( ) d (c o s ) (c o s )q M R q R M R θθ α α θ θ − == − = − ∫AqRBα θ( a θ( b )根据题意 EI (x ) = EI (l + x )2l 代入位移公式并积分(查积分表)可得M P M l2 q 0x 4∆Bx =∑∫ EI d x =∫0 6EI (l + x ) d x7 q 0l 4 ql 4= (ln 2− )× =(→)12 3EI EI3-3 答:分别作出荷载引起的轴力和单位力引起的轴力如下图所示:由此可得 C 点的竖向为移为:1 lM 图 x3 0 p x q M M xl= = xP M 图2 0 6q lABl q 05 83 8F NP F N1 F NP F N1 ∆Cy =∑∫EA d s=∑ EA l =6 5kN× ×6 m+2× kN× ×5 m+125 kN× ×5 m+75 kN× ×6 m)= 8 8EA=×10−4 m当求CD 和CE 杆之间的夹角改变使:施加如图所示单位广义力并求作出F N2 图,则F∆=∑∫ F NP EA F N2 ds=∑ NP EA F N2 l2× kN×(−×5 m+(− kN)××6 m =EA=−×10−4 rad ( 夹角减小)3-4 (a)答:先作出M p和M 如右图所示。
结构力学第3章习题答案
3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) 4P F a2P F a 2P F aM4PF Q34P F 2P F(b) 42020M Q10/326/3410A B C a a a a a F P a D E F F P 2m 6m 2m 4m 2m A B C D 10kN 2kN/m (c) 21018018040M1560704040Q(d) 7.5514482.524MQ3m 2m2m AB C E F15kN 3m 3m 4m 20kN/m D 3m 2m 2m 2m2m 2m 2m ABC D E FG H 6kN ·m 4kN ·m 4kN 2m 3-3 试作图示刚架的内力图。
试作图示刚架的内力图。
(a) 242018616MQ1820(b) 3030301101010QM 2104kN ·m 3m 3m 2kN A CBD 6m 10kN 40kN ·m ABC D(c) 664275MQ(d) 444444/32MQN2kN/m 6kN 6m 4kN AB CD2kN 6m 2kN 4kN ·m ACB D E(e) 44814``(f) 2222200.815MQN4m ABC4m D4kN A B C2m 3m 4m 2kN/m 3-4试找出下列各弯矩图形的错误之处,并加以改正。
(a) F P(b) (c) F P(d) M(e) (f) F PF P3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
B C EFDA28ql M2221()222116121618c B C BC C qql M l x x qx xM M M M ql ql x ql x l=-+===\=\=\= 中FD()2ql x -lBC EFxDAql lx3-6 试作图示刚架的弯矩和剪力图。