2020年高考物理一轮复习-牛顿运动定律-考点汇总(含解析)
解密03 牛顿运动定律-备战2020年高考物理高频考点解密(解析版)
解密03 牛顿运动定律核心考点考纲要求 牛顿运动定律及其应用 超重和失重Ⅱ Ⅰ=()=()=0=0F ma F m g a G a F m g a Ga F a ⎧⎧⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎪⎪⎪=⎨⎪⎧⎪⎨⎪⎩⎩⎨⎧⎨⎩⎧+>⎧⎪⎨⎩⎪⎪-<⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎩视重视重视重内容定义牛顿第一定律惯性两种表现决定因素:质量内容表达式:牛顿第二定律已知受力情况求运动情况动力学两类基本问题已知运动情况求受力情况牛顿运动定律内容牛顿第三定律作用力与反作用力超重向上超重和失重失重向下完全失重且向下⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩考点1动力学中的图象问题物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点。
1.常见的图象有:v–t图象,a–t图象,F–t图象,F–x图象,F–a图象等。
2.图象间的联系:加速度是联系v–t图象与F–t图象的桥梁。
3.图象的应用(1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况。
(2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况。
(3)通过图象对物体的受力与运动情况进行分析。
4.解题策略(1)弄清图象斜率、截距、交点、拐点的物理意义。
(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断。
5.分析图象问题时常见的误区(1)没有看清纵、横坐标所表示的物理量及单位。
(2)不注意坐标原点是否从零开始。
(3)不清楚图线的点、斜率、面积等的物理意义。
(4)忽视对物体的受力情况和运动情况的分析。
(2019·甘肃兰州一中高三期中)质量为m的物体静止在粗糙的水平地面上,从t=0时刻开始受到方向恒定的水平拉力F作用,F与时间t的关系如图甲所示。
物体在t0时刻开始运动,其v-t图象如图乙所示,若可认为滑动摩擦力等于最大静摩擦力,则A .物体在t 0时刻的加速度大小为F mB .物体与地面间的动摩擦因数为2F mgC .物体所受合外力在t 0时刻的功率为002F vD .水平力F 在t 0到2t 0这段时间内的平均功率为00002F t F v m ⎛⎫+ ⎪⎝⎭【参考答案】AD【试题解析】由v -t 图线可知,物体在2t 时刻开始有速度,此时最大静摩擦力等于0F ,当0t 时刻时,对物体受力分析可知此时在水平方向上物体的合力为0002F F F -=,由牛顿第二定律可得此时加速度为F m,A 正确;当物体与地面之间的摩擦达到最大时,最大静摩擦力为F 0,则0F mg μ=,解得0F mg μ=,B 错误;物体在t 0时刻的合外力为002F F mg F μ=-=,故所受合外力在t 0时刻的功率为F 0v 0,选项C 错误;2t 0时刻物体的速度0200F v v t m =+,在t 0到2t 0这段时间内的平均速度为0100022v v F tv v m+==+,水平力F 在t 0到2t 0这段时间内的平均功率为0000022F t P F v F v m ⎛⎫==+⎪⎝⎭,D 正确。
专题03 牛顿运动定律-2020年高考物理一轮复习考点归纳
2020年高考一轮复习知识考点归纳专题03 牛顿运动定律目录第一节牛顿第一、第三定律 (1)【基本概念、规律】 (1)【重要考点归纳】 (2)考点一牛顿第一定律 (2)考点二牛顿第三定律的理解与应用 (2)【思想方法与技巧】 (3)用牛顿第三定律转换研究对象 (3)第二节牛顿第二定律两类动力学问题 (3)【基本概念、规律】 (3)【重要考点归纳】 (4)考点一用牛顿第二定律求解瞬时加速度 (4)考点二动力学两类基本问题 (4)考点三动力学图象问题 (5)【思想方法与技巧】 (5)传送带模型中的动力学问题 (5)第三节牛顿运动定律的综合应用 (6)【基本概念、规律】 (6)【重要考点归纳】 (6)考点一超重和失重现象 (6)考点二整体法和隔离法解决连接体问题 (7)考点三分解加速度求解受力问题 (7)【思想方法与技巧】 (8)“滑块——滑板”模型的分析 (8)动力学中的临界条件及应用 (8)实验四验证牛顿运动定律 (9)第一节牛顿第一、第三定律【基本概念、规律】一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.2.表达式:F=-F′.特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.(2)作用力和反作用力的关系与物体的运动状态无关.【重要考点归纳】考点一牛顿第一定律1.明确了惯性的概念.2.揭示了力的本质.3.揭示了不受力作用时物体的运动状态.4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.考点二牛顿第三定律的理解与应用1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.相互作用力与平衡力的比较【思想方法与技巧】用牛顿第三定律转换研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.第二节牛顿第二定律两类动力学问题【基本概念、规律】一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=m a.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.特别提示:利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.【重要考点归纳】考点一用牛顿第二定律求解瞬时加速度1.求解思路求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两种”模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.4.解决瞬时加速度问题的关键是弄清哪些力发生了突变,哪些力瞬间不变,正确画出变化前后的受力图.考点二动力学两类基本问题1.求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.2.(1)解决两类动力学基本问题应把握的关键①一个桥梁——加速度是联系运动和力的桥梁.②两类分析——受力分析和运动过程分析.(2)解决动力学基本问题时对力的两种处理方法①合成法:物体受2个或3个力时,一般采用“合成法”.②正交分解法:物体受3个或3个以上的力时,则采用“正交分解法”.(3)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行受力分析和运动过程分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.考点三动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况.(2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图景中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.3.数形结合解决动力学问题(1)物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.【思想方法与技巧】传送带模型中的动力学问题1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图甲、乙、丙所示.2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.根据物体与传送带的相对速度方向判断摩擦力方向.两者速度相等是摩擦力突变的临界条件.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.3.解答传送带问题应注意的事项(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况.(2)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.(3)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v物=v传第三节牛顿运动定律的综合应用【基本概念、规律】一、超重和失重1.超重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.二、解答连接体问题的常用方法1.整体法当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度.2.隔离法当求解系统内物体间相互作用力时,常把物体从系统中“隔离”出来进行分析,依据牛顿第二定律列方程.3.外力和内力(1)外力:系统外的物体对研究对象的作用力;(2)内力:系统内物体之间的作用力.【重要考点归纳】考点一超重和失重现象1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于m a.5.超重和失重现象的判断方法(1)从受力的大小判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的方向判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.考点二整体法和隔离法解决连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.考点三分解加速度求解受力问题在应用牛顿第二定律解题时,通常不分解加速度而分解力,但有一些题目要分解加速度.最常见的情况是与斜面模型结合,物体所受的作用力是相互垂直的,而加速度的方向与任一方向的力不同向.此时,首先分析物体受力,然后建立直角坐标系,将加速度a分解为a x和a y,根据牛顿第二定律得F x=m a x,F y=m a y,使求解更加便捷、简单.【思想方法与技巧】“滑块——滑板”模型的分析1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.模型分析解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)滑块是否会从滑板上掉下的临界条件是:滑块到达滑板一端时两者共速.(3)滑块不能从滑板上滑下的情况下,当两者共速时,两者受力、加速度发生突变.动力学中的临界条件及应用一、临界状态物体在运动状态变化的过程中,相关的一些物理量也随之发生变化.当物体的运动变化到某个特定状态时,相关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态.二、临界状态的判断1.若题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.3.临界状态的问题经常和最大值、最小值联系在一起,因此,若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.4.若题目中有“最终”、“稳定”等文字,即是求收尾速度或加速度.三、处理临界问题的思路1.会分析出临界状态的存在.2.要抓住物体处于临界状态时的受力和运动特征,找出临界条件,这是解决问题的关键.3.能判断物体在不满足临界条件时的受力和运动情况.4.利用牛顿第二定律结合其他规律列方程求解.四、力学中常见的几种临界条件1.接触物体脱离的临界条件:接触面间的弹力为零,即F N=0.2.绳子松弛的临界条件:绳中张力为0,即F T=0.3.相对滑动的临界条件:静摩擦力达到最大值,即f静=f m.4.滑块在滑板上不滑下的临界条件:滑块滑到滑板一端时,两者速度相同实验四验证牛顿运动定律一、实验目的1.学会用控制变量法研究物理规律.2.探究加速度与力、质量的关系.3.掌握灵活运用图象处理问题的方法.二、实验原理(见实验原理图)1.保持质量不变,探究加速度跟合外力的关系.2.保持合外力不变,探究加速度与质量的关系.3.作出a-F图象和a-1m图象,确定其关系.三、实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.四、实验步骤1.测量:用天平测量小盘和砝码的质量m′和小车的质量m.2.安装:按照如实验原理图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力)3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑.4.操作:(1)小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,取下纸带编号码.(2)保持小车的质量m不变,改变砝码和小盘的质量m′,重复步骤(1).(3)在每条纸带上选取一段比较理想的部分,测加速度a.(4)描点作图,作a-F的图象.(5)保持砝码和小盘的质量m′不变,改变小车质量m,重复步骤(1)和(3),作a-1m图象.一、数据处理1.保持小车质量不变时,计算各次小盘和砝码的重力(作为小车的合力)及对应纸带的加速度,填入表(一)中.表(一)实验次数加速度a/(m·s-2) 小车受力F/N12342.(二)中.表(二)实验次数加速度a/(m·s-2)小车和砝码的总质量m/kg12343.利用Δx=4.以a为纵坐标,F为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a 与F成正比.5.以a为纵坐标,1m为横坐标,描点、连线,如果该线过原点,就能判定a与m成反比.二、注意事项1.平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着打点的纸带匀速运动.2.不重复平衡摩擦力.3.实验条件:m≫m′.4.一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达定滑轮前按住小车.5.作图象时,要使尽可能多的点在所作直线上.不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当.各量需采用国际单位.三、误差分析1.系统误差:本实验用小盘和砝码的总重力m′g代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.2.偶然误差:摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.。
高考物理一轮复习讲义—牛顿运动三定律
高考物理一轮复习讲义—牛顿运动三定律考点一牛顿第一定律的理解1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都具有惯性,因此牛顿第一定律又被叫作惯性定律;②揭示了运动和力的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.1.牛顿第一定律是实验定律.(×)2.运动的物体惯性大,静止的物体惯性小.(×)3.物体不受力时,将处于静止状态或匀速直线运动状态.(√)1.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动).(2)物体受到外力时,惯性表现为抗拒运动状态的改变,惯性大,物体的运动状态较难改变;惯性小,物体的运动状态较易改变.2.牛顿第一定律与牛顿第二定律的关系牛顿第一定律和牛顿第二定律是相互独立的.(1)牛顿第一定律告诉我们改变运动状态需要力,力是如何改变物体运动状态的问题则由牛顿第二定律来回答.(2)牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.例1(多选)科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法中符合历史事实的是()A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:如果物体不受力,它将以这一速度永远运动下去C.笛卡儿指出,如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体都具有保持原来匀速直线运动状态或静止状态的性质答案BCD解析亚里士多德认为,必须有力作用在物体上,物体才能运动,故A错误;伽利略通过“理想实验”得出结论:力不是维持运动的原因,如果物体不受力,它将以这一速度永远运动下去,故B正确;笛卡儿指出如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向,故C正确;牛顿认为物体都具有保持原来匀速直线运动状态或静止状态的性质,故D正确.例2水平仪的主要测量装置是一个内部封有液体的玻璃管,液体中有一气泡,水平静止时,气泡位于玻璃管中央,如图甲所示.一辆在水平轨道上行驶的火车车厢内水平放置两个水平仪,一个沿车头方向,一个垂直于车头方向.某时刻,气泡位置如图乙所示,则此时关于火车运动的说法可能正确的是()A.加速行驶,且向左转弯B.加速行驶,且向右转弯C.减速行驶,且向左转弯D.减速行驶,且向右转弯答案B解析由题意可知,水平静止或匀速直线运动时,气泡位于玻璃管中央,由题图乙可以看出:沿车头方向的气泡向车头方向移动,当火车加速时,气泡和液体由于惯性不会随火车立即加速,还会以原来的速度运动,相对火车向后运动,因为气泡密度小于液体密度,所以气泡在液体作用下就向前运动,故C、D错误;垂直于车头方向的装置中气泡处于右端,因原来火车做直线远动,气泡位于中心位置,当火车向右转弯时,气泡和液体由于惯性不会立即随火车右转,还会沿直线运动,所以气泡和液体就相对火车向左运动,因为气泡密度小于液体密度,所以气泡在液体的作用下相对中心位置向右运动;所以此时刻火车应是加速运动且向右转弯,故B正确.考点二牛顿第二定律1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F=ma.2.力学单位制(1)单位制:基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.1.物体加速度的方向一定与合外力方向相同.(√)2.由m=Fa可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比.(×) 3.可以利用牛顿第二定律确定高速电子的运动情况.(×)4.物体所受的合外力减小,加速度一定减小,而速度不一定减小.(√)5.千克、秒、米、库仑、安培均为国际单位制的基本单位.(×)1.对牛顿第二定律的理解2.解题的思路和关键(1)选取研究对象进行受力分析;(2)应用平行四边形定则或正交分解法求合力;(3)根据F合=ma求物体的加速度a.考向1对牛顿第二定律的理解例3(多选)下列说法正确的是()A.对静止在光滑水平面上的物体施加一个水平力,当力刚作用瞬间,物体立即获得加速度B.物体由于做加速运动,所以才受合外力作用C.F=ma是矢量式,a的方向与F的方向相同,与速度方向无关D.物体所受合外力减小,加速度一定减小,而速度不一定减小答案ACD解析由于物体的加速度和合外力是瞬时对应关系,由此可知当力作用瞬间,物体会立即产生加速度,选项A正确;根据因果关系,合外力是产生加速度的原因,即物体由于受合外力作用,才会产生加速度,选项B错误;牛顿第二定律F=ma是矢量式,a的方向与F的方向相同,与速度方向无关,选项C正确;由牛顿第二定律可知物体所受合外力减小,加速度一定减小,如果物体做加速运动,其速度会增大,如果物体做减速运动,速度会减小,选项D 正确.例4某型号战斗机在某次起飞中,由静止开始加速,当加速度a不断减小至零时,飞机刚好起飞.关于起飞过程,下列说法正确的是()A.飞机所受合力不变,速度增加越来越慢B.飞机所受合力减小,速度增加越来越快C.速度方向与加速度方向相同,速度增加越来越快D.速度方向与加速度方向相同,速度增加越来越慢答案D解析根据牛顿第二定律可知,当加速度a不断减小至零时合力逐渐减小到零,速度增加得越来越慢,故A、B项错误;飞机做加速运动,加速度方向与速度方向相同,加速度减小,即速度增加得越来越慢,故C项错误,D项正确.考向2牛顿第二定律的简单应用例52021年10月16日0时23分,“神舟十三号”成功发射,顺利将三名航天员送入太空并进驻空间站.在空间站中,如需测量一个物体的质量,需要运用一些特殊方法:如图所示,先对质量为m 1=1.0kg 的标准物体P 施加一水平恒力F ,测得其在1s 内的速度变化量大小是10m/s ,然后将标准物体与待测物体Q 紧靠在一起,施加同一水平恒力F ,测得它们1s 内速度变化量大小是2m/s.则待测物体Q 的质量m 2为()A .3.0kgB .4.0kgC .5.0kgD .6.0kg 答案B 解析对P 施加F 时,根据牛顿第二定律有a 1=F m 1=Δv 1Δt=10m/s 2,对P 和Q 整体施加F 时,根据牛顿第二定律有a 2=F m 1+m 2=Δv 2Δt=2m/s 2,联立解得m 2=4.0kg ,故选B.例6(多选)如图甲所示,一竖直放置的足够长的固定玻璃管中装满某种液体,一半径为r 、质量为m 的金属小球,从t =0时刻起,由液面静止释放,小球在液体中下落,其加速度a 随速度v 的变化规律如图乙所示.已知小球在液体中受到的阻力F f =6πηvr ,式中r 是小球的半径,v 是小球的速度,η是常数.忽略小球在液体中受到的浮力,重力加速度为g ,下列说法正确的是()A .小球的最大加速度为gB.小球的速度从0增加到v0的过程中,做匀变速运动C.小球先做加速度减小的变加速运动,后做匀速运动D.小球的最大速度为mg6πηr答案ACD解析当t=0时,小球所受的阻力F f=0,此时加速度为g,A正确;随着小球速度的增加,加速度减小,小球的速度从0增加到v0的过程中,加速度减小,B错误;根据牛顿第二定律有mg-F f=ma,解得a=g-6πηvrm,当a=0时,速度最大,此后小球做匀速运动,最大速度v m=mg6πηr,C、D正确.考点三牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F=-F′.1.作用力与反作用力的效果可以相互抵消.(×)2.人走在松软土地上下陷时,人对地面的压力大于地面对人的支持力.(×)3.物体静止在水平地面上,受到的重力和支持力为一对作用力和反作用力.(×)一对平衡力与作用力和反作用力的比较名称一对平衡力作用力和反作用力项目作用对象同一个物体两个相互作用的不同物体作用时间不一定同时产生、同时消失一定同时产生、同时消失力的性质不一定相同一定相同作用效果可相互抵消不可抵消考向1牛顿第三定律的理解例7(多选)如图所示,用水平力F把一个物体紧压在竖直墙壁上,物体保持静止,下列说法中正确的是()A.水平力F与墙壁对物体的弹力是一对作用力与反作用力B.物体的重力与墙壁对物体的静摩擦力是一对平衡力C.水平力F与物体对墙壁的压力是一对作用力与反作用力D.物体对墙壁的压力与墙壁对物体的弹力是一对作用力与反作用力答案BD解析水平力F与墙壁对物体的弹力作用在同一物体上,大小相等、方向相反,且作用在同一条直线上,是一对平衡力,选项A错误;物体在竖直方向上受竖直向下的重力以及墙壁对物体竖直向上的静摩擦力的作用,因物体处于静止状态,这两个力是一对平衡力,选项B正确;水平力F作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不是平衡力,也不是相互作用力,选项C错误;物体对墙壁的压力与墙壁对物体的弹力是两个物体间的相互作用力,是一对作用力与反作用力,选项D正确.考向2相互作用力与一对平衡力的比较例8(2022·广东深圳市红岭中学高三月考)“电动平衡车”是时下热门的一种代步工具.如图,人笔直站在“电动平衡车”上,在某水平地面上沿直线匀速前进,下列说法正确的是()A.“电动平衡车”对人的作用力大于人对“电动平衡车”的作用力B.人的重力与车对人的支持力是一对相互作用力C.地面对车的摩擦力与人(含车)所受空气阻力平衡D.在行驶过程中突然向右转弯时,人会因为惯性向右倾斜答案C解析根据牛顿第三定律,“电动平衡车”对人的作用力等于人对“电动平衡车”的作用力,故A错误;人的重力与车对人的支持力的受力物体都是人,不可能是相互作用力,故B错误;地面对车的摩擦力与人(含车)所受空气阻力平衡,所以人与车能够匀速运动,故C正确;在行驶过程中突然向右转弯时,人会因为惯性向左倾斜,故D错误.考向3转换研究对象在受力分析中的应用例9如图所示,质量为m的木块在质量为M的长木板上以加速度a水平向右加速滑行,长木板与地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2,重力加速度为g,若长木板仍处于静止状态,则长木板对地面摩擦力的大小和方向为()A.μ1(m+M)g,向左B.μ2mg,向右C.μ2mg+ma,向右D.μ1mg+μ2Mg,向左答案B解析对木块分析可知,长木板对它水平向左的摩擦力大小为F f1=μ2mg,由牛顿第三定律可知,木块对长木板的摩擦力向右,大小也为F f1;由于长木板仍处于静止状态,对长木板受力分析可知,地面对它的静摩擦力方向向左,大小为F f2=F f1=μ2mg,由牛顿第三定律可知,长木板对地面的摩擦力大小为μ2mg,方向向右,故B正确.在对物体进行受力分析时,如果不便于直接分析求出物体受到的某些力时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力,在许多问题中,摩擦力的求解亦是如此.可见牛顿第三定律将起到非常重要的转换研究对象的作用,使得我们对问题的分析思路更灵活、更宽阔.课时精练1.对一些生活中的现象,某同学试图从惯性角度加以分析.其中正确的是()A.太空中处于失重状态的物体没有惯性B.“安全带,生命带,前排后排都要系”.系好安全带可以防止因人的惯性而造成的伤害C.“强弩之末,势不能穿鲁缟”,是因为强弩的惯性减小了D.战斗机作战前抛掉副油箱,是为了增大战斗机的惯性答案B解析惯性只与质量有关,所以处于失重状态的物体还是具有惯性,A错误;系好安全带可以防止因人的惯性而造成的伤害,B正确;“强弩之末,势不能穿鲁缟”,是因为强弩的速度减小了,惯性不变,C错误;战斗机作战前抛掉副油箱,是为了减小战斗机的惯性,增加灵活性,D错误.2.(2021·浙江1月选考·4)如图所示,电动遥控小车放在水平长木板上面,当它在长木板上水平向左加速运动时,长木板保持静止,此时()A.小车只受重力、支持力作用B.木板对小车的作用力方向水平向左C.木板对小车的作用力大于小车对木板的作用力D.木板对小车的作用力与小车对木板的作用力大小一定相等答案D解析小车在木板上水平向左加速运动时,受重力、支持力、水平向左的摩擦力,而木板对小车的作用力是支持力与摩擦力的合力,方向指向左上方,并不是水平向左,故A、B错误;根据牛顿第三定律,木板对小车的作用力与小车对木板的作用力一定大小相等,方向相反,故C错误,D正确.3.(多选)如图所示,体育项目“押加”实际上相当于两个人拔河,如果甲、乙两人在“押加”比赛中,甲获胜,则下列说法中正确的是()A.甲对乙的拉力大于乙对甲的拉力,所以甲获胜B.当甲把乙匀速拉过去时,甲对乙的拉力等于乙对甲的拉力C.当甲把乙加速拉过去时,甲对乙的拉力大于乙对甲的拉力D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力,所以甲获胜答案BD解析甲对乙的拉力与乙对甲的拉力是一对作用力与反作用力,大小相等,与二者的运动状态无关,即不管哪个获胜,甲对乙的拉力大小始终等于乙对甲的拉力大小,当地面对甲的摩擦力大于地面对乙的摩擦力,甲才能获胜,故A、C错误,B、D正确.4.在研究运动和力的关系时,伽利略设计了著名的理想斜面实验(如图所示),将可靠的事实和逻辑推理结合起来,能更深刻地反映自然规律.下面给出了伽利略斜面实验的五个事件,请对事件的性质进行判断并正确排序:在A点由静止释放的小球,①若没有摩擦时,能滚到另一斜面与A点等高的C点;②当减小斜面动摩擦因数时,滚到另一斜面的最高位置,更接近等高的C点;③若没有摩擦时减小斜面BC的倾角,小球将通过较长的路程,到达与A点等高的D点;④若没有摩擦,且另一斜面水平放置时,小球将沿水平面一直运动下去;⑤不能滚到另一斜面与A点等高的C点.以下正确的是()A.事实⑤→事实②→推论①→推论③→推论④B.事实⑤→事实②→推论③→事实①→推论④C.事实⑤→事实②→事实①→推论③→推论④D.事实⑤→事实②→推论①→事实③→推论④答案A解析根据实验事实⑤斜面不光滑,在A点由静止释放的小球不能滚到另一斜面与A点等高的C点,事实②当减小斜面动摩擦因数时,滚到另一斜面的最高位置,更接近与A点等高的C点,得出实验推论:如果没有摩擦,小球将上升到释放时的高度,即①,进一步假设若减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度,即得出③,没有摩擦时减小斜面BC的倾角,小球将通过较长的路程,到达与A点等高的D点,最后使它成水平面,小球将沿水平面做持续匀速直线运动,即④,故A正确,B、C、D错误.5.一辆装满石块的货车在某段平直道路上遇到险情,司机以加速度a=3g紧急刹车.货箱中4石块B的质量为m=400kg,g=10m/s2,则石块B周围与它接触的物体对石块B的作用力为()A.3000N B.4000NC.5000N D.7000N答案C解析当货车刹车时,在竖直方向,其他物体对石块B的作用力F y=mg=4000N,在水平方向,其他物体对石块B的作用力F x=ma=3000N,故作用力F=F x2+F y2=5000N,故选C.6.一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断,例如从解得物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性,举例如下:声音在空气中的传播速度v与空气的密度ρ、压强p有关,下列速度表达式中,k为比例系数,无单位,则这四个表达式中可能正确的是()A.v=kpρB.v=kpρC.v=kρpD.v=kpρ答案B解析速度的单位是m/s,密度的单位是kg/m3,压强的单位是kg/(m·s2),所以kpρ的单位是m2/s2,kpρ的单位是m/s,kρp的单位是s/m,kpρ的单位是kg/(m2·s),选项B正确,A、C、D错误.7.一个物体在多个力的作用下处于静止状态,如果仅使其中某个力的大小逐渐减小到零,然后又逐渐从零恢复到原来大小,那么,图中能正确描述该过程中物体速度与时间关系的是()答案D 解析原来物体在多个力的作用下处于静止状态,物体所受的合力为零,使其中某个力的大小逐渐减小到零,然后又从零逐渐恢复到原来的大小的过程中,物体的合力从零开始逐渐增大,又逐渐减小到零,则物体的加速度先增大后减小,物体先做加速度增大的加速运动,后做加速度减小的加速运动.根据v -t 图象的斜率表示加速度可知,v -t 图象的斜率先增大后减小,故A 、B 、C 错误,D 正确.8.如图甲所示,水平地面上轻弹簧左端固定,右端通过小物块压缩0.4m 后锁定,t =0时解除锁定释放小物块.计算机通过小物块上的速度传感器描绘出它的v -t 图线如图乙所示,其中Oab 段为曲线,bc 段为直线,倾斜直线Od 是t =0时图线的切线,已知小物块的质量为m =2kg ,重力加速度g =10m/s 2,则下列说法正确的是()A .小物块与地面间的动摩擦因数为0.3B .小物块与地面间的动摩擦因数为0.4C .弹簧的劲度系数为175N/mD .弹簧的劲度系数为150N/m答案C 解析根据v -t 图线的斜率大小表示加速度大小,由题图乙知,物块脱离弹簧后的加速度大小a =Δv Δt = 1.50.55-0.25m/s 2=5m/s 2,由牛顿第二定律得,摩擦力大小为F f =μmg =ma ,所以μ=a g =0.5,A 、B 错误;刚释放时物块的加速度为a ′=Δv ′Δt ′=30.1m/s 2=30m/s 2,由牛顿第二定律得kx-F f=ma′,代入数据解得k=175N/m,C正确,D错误.9.(2022·河北邢台市质检)一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知重力加速度为g,环沿杆以加速度a匀加速下滑,则此时箱子对地面的压力大小为()A.Mg+mg-ma B.Mg-mg+maC.Mg+mg D.Mg-mg答案A解析环在竖直方向上受重力及箱子内的杆对它的竖直向上的摩擦力F f,受力情况如图甲所示,根据牛顿第三定律,环应给杆一个竖直向下的摩擦力F f′,故箱子竖直方向上受重力Mg、地面对它的支持力F N及环给它的摩擦力F f′,受力情况如图乙所示.以环为研究对象:mg-F f=ma,以箱子为研究对象,F N=F f′+Mg=F f+Mg=Mg+mg-ma.根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的支持力大小,即F N′=Mg+mg-ma,故选项A正确.10.(多选)如图所示,一个小球O用1、2两根细绳连接并分别系于箱子上的A点和B点,OA 与水平方向的夹角为θ,OB水平,开始时箱子处于静止状态,下列说法正确的是()A.若使箱子水平向右加速运动,则绳1、2的张力均增大B.若使箱子水平向右加速运动,则绳1的张力不变,绳2的张力增大C.若使箱子竖直向上加速运动,则绳1、2的张力均增大D.若使箱子竖直向上加速运动,则绳1的张力增大,绳2的张力不变答案BC解析箱子静止时,对小球,根据平衡条件得F OA sinθ=mg,F OB=F OA cosθ,若使箱子水平向右加速运动,则在竖直方向上合力为零,有F OA′sinθ=mg,F OB′-F OA′cosθ=ma,所以绳1的张力不变,绳2的张力增大,选项A错误,B正确;若使箱子竖直向上加速运动,则F OA″sin θ-mg=ma′,F OB″=F OA″cosθ,所以绳1的张力增大,绳2的张力也增大,选项C正确,D 错误.11.如图为用索道运输货物的情景,已知倾斜的索道与水平方向的夹角为37°,质量为m的货物与车厢地板之间的动摩擦因数为0.3.当载重车厢沿索道向上加速运动时,货物与车厢仍然保持相对静止状态,货物对车厢水平地板的正压力为其重力的1.15倍,连接索道与车厢的杆始终沿竖直方向,重力加速度为g,sin37°=0.6,cos37°=0.8,那么这时货物对车厢地板的摩擦力大小为()A.0.35mg B.0.3mgC.0.23mg D.0.2mg答案D解析将a沿水平和竖直两个方向分解,对货物受力分析如图所示水平方向:F f=ma x竖直方向:F N-mg=ma yF N=1.15mg又a y a x =34联立解得F f =0.2mg ,故D 正确.12.(多选)如图所示,水平地面上固定一斜面,初始时物体A 沿斜面向下做匀变速运动,其加速度大小为a 1;若在物体A 上施加一竖直向下的恒力F ,其加速度大小变为a 2,已知斜面倾角为θ,A 与斜面间的动摩擦因数为μ,则()A .若μ>tan θ,则a 1>a 2B .若μ>tan θ,则a 1<a 2C .若μ<tan θ,则a 1<a 2D .若μ<tan θ,则a 1>a 2答案BC 解析若μ>tan θ,即μmg cos θ>mg sin θ,重力沿斜面向下的分力小于滑动摩擦力,物体原来是向下做匀减速运动,加速度大小为a 1=μmg cos θ-mg sin θm=μg cos θ-g sin θ,施加F 后μF cos θ>F sin θ,加速度大小为a 2=μF +mgcos θ-F +mg sin θm =μg cos θ-g sin θ+μF cos θ-F sin θm>a 1,故A 错误,B 正确;若μ<tan θ,即μmg cos θ<mg sin θ,重力沿斜面向下的分力大于滑动摩擦力,物体原来是向下做匀加速运动,加速度大小为a 1=mg sin θ-μmg cos θm=g sin θ-μg cos θ,施加F 后μF cos θ<F sin θ,加速度大小为a 2=F +mg sin θ-μF +mg cos θm =g sin θ-μg cos θ+F sin θ-μF cos θm>a 1,故C 正确,D 错误.。
高考物理牛顿运动定律考点总结-经典教学教辅文档
高考物理牛顿运动定律考点总结高考物理牛顿运动定律考点一:对牛顿运动定律的理解1. 对牛顿第必然律的理解:(1) 揭示了物体不受外力作用时的运动规律(2) 牛顿第必然律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关(3) 肯定了力和运动的关系:力是改变物体运动形状的缘由,不是保持物体运动的缘由(4) 牛顿第必然律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以运用牛顿第必然律2. 对牛顿第二定律的理解:(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、绝对性、独立性(2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始形状(3) 加速度是联系受力情况和运动情况的桥梁,不管是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3. 对牛顿第三定律的理解:(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力(2) 指出了物体间的彼此作用的特点:“四同”指大小相等,性质相等,作用在同不断线上,同时出现、消逝、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同高考物理牛顿运动定律考点二:运用牛顿运动定律经常用的方法、技巧1. 理想实验法2. 控制变量法3. 全体与隔离法4. 图解法5. 正交分解法6. 关于临界成绩处理的基本方法是:根据条件变化或过程的发展,分析引发的受力情况的变化和形状的变化,找到临界点或临界条件(更多类型见错题本)高考物理牛顿运动定律考点三:运用牛顿运动定律解决的几个典型成绩1. 力、加速度、速度的关系:(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只需不为零,不管速度是多大,加速度都不为零(2) 合力与速度无必然联系,只需速度变化才与合力有必然联系(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相反时,速度添加,否则速度减小2. 关于轻绳、轻杆、轻弹簧的成绩:(1) 轻绳:① 拉力的方向必然沿绳指向绳膨胀的方向②同一根绳上各处的拉力大小都相等③ 认为受力形变极微,看做不可伸长④ 弹力可做瞬时变化(2) 轻杆:① 作用力方向不必然沿杆的方向② 各处作用力的大小相等③ 轻杆不能伸长或紧缩④ 轻杆遭到的弹力方式有:拉力、压力⑤ 弹力变化所需工夫极短,可忽略不计(3) 轻弹簧:① 各处的弹力大小相等,方向与弹簧形变的方向相反② 弹力的大小恪守的关系③ 弹簧的弹力不能发生渐变3. 关于超重和失重的成绩:(1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实践重力(2) 物体超重或失重与速度方向和大小无关。
高三物理牛顿运动定律知识点总结
高三物理《牛顿运动定律》知识点总结★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。
运动是物体的一种属性,物体的运动不需要力来维持。
定律说明了任何物体都有惯性。
不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证。
但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2.惯性:物体保持匀速直线运动状态或静止状态的性质。
惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。
因此说,人们只能"利用"惯性而不能"克服"惯性。
质量是物体惯性大小的量度。
★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma 牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
牛顿第二定律揭示的是力的瞬间效果。
即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的。
F合可以进行合成与分解,ma也可以进行合成与分解。
4.★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
2020年高考物理一轮复习考点归纳:专题(03)牛顿运动定律(含答案)
2020年高考一轮复习知识考点专题03 《牛顿运动定律》第一节牛顿第一、第三定律【基本概念、规律】一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.2.表达式:F=-F′.特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.(2)作用力和反作用力的关系与物体的运动状态无关.【重要考点归纳】考点一牛顿第一定律1.明确了惯性的概念.2.揭示了力的本质.3.揭示了不受力作用时物体的运动状态.4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.考点二牛顿第三定律的理解与应用1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.相互作用力与平衡力的比较【思想方法与技巧】用牛顿第三定律转换研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.第二节牛顿第二定律两类动力学问题【基本概念、规律】一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.特别提示:利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.【重要考点归纳】考点一用牛顿第二定律求解瞬时加速度1.求解思路求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两种”模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.4.解决瞬时加速度问题的关键是弄清哪些力发生了突变,哪些力瞬间不变,正确画出变化前后的受力图.考点二动力学两类基本问题1.求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.2.(1)解决两类动力学基本问题应把握的关键①一个桥梁——加速度是联系运动和力的桥梁.②两类分析——受力分析和运动过程分析.(2)解决动力学基本问题时对力的两种处理方法①合成法:物体受2个或3个力时,一般采用“合成法”.②正交分解法:物体受3个或3个以上的力时,则采用“正交分解法”.(3)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行受力分析和运动过程分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.考点三动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况.(2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图景中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.3.数形结合解决动力学问题(1)物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.【思想方法与技巧】传送带模型中的动力学问题1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图甲、乙、丙所示.2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.根据物体与传送带的相对速度方向判断摩擦力方向.两者速度相等是摩擦力突变的临界条件.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.3.解答传送带问题应注意的事项(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况.(2)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.(3)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v物=v传.第三节牛顿运动定律的综合应用【基本概念、规律】一、超重和失重1.超重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.二、解答连接体问题的常用方法1.整体法当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度.2.隔离法当求解系统内物体间相互作用力时,常把物体从系统中“隔离”出来进行分析,依据牛顿第二定律列方程.3.外力和内力(1)外力:系统外的物体对研究对象的作用力;(2)内力:系统内物体之间的作用力.【重要考点归纳】考点一超重和失重现象1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.5.超重和失重现象的判断方法(1)从受力的大小判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的方向判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.考点二整体法和隔离法解决连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.考点三分解加速度求解受力问题在应用牛顿第二定律解题时,通常不分解加速度而分解力,但有一些题目要分解加速度.最常见的情况是与斜面模型结合,物体所受的作用力是相互垂直的,而加速度的方向与任一方向的力不同向.此时,首先分析物体受力,然后建立直角坐标系,将加速度a分解为a x和a y,根据牛顿第二定律得F x=ma x,F y=ma y,使求解更加便捷、简单.【思想方法与技巧】“滑块——滑板”模型的分析1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.模型分析解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)滑块是否会从滑板上掉下的临界条件是:滑块到达滑板一端时两者共速.(3)滑块不能从滑板上滑下的情况下,当两者共速时,两者受力、加速度发生突变.动力学中的临界条件及应用一、临界状态物体在运动状态变化的过程中,相关的一些物理量也随之发生变化.当物体的运动变化到某个特定状态时,相关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态.二、临界状态的判断1.若题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.3.临界状态的问题经常和最大值、最小值联系在一起,因此,若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.4.若题目中有“最终”、“稳定”等文字,即是求收尾速度或加速度. 三、处理临界问题的思路 1.会分析出临界状态的存在.2.要抓住物体处于临界状态时的受力和运动特征,找出临界条件,这是解决问题的关键. 3.能判断物体在不满足临界条件时的受力和运动情况. 4.利用牛顿第二定律结合其他规律列方程求解. 四、力学中常见的几种临界条件 1.接触物体脱离的临界条件: 接触面间的弹力为零,即F N =0. 2.绳子松弛的临界条件: 绳中张力为0,即F T =0. 3.相对滑动的临界条件: 静摩擦力达到最大值,即f 静=f m . 4.滑块在滑板上不滑下的临界条件: 滑块滑到滑板一端时,两者速度相同.实验四 验证牛顿运动定律一、实验目的1.学会用控制变量法研究物理规律. 2.探究加速度与力、质量的关系. 3.掌握灵活运用图象处理问题的方法. 二、实验原理(见实验原理图)1.保持质量不变,探究加速度跟合外力的关系. 2.保持合外力不变,探究加速度与质量的关系. 3.作出a -F 图象和a -1m图象,确定其关系.三、实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.四、实验步骤 1.测量:用天平测量小盘和砝码的质量m ′和小车的质量m . 2.安装:按照如实验原理图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力)3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑. 4.操作:(1)小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,取下纸带编号码. (2)保持小车的质量m 不变,改变砝码和小盘的质量m ′,重复步骤(1). (3)在每条纸带上选取一段比较理想的部分,测加速度a . (4)描点作图,作a -F 的图象.(5)保持砝码和小盘的质量m ′不变,改变小车质量m ,重复步骤(1)和(3),作a -1m图象.一、数据处理1.保持小车质量不变时,计算各次小盘和砝码的重力(作为小车的合力)及对应纸带的加速度,填入表(一)中.表(一)2.入表(二)中.表(二)3.4.以a为纵坐标,F为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a与F成正比.5.以a为纵坐标,1m为横坐标,描点、连线,如果该线过原点,就能判定a与m成反比.二、注意事项1.平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着打点的纸带匀速运动.2.不重复平衡摩擦力.3.实验条件:m≫m′.4.一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达定滑轮前按住小车.5.作图象时,要使尽可能多的点在所作直线上.不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当.各量需采用国际单位.三、误差分析1.系统误差:本实验用小盘和砝码的总重力m′g代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.2.偶然误差:摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.。
物理一轮复习 专题12 牛顿运动定律的综合应用(讲)(含解析)
专题12 牛顿运动定律的综合应用1.掌握超重、失重的概念,会分析有关超重、失重的问题。
2.学会分析临界与极值问题。
3.会进行动力学多过程问题的分析.1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.考点一超重与失重1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma。
★重点归纳★1.物体处于超重状态还是失重状态取决于加速度的方向,与速度的大小和方向没有关系.下表列出了加速度方向与物体所处状态的关系。
加速度超重、失重视重Fa=0不超重、不失重F=mga的方向竖直向上超重F=m(g+a)a的方向竖直向下失重F=m(g-a)a =g ,竖直向下完全失重F =0特别提醒:不论是超重、失重、完全失重,物体的重力都不变,只是“视重”改变. 2.超重和失重现象的判断“三”技巧(1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时, 物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态. (2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加 速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态. (3)从速度变化角度判断①物体向上加速或向下减速时,超重; ②物体向下加速或向上减速时,失重.★典型案例★在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是: ( )A.晓敏同学所受的重力变小了B 。
2020年高考物理一轮复习热点题型归纳与变式演练专题05牛顿三大运动定律的理解与应用含解析
专题05 牛顿三大运动定律的理解与应用【专题导航】目录热点题型一牛顿第一定律的理解和应用 (1)热点题型二牛顿第三定律的理解 (3)热点题型三牛顿第二定律的理解和基本应用 (6)1 力与运动的关系 (6)2 牛顿运动定律的瞬时性 (7)热点题型四动力学的两类基本问题 (9)1 已知受力求运动 (10)2 已知运动求受力 (12)3 等时圆模型 (13)热点题型五动力学图象问题的应用 (15)【题型演练】 (18)【题型归纳】热点题型一牛顿第一定律的理解和应用1.惯性的两种表现形式(1)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来.(2)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动).2.与牛顿第二定律的对比牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.【例1】伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3. 根据三次实验结果的对比,可以得到的最直接的结论是( )A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小【答案】 A【解析】根据题意,铺垫材料粗糙程度降低时,小球上升的最高位置升高,当斜面绝对光滑时,小球在斜面上没有能量损失,因此可以上升到与O点等高的位置,而B、C、D三个选项,从题目不能直接得出,所以选项A正确.【变式1】.(2019·安徽六安质检)关于物体的惯性,下列说法中正确的是( )A.骑自行车的人,上坡前要紧蹬几下,是为了增大惯性冲上坡B.子弹从枪膛中射出后在空中飞行,速度逐渐减小,因此惯性也减小C.物体惯性的大小,由物体质量的大小决定 D.物体由静止开始运动的瞬间,它的惯性最大【答案】C【解析】质量是物体惯性大小的唯一量度,惯性与物体的运动状态无关,故选C.【变式2】(2019·益阳模拟)亚里士多德在其著作《物理学》中说:一切物体都具有某种“自然本性”,物体由其“自然本性”决定的运动称之为“自然运动”,而物体受到推、拉、提、举等作用后的非“自然运动”称之为“受迫运动”.伽利略、笛卡儿、牛顿等人批判地继承了亚里士多德的这些说法,建立了新物理学;新物理学认为一切物体都具有的“自然本性”是“惯性”.下列关于“惯性”和“运动”的说法中不符合新物理学的是( )A.一切物体的“自然运动”都是速度不变的运动——静止或者匀速直线运动B.作用在物体上的力,是使物体做“受迫运动”即变速运动的原因C.可绕竖直轴转动的水平圆桌转的太快时,放在桌面上的盘子会向桌子边缘滑去,这是由于“盘子受到的向外的力”超过了“桌面给盘子的摩擦力”导致的D.竖直向上抛出的物体,受到了重力,却没有立即反向运动,而是继续向上运动一段距离后才反向运动,是由于物体具有惯性【答案】C【解析】.力不是维持物体运动状态的原因,力是改变物体运动状态的原因,所以当物体不受到任何外力的时候,总保持静止或者匀速直线运动的状态,故选项A符合题意;当物体受到外力作用的时候,物体的运动状态会发生改变,即力是改变物体运动状态的原因,故选项B符合题意;可绕竖直轴转动的水平圆桌转的太快时,放在桌面上的盘子会向桌子边缘滑去,这是由于“盘子需要的向心力”超过了“桌面给盘子的摩擦力”导致的,故选项C不符合题意;由于物体具有向上的速度,所以具有向上的惯性,虽然受到向下的重力,但物体不会立刻向下运动,故选项D符合题意.热点题型二牛顿第三定律的理解1.作用力和反作用力的关系2.相互作用力与平衡力的比较【例2】建筑工人用如图所示的定滑轮装置运送建筑材料.质量为70.0 kg的工人站在水平地面上,通过定滑轮将20.0 kg的建筑材料以1.0 m/s2的加速度拉升,忽略绳子和定滑轮的质量及两者间的摩擦,求地面受到的压力和摩擦力的大小.(g取10 m/s2,sin 53°=0.8,cos 53°=0.6)【答案】524 N 132 N【解析】对建筑材料受力分析如图甲所示由牛顿第二定律得:F1-mg=ma代入数据解得:F1=220 N因此绳对人的拉力F2=F1=220 N工人受力分析如图乙所示由平衡条件得:F2cos 53°=F fF2sin 53°+F N=Mg代入数据解得:F N=524 N,F f=132 N由牛顿第三定律得:人对地面的压力大小为524 N,地面受到的摩擦力大小为132 N.【方法技巧】“转换研究对象法”在受力分析中的应用(1)“转换研究对象法”在受力分析中的应用,其本质是牛顿第三定律的应用.(2)由于作用力与反作用力的关系,当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.【变式1】(2019·乐山模拟)如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )A.甲对绳的拉力与绳对甲的拉力是一对平衡力 B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利【答案】C【解析】选C.甲对绳的拉力与绳对甲的拉力是作用力和反作用力,选项A错误;绳静止时,甲对绳的拉力与乙对绳的拉力是一对平衡力,选项B错误;若甲的质量比乙的质量大,则甲的加速度比乙的小,可知乙先到分界线,故甲能赢得“拔河”比赛的胜利,选项C正确;收绳速度的快慢并不能决定“拔河”比赛的输赢,选项D错误.【变式2】(2019·四川宜宾期中)如图所示,光滑水平面上静止着一辆小车,在酒精灯燃烧一段时间后塞子喷出.下列说法正确的是 ( )A.由于塞子的质量小于小车的质量,喷出时塞子受到的冲击力将大于小车受到的冲击力B.由于塞子的质量小于小车的质量,喷出时塞子受到的冲击力将小于小车受到的冲击力C.塞子喷出瞬间,小车对水平面的压力大于小车整体的重力D.若增大试管内水的质量,则可以增大小车的惯性【答案】CD【解析】喷出时塞子受到的冲击力和小车受到的冲击力大小相等,方向相反,故A、B错误;塞子喷出瞬间,试管内的气体对小车整体有斜向左下的作用力,所以小车对水平面的压力大于小车整体的重力,故C正确;若增大试管内水的质量,则小车整体的惯性增大,故D正确.【变式3】(2019·海口模拟)建筑工人用如图所示的定滑轮装置运送建筑材料.一质量为70.0 kg 的工人站在地面上,通过定滑轮将20.0 kg 的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)( )A.510 N B.490 N C.890 N D.910 N【答案】B【解析】选B.设绳子对建筑材料的拉力为F1,F1-mg=maF1=m(g+a)=210 N,绳子对人的拉力F2=F1=210 N.人处于静止,则地面对人的支持力F N=m0g-F2=490 N,由牛顿第三定律知:人对地面的压力F′N=F N=490 N,选项B正确.热点题型三牛顿第二定律的理解和基本应用1.牛顿第二定律的五个性质2.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.3.在求解瞬时加速度时应注意的问题①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.②加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.1 力与运动的关系【例3】(2019·四川广元一诊)如图所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点.如果物体受到的阻力恒定,则( )A.物体从A到O先加速后减速 B.物体从A到O做加速运动,从O到B做减速运动C.物体运动到O点时,所受合力为零 D.物体从A到O的过程中,加速度逐渐减小【答案】 A【解析】物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.当物体向右运动至A、O间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大.此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左,至O点时弹力减为零,此后弹力向左且逐渐增大,所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反向,故物体做加速度逐渐增大的减速运动.综以上分析,只有选项A正确.【方法技巧】理解牛顿第二定律的三点注意(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化.(2)速度的大小如何变化取决于加速度和速度方向间的关系,和加速度的大小没有关系.(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系.【变式】(2019·广西钦州模拟)如图所示,一个小球自由下落到将弹簧压缩到最短后开始竖直向上反弹,从开始反弹至小球到达最高点,小球的速度和加速度的变化情况为( )A.速度一直变小直到零 B.速度先变大,然后变小直到为零C.加速度一直变小,方向向上 D.加速度先变小后一直变大【答案】 B【解析】小球到达最低点时,受弹力大于本身的重力,物体向上做加速运动,速度增加,当重力与弹力相等时达到最大速度,然后物体做减速运动,速度减小,到达最高点的速度为零,故A错误,B正确;开始时弹力大于重力,随着高度增加,弹力减小,加速度减小;当弹力与重力相等时加速度为零,此后弹力小于重力,并且弹力越来越小,物体受到的合力越来越大,加速度反向增大,当物体脱离弹簧后加速度为g,保持不变,故C、D错误.2 牛顿运动定律的瞬时性加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:【例4】.如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同(接m后),质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.【答案】(1)g sin θ,方向垂直于L1斜向下方 (2)g tan θ,方向水平向右【解析】(1)细线L2被剪断的瞬间,因细线L2对物体的弹力突然消失,而引起L1上的张力发生突变,使物体的受力情况改变,瞬时加速度垂直L1斜向下方,大小为a=g sin θ.(2)当细线L2被剪断时,细线L2对物体的弹力突然消失,而弹簧的形变还来不及变化(变化要有一个过程,不能突变),因而弹簧的弹力不变,它与重力的合力与细线L2对物体的弹力是一对平衡力,等大反向,所以细线L2被剪断的瞬间,物体加速度的大小为a=g tan θ,方向水平向右.【变式1】两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图所示.现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则( )A.a1=g,a2=g B.a1=0,a2=2g C.a1=g,a2=0 D.a1=2g,a2=0【答案】 A【解析】由于绳子张力可以突变,故剪断OA后小球A、B只受重力,其加速度a1=a2=g,故选项A正确.【变式2】在【变式1】中只将A、B间的轻绳换成轻质弹簧,其他不变,如图所示,则【变式1】选项中正确的是 ( )A.a1=g,a2=g B.a1=0,a2=2g C.a1=g,a2=0 D.a1=2g,a2=0【答案】D【解析】剪断轻绳OA 后,由于弹簧弹力不能突变,故小球A 所受合力为2mg ,小球B 所受合力为零,所以小球A 、B 的加速度分别为a 1=2g ,a 2=0,故选项D 正确.【变式3】把【变式2】的题图放置在倾角为θ=30°的光滑斜面上,如图所示,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,则下列说法正确的是 ( )A .a A =0,aB =12g B .a A =g ,a B =0 C .a A =g ,a B =g D .a A =0,a B =g 【答案】B【解析】细线被烧断的瞬间,小球B 的受力情况不变,加速度为0.烧断前,分析整体受力可知线的拉力为T =2mg sin θ,烧断瞬间,A 受的合力沿斜面向下,大小为2mg sin θ,所以A 球的瞬时加速度为a A =2g sin 30°=g ,故选项B 正确.热点题型四 动力学的两类基本问题1.解决动力学两类问题的两个关键点2.解决动力学基本问题的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.两类动力学问题的解题步骤1 已知受力求运动【例5】(2019·汕头模拟)建设房屋时,保持底边L不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A.倾角θ越大,雨滴下滑时的加速度越大 B.倾角θ越大,雨滴对屋顶压力越大C.倾角θ越大,雨滴从顶端O下滑至屋檐M时的速度越大D.倾角θ越大,雨滴从顶端O下滑至屋檐M时的时间越短【答案】AC【解析】.设屋檐的底角为θ,底边长度为L,注意底边长度是不变的,屋顶的坡面长度为x,雨滴下滑时加速度为a,对雨滴受力分析,只受重力mg和屋顶对雨滴的支持力F N,垂直于屋顶方向:mg cos θ=F N,平行于屋顶方向:ma=mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F′N=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.【变式】(2019·上海闵行区模拟)如图所示,直杆水平固定,质量为m=0.1 kg的小圆环(未画出)套在杆上A点,在竖直平面内对环施加一个与杆夹角为θ=53°的斜向上的拉力F,使小圆环由静止开始沿杆向右运动,并在经过B点时撤掉此拉力F,小圆环最终停在C点.已知小圆环与直杆间的动摩擦因数μ=0.8,AB 与BC 的距离之比s 1∶s 2=8∶5.(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)小圆环在BC 段的加速度a 2的大小; (2)小圆环在AB 段的加速度a 1的大小; (3)拉力F 的大小.【答案】 (1)8 m/s 2(2)5 m/s 2(3)1.05 N 或7.5 N【解析】 (1)在BC 段,小圆环受重力、弹力、摩擦力.对小圆环进行受力分析如图甲所示,有f =μN =μmg则a 2=f m=μg =0.8×10 m/s 2=8 m/s 2.(2)小圆环在AB 段做匀加速运动,由运动学公式可知v 2B =2a 1s 1小圆环在BC 段做匀减速运动,由运动学公式可知v 2B =2a 2s 2 又s 1s 2=85则a 1=s 2s 1a 2=58×8 m/s 2=5 m/s 2.(3)当F sin θ<mg 时,小圆环在AB 段运动的受力分析如图乙所示由牛顿第二定律得F cos θ-f 1=ma 1又N 1+F sin θ=mgf 1=μN 1联立以上各式,代入数据解得F =1.05 N当F sin θ>mg 时,小圆环在AB 段运动的受力分析如图丙所示由牛顿第二定律可知F cos θ-f 2=ma 1又F sin θ=mg +N 2f 2=μN 2代入数据解得F =7.5 N. 2 已知运动求受力【例6】.有一种大型游戏机叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40 m 高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2 s 后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4 m 高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(g 取10 m/s 2)求: (1)座椅在匀减速阶段的时间是多少?(2)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?【答案】(1)1.6 s (2)2.25倍【解析】(1)自由下落的位移h ′=12gt 21=20 m座椅自由下落结束时刻的速度v =gt 1=20 m/s 设座椅匀减速运动的总高度为h ,则h =(40-4-20)m =16 m由h =v2t 得t =1.6 s.(2)设座椅匀减速阶段的加速度大小为a ,座椅对游客的作用力大小为F ,由v =at 得a =12.5 m/s 2由牛顿第二定律得F -mg =ma 解得F mg=2.25.【变式】(2019·德州模拟)一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的固定斜面上以a =2.5m/s2的加速度匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿 斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小. 【答案】(1)36 (2)7635 N 或437N 【解析】(1)根据牛顿第二定律可得mg sin 30°-μmg cos 30°=ma解得μ=36. (2)由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时,F cos 30°-mg sin 30°-μ(F sin 30°+mg cos 30°)=ma 1,代入数据得F =7635 N当加速度沿斜面向下时mg sin 30°-F cos 30°-μ(F sin 30°+mg cos 30°)=ma 1代入数据得F =437 N.3 等时圆模型(1)质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示.(2)质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示.(3)两个竖直圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示.【例7】.如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( )A .2∶1B .1∶1C .3∶1D .1∶ 3【答案】B【解析】选B.设光滑斜槽轨道与水平面的夹角为θ,则物体下滑时的加速度为a =g sin θ,由几何关系,斜槽轨道的长度s =2(R +r )sin θ,由运动学公式s =12at 2,得t =2sa=2×2(R +r )sin θg sin θ=2R +rg,即所用时间t 与倾角θ无关,所以t 1=t 2,B 项正确. 【变式】某同学探究小球沿光滑斜面顶端下滑至底端的运动规律,现将两质量相同的小球同时从斜面的顶端释放,在甲、乙图的两种斜面中,通过一定的判断分析,你可以得到的正确结论是( )A .甲图中小球在两个斜面上运动的时间相同B .甲图中小球下滑至底端的速度大小与方向均相同C .乙图中小球在两个斜面上运动的时间相同D .乙图中小球下滑至底端的速度大小相同 【答案】C【解析】小球在斜面上运动的过程中只受重力mg 和斜面的支持力F N 作用,做匀加速直线运动,设斜面倾角为θ,斜面高为h ,底边长为x ,根据牛顿第二定律可知,小球在斜面上运动的加速度为a =g sin θ,根据匀变速直线运动规律和图中几何关系有s =12at 2,s =h sin θ=xcos θ,解得小球在斜面上的运动时间为t=1sin θ2hg=2x g sin θcos θ,根据机械能守恒定律有mgh =12mv 2,解得小球下滑至底端的速度大小为v =2gh ,显然,在甲图中,两斜面的高度h 相同,但倾角θ不同,因此小球在两个斜面上运动的时间不同,故选项A 错误;在甲图中,小球下滑至底端的速度大小相等,但沿斜面向下的方向不同,故选项B 错误;在乙图中,两斜面的底边长x 相同,但高度h 和倾角θ不同,因此小球下滑至底端的速度大小不等,故选项D 错误;又由于在乙图中两斜面倾角θ的正弦与余弦的积相等,因此小球在两个斜面上运动的时间相等,故选项C正确.热点题型五动力学图象问题的应用1.数形结合解决动力学图象问题(1)在图象问题中,无论是读图还是作图,都应尽量先建立函数关系,进而明确“图象与公式”“图象与物体”间的关系;然后根据函数关系读取图象信息或者描点作图.(2)读图时,要注意图线的起点、斜率、截距、折点以及图线与横坐标包围的“面积”等所对应的物理意义,尽可能多地提取解题信息.(3)常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.动力学图象问题的类型:图象类问题的实质是力与运动的关系问题,以牛顿第二定律F=ma为纽带,理解图象的种类,图象的轴、点、线、截距、斜率、面积所表示的意义.一般包括下列几种类型:3.解题策略【例8】(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)( )A.物块与地面的动摩擦因数为0.2 B.3 s末物块受到的摩擦力大小为3 NC.4 s末物块受到的摩擦力大小为1 N D.5 s末物块的加速度大小为3 m/s2【答案】 BC【解析】 在0~2 s 内物块做匀速直线运动,则摩擦力F f =3 N ,则μ=F f mg =310=0.3,选项A 错误;2 s后物块做匀减速直线运动,加速度a =F 合m =6-5-31 m/s 2=-2 m/s 2,则经过t =0-v a=2 s ,即4 s 末速度减为零,则3 s 末物块受到的摩擦力大小为3 N,4 s 末物块受到的摩擦力为静摩擦力,大小为6 N -5 N =1 N ,选项B 、C 正确;物块停止后,因两个力的差值小于最大静摩擦力,则物块不再运动,则5 s 末物块的加速度为零,选项D 错误.【变式1】(2019·安徽省池州市上学期期末)如图所示为质量m =75 kg 的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v -t 图象,图中的OA 直线是t =0时刻速度图线的切线,速度图线末段BC 平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k .设最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则( )A .滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动B .t =0时刻运动员的加速度大小为2 m/s 2C .动摩擦因数μ为0.25D .比例系数k 为15 kg/s 【答案】 C【解析】 由v -t 图象可知,滑雪运动员开始时做加速度减小的加速直线运动,最后做匀速运动,故A 错误;在t =0时刻,图线切线的斜率即为该时刻的加速度,故有a 0=12-03-0 m/s 2=4 m/s 2,故B 错误;在t=0时刻开始加速时,v 0=0,由牛顿第二定律可得mg sin θ-kv 0-μmg cos θ=ma 0,最后匀速时有:v m =10 m/s ,a =0,由平衡条件可得mg sin θ-kv m -μmg cos θ=0,联立解得: μ=0.25,k =30 kg/s ,故C 正确,D 错误.【变式2】如图甲所示,一物块在t =0时刻滑上一固定斜面,其运动的v -t 图线如图乙所示.若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出( )A .斜面的倾角B .物块的质量C .物块与斜面间的动摩擦因数D .物块沿斜面向上滑行的最大高度 【答案】ACD【解析】.由题图乙可以求出物块上升过程中的加速度大小为a 1=v 0t 1,下降过程中的加速度大小为a 2=v 1t 1.物块在上升和下降过程中,由牛顿第二定律得mg sin θ+F f =ma 1,mg sin θ-F f =ma 2,由以上各式可求得sin θ=v 0+v 12t 1g ,滑动摩擦力F f =m (v 0-v 1)2t 1,而F f =μF N =μmg cos θ,由以上分析可知,选项A 、C 正确;由v -t 图象中横轴上方的面积可求出物块沿斜面上滑的最大距离,可以求出物块沿斜面向上滑行的最大高度,选项D 正确.【变式3】. 1845年英国物理学家和数学家斯·托马斯(S.G.Stokes)研究球体在液体中下落时,发现了液体对球的粘滞阻力与球的半径、速度及液体的种类有关,有F =6πηrv ,其中物理量η为液体的粘滞系数,它还与液体的种类及温度有关,如图所示,现将一颗小钢珠由静止释放到盛有蓖麻油的足够深量筒中,下列描绘小钢珠在下沉过程中加速度大小与时间关系的图象可能正确的是( )【答案】D【解析】.根据牛顿第二定律得,小钢珠的加速度a =mg -F m =mg -6πηrvm,在下降的过程中,速度v 增大,阻力F 增大,则加速度a 减小,当重力和阻力相等时,做匀速运动,加速度为零,故选项D 正确. 【变式4】.(多选)物体最初静止在倾角θ=30°的足够长斜面上,如图甲所示受到平行斜面向下的力F 的作用,力F 随时间t 变化的图象如图乙所示,开始运动2 s 后物体以2 m/s 的速度匀速运动,下列说法正确的是(g 取10 m/s 2)( )A .物体的质量m =1 kgB .物体的质量m =2 kgC .物体与斜面间的动摩擦因数μ=33D .物体与斜面间的动摩擦因数μ=7315【答案】AD【解析】.由开始运动2 s 后物体以2 m/s 的速度匀速运动,可知0~2 s 内物体的加速度大小为a =1 m/s 2;在0~2 s 内对物体应用牛顿第二定律得,F 1+mg sin 30°-μmg cos 30°=ma ,2 s 后由平衡条件可得,。
高考物理力学知识点之牛顿运动定律知识点总复习含答案解析
2016 下半年教师资格考试小学《综合素质》真题一、单项选择题(本大题共29 小题,每题 2 分,共 58 分)1、xx 喜欢唱歌跳舞。
孙老师对她说:“成天蹦蹦跳跳的,没有学生样。
学生得老老实实学习才行!”孙老师的说法忽视了()。
A.学生的心理发展B.学生的全面发展C.学生的主动发展D.学生的主题发展2、图 1xx,该老师的做法()。
A.违反了素质教育的理念B.违反了因材施教的原则C.适应了社会竞争的要求D.表现了学科讲课的重要3、沈老师收集废旧轮胎、破篮球、废纸箱、塑料绳等废旧资料,“变废为宝”,将之改造成各种合适的教具、学具。
这表示xx 拥有()。
A.讲课资源开发能力B.课程组织推行能力C.讲课程序设计能力D.教育启示引导能力4、郑老师在指导新教师时说,认识小学生身心发展规律、学习心理等,对做好教育讲课工作极为重要。
郑老师的领悟表示,教师不能够忽视()。
A.政治理论知识B.文化基础知识C.学科专业知识D.教育科学知识5、小学教师梁某因上班迟到被罚款,她对学校的决定不服,提出申诉,申诉的受理机关是()。
A.教师共代表大会B.信访机关C.教育行政部门D.检查机关6、小学生陈某十分调皮,经常违反课堂纪律,班主任周某让其缴纳“违约金”,宣称再犯错误则从中扣充作班费。
周某的做法()。
A.正确。
有利于保护课堂纪律B.正确。
有利于提高管理效率C.不正确。
教师没有体罚的权益D.不正确。
责怪无效后才能罚款7、就读于农村某校的亮亮小学未毕业,父亲母亲让其辍学帮助照看店里买卖。
依照《中华人民共和国义务教育法》的相关规定,恩赐小亮父亲母亲责怪教育并责令限时改正的机构是()。
A.村委会B.学校C.乡级人民政府D.县级人民政府8、某小学生乐队停课参加某公司庆典,公司恩赐学校必定的经济酬金。
该校做法()。
A.正确。
能够改进学校办学条件B.正确。
学员拥有管理学生的权益C.不正确。
入侵了学生的受教育权D.不正确。
入侵了学生的人身权9、小学生军军的父亲母亲不履行监护职责,对其旷课和夜不归宿行为听任无论。
2020高考物理一轮复习专题03牛顿运动定律(解析版)
专题03 牛顿运动定律1 .(2020 届安徽省宣城市高三第二次调研)如图所示,在水平桌面上叠放着质量均为M 的A、B 两块木板,在木板 A 的上面放着一个质量为m 的物块C,木板和物块均处于静止状态。
A、B、C 之间以及 B 与地面之间的动摩擦因数都为。
若用水平恒力 F 向右拉动木板 A (已知最大静摩擦力的大小等于滑动摩擦力),要使 A 从 C 、B 之间抽出来,则对 C 有aC=mg=gm对 B 受力分析有:受到水平向右的滑动摩擦力力,有f= μ(2M+m )g因为μ(M+m )g<μ(2M+m )g 所以 B 没有运动,加速度为0 ;所以当a A>a C 时,能够拉出,则有F mg M m g M解得F> 2μ(m+M )g,故选C2 .(2020 届福建省漳州市高三第一次教学质量检测)如图,个可以看作质点,质量为m=1kg 的物块,以沿传动带向下的速度v0 4m/s 从M 点开始沿传送带运动。
物块运动过程的部分v-t 图像如图所示,取g=10m/s 2,则()F 大小应满足的条件是(A.F (m 2M )g B.F (2m 3M )gC .F 2 (m M )gD .F (2m M )g答案】C解析】要使 A 能从C、 B 之间抽出来,则,A要相对于B、C 都滑动,所以AC 间,AB 间都是滑动摩擦力,对 A 有a A=mg M m gμ(M+m )g,B 与地面的最大静摩擦力等于滑动摩擦MN 是一段倾角为=30 °的传送带A .物块最终从传送带N 点离开B .传送带的速度v=1m/s ,方向沿斜面向下C .物块沿传送带下滑时的加速度a=2m/s 2D .物块与传送带间的动摩擦因数32【答案】D【解析】从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s ,因此没从N 点离开,并且能推出传送带斜向上运动,速度大小为1m/s ,AB 错误;v—t 图象中斜率表示加速度,可知物块沿传送带下滑时的加速度a=2.5m/s 2,C 错误;根据牛顿第二定律mg cos30o mg sin 30o ma,可得3,D 正确。
专题07 牛顿第一定律牛顿第三定律-江苏省2020年高考物理一轮考点扫描 解析版
专题07 牛顿第一定律牛顿第三定律一、【知识精讲】(一)牛顿第一定律惯性1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(2)意义:①揭示了物体的固有属性:一切物体都具有惯性;②揭示了力与运动的关系,力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
2.惯性与质量(1)定义:物体保持原来匀速直线运动状态或静止状态不变的性质.牛顿第一定律也叫惯性定律.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
(3)普遍性:一切物体都有惯性,与物体的受力情况和运动情况无关.(二)牛顿第三定律1.作用力与反作用力:两个物体间相互作用的一对力,其中的任一个叫作用力,另一个就叫这个力的反作用力.力的相互性力是物体对物体的作用,一个力一定同时存在着受力物体和施力物体.2.内容:两个物体之间的作用力(F)和反作用力(F′)总是大小相等、方向相反,且作用在同一条直线上.3.公式:F=-F′,其中F、F′分别表示作用力与反作用力,“负号”表示作用力与反作用力的方向相反.4.理解:作用力与反作用力分别作用在两个不同的物体上,它们总是性质相同(填“相同”或“不同”)的两个力,且同时存在,同时变化,同时消失.二、【考点归纳】考点一牛顿第一定律的理解1.对牛顿第一定律的理解(1)提出惯性的概念:牛顿第一定律指出一切物体都具有惯性,惯性是物体的一种固有属性。
(2)揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。
2.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
(2)物体受到外力时,惯性表现为抗拒运动状态改变的能力。
惯性大,物体的运动状态较难改变;惯性小,物体的运动状态容易改变。
3.牛顿第一定律是经过科学抽象、归纳推理总结出来的,而不是实验定律。
2020年高考物理备考中等:专题03牛顿运动规律:含解析
第一部分牛顿运动规律特点描述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查必修中的基本概念和基本规律,且更加突出考查学生运用"力和运动的观点"分析解决问题的能力。
牛顿运动定律及其应用是每年高考考查的重点和热点,应用牛顿运动定律解题的关键是对研究对象进行受力分析和运动分析,特别是牛顿运动定律与曲线运动,万有引力定律以及电磁学等相结合的题目,牛顿定律中一般考查牛顿第二定律较多,一般涉及一下几个方面:一是牛顿第二定律的瞬时性,根据力求加速度或者根据加速度求力,二是动力学的两类问题,三是连接体问题,四是牛顿第二定律在生活生产和科技中的应用。
牛顿运动定律第一部分知识背一背1.牛顿第一定律(1)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律.②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.(3)惯性①量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.②普遍性:惯性是物体的固有属性,一切物体都有惯性.2.牛顿第二定律(1)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(2)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.4.牛顿第三定律四同: (1)大小相同(2)方向在同一直线上(3)性质相同(4)出现、存在、消失的时间相同三不同:(1)方向不同(2)作用对象不同(3)作用效果不同5.超重与失重和完全失重超重、失重和完全失重的比较第二部分技能+方法一、如何理解牛顿第一定律牛顿第一定律不是实验定律,即不能由实验直接加以验证,它是在可靠的实验事实基础上采用科学的抽象思维而推理和总结出来的.二、牛顿第一定律、惯性、牛顿第二定律的比较1.力不是维持物体运动的原因,力是改变运动状态的原因,也就是力是产生加速度的原因.2.牛顿第一定律不是牛顿第二定律的特例,而是牛顿第二定律的基础,牛顿第一定律不是由实验直接总结出来的,是以伽利略的理想实验为基础,通过对大量实验现象的思维抽象、推理而总结出来的.牛顿第一定律定性地给出了物体在不受力的理想情况下的运动规律,在此基础上牛顿第二定律定量地指出了力和运动的关系:F=ma.【例1】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?【思维提升】分别考虑水和气泡的惯性是解决本题的关键,抓住惯性只与质量有关,质量越大,惯性越大,也就是运动状态更不易改变.【例2】在上题中:(1)若在瓶内放一小软木块,当小车突然停止时,软木块相对于瓶子怎样运动?(2)若在瓶内放一小铁块,又如何?【解析】(1)由于木块的密度小于水的密度,所以同体积的水质量大于木块的质量,水的惯性比木块大,木块将相对于瓶子向后运动.(2)由于同体积的铁块质量大于水的质量,铁块的惯性比水大,所以铁块相对于瓶子将向前运动.三、牛顿第二定律的理解1.物体所受合力的方向决定了其加速度的方向,合力与加速度的大小关系是F合=ma,只要有合力,不管速度是大还是小,或是零,都有加速度,只有合力为零时,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系.2.合力与速度同向时,物体加速,反之则减速.3.物体的运动情况取决于物体受的力和物体的初始条件(即初速度),尤其是初始条件是很多同学最容易忽视的,从而导致不能正确地分析物体的运动过程【例3】如图所示,弹簧S1的上端固定在天花板上,下端连一小球A,球A与球B之间用线相连.球B与球C之间用弹簧S2相连.A、B、C的质量分别为m A、m B、m C,弹簧与线的质量均不计.开始时它们都处于静止状态.现将A、B间的线突然剪断,求线刚剪断时A、B、C的加速度.四、作用力和反作用力与平衡力作用力和反作用力与平衡力的比较【例4】关于马拉车时马与车的相互作用,下列说法正确的是( ) A.马拉车而车未动,马向前拉车的力小于车向后拉马的力 B.马拉车只有匀速前进时,马向前拉车的力才等于车向后拉马的力 C.马拉车加速前进时,马向前拉车的力大于车向后拉马的力D.无论车是否运动、如何运动,马向前拉车的力都等于车向后拉马的力【错解】C ;马拉车加速前进,就像拔河一样,甲方胜一定是甲方对乙方的拉力大,所以甲对乙的拉力比乙对甲的拉力大,由此而得出结论:马向前拉车的力大于车向后拉马的力.【错因】产生上述错解原因是学生凭主观想象,而不是按物理规律分析问题.按照物理规律我们知道物体的运动状态不是由哪一个力决定的而是由合外力决定的,车随马加速前进是因为马对车的拉力大于地面对车的摩擦力.五、整体法和隔离法的应用1.解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际情况出发,灵活选取对象,恰当地选择使用隔离法和整体法.2.在使用隔离法解题时,所选取的隔离对象可以是连接体中的某一个物体,也可以是连接体中的某部分物体(包含两个或两个以上的单个物体),而这“某一部分”的选取,也应根据问题的实际情况,灵活处理.3.在选用整体法和隔离法时,可依据所求的力进行选择,若为外力则应用整体法;若所求力为内力则用隔离法.但在具体应用时,绝大多数的题目要求两种方法结合应用,且应用顺序也较为固定,即求外力时,先隔离后整体;求内力时,先整体后隔离.先整体或先隔离的目的都是为了求解共同的加速度.应用牛顿第二定律时,若研究对象为一物体系统,可将系统的所有外力及系统内每一物体的加速度均沿互相垂直的两个方向分解,则牛顿第二定律的系统表达式为: ΣF x =m 1a 1x +m 2a 2x +…+m n a nx ΣF y =m 1a 1y +m 2a 2y +…+m n a ny应用牛顿第二定律的系统表达式解题时,可不考虑系统内物体间的相互作用力(即内力),这样能达到简化求解的目的,但需把握三个关键点: (1)正确分析系统受到的外力;(2)正确分析系统内各物体加速度的大小和方向; (3)确定正方向,建立直角坐标系,并列方程进行求解.【例5】如图所示,质量不等的木块A 和B 的质量分别为m 1和m 2,置于光滑的水平面上.当水平力F 作用于左端A 上,两物体一起做匀加速运动时,A 、B 间作用力大小为F 1.当水平力F 作用于右端B 上,两物体一起做匀加速运动时,A 、B 间作用力大小为F 2,则( )A .在两次作用过程中,物体的加速度的大小相等B .在两次作用过程中,F F F <+21C .在两次作用过程中,F F F =+21D .在两次作用过程中,2121m m F F =【答案】AC六、牛顿运动定律应用规律(一)、动力学两类基本问题的求解思路两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:(二)、用牛顿定律处理临界问题的方法 1.临界问题的分析思路解决临界问题的关键是:认真分析题中的物理情景,将各个过程划分阶段,找出各阶段中物理量发生突变或转折的“临界点”,然后分析出这些“临界点”应符合的临界条件,并将其转化为物理条件. 2.临界、极值问题的求解方法(1)极限法:在题目中如出现“最大”、“最小”、“刚好”等词语时,一般隐含着临界问题,处理此类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.(2)假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答此类题目,一般采用假设法. 此外,我们还可以应用图象法等进行求解. (三)、复杂过程的处理方法——程序法按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法.用程序法解题的基本思路是:1.划分出题目中有多少个不同的过程或多少个不同的状态.2.对各个过程或各个状态进行具体分析,得出正确的结果.3.前一个过程的结束就是后一个过程的开始,两个过程的分界点是关键【例6】在光滑的水平面上,一个质量为200 g 的物体,在1 N 的水平力F 作用下由静止开始做匀加速直线运动,2 s 后将此力换为相反方向的1 N 的力,再过2 s 将力的方向再反过来……这样物体受到的力大小不变,而力的方向每过2 s 改变一次,求经过30 s 物体的位移.【解析】物体在1 N 的水平力F 作用下,产生的加速度的大小为22m /s 5 m /s Fa m== 物体在2 s 内做匀加速运动,2 s 内位移为2211152m 10 m 22s at ⨯⨯===方向与力的方向相同. t =2 s 末的速度为v 1=at =5×2 m/s=10 m/s从第3 s 初到第4 s 末,在这2 s 内,力F 的方向变成反向,物体将以v 1=10 m/s 的初速度做匀减速运动,4 s 末的速度为v 2=v 1-at =(10-5×2) m/s=0在此2 s 内物体的位移为122100· 2 m 10 m 22v v s t ++=⨯== 方向与位移s 1的方向相同. 从上述分段分析可知,在这4 s 内物体的位移为s 1+s 2=20 m ,物体4 s 末的速度为零.以后重复上述过程,每4 s 物体前进20 m.在30 s 内有7次相同的这种过程,经过4 s×7=28 s ,最后2 s 物体做初速度为零的匀加速运动,位移为10 m.所以经过30 s 物体的总位移为s =(20×7+10) m =150 m【思维提升】本题属已知物体的受力情况求其运动情况.我们也可以作出物体运动的v-t 图象,然后由图象形象地分析物体的运动情况并求出位移.【例7】如图所示,一个质量为m =0.2 kg 的小球用细绳吊在倾角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当斜面以10 m/s 2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.因为a =10 m/s 2>7.5 m/s 2,所以在题给条件下小球离开斜面向右做加速运动,T =22)()(mg ma +=2.83 N ,F N =0【思维提升】物理问题要分析透彻物体运动的情景.而具体情景中存在的各种临界条件往往会掩盖问题的实质,所以有些问题挖掘隐含条件就成为解题的关键.【例8】如图,有一水平传送带以2 m/s 的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10 m 的距离所需时间为多少?(取重力加速度g =10 m/s 2)【错解】由于物体轻放在传送带上,所以v 0=0,物体在竖直方向合外力为零,在水平方向受到滑动摩擦力(由传送带施加),做v 0=0的匀加速运动,位移为10 m. 据牛顿第二定律F =ma 有f =μmg =ma ,a =μg =5 m/s 2据21 2 s 2x at t =得 【错因】上述解法的错误出在对这一物理过程的认识,传送带上轻放的物体的运动有可能分为两个过程,一是在滑动摩擦力作用下做匀加速直线运动;二是达到与传送带相同速度后,无相对运动,也无摩擦力,物体开始做匀速直线运动,关键问题应分析出什么时候达到传送带的速度,才好对问题进行解答.则传送10 m 所需时间为t =0.4 s +4.8 s =5.2 s【思维提升】本题涉及了两个物理过程,这类问题应抓住物理情景,带出解决方法,对于不能直接确定的问题可以采用试算的方法,如本题中错解求出一直做匀加速直线运动经过10 m 用时2 s ,可以计算一下2 s 末的速度是多少,计算结果v =5×2 m/s=10 m/s ,已超过了传送带的速度,这是不可能的.当物体速度增加到2 m/s 时,摩擦力就不存在了,这样就可以确定第二个物理过程第三部分 基础练+测1.【广西桂林市第十八中学2016届高三上学期第三次月考理综试题】一个质量为2kg 的物体,在六个恒定的共点力作用下处于平衡状态.现同时撤去大小分别为15N 和20N 的两个力,关于此后该物体运动的说法中正确的是A .一定做匀变速直线运动,加速度大小可能是5m/s 2B .可能做匀减速直线运动,加速度大小是2m/s2C .一定做匀变速运动,加速度大小可能是15m/s 2D .可能做匀速圆周运动,向心加速度大小可能是5m/s 2【答案】C考点:本题考查共点力的平衡、牛顿第二定律。
2024年高考物理一轮复习(新教材新高考):牛顿运动定律(讲义)(解析版)
第12讲牛顿运动定律目录复习目标网络构建考点一牛顿第一定律【夯基·必备基础知识梳理】知识点1牛顿第一定律知识点2惯性与质量【提升·必考题型归纳】考向1伽利略理想斜面实验考向2对牛顿第一定律的理解考向3惯性与质量考点二牛顿第二定律【夯基·必备基础知识梳理】知识点1牛顿第二定律内容知识点2牛顿第二定律的瞬时加速度问题【提升·必考题型归纳】考向1对牛顿第二定律的理解考向2牛顿第二定律的瞬时加速度问题考点三牛顿第三定律【夯基·必备基础知识梳理】知识点1牛顿第三定律内容知识点2作用力和反作用力与一对平衡力的区别【提升·必考题型归纳】考向1牛顿第三定律应用考向2作用力和反作用力与一对平衡力的区别真题感悟1、掌握并会利用牛顿三大定律处理物理问题。
2、会利用牛顿第二定律解决瞬时加速度问题。
考点要求考题统计考情分析(1)牛顿第一定律惯性(2)牛顿第二定律(3)牛顿第三定律2023年6月浙江卷第2题2023年全国乙卷第1题2022年海南卷第1题高考对牛顿三定律基本规律的考查,多以选择题的形式出现,同时与实际生活的实例结论紧密,题目相对较为简单。
考点一牛顿第一定律知识点1牛顿第一定律1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
(1)揭示了物体的惯性:不受力的作用时,一切物体总保持匀速直线运动状态或静止状态。
2.牛顿第一、第二定律的关系(1)牛顿第一定律是以理解实验为基础,经过科学抽象、归纳推理总结出来的,牛顿第二定律是实验定律。
(2)牛顿第一定律不是牛顿第二定律的特例,它揭示了物体运动的原因和力的作用对运动的影响;牛顿第二定律则定量指出了力和运动的联系。
(2)揭示了力的作用对运动的影响:力是改变物体运动状态的原因。
知识点2惯性与质量对惯性的理解:(1)保持“原状”:物体在不受力或所受合外力为零时,惯性表现为使物体保持原来的运动状态(静止或匀速直线运动)。
2020高中物理牛顿定律知识点整理
高中物理牛顿定律知识点整理牛顿运动定律知识点归纳1、对牛顿第一定律的理解(1)揭示了物体不受外力作用时的运动规律(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例(5)当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律2、对牛顿第二定律的理解(1)揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性(2)牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态(3)加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3、对牛顿第三定律的理解(1)力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力(2)指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同用牛顿运动定律解决问题1、根据物体的受力情况确定物体的运动情况。
其解题基本思路是:利用牛顿第二定律F合=ma求出物体的加速度a;再利用运动学的有关公式求出速度vt和位移s等。
2、根据物体的运动情况确定物体的受力情况。
其解题基本思路是:分析清楚物体的运动情况,选用运动学公式求出物体的加速度,再利用牛顿第二定律求力。
3、应用牛顿运动定律结合运动学公式解决力和运动关系的一般步骤是:(1)确定研究对象;(2)分析研究对象的受力情况:必要时画受力示意图;(3)分析研究对象的运动情况,必要时画运动过程简图;4、利用牛顿第二定律或运动学公式求加速度;5、利用运动学公式或牛顿第二定律进一步求解要求的物理量;6、运用牛顿第三定律进一步说明所求的物理量与其他量的关系。
2020届高三物理一轮全程复习:第三单元牛顿运动定律
B 的作用力为
分析:整体: F –μmg = 3ma
a = ( F–μ mg ) / 3m
F
B
对 B: N – μmg = ma
N = F3/ +2μmg/3
例 5.(1990 上海 )如下图,三个物体质量分不 和 m3,带有滑轮的物体放在光滑水平面 所有接触面的摩擦及绳子的质量均不计,
m1
为 m1、 m2
系数μ =0.02,在木楔的倾角为 30o 的斜面上, 有一质量 m=1.0 千克的物块由静止
开始沿斜面下滑,如图,当滑行路程 s=1.4m 时,其速度 v=1.4m/s,在这过程中
木楔没有动,,求地面对木楔的摩擦力的大小和方向。 〔g=10m/s〕
分析:物块滑下 2as = v2 a∥=acosθ=0.61m/s2
例:在水平地面上有一质量为 5 千克的物体, 在与水平方向成 53°沿斜上方的 25
牛顿拉力时,恰好做匀速直线运动
( 1) 当拉力为 50 牛时,加速度多大? ( 2) 当拉力为 62.5 牛时,加速度多大?
53°
f F cos53 15 N
( mg F sin 53 ) 15N
0.5
F1 cos53 ( mg F1 sin 53 ) ma F2 cos53 ( mg F2 sin 53 ) ma
扶梯沿斜面向上作匀加速运动时,
人对梯面的压力是其重力的 6/5,那么
人与梯面的摩擦力是其重力的: 〔 3 /5〕 30o
4. 系统牛顿第二定律
对连接体,能够在几个物体加速度不同时,考虑合力与加速度的关系
∑F = m1a1+m2a2+ … 例 3〔1994 年全国〕质量 M=10 千克的木楔 ABC静置于粗糙水平面上,滑动摩擦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考物理一轮复习-考点汇总
牛顿运动定律
(含解析)
第一节牛顿第一、第三定律
【基本概念、规律】
一、牛顿第一定律
1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.
2.意义
(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.
(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.
二、惯性
1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.
3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.
3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.
三、牛顿第三定律
1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.
2.表达式:F=-F′.
1 / 18
特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.
(2)作用力和反作用力的关系与物体的运动状态无关.
【重要考点归纳】
考点一牛顿第一定律
1.明确了惯性的概念.
2.揭示了力的本质.
3.揭示了不受力作用时物体的运动状态.
4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.
(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.
考点二牛顿第三定律的理解与应用
1.作用力与反作用力的“三同、三异、三无关”
(1)“三同”:①大小相同;②性质相同;③变化情况相同.
(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.
(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.
2.相互作用力与平衡力的比较
2 / 18。