人教版七年级数学上册全册教案

合集下载

新人教版七年级数学上册精品全册教案

新人教版七年级数学上册精品全册教案

新人教版七年级数学上册精品全册教案篇一:最新人教版七年级数学上册全册最新人教版七年级数学上册教案全册课题: 1.1 正数和负数(1)授课时间:____________ 12 3 1.1 正数和负数(2)授课时间:____________4 5 篇二:2015新人教版七年级数学上册全册教案数学教案七年级上册 2016—2017学年度第一学期教师:买买提·玉努斯伊吾县淖毛湖镇中学七年级(1)班数学课程表第一章有理数教材分析 1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化. 3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分. 4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标 1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。

七年级数学上册教案(优秀7篇)

七年级数学上册教案(优秀7篇)

七年级数学上册教案(优秀7篇)篇一:人教版七年级上数学教案篇一我们七年级数学备课组认真做好各项工作,现根据学校和上级有关部门工作计划,特制定本学期的备课组工作计划如下:一。

指导思想:基于学习任务及小组合作学习的课堂,落实新课改,体现新理念,培养学生自主学习。

以“面向全体学生,共同提高教学质量”为指导思想,同时在教学中渗透情感教育。

树立本组团队合作意识。

加强教学常规建设和课题研究,积极开展校本研究,进一步提高我们组数学整体的教学水平。

二。

工作要点1.切实加强教学常规管理,积极开展小组合作学习的课堂,提高课堂教学效率。

2.认真开展集体备课和课题研究活动,加强备课组团队合作意识,充分发挥学科骨干教师的示范作用。

3.深化数学教学研究,提升数学教师科研素养,积极撰写教学论文。

4.立足课堂,在有效教学策略上深入实践与研究。

三。

具体措施1.加强理论学习,提升教师素质。

进一步认真学习《课程标准》,领会教材编写意图的特点,认真分析教学内容,目标,重难点,严格执行新课程标准的指导思想,提出具体可行的教学方法,继续开展教科研活动,积极参与校本课程的研发工作,提高教科研能力。

2.加大课堂教学改革力度,做到“有效教学”。

探索适合学生实践的教学方式,把“基于学习任务及小组合作学习的课堂,”的教学模式作为本学期课堂教学研究,实现课堂教学理念的更新,做到课堂教学的有效性。

3.加强备课组教研活动,强化教研功能。

由备课组长负责继续实行集体备课制,备出优质课,特色课,全力打造实用课,共同探索新的教学模式,同事注重发挥每位教师各自的教学特色。

4.加强质量监测,及时反馈,提高教学质量。

认真完成各单元的练习卷,检测卷,由专人负责,他人审核,严把质量关。

在平时教学中,及时反馈教学情况,认真分析原因,并及时调查和整改措施,努力提高教学质量。

篇二:人教版七年级数学上册教案篇二1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系。

人教版七年级数学上册教案(5篇)

人教版七年级数学上册教案(5篇)

人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。

下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。

最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。

【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点【教学重点】数轴的意义及作用。

【教学难点】数轴上的点与有理数的直观对应关系。

课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。

同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。

)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

七年级数学上册全册教案

七年级数学上册全册教案

七年级数学上册全册教案第一章:有理数第一节:有理数的概念1. 学习有理数的定义,理解有理数的分类(整数、分数)。

2. 掌握有理数的符号表示,例如正数用“+”表示,负数用“-”表示。

3. 学习有理数的加减法运算,理解加减法的规则。

第二节:有理数的乘除法1. 学习有理数的乘法运算,掌握乘法的规则。

2. 学习有理数的除法运算,理解除法的概念,掌握除法的规则。

3. 练习有理数的乘除法运算,巩固所学知识。

第三节:有理数的混合运算1. 学习有理数的混合运算,理解混合运算的顺序。

2. 掌握有理数混合运算的规则,例如先算乘除法,后算加减法。

3. 练习有理数的混合运算,提高运算能力。

第二章:整式的加减第一节:整式的概念1. 学习整式的定义,理解整式的分类(单项式、多项式)。

2. 掌握整式的符号表示,例如单项式用“ax”表示,多项式用“a+b”表示。

3. 学习整式的加减法运算,理解加减法的规则。

第二节:整式的加减法1. 学习整式的加法运算,掌握加法的规则。

2. 学习整式的减法运算,理解减法的概念,掌握减法的规则。

3. 练习整式的加减法运算,巩固所学知识。

第三节:整式的混合运算1. 学习整式的混合运算,理解混合运算的顺序。

2. 掌握整式混合运算的规则,例如先算乘除法,后算加减法。

3. 练习整式的混合运算,提高运算能力。

第三章:一元一次方程第一节:方程的概念1. 学习方程的定义,理解方程的意义。

2. 掌握方程的符号表示,例如“ax+b=0”。

3. 学习解方程的方法,例如移项、合并同类项等。

第二节:一元一次方程的解法1. 学习一元一次方程的定义,理解一元一次方程的特点。

2. 掌握一元一次方程的解法,例如代入法、消元法等。

3. 练习解一元一次方程,提高解题能力。

第三节:应用题1. 学习应用题的定义,理解应用题的特点。

2. 学会将实际问题转化为方程,提高解决问题的能力。

3. 练习解答应用题,巩固所学知识。

第四章:不等式与不等式组第一节:不等式的概念1. 学习不等式的定义,理解不等式的意义。

七年级数学上册教案【优秀10篇】

七年级数学上册教案【优秀10篇】

在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,这次漂亮的小编为您带来了七年级数学上册教案【优秀10篇】,如果能帮助到您,小编的一切努力都是值得的。

人教版七年级上册数学教案篇一教学目标1 知识与技能:使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点1 教学重点:掌握用整十数除的口算方法。

2 教学难点:理解用整十数除的口算算理。

教学工具多媒体设备教学过程1 复习引入口算。

20×3= 7×50= 6×3=20×5= 4×9= 8×60=24÷6= 8÷2= 12÷3=42÷6= 90÷3= 3000÷5=2 新知探究1、教学例1有80面彩旗,每班分20面,可以分给几个班?(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?师:怎样解决这个问题?(2)列式 80÷20(3)学生独立探索口算的方法师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:预设学生可能会有以下两种口算方法:A.因为20×4=80,所以80÷20=4 这是想乘算除B.因为8÷2=4,所以80÷20=4 这是根据计数单位的组成为什么可以不看这个“0”?( 80÷20可以想“8个十里面有几个二十?”)这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?把你喜欢的方法说给同桌听。

(5)检查正误师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)(6)用刚学会的方法再次口算,并与同桌交流你的想法40÷20 20÷10 60÷30 90÷30(7)探究估算的方法出示:83÷20≈ 80÷19≈师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

七年级数学上册教案(优秀3篇)

七年级数学上册教案(优秀3篇)

七年级数学上册教案(优秀3篇)2023最新人教版数学七年级上册教案篇一一、教学目标1、理解一个数平方根和算术平方根的意义;2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;3、通过本节的训练,提高学生的逻辑思维能力;4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法讲练结合。

四、教学手段多媒体五、教学过程(一)提问1、已知一正方形面积为50平方米,那么它的边长应为多少?2、已知一个数的平方等于1000,那么这个数是多少?3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。

下面作一个小练习:填空1、()2=9; 2.()2 =0.25;5、()2=0.0081.学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

由练习引出平方根的概念。

(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;±0.5是0.25的平方根;0的平方根是0;±0.09是0.0081的平方根。

由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=-4学生思考后,得到结论此题无答案。

反问学生为什么?因为正数、0、负数的平方为非负数。

由此我们可以得到结论,负数是没有平方根的。

下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质1、一个正数有两个平方根,它们互为相反数。

2.0有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方求一个数a的平方根的运算,叫做开平方的运算。

人教版七年级上数学教案(全册)

人教版七年级上数学教案(全册)

人教版七年级上数学教案(全册)第一课时三维目标一、科学知识与技能1.复习有理数的意义及其有关概念。

其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。

通过备考并使学生系统掌控有理数这一章的有关基本概念;2.并使学生提升分辨概念能力;二、过程与方法利用数轴来认识、理解有理数的有关概念.三、情感态度与价值观1、引导学生自己总结本单元的自学内容。

并与同伴交流在本单元自学中的斩获和严重不足,培育他们的思考意识。

教学重难点理解掌握有理数的有关概念四、复习提问:1、什么叫做数轴?图画出来一个数轴去。

2、什么是有理数?有理数集包括哪些数?有理数和数轴上的点有什么关系?请问:整数和分数泛称为有理数。

有理数的分类:整数、分数泛称有理数;整数又包含正整数、零、正数整数,分数又包含正分数与负分数。

每一个有理数都可以用数轴上唯一确定的点来表示。

但反过来以后可以看到,数轴上任一点并不一定表示有理数。

表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。

3、观测数轴分别讲出a,b,c,d,e,f各点则表示的数是什么?4、点a与f,点b与e所表示的数分别存在什么关系?(互为相反数)互为相反数的几何意义?(互为相反数就是在原点两侧且至原点等距的两点所则表示的数。

)相反数的性质?(只有符号相同的两个数就是互为相反数,a的相反数为-a;)各点所表示的数的绝对值是多少?绝对值的几何意义?(在数轴上,表示数a的点到原点的距离叫做数a的绝对值)绝对值的代数意义?(a=a(a>0),a=0(a=0),a=-a(a<0)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

5、讲出各数的倒数?(一个数除以1税金的商是这个数的倒数,零没倒数)6、比较各点则表示的数的大小?方法一:零大于一切正数,而小于一切负数;两个负数,绝对值小的反而大。

方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇七年级数学上册教案篇一教学目标:1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形2、在操作活动中认识棱柱的某些特性;3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;教学重点:通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法教学难点:根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

教学过程:一、导入情境让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做活动一:1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的`形式动手做做看。

2、操作完后,请学生展示他们制作的模型。

3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

4、教师介绍棱柱的各部分名称。

数学七年级上册教学设计篇二教学目标1 知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

2 过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

3 情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

教学重难点1 教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。

2 教学难点:理解平行与垂直概念的本质特征。

教学工具多媒体设备教学过程1 情境导入,画图感知1、学生想象在无限大的平面上两条直线的位置关系。

教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。

(2)像这样很平的面,我们就称它为平面。

(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。

七年级数学教案人教版

七年级数学教案人教版

七年级数学教案人教版人教版七年级数学教案全册(一)二章、一元一次方程: 2.1从算式到方程教学目标:1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。

教学重点:1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。

人教版七年级数学教案全册(二)教学过程:一、游戏激趣同学们,大家小时候一定都说过儿歌吧那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;……。

现在,我们就来“比一比,说儿歌”(屏幕出示)。

要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。

规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来其他同学可听仔细了。

(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)(根据学生回答,说出“某只青蛙某张嘴,2某只眼睛4某条腿,某声扑通跳下水”)(屏幕出示)这样,我们用字母某代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。

二、创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢好东西要与好朋友分享,对吧如果你和你的好朋友一人一半,你分得多少呢我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。

此时你又分得多少颗(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】【导语】本文为作者为您整理的人教版初一上册数学教案精选【三篇】,期望对大家有帮助。

课题:1.1正数和负数教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌控正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的爱好。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学进程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,扼要说明在前两个学段我们已经学过的数,并由此请学生摸索:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中显现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:摸索,交换师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(视察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并摸索讨论,然落后行交换。

(也能够出示气象预报中的气温图,地图中表示地势高低地势图,工资卡中存取钱的记录页面等)学生交换后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回想小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的愿望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案(七上册)第1章有理数第2章整式的加减第3章一元一次方程第4章图形认识初步第一章有理数1.1正数和负数教学目标: 1、了解正数与负数是从实际需要中产生的。

2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3、会用正、负数表示实际问题中具有相反意义的量。

重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。

2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。

结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。

为了用数表示具有相反意义的量,我们把其中一种意义的量。

如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。

正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。

根据需要,有时在正数前面也加上“+”(读作正)号。

注意:①数0既不是正数,也不是负数。

0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。

②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。

三、巩固知识1、课本P3 练习1,2,3,42、课本P4例四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。

1.2.1有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。

2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。

重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后 ,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。

)问题2:观察黑板上的这么数,并给它们分类。

先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:正整数、0、负整数、正分数、负分数。

二、讲授新课 1、有理数的定义引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。

整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。

2、有理数的分类让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。

(1)按定义分类:(2)按性质分类:1.2.2数轴教学目标:1、掌握数轴的概念,理解数轴上的点和有理数的对应关系; 2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数; 3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

重点:正确理解数轴的概念和用数轴上的点表示有理数 重点:数轴的概念和用数轴上的点表示有理数 教学过程:二、讲授新课数轴的三要素:原点、正方向、单位长度2、画一条数轴。

3、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?4、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?5、每个数到原点的距离是多少?由此你会发现了什么规律? (小组讨论,交流归纳)归纳出一般结论,即课本P9的归纳。

三、巩固知识课本P10 练习1、2题 四、总结请学生作出总结:什么是数轴?数轴的三要素是什么?如何画数轴?如何在数轴上表示有理有理数整数 分数 正整数 0 负整数正分数负分数有理数 正有理数负有理数 正整数 正分数 负整数 负分数 0数?五、布置作业课本P14习题1.2第2题。

1.2.3相反数教学目标: 1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、体验数形结合的思想。

重点:求已知数的相反数重点:根据相反数的意义化简符号教学过程:二、讲授新课1、相反数的定义问题:像2和-2,5和-5这样的两个数叫做互为相反数,试问要具备什么特点的两个数才是互为相反数?(学生思考后举手回答)归纳出:只有符号不同的两个数叫做互为相反数。

特别地,0的相反数仍是0。

2、理解概念判断:①-2的相反数是12()②-5是相反数()③相反数等于它本身的数只有0()④符号不同的两个数互为相反数()3、多重符号的化简思考:数轴上表示相反数的两个点和原点有什么关系?a的相反数是-a,a表示任意数——正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号。

问题1:若把a分别换成+5,-7时,这些数的相反数怎样表示?师生共同得出:-(+5)=-5, -(-7)=7问题2:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?如,+(-3),+(+6.2)学生回答:在一个数的前面加上“+”号仍表示这个数,因为“+”号可以省略。

三、巩固知识课本P11 练习1、2、3题四、总结1、相反数的定义2、互为相反数的数在数轴上表示的点的特征3、怎样求一个数的相反数?怎样表示一个数的相反数?五、布置作业课本P15习题1.2第3题。

1.2.4绝对值教学目标: 1、理解绝对值的概念及其几何意义,通过从数形两个方面理解绝对值的意义,初步了解数形结合的思想方法。

2、会求一个数的绝对值,知道一个数的绝对值,会求这个数。

3、掌握绝对值的有关性质。

4、通过应用绝对值解决实际问题,培养学生深厚的学习兴趣,提高学生学数学的好奇心和求知欲。

重点:绝对值的概念重点:绝对值的几何意义教学过程:二、讲授新课问题1:请说出在数轴上,+3和-3分别在原点的哪边?距离原点有几个单位长度?那对于-5,+7,0呢?请两位同学起来回答。

教师归纳:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值,记作|a|,读作a的绝对值。

学生独立完成后,再对所得的规律进行小组讨论。

教师归纳:由绝对值的定义可知:①一个正数的绝对值是它本身②一个负数的绝对值是它的相反数③0的绝对值是0问题2:把绝对值的代数定义用数学符号如何表示?当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。

三、巩固知识课本P12 练习第1、2题。

四、总结本节课主要学习绝对值的概念、表示方法及其几何意义,并会求一个数的绝对值。

主要用到的思想是数形结合。

五、布置作业课本P15习题1.2第4题。

有理数的大小比较教学目标: 1、能说出有理数大小的比较法则;2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小。

能利用数轴对多个有理数进行有序排列;3、能正确应用符号“>”、“<”、“∵”、“∴”,写出表示推理过程中简单的因果关系。

重点:运用法则借助数轴比较两个有理数的大小重点:利用绝对值概念比较两个负分数的大小教学过程:一、创设情境,引入新课比较:2 3 3423120 -230注:在此练习中,对前三对数的比较学生基本都能解决,但对第四对数的比较会产生问题,由此引出新课。

二、讲授新课规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

根据以上规定,重点探讨怎样比较两个负数的大小。

通过观察,分别让学生说出以上几类数之间的大小关系,最后教师归纳并板书:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

问题5:课本P13 “思考”,请学生回答。

三、巩固知识课本P13 例题、课本P14 练习四、总结这节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较;另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用“<”(或“>”)连接,这种方法在比较多个有理数大小时非常简便.五、布置作业课本P15习题1.2第5、6题。

1.3.1有理数的加法(一)教学目标: 1、使学生在现实情境中理解有理数加法的意义2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则重点:异号两数相加的法则教学过程:二、讲授新课1、同号两数相加的法则问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。

向右运动5m记作5m,向左运动5m记作-5m。

如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?学生回答:两次运动后物体从起点向右运动了8m。

写成算式就是5+3=8(m)教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?学生回答:两次运动后物体从起点向左运动了8m。

写成算式就是(-5)+(-3)=-8(m)师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?学生回答:两次运动后物体从起点向右运动了2m。

写成算式就是5+(-3)=2(m)师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?学生回答:经过两次运动后,物体又回到了原点。

也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零教师:你能用加法法则来解释这个法则吗?学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识课本P18 例1,例2、课本P118 练习1、2题四、总结运算的关键:先分类,再按法则运算;运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业课本P24习题1.3第1、7题。

1.3.1有理数的加法(二)教学目标:1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

2、培养学生观察、比较、归纳及运算能力。

重点:有理数加法运算律及其运用。

重点:灵活运用运算律教学过程:二、讲授新课教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?(学生回答省略)师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。

即:a+b=b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

相关文档
最新文档