实数计算题
实数练习题(打印版)
实数练习题(打印版)一、选择题1. 以下哪个数是实数?- A. i- B. π- C. √2- D. -1/32. 如果一个数的平方是16,那么这个数是:- A. 4- B. -4- C. 4或-4- D. 以上都不是3. 以下哪个数是无理数?- A. 1/3- B. √3- C. 0.33333(无限循环)- D. 2二、填空题1. 圆周率π是 _ (实数/无理数)。
2. 一个数的立方是-8,这个数是 _ 。
3. 如果一个数的绝对值是5,那么这个数可以是 _ 或 _ 。
三、计算题1. 计算下列表达式的值:- (a) √(-4)- (b) √(25)- (c) √(0.16)2. 计算以下数的和:- √2 + π + √3四、解答题1. 证明:对于任意实数a和b,a^2 + b^2 ≥ 2ab。
2. 假设一个数x满足以下条件:x^2 - 4x + 4 = 0,求x的值。
五、应用题1. 一个圆的半径是3cm,求这个圆的周长和面积。
2. 一个直角三角形的两条直角边分别是3cm和4cm,求这个三角形的斜边长度。
答案一、选择题1. D2. C3. B二、填空题1. 无理数2. -23. 5, -5四、解答题1. 证明:由于(a - b)^2 ≥ 0,我们有 a^2 - 2ab + b^2 ≥ 0。
因此,a^2 + b^2 ≥ 2ab。
2. 解:将方程重写为 (x - 2)^2 = 0,我们得到 x = 2。
五、应用题1. 周长= 2πr = 2π × 3 =6π cm,面积= πr^2 = π × 3^2 = 9π cm^2。
2. 斜边长度= √(3^2 + 4^2) = √(9 + 16) = √25 = 5 cm。
实数计算题专题训练(含答案)
一、实数的运算
一.计算题
1.|﹣2|﹣(1+ )0+ .2.﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
3. .4、82016(-0.125 Nhomakorabea2015
7、对于生活中的一些废弃物,我们可以从垃圾中回收它们并重新加工利用。这样做不但能够减少垃圾的数量,而且能够节省大量的自然资源。
6、重新使用是指多次或用另一种方法来使用已用过的物品,它也是减少垃圾的重要方法。5. 6、
一、填空:
答:①尽可能地不使用一次性用品;②延长物品的使用寿命;③包装盒纸在垃圾中比例很大,购物时减少对它们的使用。
二、整式的乘除巩固
1、说说你身边物质变化的例子。1、先化简,再求值: ,其中 , 。
2、先化简,再求值: ,其中 , 。
3、
20、在水中生活着许我微生物,常见的有草履虫、变形虫、喇叭虫、眼虫、团藻等。
18、大多数生物都是由多细胞组成的,但也有一些生物,它们只有一个细胞,称为单细胞生物。如草履虫、变形虫、细菌等。
7、 8、求x的值:(x+10)2=16
答:①利用微生物的作用,我们可以生产酒、醋、酸奶、馒头和面包等食品。②土壤中的微生物可以分解动植物的尸体,使它们变成植物需要的营养素。③在工业生产和医药卫生中也都离不开微生物。
5、月球在圆缺变化过程中出现的各种形状叫作月相。月相变化是由于月球公转而发生的。它其实是人们从地球上看到的月球被太阳照亮的部分。4、
5、月球在圆缺变化过程中出现的各种形状叫作月相。月相变化是由于月球公转而发生的。它其实是人们从地球上看到的月球被太阳照亮的部分。三.解方程组
1、
七年级实数计算题
七年级实数计算题一、平方根的计算。
1. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。
2. 计算√(25)+√(9)- 解析:√(25) = 5,因为5^2=25;√(9)=3,因为3^2 = 9。
所以√(25)+√(9)=5 + 3=8。
3. 计算√(121)-√(49)- 解析:√(121) = 11,因为11^2=121;√(49)=7,因为7^2 = 49。
所以√(121)-√(49)=11-7 = 4。
4. 计算√(0.09)- 解析:因为0.3^2=0.09,所以√(0.09)=0.3。
5. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16)。
因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
二、立方根的计算。
6. 计算sqrt[3]{8}- 解析:因为2^3 = 8,所以sqrt[3]{8}=2。
7. 计算sqrt[3]{ - 27}- 解析:因为( - 3)^3=-27,所以sqrt[3]{-27}=-3。
8. 计算sqrt[3]{64}+sqrt[3]{ - 1}- 解析:sqrt[3]{64}=4,因为4^3 = 64;sqrt[3]{-1}=-1,因为( - 1)^3=-1。
所以sqrt[3]{64}+sqrt[3]{-1}=4+( - 1)=3。
9. 计算sqrt[3]{0.001}- 解析:因为0.1^3 = 0.001,所以sqrt[3]{0.001}=0.1。
10. 计算sqrt[3]{1-(19)/(27)}- 解析:先计算1-(19)/(27)=(8)/(27)。
因为((2)/(3))^3=(8)/(27),所以sqrt[3]{1-(19)/(27)}=(2)/(3)。
三、实数的混合运算。
11. 计算√(4)+sqrt[3]{ - 8}- - 3- 解析:√(4)=2,sqrt[3]{-8}=-2,| - 3|=3。
[数学]-专题 实数的运算计算题(共45小题)(带答案)
七年级下册数学《第六章 实 数》 专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算: (1)(√5)2+√(−3)2+√−83;(2)(﹣2)3×18−√273×(−√19).【分析】(1)原式利用平方根及立方根定义计算即可求出值; (2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值. 【解答】解:(1)原式=5+3+(﹣2) =8﹣2 =6;(2)原式=(﹣8)×18−3×(−13) =(﹣1)﹣(﹣1) =﹣1+1 =0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减. 【解答】解:原式=0.2﹣2−√1625 =0.2﹣2−45 =0.2﹣2﹣0.8 =﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键. 3.(2022春•上思县校级月考)计算: (1)−12+√16+|√2−1|+√−83; (2)2√3+|√3−2|−√643+√9. 【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案. 【解答】解:(1)−12+√16+|√2−1|+√−83; =﹣1+4+√2−1﹣2 =√2;(2)原式=2√3+2−√3−4+3 =√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算: (1)√16+√(−3)2+√273; (2)√−33+|1−√33|﹣(−√3)2.【分析】(1)先计算平方根和立方根,再计算加减; (2)先计算平方根、立方根和绝对值,再计算加减; 【解答】解:(1)√16+√(−3)2+√273=4+3+3 =10;(2)√−33+|1−√33|﹣(−√3)2=−√33+√33−1﹣3 =﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算: (1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√−83+√4−(−1)2023=﹣2+2﹣(﹣1) =0+1 =1;(2)(−√9)2−√643+|−5|−(−2)2 =9﹣4+5﹣4 =6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125 =﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案. 【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:√−273+12√16+|−√2|+1=﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3 =﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键. 15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681; (2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算: (1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273;(3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答; (3)先化简各式,然后再进行计算即可解答. 【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2)(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3=3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−183−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减. 【解答】解:原式=3×(−12)−14+1 =−32−14+1 =−12−14 =−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34=1712; (2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3| =﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273 =﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81. 【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣2√7+4﹣2+2−√3=9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2| 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2|=3+1+(﹣2)+√2−1=3+1﹣2+√2−1=1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8 273+√(−4)2×(−12)3−|1−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√−8 273+√(−4)2×(−12)3−|1−√3|=−23+4×(−18)﹣(√3−1)=−23+(−12)−√3+1=−76−√3+1=−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3)=6﹣2√3+6﹣2+√3=10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1)=﹣1﹣3+2−√3+1=﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|. 【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−√3=﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178; (2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15)=14+75=7514 【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23=2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13; (2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2. 【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
实数的计算题
30 道实数计算题一、实数加法1. 3 + 5-解析:3 + 5 = 8。
2.-2 + 7-解析:-2 + 7 = 5。
3. 4.5 + 2.3-解析:4.5 + 2.3 = 6.8。
3.-3.2 + 1.8-解析:-3.2 + 1.8 = -1.4。
5. 2 + (-3) + 5-解析:2 + (-3) = -1,-1 + 5 = 4。
二、实数减法1. 8 - 3-解析:8 - 3 = 5。
2. 4 - (-2)-解析:4 - (-2) = 4 + 2 = 6。
3. 6.5 - 3.2-解析:6.5 - 3.2 = 3.3。
4. -4.8 - 1.2-解析:-4.8 - 1.2 = -6。
5. 3 - 5 - (-2)-解析:3 - 5 = -2,-2 - (-2) = 0。
三、实数乘法1.3×4-解析:3×4 = 12。
2.-2×5-解析:-2×5 = -10。
3. 2.5×3-解析:2.5×3 = 7.5。
3.-3.6×2-解析:-3.6×2 = -7.2。
4.2×(-3)×4-解析:2×(-3) = -6,-6×4 = -24。
四、实数除法1. 12÷3-解析:12÷3 = 4。
2.-10÷2-解析:-10÷2 = -5。
3. 7.5÷2.5-解析:7.5÷2.5 = 3。
3.-8.4÷2-解析:-8.4÷2 = -4.2。
5. 15÷(-3)÷(-5)-解析:15÷(-3) = -5,-5÷(-5) = 1。
五、实数混合运算1.2×(3 + 4)-解析:先算括号里的3 + 4 = 7,再算2×7 = 14。
2. 5 - 2×3-解析:先算乘法2×3 = 6,再算减法5 - 6 = -1。
专题02 实数的运算(三大题型,50题)(解析版)
专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。
实数计算题专题训练(含答案)
实数计算题专题训练(含答案) 专题一计算题训练一、计算题1.计算题:| -2 | - (1 + 2) ÷ 2,求解。
2.计算题:- + 4 × (-3)² + (-6) ÷ (-2),求解。
3.计算题:√2 - √3 + √6 ÷ √2,求解。
4.计算题:||-14|-|-11||+2,求解。
5.计算题:-4 + 8 ÷ (-8) - (-1),求解。
6.计算题:∛(π - 2) + 1 ÷ 2,求解。
7.计算题:√(2 + √3) + √(3 - √2),求解。
8.计算题:√(3+ √5) + √(5 + √3),求解,精确到0.01.二、解答题(共13小题)1.计算题:| -2 | - (1 + 2) ÷ 2,求解。
解答:原式=|-2| - (1 + 2) ÷ 2。
2 - 1.5。
0.5.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2),求解。
解答:原式=- + 4 × 9 + (-6) ÷ (-2)。
+ 36 + 3。
.3.计算题:√2 - √3 + √6 ÷ √2,求解。
解答:原式=√2 - √3 + √6 ÷ √2。
2 - √3 + √3。
2.4.计算题:||-14|-|-11||+2,求解。
解答:原式=||-14| - |-11|| + 2。
14 - 11| + 2。
5.5.计算题:-4 + 8 ÷ (-8) - (-1),求解。
解答:原式=-4 + 8 ÷ (-8) - (-1)。
4 - 1 + 1。
4.6.计算题:∛(π - 2) + 1 ÷ 2,求解。
解答:原式=∛(π - 2) + 1 ÷ 2。
π - 2) + 0.5.7.计算题:√(2 + √3) + √(3 - √2),求解。
实数计算100道
(1)x^2-9x+8=0 答案:x1=8 x2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(23)x^2+5x-176=0 答案:x1=-16 x2=11(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(42)x^2+10x+24=0 答案:x1=-6 x2=-4(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(46)x^2+7x+6=0 答案:x1=-6 x2=-1(47)x^2+16x+28=0 答案:x1=-14 x2=-2(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(67)x^2+24x+119=0 答案:x1=-7 x2=-17(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(71)x^2-24x+140=0 答案:x1=14 x2=10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(75)x^2-2x-99=0 答案:x1=11 x2=-9(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(95)x^2+6x-91=0 答案:x1=7 x2=-13(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6。
实数计算题专题训练(含答案)
原式=14﹣11+2=5;
(2)原式= =﹣1.
点评:
此题主要考查了实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟练掌握二次根式、绝对值等考点の运算.
5.计算题: .
考点:
有理数の混合运算。801377
分析:
首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.
解答:
解:(1)(
=
= ;
(2)
=1﹣0.5+2
=2.5.
点评:
保证一个数の绝对值是非负数,任何不等于0の数の0次幂是1,注意区分是求二次方根还是三次方根.
8. (精确到0.01).
考点:
实数の运算。801377
专题:
计算题。
分析:
(1)先去括号,再合并同类二次根式;
(2)先去绝对值号,再合并同类二次根式.
解答:
解:①原式=3﹣3﹣(﹣4)=4;
②9x2=121,
两边同时除以9得,
x2= ,
开方得,x=± ,
x1= ,x2=﹣ .
③∵ ,
∴x+2=0,y﹣3=0,
∴x=﹣2,y=3;
则xy=(﹣2)3=﹣8;
④∵ < ,
∴﹣ >﹣ ,
∴﹣2>﹣ .
点评:
本题考查了非负数の性质:绝对值和算术平方根,实数比较大小,平方根等概念,难度不大.
解答:
解:原式=﹣4+8÷(﹣8)﹣( ﹣1)
=﹣4﹣1﹣(﹣ )
=﹣5+
=﹣ .
点评:
本题主要考查有理数の混合运算,乘方运算,关键在于正确の去括号,认真の进行计算即可.
实数的试题及答案
实数的试题及答案1. 判断题:实数包括有理数和无理数。
答案:正确。
2. 选择题:下列哪个数是有理数?A. πB. √2C. 0.5D. 0.33333(循环)答案:C。
3. 填空题:若a是实数,且a² = 4,则a的值可以是______。
答案:±2。
4. 计算题:计算下列表达式的值:(1) √9(2) √(-4)²答案:(1) 3(2) 45. 应用题:一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
答案:斜边长度为5。
6. 简答题:请解释什么是无理数,并给出一个例子。
答案:无理数是不能表示为两个整数比的实数,即无法写成分数形式的数。
例如,π就是一个无理数。
7. 证明题:证明√2是一个无理数。
答案:假设√2是有理数,那么存在整数p和q(q≠0),使得√2 = p/q。
通过平方两边,得到2 = p²/q²,即2q² = p²。
这意味着p²是偶数,因此p也是偶数。
设p = 2k,则2q² = (2k)² = 4k²,所以q² = 2k²,这意味着q也是偶数。
但这与p和q互质的假设矛盾,因此√2必须是无理数。
8. 多选题:下列哪些数是实数?A. 1/3B. √3C. 0.1010010001...(每两个1之间0的个数依次递增)D. -2答案:A、B、C、D。
9. 综合题:已知一个数x满足方程x² - 5x + 6 = 0,求x的值。
答案:x = 2 或 x = 3。
10. 探索题:如果一个数的平方是正数,那么这个数是实数吗?答案:是的,因为任何实数的平方都是非负数,而正数是实数的一个子集。
实数运算单元测试题及答案
实数运算单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是实数?A. πB. iC. -1/3D. √22. 实数a和b满足a < b,那么下列哪个不等式是正确的?A. a + 1 > bB. a + 1 < bC. a + 1 ≥ bD. a + 1 ≤ b3. 如果x^2 = 4,那么x的值是:A. 2B. -2C. 2 或 -2D. 没有实数解4. 计算下列表达式的值:(-3) × (-2) =A. 6B. 9C. -6D. -95. 绝对值|-5|等于:A. 5B. -5C. 0D. 106. 下列哪个数是有理数?A. πB. √3C. 0.33333...D. √2π7. 计算下列表达式的结果:√(9^2) =A. 3B. 9C. 81D. 368. 如果x - 2 = 5,那么x的值是:A. 3B. 7C. -3D. 29. 计算下列表达式的值:(-2)^3 =A. -8B. 8C. -2D. 210. 下列哪个数是无理数?A. 1/3B. 1/7C. √2D. 0.5二、填空题(每题2分,共20分)11. 计算√16 的结果是______。
12. 如果一个数的平方是25,那么这个数是______。
13. 绝对值 |-7| 等于______。
14. 将 -3.5 转换为分数是______。
15. 计算 (-1)^4 的结果是______。
16. 如果x^2 + 6x + 9 = 0,那么x的值是______。
17. 计算√(-1)^2 的结果是______。
18. 一个数的立方是-8,这个数是______。
19. 计算1/√2 的结果是______。
20. 如果一个数的倒数是-2,那么这个数是______。
三、解答题(每题10分,共60分)21. 解方程:2x + 5 = 11。
22. 计算下列表达式的值:(3 + √5) × (3 - √5)。
实数计算题专题练习及答案
实数计算题练习1.计算:(1)||+|﹣1|﹣|3|(2)﹣++.2.计算:﹣|2﹣|﹣.3.(1)计算:++4.计算:﹣32+|﹣3|+.5.计算+|3﹣|+﹣.6.计算:+|﹣2|++(﹣1)2015.7.计算:(﹣1)2015++|1﹣|﹣.8.解方程(1)5x3=﹣40(2)4(x﹣1)2=9.9.求下列各式中x的值:①4x2=25②27(x﹣1)3﹣8=0.12.计算(1)+()2+(2)+﹣|1﹣| 13.计算题:.14.计算(1)+﹣;(2)+|﹣1|﹣(+1).15..16.计算:(1)(﹣)2﹣﹣+﹣|﹣6|(2)|1﹣|+|﹣|+|﹣2|.(3)4(x+3)2﹣16=0(4)27(x﹣3)3=﹣8.计算下列各题:1、2、 3、|﹣2|+|﹣1|.4、5、 6、7、|-3|+-+; 8、9、;10、; 11、+|﹣2|+(﹣6)×(﹣). 12、13、计算:﹣32+﹣|2﹣|+. 14、计算:()2﹣﹣15、计算:+|﹣2|++(﹣1)2015 16、计算:()2+﹣+|2﹣|.17、计算:; 18、计算:++﹣()2+19、计算: 20、计算:;21、22、 23、.解下列方程:24、(2x+1)2=. 25、(x+1)2=16. 26、4x2﹣49=0;27、64(x+1)2﹣25=0. 28、36(﹣x+1)2=25 29、3(x+2)2+6=33.30、31、2(x+1)3+16=0; 32、27 (x+1)3=-6433、如图,实数、在数轴上的位置,化简.34、已知2a-3的平方根是5,2a+b+4的立方根是3,求a+b的平方根。
35、一个数的平方根为2n+1和n﹣4,而4n是3m+16的立方根,求m值.36、一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.37、若|x﹣3|+(y+6)2+=0,求代数式的值.38、已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b+c的算术平方根.参考答案1、2、0.453、原式==2﹣1=14、=-125、6、-6;7、158、-39、.10、1/411、解:原式=2+2+4=8.12、13、【解答】解:原式=﹣9+5﹣(﹣2)+2=﹣4﹣+2+2=﹣.14、原式=4﹣2﹣5=﹣3;15、原式=2+2﹣3﹣1=0;16、【解答】解:原式=4﹣4﹣+﹣2=﹣2.17、解:原式= 3-3+10-6=418、++﹣()2+=2+2+1.5﹣0.5﹣5=0;19、原式=+2+4﹣4=;20、.21、原式=3-1+1=3.22、略23、.24、(2x+1)2=(2x+1)2=4, 2x+1=2或﹣2,解得:x=或x=﹣.25、【解答】解:开方,得x+1=±4,则x=3或x=﹣5.26、方程整理得:x2=,开方得:x=±;27、方程整理得:(x+1)2=,开方得:x+1=±,解得:x1=﹣,x1=﹣.28、∵36(﹣x+1)2=25,∴(﹣x+1)2=,∴﹣x+1=±,∴x1=,x2=.29、1,5.解得x=1或x=-5.30、x=-231、解:∴32、33、解:由图可知: ,,∴.∴原式===.34、±335、【解答】解:∵一个数的平方根为2n+1和n﹣4,∴2n+1+n﹣4=0,∴n=1,∵4n是3m+16的立方根,∴(4n)3=3m+16,即64=3m+16,解得:m=16.36、1.5㎝)解析:设书的高度为㎝,由题意可得37、【解答】解:由题意得,x﹣3=0,y+6=0,z+2=0,解得x=3,y=﹣6,z=﹣2,所以,==﹣.38、【解答】解:∵2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,∴2a﹣1=9,3a+b﹣1=16.解得:a=5,b=2.∵49<57<64,∴7<<8.∴c=7.∴a+2b+c=5+2×2+7=16.∵16的算术平方根是4.∴a+2b+c的算术平方根是4.。
实数的运算100题
27. 2 cos 30 1 27 3 2 3
28. (1) 1 cos 30 2 cos 45 sin 60 cos 60
2
2
(2). 2 sin 30 tan 60 cos 45 tan 30
29. (π 3.14)0 (1)2015 1 3 3 tan 30
30. sin 60 cos 30 2 sin 45 tan 45 31. 5 3sin 30 ( 6)2 (tan 45)1
63. (π 3.14)0 1 2023 1 3 3 tan 30 64. 18 (2023 π)0 2 cos 45 1 1
4 65. ( 3 2)0 1 1 4 cos 30 12
3
66. 2 sin 60 1 2 2 π0 3 8 1 2022 3
37. 1 1 2 cos2 45 sin 30 tan 60
38. 1 1 cos2 60 ( 3 π)0 sin 60 tan 30 2
39. 2 sin 45 tan 60 cos 30
40. 1 1 2 sin 60 3 20150
2
41. 8 tan 30 cos 60 2sin 45
42. 1 2023 sin 30 π 3.140 1 1
2
43. 2 tan 45 sin 60 cos 30
44. 2sin 45 3 tan 30 cos 60 3 45. 2sin 60 3 tan 30 2 tan 60 cos 45 2
46. cos 30 sin 60 2sin 45 tan 45 47. 3 tan 60 sin 2 45 3 tan 45 cos 60
2
6. 3 tan 30 (2 3)0 ( 1 )1 12 2
实数的运算精选题
实数的运算精选题一.选择题(共17小题)1.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣72.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+3.下列说法正确的是()A.两个无理数的和一定是无理数B.两个无理数的积一定是无理数C.有理数与无理数的和一定是无理数D.有理数与无理数的积一定是无理数4.计算|﹣|+()﹣1的结果是()A.0B.C.D.65.对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=()A.355B.533C.533﹣355D.533+3556.实数a、b在数轴上的位置如图所示,那么化简+|b|的结果是()A.a﹣2b B.﹣a C.a D.﹣2a+b7.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③一个数的算术平方根仍是它本身,这样的数有三个;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,.正确的个数有()A.2个B.3个C.4个D.5个8.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)﹣a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a,a一定是一个无理数.A.1个B.2个C.3个D.4个9.下列等式成立的是()A.=±9B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2D.(tan45°﹣1)0=110.按如图所示的运算程序,能使输出的结果为3的是()A.a=0,b=3B.a=1,b=2C.a=4,b=1D.a=9,b=0 11.对任意两个实数a,b定义两种运算:a⊕b=,a⊗b=,并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=2.那么(⊕2)⊗等于()A.3B.3C.D.612.下列各式中,正确的是()A.﹣B.﹣C.3﹣2=1D.=±4 13.下列各式中正确的是()A.B.C.D.14.下列计算正确的是()A.B.C.D.15.下列实数运算中正确的是()A.=﹣7B.=4C.(﹣)2=4D.=±3 16.下列各式计算正确的是()A.B.C.D.2+17.对实数a、b,定义运算a∗b=,已知3∗m=36,则m的值为()A.4B.±C.D.4或±二.填空题(共18小题)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立.19.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值.20.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是.21.计算:=22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.对实数a、b,定义运算☆如下:a☆b=,例如2☆3=.计算[2☆(﹣4)]×[(﹣4)☆(﹣2)]=.24.计算:|﹣5|﹣=.25.计算:=.26.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.27.计算:﹣1=.28.对于两个不相等的实数a、b,定义一种新的运算如下,,如:,那么6*(5*4)=.29.计算:=.30.计算:()﹣1﹣|﹣2|=.31.实数a,b,c在数轴上如图所示,化简|a|++﹣=.32.计算:(﹣1)2+=.33.计算:+()﹣2﹣3tan60°+(π)0=.34.计算:+﹣|π0﹣|﹣()﹣1=.35.对任意两实数a、b,定义运算“*”如下:a*b=.根据这个规则,则方程2*x=12的解为.三.解答题(共10小题)36.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i(1)填空:i3=,i4=.(2)填空:①(2+i)(2﹣i)=;②(2+i)2=.(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知,(x+y)+3i=1﹣(x﹣y)i,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.(5)解方程:x2﹣2x+4=0.37.计算:|﹣5|﹣+(﹣2)2+4÷(﹣).38.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为,f的算术平方根是8,求ab++e2+的值.39.计算:﹣22+﹣﹣|﹣2|.40.计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.41.计算:﹣2cos60°+()﹣1+(π﹣3.14)042.计算:﹣+||+.43.计算:(1);(2).44.计算:4cos30°+(1﹣)0﹣+|﹣2|.45.计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.实数的运算精选题45道参考答案与试题解析一.选择题(共17小题)1.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7【解答】解:∵|a|=4,,且a+b<0,∴a=﹣4,b=﹣3或a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.2.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【解答】解:当n=时,n(n+1)=×(+1)=2+<15;当n=2+时,n(n+1)=(2+)×(3+)=6+5+2=8+5>15,则输出结果为8+5.故选:C.3.下列说法正确的是()A.两个无理数的和一定是无理数B.两个无理数的积一定是无理数C.有理数与无理数的和一定是无理数D.有理数与无理数的积一定是无理数【解答】解:A、两个无理数的和一定是无理数,错误,例如:﹣+=0;B、两个无理数的积一定是无理数,错误,例如:﹣×=﹣2;C、有理数与无理数的和一定是无理数,正确;D、有理数与无理数的积一定是无理数,错误,例如:0×=0.故选:C.4.计算|﹣|+()﹣1的结果是()A.0B.C.D.6【解答】解:原式=3+3=6.故选:D.5.对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=()A.355B.533C.533﹣355D.533+355【解答】解:(5⊗3)*(3⊗5)=533*355=(|533﹣355|+533+355)=(355﹣533+533+355)=×2×355=355.故选:A.6.实数a、b在数轴上的位置如图所示,那么化简+|b|的结果是()A.a﹣2b B.﹣a C.a D.﹣2a+b【解答】解:根据图示,可得:b<0<a,∴b﹣a<0,∴+|b|=﹣(b﹣a)﹣b=a﹣2b.故选:A.7.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③一个数的算术平方根仍是它本身,这样的数有三个;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,.正确的个数有()A.2个B.3个C.4个D.5个【解答】解:①=﹣10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③一个数的算术平方根仍是它本身,这样的数有0和1两个,故说法错误;④实数分为有理数和无理数两类,所以任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和可能是有理数,也可能是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②④⑥共3个.故选:B.8.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)﹣a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a,a一定是一个无理数.A.1个B.2个C.3个D.4个【解答】解:(1)无限不循环小数都是无理数,带根号的数有的是无理数,有的是有理数,如=2是有理数,是无理数,故(1)不符合题意;(2)立方根等于本身的数是0和1、﹣1,故(2)不符合题意;(3)当a=0时,﹣a=0,此时﹣a有平方根,所以﹣a可能有平方根,故(3)不符合题意;(4)实数与数轴上的点是一一对应的,故(4)符合题意;(5)两个无理数的差可能是无理数、也可能是有理数,故(5)不符合题意;(6)若面积为3的正方形的边长为a,则a=,是一个无理数,故(6)符合题意;故选:B.9.下列等式成立的是()A.=±9B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2D.(tan45°﹣1)0=1【解答】解:A.=9,此选项计算错误;B.|﹣2|=﹣2,此选项错误;C.(﹣)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.10.按如图所示的运算程序,能使输出的结果为3的是()A.a=0,b=3B.a=1,b=2C.a=4,b=1D.a=9,b=0【解答】解:A选项,∵0<3,∴+=,故该选项不符合题意;B选项,∵1<2,∴+=1+,故该选项不符合题意;C选项,∵4>1,∴﹣=2﹣1=1,故该选项不符合题意;D选项,∵9>0,∴﹣=3,故该选项符合题意;故选:D.11.对任意两个实数a,b定义两种运算:a⊕b=,a⊗b=,并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=2.那么(⊕2)⊗等于()A.3B.3C.D.6【解答】解:(⊕2)⊗=⊗=⊗3=.故选:C.12.下列各式中,正确的是()A.﹣B.﹣C.3﹣2=1D.=±4【解答】解:A、﹣=2,正确;B、﹣=﹣2,故此选项错误;C、3﹣2=,故此选项错误;D、=4,故此选项错误;故选:A.13.下列各式中正确的是()A.B.C.D.【解答】解:∵=8,∴选项A不符合题意;∵,∴选项B不符合题意;∵,∴选项C符合题意;∵,∴选项D不符合题意;故选:C.14.下列计算正确的是()A.B.C.D.【解答】解:A、原式=|﹣9|=9,不符合题意;B、原式=,不符合题意;C、原式=﹣2,符合题意;D、原式=6,不符合题意,故选:C.15.下列实数运算中正确的是()A.=﹣7B.=4C.(﹣)2=4D.=±3【解答】解:A.=7,故此选项不合题意;B.=4,故此选项符合题意;C.(﹣)2=2,故此选项不合题意;D.=3,故此选项不合题意;故选:B.16.下列各式计算正确的是()A.B.C.D.2+【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.17.对实数a、b,定义运算a∗b=,已知3∗m=36,则m的值为()A.4B.±C.D.4或±【解答】解:①若m≤3,则32×m=36,解得m=4>3(舍);②若m>3,则3m2=36,解得m=±,∵m=﹣<3,∴m=,故选:C.二.填空题(共18小题)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是③④.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立.【解答】解:①[0)=1,故本项错误;②[x)﹣x>0,但是取不到0,故本项错误;③[x)﹣x≤1,即最大值为1,故本项正确;④存在实数x,使[x)﹣x=0.5成立,例如x=0.5时,故本项正确.故答案为③④.19.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值﹣2a﹣b.【解答】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b.故答案为:﹣2a﹣b.20.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是3.【解答】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3)所表示的数是;从图示中知道,(5,2)所表示的数是;∵第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,∴(20,17)表示的数是.∴(5,2)与(20,17)表示的两数之积是:×=3.故答案为:;.21.计算:=【解答】解:=+2=.故答案为:.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=﹣1.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣123.对实数a、b,定义运算☆如下:a☆b=,例如2☆3=.计算[2☆(﹣4)]×[(﹣4)☆(﹣2)]=1.【解答】解:[2☆(﹣4)]×[(﹣4)☆(﹣2)],=2﹣4×(﹣4)2,=×16,=1.故答案为:1.24.计算:|﹣5|﹣=2.【解答】解:原式=5﹣3=2.故答案为:2.25.计算:=3.【解答】解:原式=9﹣3﹣3=3,故答案为:326.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.【解答】解:12⊕4==.故答案为:.27.计算:﹣1=2.【解答】解:原式=3﹣1=2.故答案为:2.28.对于两个不相等的实数a、b,定义一种新的运算如下,,如:,那么6*(5*4)=1.【解答】解:∵,∴5*4==3,∴6*(5*4)=6*3,=,=1.故答案为:1.29.计算:=2020.【解答】解:原式=(3+4﹣1﹣2)×505=4×505=2020.故答案为2020.30.计算:()﹣1﹣|﹣2|=.【解答】解:原式=2﹣(2﹣)=2﹣2+=.故答案为:.31.实数a,b,c在数轴上如图所示,化简|a|++﹣=b+c.【解答】解:由数轴可得:a<0,c﹣a<0,c<0,故原式=﹣a﹣(c﹣a)+b+c﹣(﹣c)=﹣a﹣c+a+b+c+c=b+c.故答案为:b+c.32.计算:(﹣1)2+=4.【解答】解:(﹣1)2+=1+3=4.故答案为:4.33.计算:+()﹣2﹣3tan60°+(π)0=10.【解答】解:原式=3+9﹣3+1=10.故答案为:10.34.计算:+﹣|π0﹣|﹣()﹣1=3.【解答】解:+﹣|π0﹣|﹣()﹣1=4+2﹣|1﹣|﹣3=4+2﹣(﹣1)﹣3=4+2﹣+1﹣3=3,故答案为:3.35.对任意两实数a、b,定义运算“*”如下:a*b=.根据这个规则,则方程2*x=12的解为x=﹣或x=.【解答】解:①若x≤2,则x2=12,解得x=﹣或x=(舍去);②若x>2,则x2+2=12,解得x=或x=﹣(舍去);综上,x=﹣或x=.故答案为:x=﹣或x=.三.解答题(共10小题)36.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i(1)填空:i3=﹣i,i4=1.(2)填空:①(2+i)(2﹣i)=5;②(2+i)2=3+4i.(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知,(x+y)+3i=1﹣(x﹣y)i,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.(5)解方程:x2﹣2x+4=0.【解答】解:(1)i3=i2•i=﹣1•i=﹣i,i4=i2•i2=﹣1×(﹣1)=1,故答案为:﹣i,1;(2)①(2+i)(2﹣i)=4﹣i2=4+1=5,②(2+i)2=4+4i+i2=4+4i﹣1=3+4i,故答案为:5、3+4i;(3)由题意知,解得:;(4)=====i;(5)∵x2﹣2x=﹣4,∴x2﹣2x+1=﹣4+1,即(x﹣1)2=﹣3,则(x﹣1)2=3i2,∴x﹣1=i或x﹣1=﹣i,∴x=1+i或x=1﹣i.37.计算:|﹣5|﹣+(﹣2)2+4÷(﹣).【解答】解:原式=5﹣3+4﹣6=038.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为,f的算术平方根是8,求ab++e2+的值.【解答】解:由题意可知:ab=1,c+d=0,e=±,f=64,∴e2=(±)2=2,,∴ab++e2+=+0+2+4=6.39.计算:﹣22+﹣﹣|﹣2|.【解答】解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.40.计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【解答】解:原式=2﹣2×++1=3.41.计算:﹣2cos60°+()﹣1+(π﹣3.14)0【解答】解:原式=3﹣2×+8+1=3﹣1+8+1=11.42.计算:﹣+||+.【解答】解:原式=7﹣3+﹣1+=+.43.计算:(1);(2).【解答】解:(1)=﹣1+(﹣3)﹣6=﹣4﹣6=﹣10;(2)=2﹣2﹣2+﹣(﹣4)=2﹣2﹣2++4=3.44.计算:4cos30°+(1﹣)0﹣+|﹣2|.【解答】解:原式=4×+1﹣2+2=2﹣2+3=3.45.计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【解答】解:原式=﹣1+2×+4=﹣1++4=3+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.比较大小:15 4 (填“>”、“<”或“=”号).2.(本题满分7分)计算: 20)2()3(4|1|--+-+--π.3.计算:(每小题3分,共12分)(1)()25.05)41(8----+ (2))21()51(10)1(2004-÷-⨯--(3)12×(13+14―16) (4)632162---+-4.(本题满分8分)计算:(1)103248(2)-+-+(2)()()()323312442⎛⎫-⨯-+-⨯- ⎪⎝⎭5.根据图所示的拼图的启示填空. (1)计算28________+=; (2)计算832________+=; (3)计算32128________+=.6.计算:(1)(2013广东湛江)269(1)---;(2)(2013浙江衢州3422(75)-÷-⨯-+.7.已知一个圆和一个正方形的面积都是2πcm 2,问:它们中哪一个周长比较长,你从中得到了什么启示?8.如图所示,点A 、B 在数轴上,它们所对应的数分别是-4,2235x x +-,且点A 、B 到原点的距离相等,求x 的值.9.定义新运算“@”:@4x y xy +2@6)@8的值.10.已知一个正方体的表面积为2400cm 2,求这个正方体的体积. 11.计算.(1325272-; (2)31(181)13- 12.计算下列各题. (1)333 (2)51)(35)-. 13.(1)23327(3)1-+---(2)计算:|12||23|21|++;(3)223331(4)(4)272⎛⎫----- ⎪⎝⎭14.先阅读,再回答下列问题.2112+=122<<211+1.2226+=263<<222+的整数部分是2.23312+=,且3124<<233+3.……2n n +n 为正整数)的整数部分为________,试说明理由. 15.计算:(1)2332精确到0.01);(2)5 2.342+-π(精确到十分位).16.计算:(1)3(32)2(32)--;(2)|12||32|34++.17.设x 、y 为有理数,且x 、y 满足等式2221742x y +=-x +y 的值.19.实数a 、b 、c 在数轴上的位置如图所示,试化简:|c -b|+|b -a|-|c|.20.求下列各数的相反数、倒数和绝对值. (1)35;(2)916-. 21.若m 是实数,则下列各数一定是负实数的是( ) A .-m 2 B .2m - C .-(m +1)2 D .21m --22.求下列各数的相反数、倒数和绝对值: (1)5-; (2)1-π.23.若实数a 满足-1<a <0,则a ,-a ,1a,a 2的大小关系是( ) A .21a a a a<-<< B .21a a a a<<<- C .21a a a a -<<<D .21a a a a<<<-24.计算:3533-+.25.计算:32275)21()1(10--+-+--π26.(6分)计算(要求写出计算步骤): (1)()()2216833⎛⎫-⨯-÷-⎪⎝⎭(2)31084-++ 27.计算:201945(3)2π-⎛⎫-⨯+-+- ⎪⎝⎭.28.计算:29.计算:9﹣2sin60°+|﹣3|. 30.计算:11(6π)()3tan30|3|5--︒+--︒+-.31.算:32.算33.算:34.(1)计算:错误!未找到引用源。
(2)先化简,再求值:错误!未找到引用源。
,其中错误!未找到引用源。
.35.计算:()0120142tan 60()π1(1)3-︒---+-.36.计算:(1)0045tan )2(9+--π (2))2)(2()3(a a a a +-+-37.计算: 020)3(230c 233π-+----os评卷人 得分四、解答题(题型注释)评卷人 得分五、判断题(题型注释)评卷人 得分六、新添加的题型参考答案1.< 【解析】试题分析:因为2154<4<.考点: 实数的大小比较 2.14. 【解析】试题分析:根据实数的运算法则,首先化去代数式中的绝对值,二次根式,乘方运算,然后进行合并即可.试题解析:解:原式=1-2+1+错误!未找到引用源。
=错误!未找到引用源。
. 考点:实数的运算.3.(1)3;(2)-3;(3)5;(4)4.【解析】试题分析:实数加法法则:同号两数相加,取相同的符号,并把绝对值相加; 异号两数相加,取相同的符号,并用大绝对值相减去小绝对值.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.乘方的运算法则:负数的奇次幂是负的, 负数的偶次幂是正的,正数的任何次幂是正数. 数轴上表示一个数的点离开原点的距离叫这个数的绝对值. 正数的绝对值是它本身;负数的绝对值是它的相反数. 实数混合运算顺序:先算乘方,再算乘除,最后算加减.二次根式性质. 试题解析:解:(1)118+()5(0.25)850.25344----=--+=; (2)200411(1)10()()12(2)14352--⨯-÷-=+⨯-=-=-; (3)11111112+-=12+12124325346346⨯⨯⨯-⨯=+-=(); (4)13+--1(3134=--=-=.考点:1实数混合运算;2绝对值;3二次根式比较大小.4.解:(1)102-+=1+2-2+12 =32(2)()3122⎛⎫-- ⎪⎝⎭=()1-84+-4-2⎛⎫⨯⨯ ⎪⎝⎭=-32+2=-30 【解析】 试题分析:(1)先计算0指数与负整数指数幂、开立方、开平方,再按照有理数的加减运算法则进行计算即可;(2)先算乘方与开方,再计算乘法最后算加减. 考点:有理数的混合运算.点评:本题考查了有理数的混合运算.熟练掌握运算顺序是解题的关键,有理数的混合运算顺序:先算乘方与开方再算乘除最后算加减.5.(1)【解析】面积为2,面积为8的正方形是由4个面积为2的正方形拼成的,∴其边长为面积为32的正方形是由16个面积为2的正方形拼成的,∴其边长为面积为128的正方形是由64个面积为2的正方形拼成的,∴其边长为=======6.(1)2.(2)10【解析】(1)2|6|(1)6312--=--=.32|2|(75)282(2)2(8)10÷-⨯-+=-÷⨯-=--=.7.面积相等的圆和正方形,正方形的周长较大.【解析】设圆的半径为r ,则r ==cm ),周长28.886C =π≈(cm ).正方形的周长410.027l =≈(cm ).所以正方形的周长长. 启示:面积相等的圆和正方形,正方形的周长较大.8.115由题意知22435x x +=--, 【解析】解得115x =.所以x 的值是115.9.6【解析】(2@6)@8=4@8==6.10.8000cm 3【解析】设正方体的棱长为xcm ,则x 2×6=2400, 解得x =±20.∵x >0,∴x =20,∴V =203=8000(cm 3). 答:这个正方体的体积是8000cm 3. 11.(1)4,(2)-233【解析】(12- =5-3+2 =4.(2)1(13119133=-⨯- 233=-.12.(1(2)-4【解析】(1)(2=-=(2)1)(3-+13=--=-413.(1) 1.2-.(3)2. 【解析】(1)原式=-3+3-(-1)=1.(2)原式=(11)112--+=-+=. (3)原式=14(4)341324--⨯-=+-=. 14.n【解析】 理由是:=又1n n <+,n . 15.(1) 7.71 (2)0.3【解析】(1)2 1.7323 1.4147.7067.71≈⨯+⨯=≈.12.34 2.24 2.343.140.320.32+-π≈⨯+-=≈.16.(2) 1【解析】(1)原式==(3(3-++(2)1221211-=-=. 17.-9【解析】∵x 、y 为有理数,且2217x y y ++=-∴x 2+2y =17,y =-4,解得x =±5,y =-4. 当x =5时,x +y =5-4=1;当x =-5时,x +y =-5-4=-9. 18.0,|y +25|≥0250y +=,∴x-5=0,y+25=0,∴x=5,y=-25.5=-.19.a【解析】∵c<0,b<0,c<b,a>0,∴c-b<0,b-a<0,∴|c-b|+|b-a|-|c|=b-c+a-b+c=a.20..(2)34,倒数是43-,绝对值为34.【解析】绝对值是.(2)因为34 =-,所以34,倒数是43-,绝对值为33||44-=.21.D【解析】-m2≤0,故A不正确.当m=0时,0=,故B不正确.当m=-1时,-(m+1)2=0,故C不正确.22.(1π-1,11-π,π-1【解析】(1)(2)1-π的相反数是π-1,倒数是11-π,绝对值是π-1.23.B【解析】采用特殊值法,取12a=-,则12a-=,12a=-,214a=,所以21a a aa<<<-.24+=523=+.【解析】先求35-的绝对值,再将3-与33合并同类项. 25.63- 【解析】试题分析:原式=1-2+33-5-23=3-6 考点: 实数的运算 26.(1)32-(2)32【解析】试题分析:按照运算顺序,依次计算即可.试题解析:(1)221113(6)()(8)36()33382-⨯-÷-=⨯⨯-=-;(2)31130802422-++=-++=. 考点:实数的计算. 27.﹣7. 【解析】试题分析:分别用平方根定义,负指数幂法则,绝对值的代数意义,零指数幂法则进行计算即可得到结果.试题解析:原式=3﹣4×4+5+1=3﹣16+5+1=﹣7. 考点:1.实数的运算2.零指数幂3.负整数指数幂. 28.3 【解析】试题分析:根据零指数幂的意义和二次根式的化简及绝对值、乘方的意义可求解. 试题解析:解:原式考点:1、零指数幂的意义.2、二次根式的化简. 29.3. 【解析】试题分析:先根据数的开方法则、特殊角的三角函数值、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可. 试题解析:原式=3﹣2×323=333=3.【考点】1.实数的运算;2.特殊角的三角函数值. 30.-4【解析】试题分析:非0数的0次幂是1,任何一个不等于0的数的负P 次幂等于这个数的P 次幂的倒数,p p a a 1=-, 特殊角的三角函数值,按顺序计算即可试题解析:原式=433)5(1-=+--+考点:1、零指数幂;2特殊角的三角函数值;3、绝对值;4、负指数幂31.17.【解析】试题分析:先化简和,运用平方差公式计算,再进行计算求解. 试题解析:原式==17考点:实数的运算.32.. 【解析】试题分析:原式=.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.33..【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式=考点:1.实数的运算;2.零指数幂;3.分母有理化.34.(1)0 (2)【解析】解:(1)原式=﹣1﹣7+3+5=0;(2)原式=错误!未找到引用源。