Transforming Growth Factor-1 Induces Apoptosis through Fas Ligand-independent Activation of the Fas

合集下载

TGF-β1、s_Flt-1在胎盘植入中的表达及预测效能

TGF-β1、s_Flt-1在胎盘植入中的表达及预测效能

*基金项目:2021-2023福建省卫生健康科技计划中青年骨干项目(2020GGB006)①福建医科大学省立临床医学院 福建 福州 350500②连江县医院TGF-β1、sFlt-1在胎盘植入中的表达及预测效能*李蕊① 沈芬芳① 林靓① 王军军① 杨茵① 倪惠钦② 【摘要】 目的:探究转化生长因子-β1(transforming growth factor-β1,TGF-β1)、可溶性血管内皮生长因子受体-1(soluble vascular endothelial growth factor receptor-1,sFlt-1)在胎盘植入中的表达及预测效能。

方法:回顾性选取2015年6月—2021年6月福建医科大学省立临床医学院收治的42例胎盘植入患者作为观察组,另选取同时期本院健康体检的60例健康产妇作为对照组。

检测两组TGF-β1、sFlt-1水平。

比较两组TGF-β1、sFlt-1水平。

比较观察组不同植入深度患者TGF-β1、sFlt-1水平。

分析TGF-β1、sFlt-1对胎盘植入的预测效能。

结果:观察组TGF-β1、sFlt-1水平均明显高于对照组,差异有统计学意义(P <0.05)。

随着植入深度的增加,患者TGF-β1、sFlt-1水平逐渐升高。

TGF-β1、sFlt-1诊断胎盘植入的AUC、特异度与敏感度均明显低于联合检测。

结论:在胎盘植入诊断中,TGF-β1、sFlt-1联合检测的敏感度、特异度较高。

随着胎盘植入深度增加,TGF-β1、sFlt-1水平增高。

TGF-β1、sFlt-1可为胎盘植入诊断及病情程度判断提供科学依据。

【关键词】 胎盘植入 转化生长因子-β1 可溶性血管内皮生长因子受体-1 表达 预测效能 doi:10.14033/ki.cfmr.2023.25.018 文献标识码 B 文章编号 1674-6805(2023)25-0071-04 Expression of TGF-β1, sFlt-1 in Placental Implantation and Its Predictive Efficacy/LI Rui, SHEN Fenfang, LIN Liang, WANG Junjun, YANG Yin, NI Huiqin. //Chinese and Foreign Medical Research, 2023, 21(25): 71-74 [Abstract] Objective: To explore the expression of transforming growth factor-β1 (TGF-β1), soluble vascular endothelial growth factor receptor-1 (sFlt-1) in placental implantation and its predictive efficacy. Method: Forty-two patients with placenta implantation admitted to the Shengli Clinical Medical College of Fujian Medical University from June 2015 to June 2021 were selected retrospectively as the observation group, and 60 healthy lying-in woman who underwent physical examination in our hospital at the same period were selected as the control group. The levels of TGF-β1 and sFlt-1 were detected in the two groups. The levels of TGF-β1 and sFlt-1 were compared between the two groups. The levels of TGF-β1 and sFlt-1 in patients with different implantation types were compared in the observation group. The predictive efficacy of TGF-β1 and sFlt-1 on placental implantation was analyzed. Result: The levels of TGF-β1 and sFlt-1 in the observation group were significantly higher than those in the control group, the differences were statistically significant (P <0.05). With the increasing implantation depth, the levels of TGF-β1 and sFlt-1 in patients were continuously increased. The specificity and sensitivity, AUC of TGF-β1 and sFlt-1 in the diagnosis of placenta implantation were significantly lower than that of combined detection. Conclusion: In the diagnosis of placental implantation, the sensitivity and specificity of TGF-β1 and sFlt-1 combined detection are higher. The levels of TGF-β1 and sFlt-1 increased with the increase of placental implantation depth. TGF-β1 and sFlt-1 can provide a scientific basis for the diagnosis of placenta implantation and the severity of the disease. [Key words] Placental implantation Transforming growth factor-β1 Soluble vascular endothelial growth factor receptor-1 Expression Predictive efficacy First-author's address: Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350500, China 近年来,随着剖宫产术等的不断增加,胎盘植入的发生率呈现出明显的上升趋势,成为产妇产后出血等不良母婴结局的重要危险因素之一。

TGF-β1、TNF-α及α-SMA与肾间质纤维化

TGF-β1、TNF-α及α-SMA与肾间质纤维化

TGF-β1、TNF-α及α-SMA与肾间质纤维化王祥;高娜;黄燕萍【摘要】肾间质纤维化(RIF)是多种慢性肾病进展到终末期肾病的最终共同病理改变,其中促纤维化因子的释放在肾脏纤维化的形成中起着重要作用.该文通过对文献的梳理,就转化生长因子-β1(TGF-β1)、肿瘤坏死因子-α(TNF-α)及α-平滑肌肌动蛋白(α-SMA)在RIF形成中的作用进行了概括.【期刊名称】《中国妇幼健康研究》【年(卷),期】2015(026)006【总页数】3页(P1332-1334)【关键词】肾间质纤维化;转化生长因子-β1;肿瘤坏死因子-α;α-平滑肌肌动蛋白【作者】王祥;高娜;黄燕萍【作者单位】莱州市人民医院儿科,山东莱州261400;陕西省人民医院,陕西西安710068;西安交通大学第一附属医院,陕西西安710061【正文语种】中文【中图分类】R692肾间质纤维化(renal interstitial fibrosis,RIF)几乎是各种肾脏疾病进展到终末期肾衰竭的共同途径和主要病理基础。

以往认为儿童期发病的原发性肾脏疾病(如IgA肾病等)多数预后良好,近年发现约9%~50%的患者呈进行性发展,不可逆转地进展为终末期肾病,而肾间质纤维化是其主要的形态学特征。

因此,RIF的发生、发展机制已成为肾脏研究中备受关注的领域。

肾小管间质纤维化的发生机制十分复杂,其中,多种细胞因子与肾脏纤维化的关系越来越得到学者的关注。

肾脏间质细胞(包括成纤维细胞、肾小管上皮细胞、肌成纤维细胞等)能合成、分泌多种促纤维化因子,形成复杂的细胞因子网络。

在众多调节因子中,转化生长因子-β1(transforming growth factor-β,TGF-β1)及肿瘤坏死因子-α(tumor necrosi s factor-α,TNF-α)是两个关键的细胞因子,与肾小管上皮细胞转分化(tubular epithelial myofibroblast transdifferentiation,TEMT)及肌纤维细胞(myofibroblast,MF)增殖活化等密切相关,在RIF的发生中发挥了重要作用。

tgf-β1对体外血管外膜成纤维细胞的影响

tgf-β1对体外血管外膜成纤维细胞的影响

上海交通大学硕士学位论文TGF-β1对体外血管外膜成纤维细胞的影响姓名:***申请学位级别:硕士专业:老年医学指导教师:***20090401上海交通大学医学院硕士论文8缩略词缩写英语全称 中文全称 TGF-β1Transforming growth factor-β1 转化生长因子β1 ECMextracellular matrix 细胞外基质 MMP -9Matrix metalloproteinase-9 基质金属蛋白酶-9 PPARPeroxisome prolifterator-axtivated receptor 过氧化物酶体增殖物激活型受体 AFadventitial fibroblast 外膜成纤维细胞 MFmyofibroblast 肌成纤维细胞 VSMCVascular Smooth Muscle Cell 血管平滑肌细胞 TZDThiazolidinediones 噻唑烷二酮类 ILInterleukin 白细胞介素 TNF-αTumor Necrosis Factor α 肿瘤坏死因子-α DMSODimeththyl sulfoxide 二甲基亚砜 MTTMethylthiazolyltetrazolium 四甲基偶氮唑盐 α-SM-actinα- Smooth Muscle-actin 平滑肌α2肌动蛋白 ASatherosclerosis 动脉粥样硬化上海交通大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。

除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

学位论文作者签名:日期:年月日上海交通大学学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

碧云天细胞计数试剂盒CCK-8说明书

碧云天细胞计数试剂盒CCK-8说明书

碧云天生物技术/Beyotime Biotechnology 订货热线:400-168-3301或800-8283301 订货e-mail :****************** 技术咨询:***************** 网址:碧云天网站 微信公众号Cell Counting Kit-8 (CCK-8试剂盒)产品编号 产品名称包装 C0038Cell Counting Kit-8 (CCK-8试剂盒)500次产品简介:Cell Counting Kit-8,简称CCK-8试剂盒或CCK8试剂盒,是一种基于WST-8而广泛应用于细胞增殖和细胞毒性的快速、高灵敏度检测的试剂盒。

WST-8是一种类似于MTT 的化合物,在电子耦合试剂存在的情况下,可以被线粒体内的一些脱氢酶还原生成橙黄色的formazan (参考图1)。

细胞增殖越多越快,则颜色越深;细胞毒性越大,则颜色越浅。

对于同样的细胞,颜色的深浅和细胞数目呈线性关系。

图1. WST-8检测原理图 (EC=electron coupling reagent ,即电子耦合试剂)WST-8是MTT 的一种升级替代产品,和MTT 或其它MTT 类似产品如XTT 、MTS 等相比有明显的优点。

首先,MTT 被线粒体内的一些脱氢酶还原生成的formazan 不是水溶性的,需要有特定的溶解液来溶解;而WST-8和XTT 、MTS 产生的formazan 都是水溶性的,可以省去后续的溶解步骤。

其次,WST-8产生的formazan 比XTT 和MTS 产生的formazan 更易溶解。

再次,WST-8比XTT 和MTS 更加稳定,使实验结果更加稳定。

另外,WST-8和MTT 、XTT 等相比线性范围更宽,灵敏度更高。

WST-8和WST-1相比,检测灵敏度更高,更易溶解,并且更加稳定。

本试剂盒可以用于细胞因子等诱导的细胞增殖检测,也可以用于抗癌药物等对细胞有毒试剂诱导的细胞毒性检测,或一些药物诱导的细胞生长抑制检测。

tgfβ1分子量

tgfβ1分子量

tgfβ1分子量TGFβ1分子量TGFβ1 (Transforming Growth Factor Beta 1)是一种重要的细胞因子,它在细胞生物学和免疫学中发挥着重要的作用。

作为成熟TGFβ1蛋白的分子量约为25千达尔顿(kDa),它通过与细胞表面受体的结合来调控细胞的生长、分化和功能。

TGFβ1的分子量对于其生物活性和功能至关重要。

TGFβ1是一个由112个氨基酸残基组成的多肽。

在细胞内,TGFβ1最初以一种称为前体蛋白的形式产生,经过一系列的后转录修饰和切割事件,最终形成成熟的TGFβ1蛋白。

成熟的TGFβ1分子由两个相同的亚基组成,每个亚基分别含有112个氨基酸残基。

TGFβ1分子量的确定是通过多种分析方法得出的。

其中最常用的方法是SDS-PAGE(Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis)和质谱分析。

在SDS-PAGE中,TGFβ1蛋白会在电泳过程中根据其分子量在凝胶上移动到不同的位置,通过与已知分子量的蛋白进行比较,可以推断出TGFβ1的分子量。

质谱分析则是通过测量TGFβ1蛋白在质谱仪中产生的质荷比(m/z)来确定其分子量。

TGFβ1作为一种细胞因子,参与了多个生物学过程的调控。

它在胚胎发育、器官形成、细胞增殖和分化、免疫调节等方面发挥着重要的作用。

TGFβ1通过与细胞表面的受体结合,激活下游信号通路,调控细胞的基因表达和功能。

这些信号通路包括Smad依赖的通路和非Smad依赖的通路,它们共同参与了细胞的生长、分化和功能的调控。

除了在正常生理过程中的作用,TGFβ1也在多种疾病的发生发展中发挥着重要的作用。

例如,在癌症中,TGFβ1被认为是一个重要的肿瘤抑制因子,它可以抑制肿瘤细胞的增殖和侵袭。

然而,在肿瘤的进展过程中,肿瘤细胞可以通过改变TGFβ1信号通路的活性,逃避对TGFβ1的抑制作用,从而促进肿瘤的发展。

组织工程软骨在生长板损伤修复治疗中的作用及特点

组织工程软骨在生长板损伤修复治疗中的作用及特点

Chinese Journal of Tissue Engineering Research |Vol 25|No.28|October 2021|4539组织工程软骨在生长板损伤修复治疗中的作用及特点王香港,万 谦,刘 贺,李容杭,张 妍,李祖浩,王金成文题释义:软骨组织工程:是利用干细胞技术和机械技术制备具有生物活性的三维支架,植入软骨缺损部位,可以有效改善损伤处的软骨组织再生微环境,促进软骨细胞再生和细胞外基质积聚,从而使受损的软骨组织得到修复,达到治疗的目的。

支架:是具有三维结构的软骨组织工程支架,通常具有相互连通的孔隙结构,植入缺损部位,既能够填补生长板处的缺损,提供机械支持,也具有良好的生物相容性,为干细胞和活性物质发挥功能提供物质载体,在生长板的损伤修复中起着积极作用。

摘要背景:生长板调控着长骨纵向生长,如果发生损伤并导致骨桥形成会使长骨生长停滞,造成患肢成角畸形,而目前临床治疗方法效果不理想,用软骨组织工程制备的支架为临床治疗带来了希望。

目的:介绍生长板的生理结构与功能,讨论并总结软骨组织工程技术在生长板损伤治疗中所取得的进展。

方法:作者以“Growth plate ,Physis ,Physeal ,Scaffold ,Cartilage tissue engineering ,生长板,骺版,支架”为关键词,检索2000至2020年期间PubMed 、Web of Science 、CNKI 和万方数据库中的相关文献,初检文献292篇,筛选后对65篇文献进行分析。

结果与结论:在生长板损伤动物模型中,软骨组织工程支架表现出很好的治疗效果。

具有生物活性的支架既填补了缺损、抑制骨桥形成、减轻了患肢的成角畸形,又诱导间充质干细胞分化为与生长板生理结构类似,呈柱状规则排列的软骨细胞。

对众多实验结果进行总结发现,应用间充质干细胞联合适当的软骨诱导因子(如转化生长因子β、胰岛素样生长因子1等)可以促进软骨细胞大量生成并且排列有序,再生的软骨组织可以发挥生长板的正常功能,刺激长骨继续生长。

TGF—β1在宫颈癌中的研究进展

TGF—β1在宫颈癌中的研究进展

TGF—β1在宫颈癌中的研究进展转化生长因子β1在宫颈癌发生及发展中表现出双重作用。

TGF-β1既可抑制宫颈癌生长又能通过多种机制促进其侵袭和转移。

本文将对其在宫颈癌中的可能致病机制及相关研究进行综述。

Abstract:Transforming growth factor β1 has a dual role in the occurrence and development of cervical cancer.TGF-β1 can inhibit the growth of cervical ca ncer and promote its invasion and metastasis through a variety of mechanisms.This article will review its possible pathogenic mechanism and related research in cervical cancer.Key words:TGF-β1;Cervical cancer;Signaling pathway;Cytokines宫颈癌(cervical cancer)是一种常见的妇科肿瘤,是继乳腺癌之后居第二位的恶性肿瘤,是严重危害妇女健康的疾病之一。

转化生长因子β1(transforming growth factor beta1,TGF-β1)是一种多功能的细胞因子,除了对细胞的增殖、分化起双重调节作用外,还在血管生成、免疫抑制、细胞外基质形成和肿瘤的发生中发挥重要作用。

研究表明[1-4],TGF-β1是宫颈癌发生发展过程中的关键细胞因子之一。

感染高危型人类乳头瘤病毒(human papilloma virus,HPV)后,细胞生长增殖失控及细胞凋亡异常。

同时,TGF-β1调节作用失常可能促进宫颈癌的细胞增殖、浸润生长及淋巴结转移,以及TGF-β/Smads信号传导通路任一环节细微改变都可能导致宫颈癌进行性发展。

基于TGF-β1

基于TGF-β1

㊃心血管专栏㊃[收稿日期]2022-11-11[基金项目]河北省自然科学基金精准医学联合基金培育项目(H 2021206141);河北医科大学大学生创新性实验项目(U S I P 2022119)[作者简介]张诺琪(2001-),女,河北张家口人,河北医科大学基础医学院学生,从事临床医学学习㊂*通信作者㊂E -m a i l :w a n g y a l i n g81@163.c o m 基于T G F -β1/S m a d s 信号通路的m i R N A 在心肌纤维化的研究进展张诺琪1,于国慧1(综述),王亚玲2*(审校)(1.河北医科大学基础医学院2020级临床医学3大班,河北石家庄050017;2.河北医科大学第二医院心内科,河北石家庄050000) [摘要] 心肌纤维化(m y o c a r d i a l f i b r o s i s ,M F )是多种心血管疾病终末阶段的主要病理表现,转化生长因子β1(t r a n s f o r m i n gg r o w t h f a c t o r -β1,T G F -β1)/S m a d s (d r o s o p h i l am o t h e r s a g a i n s t d e c a p e n t a p l e g i c )信号通路的异常激活广泛参与纤维化疾病的发生,是导致心肌纤维化的关键通路;微小R N A (m i c r o R N A ,m i R N A )是一类内源性小分子非编码R N A ,具备调控功能,主要在转录后水平调控基因的表达㊂现有研究已表明,m i R N A 是影响T G F -β1/S m a d s 信号转导的重要调节因子,深入阐明T G F -β1/S m a d s 信号通路相关的m i R N A 在心肌纤维化中的调控机制,可以为预防㊁诊断及治疗心肌纤维化提供新的研究思路㊂[关键词] 心内膜心肌纤维化症;微R N A s ;T G F -β1/S m a d s 信号通路 d o i :10.3969/j .i s s n .1007-3205.2024.01.017 [中图分类号] R 542.23 [文献标志码] A [文章编号] 1007-3205(2024)01-0089-05心肌纤维化(m yo c a r d i a l f i b r o s i s ,M F )是多种心血管系统疾病发展到终末阶段的常见病理改变,其特征为心脏成纤维细胞异常激活分化为肌成纤维细胞㊁细胞外基质合成与降解间的平衡被打破㊁胶原纤维沉积过多且排列紊乱㊁各种胶原成分比例失调等,它不仅可以引起心脏舒缩功能显著减弱或不协调,还可能造成心脏发生结构重构和电重构,心脏功能减退加剧,最终诱导心律失常㊁心力衰竭等发生,是人类生命健康面临的巨大威胁之一,M F 的生物标志物及相关治疗靶点也是当下研究的热点之一[1]㊂M F 的出现可能与多种信号通路的异常激活密切相关,其中转化生长因子β1(t r a n s f o r m i n gg r o w t h f a c t o r -β1,T G F -β1)/S m a d s (d r o s o p h i l a m o t h e r s a g a i n s td e c a p e n t a p l e gi c )通路被认为是影响M F 的经典通路,其激活可以触发纤维化相关基因的过表达[2]㊂微小R N A (m i c r o R N A ,m i R N A )是一种主要在转录后水平调控基因表达的单链小分子非编码R N A ,普遍参与机体的病理及生理过程㊂近年来许多研究成果表明,m i R N A 广泛地参与了M F的发生与发展过程[3]㊂由于m i R N A 的功能及机制复杂,全面深入了解m i R N A 的作用非常必要,本文重点关注M F 发生发展过程中T G F -β1/S m a d s 信号通路相关m i R N A 的作用机制,并就研究现状及最新进展作简要综述㊂1 T G F -β1/S m a d s 信号通路T G F -β1是转化生长因子β(t r a n s f o r m i n g g r o w t h f a c t o r -β,T G F -β)三种亚型之一,它在M F 发展中发挥着最重要的作用㊂S m a d s 蛋白位于T G F -β家族的下游,是T G F -β家族的直接作用底物,参与T G F -β1信号转导的S m a d s 蛋白有S m a d 2/3/4/7㊂T G F -β1/S m a d s 信号转导途径为:T G F -β1活化后首先识别并结合细胞表面的转化生长因子β受体(t r a n s f o r m i n gg r o w t hf a c t o r -βr e c e p t o r ,T G F βR )Ⅱ,然后结合T G F βRⅠ的丝氨酸/苏氨酸激酶区并使其发生磷酸化,T G F -β1㊁T G F βRⅡ㊁T G F βRⅠ形成稳定的异源三聚体,异源三聚体募集并磷酸化下游的S m a d 2/3将信号传导至细胞质内,磷酸化的S m a d 2/3与S m a d 4在胞质结合形成稳定复合物,并转移到细胞核,在核内调控特定基因的转录㊂T G F βR Ⅲ㊁S m a d 7是T G F -β1介导S m a d s 通路的负向调控因子,能够减弱信号转导强度[4]㊂T G F -β1/S m a d s 通路对心脏的生理及病理过程具有调节作用,在M F 进程中的作用至关重要㊂㊃98㊃第45卷第1期2024年1月河北医科大学学报J O U R N A L O F H E B E I M E D I C A L U N I V E R S I T YV o l .45 N o .1J a n . 2024T G F-β1/S m a d s信号转导途径激活,诱导心肌细胞凋亡,激活成纤维细胞并促使其转化为肌成纤维细胞,内皮细胞表型及功能改变转分化为间质细胞,同时刺激细胞上调纤维化相关基因表达,基质金属蛋白酶(m a t r i xm e t a l l o p r o t e i n a s e s,MM P s)表达降低,其抑制剂(t i s s u e i n h i b i t o r o f m a t r i x m e t a l l o p r o t e i n a s e s,T I M P)呈相反趋势表达,细胞外基质异常增加,胶原过度沉积且成分比例失调[5]㊂最新研究发现扩心方可能通过抑制T G F-β1/S m a d2信号通路改善扩张型心肌病大鼠M F[6],基于T G F-β1/S m a d s信号通路逆转M F可能成为未来研究的重要方向㊂2m i R N Am i R N A是一类单链小分子非编码R N A,由内源基因编码,长度约22个核苷酸㊂多重因素影响下,R N A聚合酶Ⅱ作用于细胞核内编码m i R N A的基因,使其转录形成原始m i R N A(p r i-m i R N A),接着经R N a s eⅢ酶D r o s h a剪切,形成前体m i R N A (p r e-m i R N A),在核孔转运蛋白E x p o r t i n5的识别与转运作用下,p r e-m i R N A通过核孔复合体进入细胞质,经R N a s eⅢ酶D i s e r剪切形成长约22b p的双链m i R N A[7]㊂双链m i R N A的引导链参与了R N A 诱导沉默复合体(R N A-i n d u c e d s i l e n c i n g c o m p l e x, R I S C)的形成,与m R N A的3'U T R特定序列依照碱基互补配对原则相结合,在转录后水平抑制靶标m R N A翻译或者影响m R N A的稳定性,从而对基因表达进行负向调节,随从链则立即降解,这就是m i R N A在生物体内的经典作用机制,新的研究发现随从链也可能作为功能链发挥重要作用㊂此外, m i R N A还存在多种非经典作用机制,如结合其他功能蛋白㊁直接参与基因的转录过程㊁促进蛋白质表达㊁对线粒体相关基因m R N A进行靶向调控等[8]㊂近年来越来越多的研究表明,m i R N A在M F病理过程中发挥着不可忽视的调控作用,有望成为改善M F的新靶点[3]㊂3T G F-β1/S m a d s信号通路相关的m i R N A在心肌纤维化中的作用多种m i R N A通过直接或间接途径参与T G F-β1/S m a d s信号通路,对心肌纤维化的发生发展具有重要调控意义(图1)㊂图1m i R N A在T G F-β1/S m a d s信号通路介导的心肌纤维化中的作用正常箭头表示激活作用及核转位;T型箭头表示抑制作用3.1 m i R N A-21 在体外培养的心肌成纤维细胞中,过表达m i R N A-21能明显提高成纤维细胞的活力,且T G F-β1表达量大幅提升[9];用T G F-β1处理心肌成纤维细胞后,m i R N A-21表达明显增多[10]㊂m i R N A-21与T G F-β1之间存在相互促进的循环,这可能是加快M F进程的重要原因㊂将m i R N A-21模拟物转染至T G F-β1处理的心脏成纤维细胞,促进了T G F-β1对S m a d7的抑制作用,S m a d2和S m a d3的磷酸化水平进一步增加[11]㊂用血管紧张素Ⅱ(a n g i o t e n s i nⅡ,A n g-Ⅱ)处理m i R N A-21敲除小鼠的心脏成纤维细胞,T G F-β和p-S m a d2/3的表达减少,抑制m i R N A-21能够减弱A n g-Ⅱ诱导的T G F-β/S m a d s信号转导[12]㊂孟华等[13]通过数据库预测发现,m i R N A-21-5p可与S m a d7的3'U T R区结合,在调控S m a d7表达方面具有潜在的功能;进一步检测表明,m i R N A-21-5p过表达组S m a d7的m R N A及蛋白质含量均显著下调㊂朱参战等[9]利用双荧光素酶报告基因检测证实,m i R N A-21-5p对S m a d7具有靶向调控作用,m i R N A-21-5p通过靶向抑制心肌成纤维细胞S m a d7的表达而促进胶原沉积和心脏纤维化过程;此外,m i R N A-21-5p对心肌成纤维细胞的促纤维化作用可以因为S m a d7的过表达而发生逆转㊂通过下调T G F-β1/S m a d s信号通路负调节因子S m a d7蛋白的表达进而实现对该通路的激活,提高心脏成纤维细胞的活力,促进其增殖和迁移,最终导致M F,这可能是m i R N A-21-5p 发挥作用的重要方式之一㊂m i R N A-21还能通过下调T G F-β1信号的负调控因子WW结构域蛋白1使T G F-β1/S m a d2信号通路激活,从而显著提高了心脏成纤维细胞的增殖能力[14]㊂上述研究一致表明,m i R N A-21在提高心肌成纤维细胞的增殖和迁移等能力㊁推动M F发生发展过程中发挥重要作用,㊃09㊃河北医科大学学报第45卷第1期激活T G F-β1/S m a d s信号通路可能是m i R N A-21促使成纤维细胞发挥生物学作用的重要靶途径㊂m i R N A-21也可作用于心肌细胞参与M F,但目前仍存在争议㊂在缺氧处理不同时间的心肌细胞中,m i R N A-21㊁T G F-β1㊁S m a d3表达均增高,且m i R N A-21与T G F-β1/S m a d3存在显著正相关;在缺氧心肌细胞中过表达m i R N A-21后,T G F-β1和S m a d3表达明显升高,抑制m i R N A-21表达得到相反的结果[15]㊂由这一结果推测m i R N A-21可能通过激活T G F-β1/S m a d3通路诱导心肌细胞凋亡,刺激心脏进行瘢痕修复,生成大量胶原纤维,同时高表达的T G F-β1也可通过旁分泌激活心脏成纤维细胞,与前述m i R N A-21的促纤维化作用相一致㊂但史东东等[16]研究表明,m i R N A-21-5p通过靶向下调T G F-β1的表达水平,增加心肌细胞存活率并抑制其凋亡,具有保护心脏的作用,袁媛等[17]㊁范丽等[18]的研究也认为m i R N A-21能够改善心肌细胞的损伤㊂动物实验同样表明,m i R N A-21具有调控M F 的作用㊂m i R N A-21抑制剂能够有效减轻缺血/再灌注损伤后的心脏重塑[19]㊂使用柯萨奇病毒B3诱导小鼠慢性病毒性心肌炎心肌纤维化模型,较模型组而言,m i R N A-21抑制剂组T G F-β1蛋白的心脏表达量明显降低,S m a d7蛋白表达量显著升高,M F 程度降低,心脏功能得到有效改善[20]㊂结扎小鼠左冠状动脉前降支建立心肌梗死模型,向小鼠心肌注射m i R N A-21抑制剂,S m a d2和S m a d3的磷酸化水平下降,改善了心肌梗死后的纤维化[11]㊂m i R N A-21与T G F-β1/S m a d s通路之间存在复杂的交互作用,上述研究有助于深入理解M F的发病机制,并为抗纤维化的临床治疗提供理论指导作用㊂但目前仍未完全阐明M F过程中m i R N A-21发挥作用的生物学机制,还需要进一步研究证明㊂3.2 m i R N A-195大鼠心肌梗死模型中,m i R N A-195㊁T G F-β1㊁S m a d3表达水平显著升高,S m a d7表达降低;m i R N A-195拮抗剂处理后,T G F-β1/ S m a d s信号通路被抑制,纤维化程度有所改善[21]㊂m i R N A-195过表达的原代心肌细胞的培养基中, T G F-β1浓度显著升高,用该培养基处理成纤维细胞后,其S m a d2/3蛋白磷酸化水平明显增加,同时纤维化相关基因表达上调[22]㊂由此推测m i R N A-195的作用机制之一可能为:m i R N A-195促进心肌细胞分泌T G F-β1,T G F-β1作用于成纤维细胞激活T G F-β1/S m a d s信号通路发挥一系列生物学效应,进而调控大鼠心肌梗死后M F的发生发展㊂D i n g 等[23]通过体内体外实验证实,抑制m i R N A-195-5p 可以抑制内皮间质转化,能够有效减轻糖尿病性心肌病大鼠的M F程度,其机制可能与m i R N A-195-5p对s m a d7的靶向作用有关;在高糖处理的内皮细胞中过表达m i R N A-195-5p的同时引入T G F-β1/ S m a d s通路的抑制剂,内皮间质转化被抑制,反向证明m i R N A-195-5p通过T G F-β1/S m a d s信号发挥对M F的调节作用㊂m i R N A-195可以通过多种途径调节M F的发生,T G F-β1/S m a d s信号通路的激活可能是它发挥作用的机制之一,更多机制还需更深入的研究㊂3.3 m i R N A-199为使T G F-β1/S m a d3信号通路处于激活状态,用A n g-Ⅱ刺激分离培养的小鼠心肌成纤维细胞,发现m i R N A-199a转录本㊁m i R N A-199a-3p㊁-5p的表达均上调;S m a d3抑制剂处理后, m i R N A-199a转录本㊁m i R N A-199a-3p㊁-5p表达均显著降低[24]㊂将m i R N A-199a-3p模拟物瞬时转染至体外培养的心肌成纤维细胞,细胞纤维化相关基因m R N A和蛋白质均呈现高表达状态,作用机制可能为m i R N A-199a-3p通过靶向抑制S m a d1表达,提高S m a d3磷酸化水平,发挥促纤维化作用[25]㊂过表达m i R N A-199a-5p也能发挥同样的作用,它可以靶向抑制沉默信息调节因子1表达,使其无法发挥去乙酰化功能,加剧S m a d3乙酰化程度,同时上调S m a d3磷酸化水平,增强T G F-β1/S m a d3信号,促进M F发展[24]㊂m i R N A-199a-3p,-5p可以加强T G F-β1/S m a d s信号转导,从而刺激胶原纤维形成,而T G F-β1/S m a d s信号通路的激活又可以提高m i R N A-199a-3p,-5p的表达,形成正反馈循环,进一步加重了M F程度㊂在高血压大鼠心脏重构过程中,m i R N A-199b-5p㊁T G F-β1㊁S m a d3表达量显著升高,用药物贝那普利干预后,表达量下降,心脏重构程度减轻,提示m i R N A-199b-5p与T G F-β1/S m a d s通路之间的潜在作用[26]㊂研究人员证实,m i R N A-199b-5p在心肌成纤维细胞的细胞核中高度表达,核m i R N A-199b-5p可以在体内外激活细胞周期依赖蛋白9表达,而细胞周期依赖蛋白9诱导S m a d3接头的磷酸化,这对于T G F-β1/S m a d s信号的完全激活是不可或缺的[27]㊂所以,在心脏重塑过程中T G F-β1/ S m a d3信号转导很可能介导了m i R N A-199b-5p诱导纤维化相关基因表达的作用㊂目前就m i R N A-199在M F发生发展㊁诊断治疗的关系的研究仍然不完善,还需要进一步的研究㊂3.4m i R N A-23 心房颤动患者右心耳组织中, m i R N A-23和T G F-β1表达水平均大幅提高,且二者表达呈正相关[28],对m i R N A-23进行基因干扰能㊃19㊃河北医科大学学报第45卷第1期够降低T G F-β的表达,显著改善风湿性心脏病大鼠M F的严重程度[29]㊂另一研究发现,小鼠脓毒症模型中,心肌组织m i R N A-23b表达水平上调,T G F-β1/S m a d2/3信号通路激活,加入m i R N A-23b抑制剂阻止了脓毒症诱导的T G F-β1和S m a d2/3的高表达,作用机制可能为m i R N A-23b靶向抑制T G F-β1/S m a d2/3信号通路的转录抑制因子来促进T G F-β1/S m a d2/3信号通路的激活,从而介导脓毒症晚期心脏纤维化重塑[30]㊂杨真祯等[31]发现,在分离培养的人心房肌成纤维细胞中,成纤维细胞的活力㊁增殖能力㊁迁移能力不因为m i R N A-23b-3p 的过表达而发生显著变化,但会导致纤维化相关基因的表达大幅上调;m i R N A-23b-3p可与T G F-βR Ⅲ特定位点靶向结合抑制其表达,无论是沉默T G FβRⅢ还是过表达m i R N A-23b-3p均能使纤维化相关蛋白表达水平明显升高以及S m a d3磷酸化水平大幅上调,提示m i R N A-23b-3p通过靶向抑制T G F-β1/S m a d s信号通路的负调控因子T G F-βRⅢ,从而激活该通路,促进胶原沉积和心脏纤维化过程㊂有关m i R N A-23与M F的研究尚不全面, m i R N A-23在M F的发生发展中具体发挥的作用及其重要性还有待进一步的探讨㊂3.5其他m i R N A m i R N A-125b在心肌成纤维细胞过表达后,与纤维化有关的基因表达水平显著升高,T G F-β1/S m a d s通路相关蛋白T G F-β1的表达水平及S m a d2/S m a d3蛋白磷酸化水平均有明显上调,这些结果提示,m i R N A-125b对心肌成纤维细胞的一系列调控作用可能是通过T G F-β1/S m a d s通路实现的[32]㊂m i R N A-10a过表达可促进心房组织T G F-β1表达㊁降低S m a d7表达从而激活T G F-β1/ S m a d s信号通路,提升了心脏成纤维细胞的增殖能力并加速心房颤动诱导的心脏纤维化[33]㊂制备急性心肌梗死大鼠模型并上调m i R N A-208a在模型大鼠体内的表达,发现T G F-β1㊁S m a d2㊁S m a d3表达异常升高,沉默m i R N A-208a得到相反结果,提示m i R N A-208a对T G F-β1/S m a d s通路的调节作用[34]㊂在小鼠心肌成纤维细胞转染m i R N A-140-5p 模拟物后,S m a d s依赖的T G F-β1信号通路相关蛋白T G FβRⅠ明显下调㊁S m a d2磷酸化程度降低㊁S m a d7的表达明显增加,m i R N A-140-5p能够靶向作用于T G FβRⅠ抑制T G F-β1/S m a d s信号降低纤维化程度[35]㊂在缺氧条件下培养的心肌成纤维细胞中,m i R N A-130a过表达能够下调T G FβRⅠ表达㊁减弱S m a d3磷酸化程度,且T G FβRⅠ是m i R N A-130a的靶基因,m i R N A-130a靶向作用于T G FβRⅠ抑制T G F-β1/S m a d s信号转导,阻碍了成纤维细胞向肌成纤维细胞的转化,从而发挥抗纤维化特性[36]㊂m i R N A-126能够使心肌梗死大鼠T G F-β1㊁S m a d2和S m a d3相对表达量显著降低,阻断T G F-β1/S m a d s信号的促纤维化作用[37]㊂大鼠心梗模型显示,m i R N A-1908过表达后T G F-β1和S m a d2/3的表达被抑制,从而显著改善了心脏功能㊁降低M F程度,可能机制为m i R N A-1908通过靶向T G F-β1抑制T G F-β1/S m a d s通路的激活改善M F[38]㊂4展望M F是多种心血管疾病发展到一定阶段的共同病理变化,发病机制纷繁复杂,目前对其了解尚不全面,缺乏有效的治疗手段与措施㊂关于m i R N A的研究已在M F发生机制等方面获得了重大突破,从表观遗传学角度丰富了M F的发病机制,有可能是疾病的生物学标志物和潜在治疗靶点㊂而T G F-β1/S m a d s通路被认为是影响M F的经典信号通路,广泛参与了M F发展过程㊂m i R N A是影响T G F-β1/S m a d s信号转导的重要调节因子,两者之间存在着精细复杂的调节,但作用机制尚未完全明确,部分存在争议,在今后的研究中需要更深入的探索㊂多项动物实验表明,调节T G F-β1/S m a d s信号通路相关m i R N A的表达能够在一定程度上改善心肌纤维化,m i R N A很可能成为治疗心肌纤维化的干预靶点,但目前缺乏临床证据的支持㊂尽管如此,这些发现仍为M F的早期诊断㊁精准治疗和良好预后指明新的道路,利用m i R N A预测疾病,通过调控m i R N A进而调控T G F-β1/S m a d s通路实现有效抑制M F的发生发展,从而改善患者预后㊁提高患者生命质量,这将是未来心血管药物研发的一个重要的发展方向㊂有理由相信随着研究的深入和技术的发展,M F的治疗有望实现开创性突破㊂[参考文献][1] T r a v e r s J G,T h a r p C A,R u b i n o M,e t a l.T h e r a p e u t i c t a r g e t sf o rc a r d i a cf i b r o s i s:f r o m o l ds c h o o l t on e x t-g e n[J].JC l i nI n v e s t,2022,132(5):e148554.[2]杨萍芬,牛艳芬.T G F-β1/S m a d信号通路在组织纤维化中的研究进展[J].国际药学研究杂志,2019,46(10):738-744.[3]王峰,闫欣欣,张茜,等.微小R N A介导心肌纤维化信号通路的研究进展[J].生命的化学,2021,41(2):231-236. [4]陈希琦,张晓双,周永坤,等.T G F-β1/S m a d s信号通路在纤维化疾病中的研究进展[J].中国中西医结合外科杂志,2021,27(2):351-354.[5] F r a n g o g i a n n i s N G.C a r d i a c f i b r o s i s:C e l l b i o l o g i c a lm e c h a n i s m s,m o l e c u l a r p a t h w a y s a n d t h e r a p e u t i co p p o r t u n i t i e s[J].M o lA s p e c t sM e d,2019,65:70-99.㊃29㊃河北医科大学学报第45卷第1期[6]吴琼,董艺丹,王佑华,等.扩心方通过调节T G F-β1/S m a d2通路改善扩张型心肌病大鼠心肌纤维化[J].世界科学技术-中医药现代化,2022,24(1):243-251.[7]J i n W,W a n g J,L i uC P,e t a l.S t r u c t u r a l b a s i s f o r p r i-m i R N Ar e c o g n i t i o nb y d r o s h a[J].M o l C e l l,2020,78(3):423-433.[8]李潇凡,耿丹丹,毕瑜林,等.m i R N A的非经典作用机制研究进展[J].生物技术通报,2022,38(12):1-10.[9]朱参战,王新宏,刘昕,等.微小R N A-21-5p靶向S m a d7调控转化生长因子-β1诱导心肌纤维化促进房颤的发生[J].临床内科杂志,2019,36(7):485-489.[10]徐华.m i R-21靶向调控J a g g e d1促进心肌纤维化[D].南昌:南昌大学,2018.[11] Y u a n J,C h e nH,G eD,e t a l.M i r-21p r o m o t e s c a r d i a c f i b r o s i sa f t e r m y o c a r d i a li n f a r c t i o n v i a t a r g e t i n g S m a d7[J].C e l lP h y s i o l B i o c h e m,2017,42(6):2207-2219.[12] L i D,M a oC,Z h o uE,e t a l.M i c r o R N A-21m e d i a t e s a p o s i t i v ef e e d b a c k o n a ng i o t e n s i nⅡ-i n d u c e d m y o f i b r o b l a s tt r a n s f o r m a t i o n[J].J I n f l a mm R e s,2020,13:1007-1020.[13]孟华,安松涛,刘军,等.微小R N A-21-5p促进梗死心肌纤维化加重心力衰竭的作用及机制[J].中国心血管杂志,2019,24(6):545-549.[14] T a o H,Z h a n g M,Y a n g J J,e t a l.M i c r o R N A-21v i ad y s re g u l a t i o nof WW d o m a i n-c o n t a i n i ng p r o t e i n1r e g u l a t ea t r i a l f ib r o s i s i na t r i a l f i b r i l l a t i o n[J].H e a r tL u n g C i r c,2018,27(1):104-113.[15] Z h a n g Y,Y u a nB,X u Y,e ta l.M i R-208b/m i R-21p r o m o t e st h e p r o g r e s s i o no fc a r d i a cf i b r o s i st h r o u g ht h ea c t i v a t i o no ft h eT G F-b e t a1/S m a d-3s i g n a l i n gp a t h w a y:a n i nv i t r oa n d i nv i v o s t u d y[J].F r o n tC a r d i o v a s cM e d,2022,9:924629. [16]史东东,张栋,高刚利,等.m i R-21-5p靶向T G F-β_1调节大鼠心肌细胞增殖和凋亡[J].延安大学学报(医学科学版),2021,19(4):19-23,38.[17]袁媛,韩大鹏,朱永新.m i R-21通过激活P I3K/A k t信号通路对缺氧诱导的大鼠心肌细胞活性的作用机制[J].重庆医学,2021,50(13):2165-2170.[18]范丽,姚亚妮,李瑜.m i R-21通过靶向P D C D4减轻小鼠心脏缺血再灌注损伤[J].解剖学研究,2019,41(5):407-411.[19] H i n k e lR,R a m a n u j a m D,K a c z m a r e k V,e ta l.A n t i m i R-21p r e v e n t sm y o c a r d i a l d y s f u n c t i o n i na p i g m o d e l o f i s c h e m i a/r e p e r f u s i o ni n j u r y[J].J A m C o l lC a r d i o l,2020,75(15):1788-1800.[20]薛贻敏,陈明光,陈德伟,等.微小R N A-21在小鼠慢性病毒性心肌炎心肌纤维化中的作用[J].中华心血管病杂志,2018,46(6):450-457.[21] W a n g D M,J i n J J,T i a n L M,e t a l.M i R-195p r o m o t e sm y o c a r d i a l f i b r o s i s i n M I r a t s v i a t a r g e t i n g T G F-b e t a1/S m a d[J].JB i o lR e g u lH o m e o s tA g e n t s,2020,34(4):1325-1332.[22]王冬梅.M i R-195通过靶向T G F-β1/S m a d信号通路促进大鼠心肌梗死后心肌纤维化的机制研究[D].兰州:兰州大学,2022.[23] D i n g H,Y a o J,X i e H,e t a l.M i c r o R N A-195-5pd o w n re g u l a t i o ni n h i b i t se n d o t h e l i a l m e s e n c h y m a lt r a n s i t i o na n d m y o c a r d i a l f ib r o s i s i n d i a b e t ic c a rd i o m y o p a t h y b yt a r g e t i n g S m a d7a n di n h i b i t i n g t r a n s f o r m i n gg r o w t hf a c t o rb e t a1-S m a d s-s n a i l p a t h w a y[J].F r o n t P h y s i o l,2021,12:709123.[24]张灼.微小R N A m i R-199a-5p和m i R-199a-3p在心肌纤维化中的表达和作用机制研究[D].广州:华南理工大学,2018.[25]梁景南,朱文思,张灼,等.m i R-199a-3p靶向S m a d1促进小鼠心肌纤维化相关基因的表达[J].南方医科大学学报,2018,38(10):1203-1208.[26]吴雪燕,郑元琦,刘合焜,等.M i c r o R N A-199b-5p在贝那普利改善自发性高血压大鼠心脏重构中的作用[J].海峡药学,2018,30(7):11-15.[27]曾妮.胞核内m i R-199b-5p通过促进C D K9介导的S m a d3激活促进心肌纤维化[D].广州:华南理工大学,2021.[28] Y u R B,L i K,W a n g G,e t a l.M i R-23e n h a n c e s c a r d i a cf i b r o b l a s t p r o l i f e r a t i o n a n d s u p p r e s s e s f i b r o b l a s t a p o p t o s i s v i at a r g e t i n g T G F-b e t a1i na t r i a l f i b r i l l a t i o n[J].E u rR e v M e dP h a r m a c o l S c i,2019,23(10):4419-4424.[29]姚峰,刘珍君,何思泉,等.m i R-23基因干扰通过下调T G F-β改善风湿性心脏病大鼠心肌纤维化和免疫紊乱[J].免疫学杂志,2021,37(7):590-595.[30] Z h a n g H,C a u d l eY,S h a i k hA,e t a l.I n h i b i t i o no fm i c r o R N A-23b p r e v e n t s p o l y m i c r o b i a l s e p s i s-i n d u c e d c a r d i a c d y s f u n c t i o nb y m o d u l a t i n g T G I F1a n dP T E N[J].B i o m e dP h a r m ac o t h e r,2018,103:869-878.[31]杨真祯,朱文思,肖珍,等.微小R N A-23b-3p通过靶向T G F B R3促进人心房肌成纤维细胞纤维化相关基因表达[J].中国病理生理杂志,2019,35(1):119-125.[32]沈志方,许学升,孙继兰.M i R-125b对心肌梗死后成纤维细胞的调控机制研究[J].中国循证心血管医学杂志,2018,10(7):853-856,860.[33] L i P F,H eR H,S h i S B,e t a l.M o d u l a t i o n o fm i R-10a-m e d i a t e dT G F-b e t a1/S m a d s s i g n a l i n g a f f e c t sa t r i a l f i b r i l l a t i o n-i n d u c e dc a rd i a c f i b r o s i s a n dc a r d i a c f i b r o b l a s t p r o l i fe r a t i o n[J].B i o s c iR e p,2019,39(2):B S R20181931.[34]刘国星,杜见霞,刘秀红,等.沉默m i R-208a对急性心肌梗死大鼠心室重构的影响及机制研究[J].河北医药,2022,44(1):36-40.[35]许丹丹,张毅,张飞雪,等.m i R-140-5p靶向转化生长因子β受体Ⅰ调控乳小鼠心肌成纤维细胞的胶原表达[J].中国药理学与毒理学杂志,2020,34(10):729-735.[36] F e n g Y,B a o Y,D i n g J,e ta l.M i c r o R N A-130aa t t e n u a t e sc a rd i a cf i b r o s i s a f te r m y o c a r d i a li nf a r c t i o n t h r o ugh T G F-b e t a/S m a d s i g n a l i n g b y d i r ec t l y t a r g e t i n g T G F-b e t ar e c e p t o r1[J].B i o e n g i n e e r e d,2022,13(3):5779-5791. [37]曹建,徐晓辉,张龙,等.m i R-126对心肌梗死大鼠T G F-β/S m a d s信号通路的影响[J].心血管康复医学杂志,2021,30(5):557-562.[38] C h e n Y,L i T,G a o Q,e ta l.M i R-1908i m p r o v e sc a r d i a cf i b r o s i sa f t e r m y o c a r d i a l i n f a r c t i o n b y t a rg e t i n g T G F-b e t a1[J].E u rR e vM e dP h a r m a c o l S c i,2018,22(7):2061-2069.(本文编辑:赵丽洁)㊃39㊃张诺琪等基于T G F-β1/S m a d s信号通路的m i R N A在心肌纤维化的研究进展。

表达tfg-beta的基因

表达tfg-beta的基因

表达TFG-beta的基因TFG-beta(Transforming Growth Factor-beta)是一种重要的细胞因子,对多种生物学过程具有调控作用。

在基因表达层面,TFG-beta 可以通过激活或抑制特定基因的表达来实现其生物功能。

以下是一些受到 TFG-beta 调控的基因:1. SMAD 家族:SMAD 是一类转录因子,负责将 TFG-beta 的信号传递至细胞内。

当 TFG-beta 结合到细胞表面的受体时,会激活SMAD 的磷酸化,进而影响其转录活性。

2. CTGF(Connective Tissue Growth Factor):CTGF 是一种受到 TFG-beta 调控的生长因子,参与细胞增殖、分化、迁移等过程。

3. BCL-2 家族:TFG-beta 可以调节细胞凋亡过程,通过激活BCL-2 家族成员来抑制细胞凋亡。

4. ID1(Inhibitor of DNA Binding 1):ID1 是一种受到TFG-beta 调控的转录因子,具有抑制 DNA 结合的能力,进而影响细胞的分化和增殖。

5. TIMP-1(Tissue Inhibitor of Metalloproteinase-1):TFG-beta 可以调节 TIMP-1 的表达,从而影响细胞外基质的降解和重塑。

6. AP-1(Activator Protein-1):TFG-beta 可以与 AP-1 转录因子相互作用,共同调控基因表达。

这些基因在 TFG-beta 信号通路的调控下,参与多种生物学过程,从而影响细胞的功能和生物学特性。

需要注意的是,TFG-beta 对基因表达的调控具有复杂性和多样性,受到多种因素的影响。

上述基因仅作为 TFG-beta 调控网络的一部分,实际研究中可能涉及更多的基因和信号通路。

SDS-PAGE凝胶配方

SDS-PAGE凝胶配方

SDS-PAGE凝胶配制试剂盒产品简介:碧云天生产的SDS-PAGE凝胶配制试剂盒提供了配制SDS-PAGE凝胶所需的各种试剂,用户只需自备制胶器具和蒸馏水,即可配制PAGE胶(即聚丙烯酰胺凝胶)。

SDS-PAGE凝胶配制试剂盒不仅可用于配制SDS-PAGE凝胶,也可用于配制非变性(native)PAGE凝胶。

本试剂盒约可配制30-50块常规大小的PAGE胶。

保存条件:1M Tris-HCl, pH8.8、10% SDS、Ammonnium persulfate (过硫酸铵)和1M Tris-HCl, pH6.8室温保存。

30% Acr-Bis (29:1)和TEMED 4℃避光保存。

过硫酸铵配制成10%溶液后,分装成小管-20℃保存,通常半年内有效。

注意事项:过硫酸铵配制成10%溶液后,应当-20℃保存。

同时应尽量减少室温存放时间,以防失效。

TEMED易挥发,使用后请盖紧瓶盖。

另外凝胶凝聚的速度和温度及光照关系密切,可通过适当调节TEMED的用量,控制在不同的室内环境下凝胶凝聚的速度。

为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:1. 根据目的蛋白的分子量大小选择合适的凝胶浓度,再按照下面的表格配制SDS-PAGE的分离胶(即下层胶):使用本产品的文献:1. Deng XQ, Chen LL, Li NX.The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats.Liver Int. 2007 Jun;27(5):708-15.2. Wang PH, Gu ZH, Huang XD, Liu BD, Deng XX, Ai HS, Wang J, Yin ZX, Weng SP, Yu XQ, He JG.An immune deficiency homolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes. Mol Immunol. 2009 May;46(8-9):1897-904.3. Liang QL, Wang BR, Li GH.DcR3 and survivin are highly expressed in colorectal carcinoma and closely correlated to its clinicopathologic parameters. J Zhejiang Univ Sci B. 2009;10(9):675-82.4. Deng XQ, Cheng JL, Zhang YP, Li NX, Chen LL.Effects of caloric restriction on SIRT1 expression and apoptosis of islet beta cells in type 2 diabetic rats.Springer Verlag. 2009.5. Cao X, Zhang Y, Zou L, Xiao H, Chu Y, Chu X.Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis.Neurosci Lett. 2010;479(2):118-22. Epub 2010 May 21.6. Cao X, Xiao H, Zhang Y, Zou L, Chu Y, Chu X.1, 5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res. 2010;1347:142-8. Epub 2010 Jun 1.7. Huang L, Bi HC, Liu YH, Wang YT, Xue XP, Huang MCAR-mediated up-regulation of CYP3A4 expression in LS174T cells by Chinese herbal compounds.Drug Metab Pharmacokinet. 2011;26(4):331-40.8. Li Q, Lei RX, Zhou XD, Kolosov VP, Perelman JM.Regulation of PMA-induced MUC5AC expression by heparin in human bronchial epithelial cells.Mol Cell Biochem. 2012 Jan;360(1-2):383-91.9. Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY.Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusioninjury mediated by the JAK2/STAT3 survival pathway.Braz J Med Biol Res. 2012 May 31.10.Chen Z, Qing J, Qin G, Hu LConstruction and characterization of bifunctional TIM-3-EGFP fusion proteins.Protein Expr Purif. 2012 Nov;86(1):1-6. doi: 10.1016/j.pep.2012.08.004. Epub 2012 Aug 23.11.Huang L, Huang M, Li YH, Li RM, Zeng Y, Kuang SY, Zhang L, Wang YT, Bi HC.Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanumpraeruptorum Dunn.J Ethnopharmacol. 2013 Jul 9;148(2):596-602. doi: 10.1016/j.jep.2013.05.008. Epub 2013 May 20.12.Zhang H, Wang ZW, Wu HB, Li Z, Li LC, Hu XP, Ren ZL, Li BJ, Hu ZP.Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cellsvia ROS-dependent ERK-NF-κB pathways. Mol Cell Biochem. 2013 Mar;375(1-2):11-21. doi: 10.1007/s11010-012-1512-7. Epub 2012 Dec 29.13.Liu R, Liu X, Zheng Y, Gu J, Xiong S, Jiang P, Jiang X, Huang E, Yang Y, Ge D, Chu Y.MicroRNA-7 sensitizes non-small cell lung cancer cells to paclitaxel.Oncol Lett. 2014 Nov;8(5):2193-2200. Epub 2014 Sep 4.14.Zhao W, Zhao J, Hou M, Wang Y, Zhang Y, Zhao X, Zhang C, Guo D.HuR and TIA1/TIAL1 are involved in regulation of alternative splicing of SIRT1 pre-mRNA.Int J Mol Sci. 2014 Feb 20;15(2):2946-58. doi: 10.3390/ijms15022946.。

宋建国

宋建国

中国科学院上海生命科学研究院在岗研究生导师情况介绍姓名宋建国所系名称生化与细胞所性别男专业名称生物化学与分子生物学技术职务研究员行政职务无Mail地址jgsong@指导博士生总数14 指导硕士生总数0 通讯地址上海岳阳路320号目前博士生数 5 目前硕士生数 2 邮政编码200031研究方向细胞增殖、分化与凋亡的机制研究工作主要从事与细胞命运(如分化和凋亡)决定相关的信号机制研究工作。

研究TGF-beta1在细胞凋亡与分化中的作用及其的信号传递机制,集中在上皮细胞凋亡和向间质细胞转变转方面。

细胞凋亡和EMT(Epithelial-to-Mesenchymal Transition,上皮细胞向间质细胞的转变)在胚胎发育、肿瘤发生和转移以及纤维化疾病发生中起着重要作用,这方面的研究对于揭示纤维化疾病、癌细胞的转移,以及其它相关疾病的发生机理并提供相应的治疗策略具有重要意义。

我们对TGF-β诱导细胞凋亡和EMT的研究结果显示,TGF-β可以诱导肝细胞发生凋亡和EMT两个相互关联又彼此独立的事件,在同样的处理条件下,处于不同周期的细胞选择了不同的命运。

TGF-β诱导的PKA和STA T3的活化在肝细胞凋亡和EMT 过程中都起到了重要作用。

近期的研究还发现,TGF-β可以诱导铁蛋白Ferritin重链的降解,而在降解过程中造成的易变铁库及活性氧(ROS)的增加在EMT过程中起到了重要的作用。

我们的结果还显示,Nitric oxide (NO) 以及胰岛素受体底物-1信号事件在TGF-β诱导的EMT过程中起到了重要作用。

这方面的研究工作还正在深入进行中。

我们期待有更多的重要发现。

获奖情况指导研究生情况获博士学位12人,在学博士生5人,硕士生2人。

个人简介宋建国。

研究员/研究组长。

1993年获美国纽约市立大学(City University of New Y ork) Ph.D.(生物化学)学位; 1993年至1995年底在旧金山加州大学(UCSF)做博士后研究。

纤维化相关因子与多囊卵巢综合征病变发生的研究进展

纤维化相关因子与多囊卵巢综合征病变发生的研究进展

纤维化相关因子与多囊卵巢综合征病变发生的研究进展多囊卵巢综合征(PCOS)的病理生理学改变复杂,其中卵巢包膜增厚、间质纤维化是导致PCOS患者卵泡发育障碍或排卵受阻的原因之一。

卵巢包膜增厚、间质纤维化的发生是多因素的,目前研究认为其涉及多种因子,其中结缔组织生长因子(CTGF)、转化生长因子(TGF-β1)、过氧化物酶体增殖物激活受体γ(PPARγ)、基质金属蛋白酶及其抑制因子(MMPs-TIMPs)在卵巢纤维化发生、发展过程中,破坏细胞外基质合成与降解的协调,最终导致卵巢间质成分的增加。

本文就这些卵巢纤维化相关因子的研究进展作一综述。

标签:多囊卵巢综合征;纤维化;细胞外基质多囊卵巢综合征(polycystic ovarian syndrome,PCOS)是生殖功能障碍与代谢异常并存的内分泌紊乱性疾病,临床上以雄激素过高、持续无排卵、卵巢多囊样改变为特征,常伴有胰岛素抵抗和肥胖。

PCOS所引起的女性不育是现代社会所面临的严重问题,其发病机制极其复杂,其中涉及到基质金属蛋白酶及其组织抑制因子(matrix metalloproteinases and its tissue inhibitors,MMPs-TIMPs)平衡关系的破坏和细胞外基质(extracellular matrix,ECM)成分的异常降解,PCOS患者卵巢胶原蛋白表达异常,可能与间质纤维化、基底膜增厚有关[1]。

近年来,卵巢局部产生的纤维化相关因子对PCOS细胞外基质的改变成为研究热点,这些纤维化相关因子在PCOS的发生、发展中,导致卵巢间质成分的增加,本文就其对PCOS病变发生的研究进展进行综述。

1 结缔组织生长因子(connective tissue growth factor,CTGF)CTGF是富含半肤氨酸的细胞因子,属于CCN家族的成员之一。

CTGF可促进细胞增殖、细胞黏附分子表达,导致细胞合成胶原和分泌细胞外基质,CTGF 在多种组织重建相关性疾病,如溃疡愈合、损伤修复、纤维化和肿瘤发生等过程中具有重要意义[2~5]。

放射性肺损伤小鼠肺组织TGFβ1与α-SMA、Col1a1、FN mRNA表达的关系

放射性肺损伤小鼠肺组织TGFβ1与α-SMA、Col1a1、FN mRNA表达的关系

放射性肺损伤小鼠肺组织TGFβ1与α-SMA、Col1a1、FNmRNA表达的关系张翠影;折虹;王艳阳;杨燕;唐静;王春燕【摘要】目的观察转化生长因子β1(TGFβ1)在小鼠放射性肺损伤中的表达与纤维化标志物α-平滑肌肌动蛋白(α-SMA)、胶原蛋白Ⅰ(Col1a1)、纤维连接蛋白(FN)的关系.方法选用雌性C57BL/6小鼠40只,分为A、B两组,每组20只,每组又随机分为对照组和照射组,即对照A组和照射A组与对照B组和照射B组,每组10只.采用瓦里安直线加速器6MV X射线对照射A、B组小鼠右侧胸腔进行单次单前野照射,A组照射剂量为12.5 Gy,B组照射剂量为22.5 Gy,两组对照组只麻醉不照射.A组照射3周后取右肺上叶部分组织行HE染色,B组照射12周后取右肺上叶部分组织行Masson染色,剩余右肺组织均采用实时荧光定量PCR方法定量测定肺组织TGFβ1和纤维化标志物α-SMA、Coi1 a1、FN mRNA的表达.结果照射A组行HE染色显示肺组织结构紊乱,肺泡壁增厚,肺间质内及细支气管周围大量炎症细胞浸润,呈明显的肺泡炎症改变;照射B组行Masson染色显示肺泡周围及肺间质大量蓝染的胶原纤维,呈典型的肺纤维化病变;照射A组和照射B组小鼠受损伤右肺组织细胞因子TGFβ1和纤维化标志物α-SMA、Col1a1和FN的mRNA表达水平均高于相应对照组(P均<0.05).结论TGFβ1可能在放射性肺纤维化的起始和形成过程中发挥重要作用.【期刊名称】《宁夏医科大学学报》【年(卷),期】2015(037)006【总页数】5页(P631-634,封3)【关键词】转化生长因子β1;纤维化标志物;放射性肺损伤【作者】张翠影;折虹;王艳阳;杨燕;唐静;王春燕【作者单位】宁夏医科大学,银川750004;宁夏医科大学总医院肿瘤医院,银川750004;宁夏医科大学总医院肿瘤医院,银川750004;宁夏医科大学总医院肿瘤医院,银川750004;宁夏医科大学,银川750004;宁夏医科大学,银川750004;宁夏医科大学,银川750004【正文语种】中文【中图分类】R817·论著·E-mail:************************通信作者:折虹,女,教授,主任医师,硕士研究生导师,研究方向:肿瘤放射治疗学。

急性脑出血病人血清TNF-α、TGF-β_(1)、ICAM-1水平与神经功能损伤及预后的相关性

急性脑出血病人血清TNF-α、TGF-β_(1)、ICAM-1水平与神经功能损伤及预后的相关性
Mianzhu People's Hospital,Mianzhu 618200,Sichuan,China Corresponding Author:WEI Pingbo
Abstract:Objective To explore the correlation between serum tumor necrosis facto-r α(TNF-α),transforming growth facto-r β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1) levels,and neurological deficit and prognosis in patients wirrhage. Methods The clinical data of 106 patients with acute intracerebral hemorrhage in Mianzhu People's Hospital from January 2018 to February 2020 were retrospectively analyzed,and 35 healthy people were collected as healthy control group.The National Institutes of
of patients at 30 d after admission,and the patients were divided into GOS 1 to 3 points group(poor prognosis group) and 4 to 5 points
group(good prognosis group).The differences in serum TNF-α,TGF-β1,and ICAM-1 levels were compared between two groups at admission,and receiver operating characteristic(ROC) curve was used to assess the predictive value of serum TNF-α, TGF-β1, and ICAM-1 levels at admission for recent poor prognosis in patients.Results The levels of serum TNF-α and ICAM-1 in mild group, moderate group,and severe group were higher than those in healthy control group,and the levels of TNF-αand ICAM-1 increased with the aggravation of neurological function deficit(P <0.05).The levels of serum TGF-β1 in mild group,moderate group,and severe group were higher than those in healthy control group,and the levels of TGF-β1 decreased with the aggravation of neurological function deficit(P <0.05).Pearson correlation analysis found that NIHSS score at admission of patients with acute intracerebral hemorrhage was significantly positively correlated with serum TNF-α and ICAM-1 (r =0.405,P < 0.05;r = 0.329,P < 0.05),and was it significantly negatively correlated with TGF-β1 level(r =-0.334,P < 0.05).The levels of serum TNF-α and ICAM-1 in poor prognosis group were significantly higher than those in better prognosis group(P < 0.05), while the TGF-β1 level was lower than that in better prognosis group(P <0.05).ROC curve analysis found that the levels of serum TNF-α,TGF-β1,and ICAM-1 at admission showed high predictive value for recent poor prognosis of patients,the areas under the curve(AUC) were 0.890,0.906,and 0.889,respectively(all P <0.05),and the cu-t off values were 105.37 pg/mL,16.84 ng/mL,and 557.32 ng/mL respectively,and the combined detection of TNF-α,TGF-β1,and ICAM-1 might suggest the highest predictive value(AUC=0.996,P <0.05).Conclusion Serum TNF-α,TGF-β1,and ICAM-1 at admission can help to judge the neurological deficit and the recent prognosis of patients with acute intracerebral hemorrhage.

肾微症积与尿转化生长因子-β、IV型胶原水平研究进展

肾微症积与尿转化生长因子-β、IV型胶原水平研究进展

JIANCXlJOURNALOFTRADITIONALCHINESEMEDICINE为主要临床特征的一类病证。

随着科学技术的发展,瘕积的内涵也不断扩展,现泛指一切疤痕疙瘩,而成为涉及多种脏器有瘕积特征性表现的多种疾病。

由于肾硬化表现为包括胶原纤维在内的细胞外基质过度增生,最终导致肾硬化,具有中医瘕积的特征;且无法用中医传统“四诊”发现,唯有通过肾活检借助显微镜才能诊断,故称之肾内微型瘢积。

本文就肾内微瘢积与肾硬化、尿转化生长因子.Bl(Transforminggrowthfactor-B1,TGF—p1)及IV型胶原(UrinarytypeIVcollagen,ColIV)之间的内在关系进行综述。

l瘾积形成的病因病机现代医学对瘀血的内涵,有较多的认同,如瘀血的形成和消散,与微循环功能、血液流变性改变,以及凝血、抗凝、纤溶等相关,都是肾小球疾病进行性发展的重要因素。

瘀血在肾硬化的过程中,由于血维蛋白样物的沉积,血栓形成,血管闭塞等,都可认为是血瘀。

胡仲仪等通过对膜性肾炎血栓素B2(TXB2)、6.酮一前列腺素ha(6-keto—PGFIa)的研究亦表明…:凝血机制被激活是肾脏病变持续发展,肾硬化发生并导致肾功能进行性衰退的重要因素。

因此瘀血证虽为标证,但它贯穿于肾硬化的所有阶段。

既是病理产物,又是可加重病变发展、正气衰败的致病因素。

对无形之痰的存在,目前认为多种肾小球疾病存在着继发性的脂质代谢异常,而脂质,尤其是氧化型低密度脂蛋白(OX.LDL)对肾脏的毒性机制,已成为国际肾脏病学者研究的热点,如Lee等研究939例肾活检标本,用westernboh法、免疫组化方法发现肾小球有OX—LDL沉积,而且有OX-LDL沉积的患者,其蛋白尿和肾小球硬化的程度较重。

可见无形之痰与肾小球疾病的发生、发展有着十分密切5讨论内制剂,主要由灵芝、黄芪、鳖甲等药物组成,其中黄近年来,结肠癌的全身化疗水平有显著的进步,芪、灵芝扶正固本,鳖甲善养肝。

碧云天生物技术Beyotime Biotechnology产品说明书

碧云天生物技术Beyotime Biotechnology产品说明书

碧云天生物技术/Beyotime Biotechnology 订货热线:400-1683301或800-8283301 订货e-mail :******************技术咨询:*****************网址:碧云天网站 微信公众号BeyoECL Moon (极超敏ECL 化学发光试剂盒)产品编号 产品名称包装 P0018FS BeyoECL Moon (极超敏ECL 化学发光试剂盒) 100ml P0018FMBeyoECL Moon (极超敏ECL 化学发光试剂盒)500ml产品简介:碧云天生产的Western 萤光检测试剂BeyoECL Moon 是一种极超敏的以luminol 为基础的ECL 化学发光试剂盒,发光效果显著优于BeyoECL Star ,可与二抗上偶联的辣根过氧化物酶(horseradish peroxidase, HRP)发生化学反应,发出萤光,从而可以通过用X 光片压片或其它适当化学发光成像设备检测样品。

碧云天生产的Western 萤光检测试剂目前共有三种,分别是P0018S/P0018M BeyoECL Plus 、P0018AS/P0018AM BeyoECL Star 和P0018FS/P0018FM BeyoECL Moon 。

常规的Western 检测,优先推荐使用BeyoECL Star 。

对于丰度比较高的目的蛋白的检测,例如内参蛋白等的检测,推荐使用性价比更高的BeyoECL Plus 。

对于低丰度较难检测的目的蛋白,优先推荐使用检测灵敏度最高的BeyoECL Moon 。

但对于丰度适中的目的蛋白的检测,不太推荐使用BeyoECL Moon ,因为使用BeyoECL Moon 时由于检测灵敏度特别高,容易产生过曝的现象。

BeyoECL Moon 灵敏度极高,Western blot 检测效果与Thermo 公司SuperSignal West Dura 相当或略佳(参考图1),化学发光效果在1小时内显著优于Thermo 公司的SuperSignal West Dura ,30分钟内发光效果可达SuperSignal West Dura 的约1.8-3.6倍,BeyoECL Star 的4.2-6.9倍(参考图2)。

tgfbr1蛋白条带分子量

tgfbr1蛋白条带分子量

tgfbr1蛋白条带分子量TGFBR1(Transforming Growth Factor Beta Receptor 1)作为转化生长因子β(TGF-β)的受体蛋白,在细胞生长、分化、凋亡、细胞外基质和肌肉等方面发挥着重要的生物学作用。

在哺乳动物中,TGF-β的结合和活化依赖于其特异性受体TGFBR1。

因此,TGFBR1的研究对于深入了解肿瘤发生发展、肺纤维化等多种疾病的机制,以及开发相关治疗手段具有重要意义。

TGFBR1蛋白是一种糖蛋白,其分子量大约为53 kDa。

然而,在不同组织、细胞类型以及不同分化阶段的细胞中,TGFBR1的表达量和形态可能会发生变化,导致其蛋白条带分子量也会有所不同。

在人类细胞中,TGFBR1主要突出的条带分子量为50-55 kDa。

TGFBR1在人类细胞中的表达分布广泛,包括肝、肺、胃、肾、心脏、大脑等多个器官和组织中都有表达。

具体来说,TGFBR1在上皮细胞、成纤维细胞、平滑肌细胞、心肌细胞、内皮细胞、泌乳细胞、骨细胞和神经元等各种细胞中都有表达。

由于TGFBR1作为TGF-β的特异性受体蛋白,其结构具有较高的保守性。

TGFBR1蛋白与TGF-β结合后形成的活化复合物会导致信号转导通路的激活,从而真正发挥TGF-β在细胞增殖、分化、迁移、肿瘤转化等多个方面的作用。

研究表明,TGFBR1的异常表达或功能异常将导致相关疾病的发生和发展。

总的来说,在TGF-β信号通路中,TGFBR1是一个十分重要的蛋白。

对于TGFBR1的研究和了解,将有助于深入解析TGF-β信号通路中的调节机制,探索TGF-β在各种生理和病理情况中的作用,为相关疾病的治疗提供新的突破口。

心肌纤维化引发心房颤动的研究进展

心肌纤维化引发心房颤动的研究进展

心肌纤维化引发心房颤动的研究进展姜亦瑶;王凯;施超【摘要】以心肌纤维化为代表的心脏重构是心房颤动的发病机制之一,心肌成纤维细胞增殖及异常分泌细胞外基质与心肌纤维化有关.在AngⅡ的作用下,TGF-β1/Smad、PI3K/Akt等信号通路调控CFs增殖.KDM5A在心肌纤维化中的作用已成为研究热点.本文就AngⅡ参与信号通路的最新研究进展进行小结,为理解心肌纤维化在AF进程中的作用提供依据.【期刊名称】《医学信息》【年(卷),期】2018(031)012【总页数】3页(P28-30)【关键词】心房颤动;心肌纤维化;心脏重构【作者】姜亦瑶;王凯;施超【作者单位】天津市第一中心医院心血管外科,天津300074;蚌埠医学院第一附属医院心脏外科,安徽蚌埠233004;天津市第一中心医院心血管外科,天津300074;蚌埠医学院第一附属医院心脏外科,安徽蚌埠233004【正文语种】中文【中图分类】R542.23;R541.75心房颤动(atrial fibrillation,AF)是心脏瓣膜病、冠心病、高血压等心血管疾病的常见并发症[1]。

由AF引发的血栓形成、脑卒中、心力衰竭严重影响患者生存质量。

为降低AF发病率,明确其发病机制是不可或缺的重要环节。

心房重构、自主神经失调和离子通道异常活动等机制与AF发生有关。

心脏成纤维细胞(cardiac fibroblasts,CFs)是心肌组织中数量最多的细胞类型,是参与心脏骨架结构形成的重要成分。

当心脏受到病理刺激时,CFs开始增殖、分化为肌成纤维细胞,进而分泌细胞外基质(extracellular matrix,ECM)。

在心肌纤维化进程中,ECM代谢失衡,促进心肌组织纤维化,引起心房重构。

已有研究表明,血管紧张素Ⅱ(Angiotensi nⅡ,AngⅡ)可促进CFs肥大增生和分泌胶原蛋白,进而参与心房重构[2]。

PI3K/Akt信号通路调控心肌纤维化进展,与心脏重构密切相关。

tgf—β1氧化应激

tgf—β1氧化应激

tgf—β1氧化应激
氧化应激是指机体受到氧化应激物质影响后,产生一系列炎症和
氧化损伤的生理和病理变化。

tGF-β1(Transforming Growth Factor Beta 1)是一种细胞因子,参与多种细胞功能的调节。

在氧化应激中,tGF-β1可能发挥重要的作用。

氧化应激导致细胞内氧化还原平衡失调,产生大量活性氧自由基,这些自由基会造成细胞膜脂质过氧化、DNA氧化损伤等。

tGF-β1可以
通过调节细胞内氧化还原系统,增强抗氧化防御机制来减少氧化应激
所导致的细胞损伤。

它可以促进细胞内氧化还原酶的合成,如超氧化
物歧化酶(Superoxide Dismutase)、谷胱苷酸过氧化物酶(Glutathione Peroxidase)等,从而降低氧化应激对细胞的影响。

此外,tGF-β1还参与调节炎症反应。

氧化应激可引起炎症反应
的激活,而tGF-β1可以抑制炎症因子的产生和释放,减轻炎症反应
对细胞的损伤。

它还可以促进细胞外基质的合成和修复,加强细胞间
的黏附和结构支持,有助于维持组织的完整性和功能。

总结起来,tGF-β1在氧化应激过程中可以通过调节氧化还原平衡、抑制炎症反应和促进组织修复等方式,发挥保护细胞和组织免受
氧化应激损伤的作用。

然而,过度或长期的tGF-β1活化也可能导致
病理性改变,如纤维化等。

因此,tGF-β1在氧化应激中的作用具有双重性,需要进一步的研究来深入了解其调节机制和应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Molecular Biology of the CellVol.15,420–434,February2004Transforming Growth Factor-␤1Induces Apoptosis through Fas Ligand-independent Activation of the Fas Death Pathway in Human Gastric SNU-620Carcinoma CellsSang Gyun Kim,*†Hyun-Soon Jong,*Tae-You Kim,*‡Jung Weon Lee,*Noe Kyeong Kim,‡Seung Hwan Hong,†and Yung-Jue Bang*‡§*National Research Laboratory for Cancer Epigenetics,Cancer Research Institute,Seoul NationalUniversity College of Medicine,Seoul110-744,Korea;‡Department of Internal Medicine,SeoulNational University College of Medicine,Seoul110-744,Korea;and†School of Biological Sciences and Institute for Molecular Biology and Genetics,Seoul National University,Seoul151-742,KoreaSubmitted April3,2003;Revised September17,2003;Accepted October1,2003Monitoring Editor:Carl-Henrik HeldinTo date,two major apoptotic pathways,the death receptor and the mitochondrial pathway,have been well documented in mammalian cells.However,the involvement of these two apoptotic pathways,particularly the death receptor pathway, in transforming growth factor-␤1(TGF-␤1)-induced apoptosis is not well understood.Herein,we report that apoptosis of human gastric SNU-620carcinoma cells induced by TGF-␤1is caused by the Fas death pathway in a Fas ligand-independent manner,and that the Fas death pathway activated by TGF-␤1is linked to the mitochondrial apoptotic pathway via Bid mediation.We showed that TGF-␤1induced the expression and activation of Fas and the subsequent caspase-8–mediated Bid cleavage.Interestingly,expression of dominant negative FADD and treatment with caspase-8 inhibitor efficiently prevented TGF-␤1–induced apoptosis,whereas the treatment with an activating CH11or a neutral-izing ZB4anti-Fas antibody,recombinant Fas ligand,or Fas-Fc chimera did not affect activation of Fas and the subsequent induction of apoptosis by TGF-␤1.We further demonstrated that TGF-␤1also activates the mitochondrial pathway showing Bid-mediated loss of mitochondrial membrane potential and subsequent cytochrome c release associated with the activations of caspase-9and the effector caspases.Moreover,all these apoptotic events induced by TGF-␤1were found to be effectively inhibited by Smad3knockdown and also completely abrogated by Smad7expression,suggesting the involvement of the Smad3pathway upstream of the Fas death pathway by TGF-␤1.INTRODUCTIONTransforming growth factor-␤1(TGF-␤1)is the prototype of a widespread and evolutionarily conserved superfamily of cytokines that regulate a broad spectrum of cellular re-sponses,including proliferation,differentiation,and apopto-sis(Roberts and Sporn,1990;Derynck and Feng,1997; Moustakas et al.,2002).TGF-␤1exerts its cellular actions by binding to a heteromeric receptor complex consisting of type I(T␤RI)and type II(T␤RII)serine/threonine kinase receptor subunits.On ligand binding,T␤RII transphosphorylates and thereby activates T␤RI,which subsequently phosphorylates receptor-regulated Smad(R-Smad),Smad2,and Smad3.Ac-tivated R-Smad then undergoes a conformational change that allows heteromerization with a common partner, Smad4(Heldin et al.,1997;Derynck et al.,1998;Massague´and Chen,2000).These complexes are subsequently trans-located into the nucleus and act as TGF-␤1–sensitive tran-scriptional coactivators or corepressors by interacting with a variety of transcription factors(Attisano and Wrana,2000; Massague´and Wotton,2000).TGF-␤1responses can also be modulated by the inhibitory Smad,Smad6,and Smad7, which bind to the activated receptors or R-Smad,thereby preventing further propagation of TGF-␤1signaling(Ha-yashi et al.,1997;Imamura et al.,1997;Nakao et al.,1997). TGF-␤1has been shown to elicit apoptotic cell death in a variety of cell types.Moreover,TGF-␤1–induced apoptosis plays important roles in the selective elimination of dam-aged or abnormal cells from various normal tissues(Ober-hammer et al.,1992;Chaouchi et al.,1995),resulting in the proper development of a variety of tissues and organs,in-cluding the rhombencephalic neural crest(Graham et al., 1996),the interdigitalfields of the limb(Zou et al.,1997),and the mammary gland ductal system(Nguyen and Pollard, 2000).In addition to these significant roles of TGF-␤1–in-duced apoptosis in development,apoptosis by TGF-␤1and the selective elimination of preneoplastic cells may also be involved in TGF-␤1–mediated tumor suppression(Gold, 1999;de Caestecker et al.,2000).Although TGF-␤1–induced apoptosis is a well-documented phenomenon in many dif-ferent cell types,the biochemical mechanism responsible for mediating this death process is still poorly understood. Some reports have suggested that Bcl-2family members and caspases,involved in the apoptotic effector system,are acti-vated in cells undergoing TGF-␤1–induced apoptosis(Chen and Chang,1997;Saltzman et al.,1998).Recently,it was shown that Daxx,a Fas receptor-associated protein,whichArticle published online ahead of print.Mol.Biol.Cell10.1091/mbc.E03–04–0201.Article and publication date are available at/cgi/doi/10.1091/mbc.E03–04–0201.§Corresponding author.E-mail address:bangyj@plaza.snu.ac.kr.420©2004by The American Society for Cell Biologymediates the activation of JNK and the apoptotic cell death induced by Fas,physically interacts with T␤RII and is in-volved in mediating TGF-␤–induced apoptosis(Perlman et al.,2001).Until recently,two major apoptotic pathways,the death receptor pathway and the mitochondrial apoptotic path-ways,are well characterized in mammalian cells(Hengart-ner,2000).The death receptor pathway is triggered by mem-bers of the death receptor family,such as Fas receptor and tumor necrosis factor receptor(Trauth et al.,1989;Itoh et al., 1991).The binding of Fas ligand(FasL)to the Fas receptor induces receptor clustering and the formation of a death-inducing signaling complex,which in turn recruits and ac-tivates caspase-8,as an initiator caspase,via the adaptor molecule Fas-associated death domain protein(FADD) (Suda et al.,1993;Boldin et al.,1996;Wallach et al.,1999).On the other hand,the mitochondrial pathway is used exten-sively in response to extracellular cues and internal insults such as DNA damage(Hengartner,2000).These diverse response pathways converge on mitochondria,often through the activation of a proapoptotic member of the Bcl-2 family.These species are mainly responsible for changes in mitochondria,including the opening of permeability transi-tion pores,a decrease in the mitochondrial membrane po-tential,and the release of cytochrome c into cytoplasm(Ad-ams and Cory,1998;Green and Reed,1998).This released cytochrome c associates with Apaf-1and then activates caspase-9as an initiator caspase(Li et al.,1997).Meanwhile, cross-talk and integration between the death receptor and the mitochondrial pathways have also shown that caspase-8 can activate the mitochondrial pathway by cleaving Bid,a proapoptotic member of the Bcl-2family(Li et al.,1998;Yin et al.,1999).Ultimately,all of these apoptotic pathways converge at the level of effector caspase activation,e.g.,of caspase-3(Salvesen and Dixit,1997).Although two major apoptotic pathways have been well defined in mammalian cells,the involvement of these two apoptotic pathways in TGF-␤1–induced apoptosis is still obscure.In particular,the activation of the death receptor pathway by TGF-␤1has not been previously reported.Here, we found that,in human gastric SNU-620carcinoma cells, the death receptor pathway,more precisely the Fas receptor death pathway,can be activated by TGF-␤1in a ligand-independent manner,and also that this pathway is intercon-nected with the mitochondrial pathway via caspase-8–me-diated Bid cleavage.Furthermore,we found that the Smad3 pathway acts upstream of the Fas-FADD pathway during TGF-␤1–induced apoptosis in SNU-620cells.MATERIALS AND METHODSAntibodies and ReagentsAntibodies to caspase-3(H-277),cytochrome c(H-104),and Fas(B-10)were purchased from Santa Cruz Biotechnology(Santa Cruz,CA).Antibodies to human caspase-6(B93–4),-7(B94–1),-8(rabbit polyclonal),Bid(rabbit poly-clonal),andfluorescein isothiocyanate(FITC)-conjugated antihuman Fas an-tibody(DX2)were purchased from BD PharMingen(San Diego,CA).Anti-bodies to neutralizing Fas(ZB4),activating Fas(CH11),and caspase-9(96-2-22)were purchased from Upstate Biotechnology(Waltham,MA).FasL kit, consisting of a recombinant soluble FasL and its potentiator,was also pur-chased from Upstate Biotechnology.Recombinant human Fas-Fc chimera was obtained from R&D Systems(Minneapolis,MN),anti-FLAG(M2)from Sig-ma-Aldrich(St.Louis,MO),and rabbit polyclonal anti-Smad2and anti-Smad3from Zymed Laboratories(South San Francisco,CA).The caspase inhibitors,including zVAD-fmk(a pan-caspase inhibitor),zIETD-fmk (caspase-8inhibitor),zLEHD-fmk(caspase-9inhibitor),zDEVD-fmk (caspase-3inhibitor),and zFA-fmk(the negative control),were purchased from Calbiochem(San Diego,CA).The mitochondrial membrane potential probe5,5Ј,6,6Ј-tetrachloro-1,1Ј,3,3Ј-tetraethyl-benzimidazoylcarbocyanine io-dide(JC-1)was obtained from Molecular Probes(Eugene,OR).All other chemicals were purchased from Sigma-Aldrich or Calbiochem.Cell Culture and TGF-␤1TreatmentHuman gastric SNU-620carcinoma cell line(purchased from Korea Cell Line Bank,Seoul,Korea)is described as a cell line established from the malignant ascites of a gastric cancer patient and exhibits anchorage-independent growth as a single cell(Park et al.,1997).Cells were cultured in RPMI1640medium supplemented with10%heat-inactivated fetal bovine serum and100U of penicillin and streptomycin in a humidified atmosphere of5%CO2at37°C. Human recombinant TGF-␤1was rehydrated in a4mM HCl,1mg/ml bovine serum albumin(BSA)solution at a concentration of5␮g/ml and used at a final concentration of5ng/ml in all experiments.DNA Analysis by Flow CytometryApoptosis was monitored by measuring hypodiploid DNA content(sub-G1). After various treatments,cells were harvested by centrifugation,washed twice with ice-cold phosphate-buffered saline(PBS),andfixed with70% ethanol for1h.Fixed cells were then washed with ice-cold PBS and stained with20␮g/ml propidium iodide(PI;Sigma-Aldrich)containing10␮g/ml RNase A(Sigma-Aldrich).After incubation in the dark for at least30min,the DNA content of cells was determined by a FACSCaliburflow cytometry (FL-2)(BD Biosciences,San Jose,CA).Ten thousand events were counted for each analysis.Annexin V and Terminal Deoxythymidine Transferase-mediated dUTP Nick End Labeling(TUNEL)Assay Annexin V and TUNEL assays were used to evaluate apoptotic cell death. Annexin V staining was carried out using an annexin V assay kit(BD PharMingen),and TUNEL assay was performed using an in situ cell death detection kit(Roche Diagnostics,Mannheim,Germany),as described previ-ously(Kim et al.,2001).Western AnalysisCells were washed with PBS and then suspended in an extraction buffer(20 mM Tris-Cl,pH7.4,100mM NaCl,1%NP-40,0.5%sodium deoxycholate,5 mM MgCl2,0.1mM phenylmethylsulfonylfluoride,0.1mM pepstatin A,0.1 mM antipain,0.1mM chymostatin,0.2mM leupeptin,10␮g/ml aprotinin,0.5 mg/ml soybean trypsin inhibitor,and1mM benzamidine)on ice for15min. Lysates were cleared by centrifugation at10,000ϫg for20min.Equal amounts of cell extracts were resolved on SDS-polyacrylamide denaturing gels,transferred onto nitrocellulose membranes(Schleicher&Schuell,Dassel, Germany),and probed with an appropriate primary and horseradish perox-idase-conjugated secondary antibody.Detection was performed using an enhanced chemiluminescence system(Amersham Biosciences,Piscataway, NJ).Reverse Transcription-Polymerase Chain Reaction(RT-PCR)AnalysisRT-PCR was performed to assess Fas and FasL expression in SNU-620cells. Total cellular RNA was isolated using TriZOL reagent(Molecular Research Center,Cincinnati,OH)at each time point.For RT reactions,0.5␮g of total RNA was mixed with0.5␮g of oligo d(T),a10mM concentration of each dNTP,1␮g of RNasin,and RT buffer(50mM Tris-Cl,pH8.3,30mM KCl,8 mM MgCl2,and10mM dithiothreitol).These mixtures were then incubated at70°C for5min and cooled on ice.After adding1U of M-MuLV reverse transcriptase(Invitrogen,Carlsbad,CA)to the mixtures,RT was performed at 37°C for50min,and the resulting cDNA was amplified by PCR.Primers for the Fas receptor were sense,5Ј-AAG TGA CTG ACA TCA ACT CC-3Ј;and antisense,5Ј-CAC TTC TAA GCC ATG TCC-3Ј.Primers for the Fas ligand were sense,5Ј-ACA TGA GGA ACT CTA AGT ATC C-3Ј;and antisense, 5Ј-AAA ATT GAC CAG AGA GAG C-3Ј.The PCR reactions involved an initial heating at94°C for2min and then35cycles of94°C for1min,55°C(Fas receptor)or56°C(Fas ligand)for1min,and72°C for1.5min.As the quantitative control,␤-actin PCR(sense,5Ј-CAC TGT GTT GGC GTA CAG GT-3Ј;antisense,5Ј-TCA TCA CCA TTG GCA ATG AG-3Ј)was also per-formed for25cycles with the same cycle profile as used for the Fas receptor.Detection of Cell Surface Fas by Flow CytometryThe expression of cell surface Fas was measured by immunofluorescenceflow cytometric analysis.After various treatments,a total of1ϫ106cells was collected by centrifugation and washed twice with ice-cold PBS containing1% BSA.Cells were then incubated with100␮l offluorescein isothiocyanate (FITC)-conjugated anti-Fas antibody(BD PharMingen)on ice for40min.After incubation in the dark,cells were washed twice and resuspended in ice-cold PBS.Immunofluorescence staining of cell surface Fas was analyzed by FAC-SCaliburflow cytometry(FL-1)by using the CellQuest analysis program(BD Biosciences,San Jose,CA).Mechanism of Apoptosis Induced by TGF-␤1Vol.15,February2004421Confocal Laser Scanning Microscopy Analysis of Fas Receptor ClusteringAfter treatment with an activating CH11anti-Fas antibody or TGF-␤1in the presence or absence of neutralizing ZB4anti-Fas antibody,Jurkat and SNU-620cells were harvested and washed twice with ice-cold PBS containing1% BSA.Collected cells were incubated with100␮l of FITC-conjugated anti-Fas antibody(BD PharMingen)on ice for40min and then washed twice with ice-cold PBS.After staining,the cells were mounted and subjected to confocal laser scanning microscopic analysis(Carl Zeiss,Thornwood,NY).To retard fluorescence fading during laser scanning, 1.4-diazobicyclo-(2,2,2,)-octane (Merck,Darmstadt,Germany)was added to the mounting solution.Analysis of Cytochrome c ReleaseTo detect mitochondrial cytochrome c release into the cytoplasm,cells were harvested at each time point after TGF-␤1treatment,resuspended in isotonic isolation buffer(10mM HEPES,1mM EDTA,250mM sucrose,pH7.6),and collected by centrifugation.The cells were then suspended in hypotonic isolation buffer(10mM HEPES,1mM EDTA,50mM sucrose,pH7.6)and disrupted by passing them through a27-gauge needle5–10times.After adding hypertonic isolation buffer(10mM HEPES,1mM EDTA,450mM sucrose,pH7.6)to balance the buffer’s tonicity,cells were centrifuged at 1000ϫg for10min at4°C.Supernatant was recovered and centrifuged again at10,000ϫg.The mitochondrial proteins were recovered in pellet with isotonic isolation buffer and the supernatant was used for the cytosolic protein extracts.After determining the protein concentration of each lysate,the change in the level of cytochrome c was measured by Western blotting.Assessment of Mitochondrial TransmembranePotential(⌬⌿m)To measure⌬⌿m,1ϫ106cells treated with TGF-␤1for various times were stained with5␮g/ml JC-1(Molecular Probes).This cyanine dye accumulates in the mitochondrial matrix under the influence of⌬⌿m and forms aggregates that have characteristic absorption and emission spectra.After incubation for 30min at room temperature in the dark,cells were washed twice with ice-cold PBS and then analyzed by a FACSCaliburflow cytometry(BD Biosciences). Fluorescence was induced with an Argon laser(excitation wavelength,488 nm)and the greenfluorescence was collected through585/42nm(FL-2)and 530/30nm(FL-1)bandpassfilters.At least,2ϫ104events were acquired and analyzed using the CellQuest analysis program(BD Biosciences).Transient Transfection and Cell Death MeasurementFor transient transfection,cells were harvested,washed once with serum-free RPMI1640medium,and seeded at a density of2ϫ106cells/35-mm dish in 1.5ml of RPMI1640medium containing5%fetal bovine serum.Cells were then transfected with1␮g of pCI(Promega,Madison,WI)or pCI-Fas(kindly provided by Dr.M.Lenardo,National Institute of Allergy and Infectious Diseases,National Institutes of Health,Bethesda,MD)by using Lipo-fectAMINE2000(Invitrogen).In the case of DN-FADD,cells were cotrans-fected with0.5␮g of pEGFP-N1and0.5–2␮g of either pcDNA3-DN-FADD (kindly provided by Dr.V.Dixit,University of Michigan,Ann Arbor,MI)or pcDNA3.After transfection for4h,normal medium was added and cells were further incubated for12h before TGF-␤1treatment.After TGF-␤1treatment for24or36h,cells were harvested,washed twice with ice-cold PBS,and analyzed for the cell death.Apoptosis assessment was performed by detecting active caspase-3in transfected cells using a phycoerythrin(PE)-conjugated monoclonal anti-active caspse-3antibody kit(BD PharMingen),according to the manufacturer’s recommendations.For theflow cytometric analysis,the green cells(greenfluorescent protein[GFP]positive)werefirst gated using an FL-1channel,and the fraction of red cells(PE positive)was immediately quantified using an FL-2channel.Smad2/3Knockdown Assay Using Small InterferingRNA(siRNA)For siRNA treatment,1.0␮g of control,Smad2,or Smad3dsRNA oligomers was transfected using LipofectAMINE2000(Invitrogen).After transfection for4h,normal medium was added and cells were further incubated for12h before TGF-␤1treatment.Nonsilencing control siRNA and Smad2/3siRNA were purchased from Cellogenetics(Gaithersburg,MD).Adenoviral InfectionsRecombinant adenoviruses expressing Smad2,Smad3,Smad4,Smad7,or ␤-galactosidase were kindly provided by Dr.Kohei Miyazono(The Cancer Institute,Tokyo University,Tokyo,Japan)and were used individually at a multiplicity of infection(MOI)of50,as described by Fujii et al.(1999).RESULTSTGF-␤1Induces Caspases-dependent Apoptosis in Human Gastric SNU-620Carcinoma CellsTo test whether TGF-␤1triggers apoptosis in SNU-620cells,we first analyzed the cell cycle profile by examining the cellular DNA content.When cells were treated with5ng/ml TGF-␤1, the population of cells in sub-G1phase slightly increased until 12h,and then increased rapidly after24h(Figure1A).To confirm apoptosis,annexin V labeling was also performed to detect phosphatidylserine externalization,a hallmark of apo-ptosis.In agreement with the result of cell cycle profile,an-nexin V-positive apoptotic cells were detected and increased time dependently in TGF-␤1–treated SNU-620cells(Figure1B). Next,the involvement of caspases activation was exam-ined because caspase are central components of the machin-ery for apoptosis(Thornberry and Lazebnik,1998;Earnshaw et al.,1999).When caspase-8and caspase-9,known as gen-eral initiator caspases,were investigated by Western blot analyses with their respective antibodies,an active fragment of caspase-8started to occur12h after TGF-␤1treatment. This fragment increased time dependently,whereas the cor-responding caspase-9active fragment occurred24h after TGF-␤1treatment(Figure2A).When effector caspases, caspase-3,caspase-6,and caspase-7,were checked during apoptosis,all of their active fragments began to occur24h posttreatment(Figure2B).These results suggest that activa-tion of these caspases is involved in TGF-␤1–induced apo-ptosis and that caspase-8may be thefirst caspase activated by TGF-␤1in SNU-620cells.We then examined the effects of various caspase inhibitors on the apoptotic status.Accordingly,cells were analyzed by flow cytometry after PI staining after48-h incubation with or without TGF-␤1in the absence or in the presence of a specific caspase inhibitor.When TGF-␤1was treated alone, apoptotic cell death was induced by up to22.6%(versus 4.7%in control cells),and pretreatment with50␮M zFA-fmk,as a chemical control,did not affect this apoptotic cell death level(Figure2C).However,in the presence of50␮M of the pan-caspase inhibitor(zVAD-fmk),TGF-␤1–induced apoptosis was completely suppressed(Figure2C).A similar pattern was also observed with a50␮M concentration of the caspase-8inhibitor(zIETD-fmk),caspase-9inhibitor (zLEHD-fmk),or caspase-3inhibitor(zDEVD-fmk),al-though the apoptosis-suppressing effects of these inhibitors were relatively weaker than those of the pan-caspase inhib-itor(Figure2C).These results indicate that TGF-␤1-induced apoptosis is dependent on the activation of these caspases. Activation of the Mitochondrial Pathway by Bid Mediation during ApoptosisBecause TGF-␤1induced the activation of both initiator caspases,i.e.,caspase-8and caspase-9(Figure2A),and treat-ment with their specific inhibitors equally suppressed apo-ptosis by TGF-␤1in SNU-620cells(Figure2C),it is plausible that TGF-␤1activates the mitochondrial apoptotic pathway through caspase-8–mediated Bid cleavage,which results in cytochrome c release and caspase-9activation.To test this idea,we next checked the status of Bid protein during TGF-␤1–induced apoptosis.Although we could not detect the cleaved form of Bid by Western blotting,the level of its native protein abruptly decreased within24h of TGF-␤1 treatment(Figure3A),and this was well matched to the appearance of the active caspase-8fragment(Figure2A).To assess whether proteolytic cleavage by caspase-8is really responsible for the truncation of Bid,we investigated the effects of various caspase inhibitors on Bid cleavage.WhenS.G.Kim et al.Molecular Biology of the Cell 422cells were pretreated with the speci fic caspase-8inhibitor zI-ETD-fmk before TGF-␤1treatment,the decreased level of Bid protein in TGF-␤1–treated cells was recovered to near that of the untreated control cells (Figure 3B,lane 4).A similar pattern was observed for the pan-caspase inhibitor zVAD-fmk (Figure 3B,lane 3).However,pretreatment with the speci fic caspase-9inhibitor zLEHD-fmk did not prevent the disappearance of native Bid protein (Figure 3B,lane 5).These results indicate that Bid protein is cleaved by caspase-8,which is activated by TGF-␤1treatment,and that the activation of caspase-9may be a downstream event of this caspase-8–mediated Bid cleavage.We then examined whether the cleavage of Bid by caspase-8leads to the activation of the mitochondrial apoptotic pathway.To do this,we sequentially investigated the loss of mitochon-drial inner membrane potential (⌬⌿m )and the release of cyto-chrome c into cytosol.Loss of ⌬⌿m has been shown to be implicated in the execution of apoptosis,because of alterations in permeability transition pores located between the inner and outer membranes (Green and Reed,1998).When ⌬⌿m was measured by staining TGF-␤1–treated cells with the ⌬⌿m probe,JC-1,the loss of ⌬⌿m slowly increased until 12h after treatment and then abruptly increased after 24h (Figure 3C),which correlated well with the status of Bid protein (Figure 3,A and C).Concomitantly,mitochondrial cytochrome c was released into the cytosol from mitochondria (Figure 3D).These results show that the mitochondrial apoptotic pathway isturned on by the caspase-8–mediated cleavage of Bid during the TGF-␤1–induced apoptosis of SNU-620cells.Induction of Fas Receptor during TGF-␤1–induced ApoptosisOur current observations suggest that TGF-␤1uses caspase-8as an initiator caspase to trigger the activation of a downstream caspase cascade and apoptosis in SNU-620cells.Caspase-8is known to be principally activated by a death receptor like Fas during the death receptor apoptotic pathway (Wallach et al .,1999).To assess whether the death receptor pathway is also involved in TGF-␤1–induced apoptosis,we next checked whether the status of the cell surface Fas receptor,which is a representative member of the death receptor family,is in flu-enced by TGF-␤1.Interestingly,immuno fluorescent staining and flow cytometric analysis using an anti-Fas monoclonal antibody revealed that the level of the cell surface Fas receptor was dramatically increased in TGF-␤1–treated cells compared with the untreated controls (Figure 4A).In addition,RT-PCR and Western blotting for Fas receptor demonstrated that the levels of both Fas mRNA and protein started to increase 12h after TGF-␤1treatment and that this level was further aug-mented thereafter (Figure 4,B and C),which might result in a time-dependent increase of the cell surface Fas receptor in SNU-620cells (our unpublished data).Moreover,theseobser-Figure 1.Apoptosis induced by TGF-␤1in SNU-620cells.(A)The DNA content histograms of TGF-␤1–treated cells.At the indicated time points after treatment with 5ng/ml TGF-␤1,cells were fixed with 70%ethanol,stained with PI,and then subjected to flow cytometric analysis.The percentage of sub-G1phase cells was determined based on the DNA content histograms.Results are typical of at least three individual experiments.(B)The externalization of phosphatidylserine during TGF-␤1–induced apoptosis.Control cells or cells treated with 5ng/ml TGF-␤1for the indicated time periods were stained with annexin V and PI and analyzed by flow cytometry.The percentage of cells in each window is indicated.The percentage of cells in the lower right quadrant dramatically increased in a time-dependent manner.Mechanism of Apoptosis Induced by TGF-␤1Vol.15,February 2004423vations matched the onset of apoptosis (Figures 1A and 4C).Thus,these results suggest that the TGF-␤1–induced apoptotic events might be initiated from the induction of the Fas receptor and that this leads to the activation of caspase-8.Apoptosis by TGF-␤1Is Independent of Fas –FasL Interaction in SNU-620CellsBecause the main death pathway induced by Fas activation is generally initiated by FasL binding to its receptor,we next examined whether TGF-␤1–induced apoptosis involves an interaction between Fas and FasL.To test this,we investi-gated the effects of the neutralizing ZB4and activating CH11anti-Fas antibodies on TGF-␤1–induced apoptosis.Previous reports have shown that the CH11antibody functions like FasL as an agonist and that the ZB4antibody disturbs Fas –FasL interaction by acting as an antagonist (Yonehara et al .,1989;Itoh et al .,1991).To con firm the roles of these antibod-ies,we first experimented with Jurkat cells.When thesecellsFigure 2.Caspases-dependent apoptosis by TGF-␤1in SNU-620cells.(A)The activation of initiator caspases during TGF-␤1–induced apoptosis.Cells were treated with 5ng/ml TGF-␤1for the indicated times.Equal amounts of cell extracts were resolved by SDS-PAGE and analyzed by Western blotting with antibodies speci fic for caspase-8and caspase-9.The proforms and the cleaved active forms of each caspases were indicated.(B)Activation of effector caspases by TGF-␤1.Samples were prepared as described in A and Western blotted with antibodies to caspase-3,-6,and -7,respectively.The proforms and the cleaved active forms of each caspases were indicated.(C)Effects of various caspase inhibitors on TGF-␤1–induced apoptosis.Cells were preincubated for 1h with 50␮M of pan-caspase inhibitor (zVAD-fmk),caspase-8inhibitor (zIETD-fmk),caspase-9inhibitor (zLEHD-fmk),caspase-3inhibitor (zDEVD-fmk),or control peptide (zFA-fmk)before TGF-␤1treatment.Samples were then taken after 48h,and DNA contents were determined by flow cytometry.The percentages of cells in sub-G1are indicated.S.G.Kim et al .Molecular Biology of the Cell424were treated with CH11antibody for 36h,apoptosis was induced by up to 20.5%(versus 1.2%in control cells)in the total population,and this induction was completely inhib-ited by ZB4anti-Fas antibody (Figure 5A).We then examined the effects of these antibodies on SNU-620cells.When the CH11antibody was treated alone,it failed to trigger apoptosis in SNU-620cells (Figure 5B).Comparison of the Fas expression levels between JurkatandFigure 3.Activation of the mitochondrial pathway by caspase-8–mediated Bid cleavage.(A)Bid cleavage during TGF-␤1–induced apoptosis.SNU-620cells were incubated with 5ng/ml TGF-␤1for the indicated times.Equal amounts of whole cell extracts were separated by SDS-PAGE,and the level of Bid protein was determined by Western blotting with anti-Bid antibody.The amount of protein loaded in each lane was assessed by stripping and reprobing with an antibody for ␣-tubulin.(B)Effects of various caspase inhibitors on Bid cleavage.Cells were incubated for 36h with (ϩ)or without (Ϫ)5ng/ml TGF-␤1in the presence of 50␮M of various caspase inhibitors or control peptide (zFA-fmk).Whole cell extracts were prepared from each of the treatment groups and the levels of Bid and ␣-tubulin proteins were determined as described in A.(C)The loss of ⌬⌿m during TGF-␤1–induced apoptosis.Cells were treated with TGF-␤1for the indicated times and then stained with the mitochondrial membrane potential probe JC-1(5␮g/ml).The intracellular fluorescence intensity was measured by flow cytometry.The data shown are representative of experiments run more than three times.The percentages of cells with disrupted ⌬⌿m are indicated.(D)Release of cytochrome c from mitochondria to the cytosol in TGF-␤1–treated cells.After incubating cells with 5ng/ml TGF-␤1for the indicated times,mitochondria were separated from the cytosol,and the level of cytochrome c was determined by Western blotting as described in MATERIALS AND METHODS.The amount of loaded protein was con firmed versus a nonspeci fic protein band.Mechanism of Apoptosis Induced by TGF-␤1Vol.15,February 2004425。

相关文档
最新文档