表达载体2014
克隆载体与表达载体
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。)
其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体与表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322与pUC的质粒复制起点与氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子与终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
真核细胞常见表达载体
真核细胞常见表达载体
真核细胞, 表达载体
1、pCMVp-NEO-BAN载体
特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。
2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)
特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。
真核细胞常见的表达载体及真核细胞表达外源基因的调控(精)
真核细胞常见表达载体
1. pCMVp-NEO-BAN载体
特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。
2. pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector
特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。
真核细胞常见表达载体
真核细胞常见表达载体
真核细胞, 表达载体
1、pCMVp-NEO-BAN载体
特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。
2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein V ector)
特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。
表达载体的构建
关于表达载体的构建
1.表达载体(expression vector):能使目的基因在宿主细胞中表达的一类载体。这类
载体既有复制子,更要有强启动子;
2.大肠杆菌中的表达载体应含有
(1)强启动子
(2)在启动子下游区和A TG上游区有一个好的SD序列。
(3)在外源基因插入序列下游区要有一个强的转录终止序列,保证外源基因有效转录和质粒的稳定性。
我们实验室常用的就是PBI121的表达型载体,该载体具有35S强启动子,下游有MCS,并且具有T-DNA插入片段和Tet和Kan的抗性位点,有利于作为农杆菌浸染植物的表达载体。
3.载体构建的步骤
(1).设计引物
1.引物的长度用于PCR扩增的寡核苷酸引物至少应在16个碱基以上,一般以20—30个碱基为宜,引物过短会使PCR特异性降低,过长则会引起引物间的退火而影响有效扩增。
2. 引物自身序列应位于高度保守区,与非扩增区无同源序列。引物中碱基分布应尽可能避免嘌呤、嘧啶的连续排列,引物间3’端的互补、二聚体或发夹结构也可能导致PCR
反应失败。
3. Tm值引物的Tm值一般控制在55-60度, 尽可能保证上下游引物的Tm值一致,一般不超过2度. 如果引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度.Tm=2(A+T)+4(C+G)
4. 引物的GC含量引物中GC含量应占到45%一60%左右。在引物设计时应尽量避免引物二聚体和发卡结构,尤其是在引物3,端不应有互补结构。引物3,端应与目的片段完全配匹,而其5’端碱基可不与模板配匹,故在引物设计时可在其5,端加上限制酶位点或其他短的序列,这些与原初模板并不配对的非互补序列在后续的循环中将被带到双链DNA中去,这样反应产物不仅含有目的序列,同时在目的基因的两侧又有了新的限制酶位点,用相应
构建表达载体的实验流程及其注意事项2014-12
中国农业大学 梁荣奇
把目的基因置于以适当的载体,转化细菌后,筛选所需 的细菌克隆。摇菌后可得到大量含目的基因的表达载体 注意事项:
-- 选择合适的载体 -- 载体具有适合的酶切点 -- 适合地连接反应 -- 选择适合扩增质粒的菌株 -- 筛选、验证目的克隆 -- 转化对照
并抑制其活性。Amp基因可降解氨苄青霉素。
氯霉素(Cm或cat):氯霉素与核糖体50S亚基结合并抑制蛋白质的合成。
Cat 基因编码一个四聚体细胞蛋白,催化氯霉素羟乙酰氧衍生物的形成。
卡那霉素(kan):可与核糖体结合,抑制蛋白的合成。
卡那霉素可被氨基糖苷磷酸转移酶(APH-II)灭活。
2、溶液配制:
2、反应体系
10× ligation buffer T4 ligase(5U/μL) 载体片段 目的片段 灭菌的双蒸水 补足到10.0μL
24
1.0 μL 0.2 μL
注意: 1、 一定要检测回收效果,带亮(浓度高)方可用于下一步连接。
通常,重组分子只有几十万分之一。
回收片段中无酒精等影响连接的残留。 2、将目标片段、载体片段的泳道相邻,根据亮度估测其浓度。 连接时,目的:载体=3:1(分子个数) 别忘记长片段插入的EB多。分子个数一样多时,长片段更亮。
Sma I CCCGGG GGGCCC
第5章表达载体
西南大学生物技术专业 基因工程
8
融合型表达载体
Foreign DNA
P
SD
融合型表达载体
融合基因
西南大学生物技术专业 基因工程
9
技术关键:克隆基因可插入标签肽序列 的3’或5’端,但必须维持正确的ORF。 • 选择合适酶切位点
• 加人工合成的DNA接头
• 构建位相载体
西南大学生物技术专业 基因工程
但构成一个整体的单一ORF,如果融合标签蛋白有利于蛋白 的定向、纯化,如果融合多个目标蛋白,则类似于直接表达 了一个多酶复合体一样,可减少载体构建难度,而且可以偶 连两个或多个相关基因的表达。
西南大学生物技术专业 基因工程
3
3、表达的控制
诱导表达系统:IPTG 防渗漏表达系统:lacIq PL启动子受cⅠ的调控,低温(30℃)下阻抑转录, 高温(40-45℃)下解除抑制。 二、利用T7噬菌体启动子的表达载体 pET系列,表达能力强,可控性好,只受T7噬 菌体RNA聚合酶识别,不受大肠杆菌RNA聚 合酶识别,可用IPTG诱导表达。
西南大学生物技术专业 基因工程 7
3 、内含肽表达载体:如 NEB 公司的 Impact-Twin 系 统,将目的蛋白放在两个可自裂解的内含肽 (intein)中间,在得到融合蛋白以后不通过蛋白 酶消解、只需要调节pH值等条件就将标签蛋白切 除。 4 、分泌表达载体:产物可跨膜分泌至胞周间隙, 可避免受细胞内蛋白酶的降解,或使其正确折叠, 或去除N-端甲硫氨酸,以维护活性。 信号肽(signal peptide) 有碱性磷酸酶信号肽、蛋 白质 A 信号肽(如 Amersham 公司的 pEZZ18 系统)。
植物表达载体及有关载体质谱图
二、载体信息
• 1. pBI121质粒图谱及载体信息
启动子:CaMV35S 终止子:Nos 报告基因:GUS 抗性基因:NptII
pBI121
2. pBI221
3.pCAMBIA系列载体
• pCAMBIA1300无gus报告基因; • pCAMBIA2301以gus基因作为报告基因; • pCAMBIA1303以gus基因作为报告基因,且 pCAMBIA1303载体含有绿色荧光蛋白GFP的报告 基因;
2301,3300,3301,1380,1390; pCAMBIA super1300,
pCAMBIA super1300-GFP, pCAMBIA super 1300-EGFP,
pCAMBIA1390-GFP
• 3.农杆菌:LBA4404,EHA103、105,GV3101
2、其他植物载体
• 4. pRTL2 , pRTL2-GFP , pRTL2-RFP , pRTL2-YFP
• pCAMBIA1302只含有绿色荧光蛋白GFP的报告基 因; • pCAMBIA3300和3301含编码抗除草剂草丁膦的bar
pCAMBIA1300
pCAMBIA3300
pCAMBIA3301
• 5. pH7FWG2,pH7WGF2 6. pK2GW7
• 7. pBGWFS7
• 10. pHANNIBAL
克隆载体与表达载体
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。)
其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
表达载体构建
表达载体构建
1. 背景介绍
表达载体是在分子生物学领域中广泛使用的工具,用于将目标基因导入宿主细胞中并使其表达。构建高效的表达载体对于基因功能研究和基因工程应用具有重要意义。本文将介绍表达载体的构建方法及其在基因表达中的应用。
2. 表达载体的构建方法
构建表达载体的一般步骤包括选择合适的载体骨架、选择适当的启动子和终止子、插入目标基因序列以及进行转染或转化等操作。下面将详细介绍表达载体的构建方法。
2.1 选择合适的载体骨架
常用的载体骨架包括质粒和病毒载体。质粒是可以在细菌中复制的DNA分子,通常由起始位点、选择标记和多个限制酶切位点组成。病毒载体包括腺病毒、慢病毒等,具有高效转染特性。选择适合自己研究的载体骨架是表达载体构建的第一步。
2.2 选择适当的启动子和终止子
启动子是基因表达的起始信号,终止子是基因表达的终止
信号。启动子的选择应根据目标基因的表达需求和宿主细胞的特性进行。常用的启动子包括强启动子(如CMV启动子)、组织特异性启动子等。终止子则可以选择常规的转录终止信号。
2.3 插入目标基因序列
选择合适的酶切位点,在载体DNA上进行限制性内切酶切割,并将目标基因序列与载体连接。连接的方法可以是经典的限制性酶切连接、PCR扩增连接、Ligase连接等。连接完成后,应进行酶切鉴定和测序验证,确保目标基因序列插入准确。
2.4 进行转染或转化
将构建好的表达载体导入宿主细胞中,实现基因表达。转
染方法包括化学转染、电穿孔转染、病毒介导转染等,转化方法包括细菌的电转化、植物的农杆菌介导转化等。
3. 表达载体的应用
真核细胞常见表达载体
真核细胞常见表达载体
真核细胞,表达载体
1、pCMVp—NEO-BAN载体
特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因.更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在.
2、pEGFP,增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)
特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制.Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV—TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途:该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。
克隆载体与表达载体
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。)
其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体与表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322与pUC的质粒复制起点与氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子与终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
各种表达载体
表达载体
一、原核细胞表达载体
1. pBAD载体:
特点; 该表达质粒含有araBAD(arabinose)操纵子的P BAD启动子和编码该启动子的正负调控子基因araC,具有紧密调控功能和高水平表达外源蛋白质的原核细胞表达载体。
请注意:
1. 当要扦入其他信号肽片段,改建此载体时,请不要利用该载体上的Nde1 EcoR1 BamH1 Kpn1和Pst1位点,以免造成重组困难,因为前述内切酶在此载体上均有二个位点,最好使用只有一个酶切位点的Sac1和Hind111位点。同时记住,如在不含任何信号肽的P BAD表达质粒扦入信号肽,其非编码N-末端要包含核糖体结合位点(RBS)核苷酸序列。
2在使用含Omp A分泌信号肽的P BAD表达质粒时,请应用Omp A分泌信号肽上的Sac1以及载体Hind111酶切位点,这些在载体序列上都是单个酶切位点。
本公司目前有含Omp A分泌信号肽和不含任何信号肽的二种P BAD表达质粒,其多克隆位点区域图谱如下:
(a)、含Omp A分泌信号肽的P BAD表达质粒多克隆区域
SD
P BAD….TACCCGTTTTTTTCC….GCTAGCAGGAGGAAACG ATG AAA AAG ACA GCT ATC GCG ATT GCA GTG GCA CTG GCT GGT
A M A E L
TTC GCT ACC GTA GCC ATG GCC GAG CTC GGTACCCGGGGATCCTCTAGAGTCGCCTGCAGGCATCCAAGCTT
Nco1 Sac1 Kpn1 Smal1 BamH1 Pst1 Hind111 (b)、不含分泌信号肽的P BAD表达质粒多克隆区域
以pET-28a表达载体
在生物科学研究中的应用
基因表达研究
pet-28a表达载体可以用于研究基因的表达调控,通过将目的基因插入表达载体中,在 细菌细胞内表达出目标蛋白,研究其表达水平、调控机制等。
蛋白质相互作用研究
利用pet-28a表达载体可以生产重组蛋白,进一步研究蛋白质之间的相互作用,例如用 于酵母双杂交等实验中。
在基因治疗领域的应用
02
pet-28a表达载体的原理
基因表达的原理
01
02
03
基因表达的定义
基因表达是指基因经过转 录和翻译等过程,将遗传 信息传递到蛋白质的过程。
基因表达的调控
基因表达受到多种因素的 调控,包括DNA甲基化、 染色质重塑、转录因子等。
基因表达的产物
基因表达的产物是蛋白质, 蛋白质具有催化、运输、 信号转导、结构等多种功 能。
pet-28a表达载体的表达机制
T7启动子
pet-28a表达载体中的T7启动子是一种RNA聚合酶的 识别位点,能够高效转录基因。
翻译机制
在pet-28a表达载体中,外源基因被转录成mRNA, 然后在核糖体上进行翻译,形成蛋白质。
蛋白质纯化
通过融合蛋白标签,使用亲和层析等方法对表达的蛋 白质进行纯化。
挑战二
如何降低pet-28a表达载体的免疫反应和突变风 险?
解决方案
采用免疫原性更低的载体材料、降低载体剂量和使 用免疫抑制剂等方法,降低潜在的风险。
克隆载体与表达载体介绍
2.M13噬菌体载体 1) 插入选择标记基因; 2) 组装合适的多克隆位点。
三、噬菌体-质粒杂合载体
(一) 黏粒载体
噬菌体载体:承载容量大,但本身不能包装和增殖 质粒载体:易转化易复制,但承载外源DNA片段的容量小
λDNA两端约280bp序列+包装相关序列 Cosmid载体 包装范围为36.4~51kb
四、人工染色体及其应用
定义:利用染色体的复制元件来驱动外源DNA片段复制的载体 称为人工染色体。
优点:装载容量大。 缺点:拷贝数少,制备困难
常用的人工染色体: 酵母人工染色体(yeast artifical chromosome,YAC) 细菌人工染色体(bacterial artifical chromosome,BAC)
实现外源基因的增殖; ③ 具有由单一限制性内切酶识别位点组成的多克隆位点,可供外源基因
插入; ④ 具有合适的选择标记,用于含有重组载体的宿主细胞筛选。
wk.baidu.com
用于基因克隆的载体的类型:
质粒载体(plasmid vector) 噬菌体载体(phage vector) 考斯质粒(cosmid vector) 人造染色体载体(artificial chromosome)
2. 质粒的不相容性
定义:指两种质粒在同一宿主细胞中不能共存的现象。
通常含有相同或相似复制子的质粒具有不相容性。
表达载体的构建方法及步骤
。
的插入。如果在这些酶切位点以外有外源基因的插入,会导致某种标志基因的失 活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源 DNA 插入片段大小。质粒一般只能容纳小于 10Kb 的外源 DNA 片段。一般来说,外源 DNA 片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录 终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控 有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 第六步:启动子-核糖体结合位点-克隆位点-转录终止信号 (1)启动子-促进 DNA 转录的 DNA 序列,这个 DNA 区域常在基因或操纵子编 码序列的上游,是 DNA 分子上可以与 RNApol 特异性结合并使之开始转录的部 位,但启动子本身不被转录。 (2)增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强 邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所 调控基因上游或下游均可发挥作用。/沉默子-负增强子,负调控序列。 (3)核糖体结合位点/起始密码/SD 序列(Rbs/AGU/SDs):mRNA 有核糖体的两 个结合位点,对于原核而言是 AUG(起始密码)和 SD 序列。 (4)转录终止序列(终止子)/翻译终止密码子:结构基因的最后一个外显子中 有一个 AATAAA 的保守序列,此位点 down-stream 有一段 GT 或 T 富丰区, 这 2 部分共同构成 poly(A)加尾信号。结构基因的最后一个外显子中有一个 AATAAA 的保守序列,此位点 down-stream 有一段 GT 或 T 富丰区,这 2 部分 共同构成 poly(A)加尾信号。 质粒图谱上有的箭头顺时针有的箭头逆时针,那其实是代表两条 DNA 链,即质 粒是环状双链 DNA,它的启动子等在其中一条链上,而它的抗性基因在另一条链 上 .根据表达宿主不同,构建时所选择的载体也会不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、翻译终止密码选择 在原核生物中,翻译的终止由两个释放因子所控
制,RF1识别UAA和UAG,RF2识别UAA和UGA。 由于UAA为两个释放因子所识别,因此在基因工程 中,一般采用UAA作为终止码。
4
6、外源蛋白的稳定性
可采取以下措施避免克隆的蛋白被选择性降解: (1)构建融合基因,产生融合蛋白,使外源蛋白不被
大肠杆菌表达外源基因的优势
全基因组测序,共有4405个开放型阅读框架
基因克隆表达系统成熟完善
繁殖迅速、培养简单、操作方便、遗传稳定
被美国FDA(美国食品药物管理局)批准为安全的基因工
程受体生物
7
大肠杆菌表达外源基因的劣势
缺乏对真核生物蛋白质的复性功能 缺乏对真核生物蛋白质的修饰加工系统 内源性蛋白酶降解空间构象不正确的异源蛋白 细胞周质内含有种类繁多的内毒素
4、分泌表达载体:产物可跨膜分泌至胞周间隙, 可避免受细胞内蛋白酶的降解,或使其正确折叠, 或去除N-端甲硫氨酸,以维护活性。
信号肽(signal peptide)有碱性磷酸酶信号肽、蛋 白质A信号肽(如Amersham公司的pEZZ18系统)。
27
分泌型融合表达载体----pEZZ18
Plac:Lac启动子 Pspa:金黄色葡萄球菌蛋白A启动 子 S:蛋白A的信号肽序列 两个合成的Z功能域(结合免疫球 蛋白G,琼脂糖层析柱)
表达载体构建的一般原则
1、阅读框架 要使目的基因得以表达,最重要的因素是外源目的
基因本身必须置于正确的阅读框架之中。 用人工接头可以调节阅读框架,选择适当的人工接
头,就可使外源基因处于正确的阅读框架中。
1
2、启动子(关键因素) 有效的转录起始是外源基因能否在宿主细胞
中高效表达的关键步骤之一。 因此,选择强的启动子及其相关的调控序列
11
3、表达的控制
诱导表达系统:IPTG 防渗漏表达系统:lacIq,一种能产生过量的 LacI 阻
遏蛋白(阻遏转录过程)的 lacI 基因的突变体。 PL启动子受cⅠ基因(阻遏溶菌周期基因表达)产物
的抑制,在λ噬菌体溶原的大肠杆菌中表达。 cⅠ基因的温度敏感突变体cI857(ts):低温(30℃)下
热诱导
T7 RNA 聚合酶
PL 启动子 T7 RNA 聚合酶基因
cI857
双质粒系统
一 个 质 粒 带 有 T7 RNA 聚合酶基因,另一个质粒带 有 T7 启动子和目的基因
两个质粒的复制子和抗 性标记不能相同,调控方式 为控制 T7 RNA 聚合酶的启 动子调控类型
ColE1 ori
AmpR
T7 启动子
目的基因
热诱导
T7 RNA 聚合酶
PL 启动子 T7 RNA 聚合酶基因
cI857
p15A ori
KanR
18
T7 表达系统存在的问题
T7 表达系统表达目的基因的水平是目前所有表达 系统中最高的,但也不可避免出现在相对较高的本底 转录,如果目的基因产物对大肠杆菌宿主有毒性,会 影响细胞的生长。
解决办法
pGEX-1T—凝血酶 pGEX-2T---凝血酶 pGEX-3T---X因子
25
2、组氨酸标签表达载体:如Novagen公司的pET系 列,可在目标蛋白的N-端或C-端加上6个组氨酸的 标签和Xa因子酶切位点,多聚组氨酸能与镍等二 价金属离子结合,纯化目的蛋白,用Xa因子处理 可得到纯的目的蛋白。
trc,都受IPTG诱导。 T7噬菌体启动子 λ噬菌体的PL启动子。
2)终止子:依赖于ρ 因子或不依赖于ρ 因子(遇茎环 结构而终止)。
3)核糖体结合位点(ribosome binding side, RBS): 是mRNA上的特异性序列,核糖体可以识别并结合这 一序列来启动翻译过程。
10
2、表达形式
E.Coli (DE3)
T7 启动子
目的基因
IPTG 诱导
T7 RNA 聚合酶
lac 启动子 T7 RNA 聚合酶基因
温度诱导型
PL 启动子控制T7 RNA 聚
合酶基因,通过热诱导方式激 发T7 噬菌体启动子的转录。
E.Coli (CE6)
T7 启动子
目的基因
这种方式可以使本底转录 降到很低的水平,尤其适用于 表达对大肠杆菌宿主有毒性的 重组蛋白质。
将2价重金属阳离子固定在树脂上,便可 对带His标签的融合蛋白进行亲和层析分离。纯化 的融合蛋白再用Xa因子处理可去除标签多肽,从 而获得纯化的目的蛋白。
26
3、内含肽表达载体(即蛋白质内含子,是存在于前 体蛋白质中的一段氨基酸序列) : 如 NEB 公 司 的 Impact-Twin系统,将目的蛋白放在两个可自裂 解的内含肽(intein)中间,在得到融合蛋白以后 不通过蛋白酶消解、只需要调节pH值等条件就将 标签蛋白切除。
8
一、大肠杆菌表达载体的结构
原核表达载体:适用于在原核细胞中表达 外源基因的载体。
均是质粒载体,首先必然满足克隆载体的 基本要求,然后增加表达元件。
9
1、表达元件(expression elements)
1)启动子(promoter):三类,即 lac启动子、trp启动子和它们的杂合启动子tac或
可溶性的表达产物一般可展现应有的蛋白质活性 。
30
不同微生物种类所产生的活性物质类型有明显差 异,不同的研究目标应选择不同的宿主菌株。
如70%的抗生素来源于放线菌,如以寻找抗菌抗肿 瘤活性物质为目标,选择链霉菌为宿主较理想, 而筛选新的酶则采用大肠杆菌为宜。
31
选择性降解
(2)构建成可分泌的蛋白:不是所有的外源蛋白都可 以通过基因操作成为可分泌蛋白。
(3)使外源蛋白在宿主细胞中以包涵体的形式表达
5
总之,构建表达载体应根据表达体系的特性,选 择性地应用上述原则,删除降低外源基因表达的 一些元件,插入提高外源基因表达的一些必需元 件。
6
第一节 大肠杆菌表达载体
完整单一蛋白:单一基因的编码区表达。
融合蛋白(fusion protein):多个基因的编 码区的串联体,但构成一个整体的单一ORF, 如果融合标签蛋白有利于蛋白的定向、纯化,如 果融合多个目标蛋白,则类似于直接表达了一个 多酶复合体一样,可减少载体构建难度,而且可 以偶连两个或多个相关基因的表达。
20
融合型表达载体
P
SD
Foreign DNA
融合型表达载体
融合基因
21
பைடு நூலகம்
技术关键:克隆基因可插入标签肽序列的3’或5’端, 但必须维持正确的ORF。
• 选择合适酶切位点 • 加人工合成的DNA接头 • 构建位相载体
22
位相载体----含有3种读码框的系列载体
23
常用的融合表达载体
1、GST (glutahione S-transferase, 谷胱苷肽S-转移酶) 表 达 载 体 : 如 Amersham 公 司 (阿莫仙医药公司) 的 pGEX 系 列,其GST来自于血吸虫,融合蛋白下保持酶学活性,对 谷胱苷肽有很强的结合能力,融合蛋白纯化出来后用凝血 蛋白酶切割可得到纯的目的蛋白。
T7 启动子
目的基因
T7 RNA 聚合酶
?启动子 T7 RNA 聚合酶基因
15
化学诱导型
噬菌体 DE3 是λ 噬菌体
的衍生株,一段含有 lacI启
动子和T7 RNA 聚合酶基因的 DNA 片段被插入其中。
用 噬 菌 体 DE3 的 溶 源 菌 作 为表达载体的宿主菌,调控方 式为化学诱导型,类似于 Lac 表达系统。
28
四、 表达产物的纯化
1、包涵体蛋白的纯化
通过机械法、超声波处理等方法破碎外源蛋白的细胞 → 离心 → 获得包涵体 → 洗涤 → 去除包涵体结 合的细胞蛋白→ 利用盐酸胍、尿素和SDS等溶解包涵 体 → 蛋白质重新折叠
29
2、可溶性蛋白的纯化
融合蛋白的表达标签可用于分离纯化目的蛋白
分泌表达载体也有助于分离纯化可溶性的表达产 物。
在表达系统中低水平表达 T7 溶菌酶基因,能与T7 RNA 聚合酶结合抑制其转录的活性。通过共转化质粒 导入表达系统,它能明显降低本底转录。
19
三、表达融合蛋白的表达载体
表达融合蛋白有下列优点: (1)转录和翻译起始从正常的E. coli序列开始,故 通常可以产生高水平的融合蛋白。 (2)融合蛋白往往比天然的外源蛋白更加稳定。 (3)产生的融合蛋白较大,因此很容易从蛋白质凝 胶电泳中区别出来。融合蛋白带可以从凝胶上切 下,经冷冻干燥,磨成粉末后即可作为抗原。 (4)有些融合蛋白带有信号肽,可以分泌到细胞外, 这有助于蛋白质的分离和纯化。
固定在琼脂糖树脂上
谷胱甘肽
形成亲和层析柱
表达融合蛋白的全细胞提取物通过层析柱
融合蛋白吸附在树脂上
其他细胞蛋白被洗脱出来
用含游离的还原型谷胱甘肽的缓冲液洗脱
融合蛋白被释放出来
用凝血蛋白酶切割融合蛋白
获得纯化的目的蛋白
24
融合型载体----pGEX系列
位相载体 Ptac:IPTG诱导 GST融合蛋白—直接纯化 产物,切割方便:
,是构建一个高效表达载体首先要考虑的问题。
2
3、转录的有效延伸和终止 外源基因的转录一旦被起始,接下来的问题是如何
保证mRNA有效地延伸、终止。 转录衰减和非特异性终止可诱发转录提前终止。
措施: (1)除去衰减子 (2)插入抗转录终止序列 (3)强转录终止序列
3
4、有效的翻译起始(关键因素) 原核:SD序列,能帮助从起始AUG处开始翻译。 真核:kozak(科扎克)序列,核糖体能够识别
T7 RNA聚合酶活性高,其合成RNA的速度比大肠 杆菌RNA聚合酶快5倍左右。并可以转录某些不能被 大肠杆菌RNA聚合酶有效转录的序列。
14
T7 表达系统转录调控的机理
T7 噬菌体启动子的转录完全依赖于 T7 RNA 聚合酶,因此 T7 RNA聚合酶的转录调控模式就决定了表达系统的调控方式。
化学诱导型 温度诱导型 双质粒系统
阻抑转录,高温(40-45℃)下解除抑制。 T7噬菌体启动子:较复杂
12
二、利用T7噬菌体启动子的表达载体
大肠杆菌 T7 噬菌体具有一套专一性非常强 的转录体系,利用这一体系中的元件为基础构建 的表达系统称为 T7 表达系统。
13
T7 表达系统
T7噬菌体基因1编码的T7 RNA聚合酶选择性的激活 T7噬菌体启动子的转录。