北京东城2011中考数学二模试题

合集下载

2011北京二模海淀西城东城丰台顺义昌平数学(理)试题

2011北京二模海淀西城东城丰台顺义昌平数学(理)试题

海淀区高三年级第二学期期末练习数 学 (理科) 2011.5一、选择题:1. 复数11i+在复平面上对应的点的坐标是A .(1,1) B. (1,1)- C. (1,1)-- D. (1,1)- 2. 已知全集R,U = 集合{}1,2,3,4,5A =,{|2}B x x =∈≥R ,下图中阴影部分所表示的集合为A {1} B. {0,1} C. {1,2} D. {0,1,2}3.函数21()log f x x x=-的零点所在区间A .1(0,)2 B. 1(,1)2C. (1,2)D. (2,3)4.若直线l 的参数方程为13()24x tt y t =+⎧⎨=-⎩为参数,则直线l 倾斜角的余弦值为A .45-B . 35-C . 35D . 455. 某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:甲 乙 9 8 8 1 7 7 9 9 6 1 0 2 2 5 6 7 9 9 5 3 2 0 3 0 2 3 7 1 0 4 根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 A .甲运动员得分的极差大于乙运动员得分的极差B .甲运动员得分的的中位数大于乙运动员得分的的中位数C .甲运动员的得分平均值大于乙运动员的得分平均值D .甲运动员的成绩比乙运动员的成绩稳定.可能是...该锥体的俯视图的是C主视图左视图1C :1212212=+b y a x (011>>b a )和椭圆2C :1222222=+b y a x (022>>b a )的焦点相同且12a a >.给出如下四个结论:① 椭圆1C 和椭圆2C 一定没有公共点; ②1122a b a b >; ③ 22212221b b a a -=-; ④1212a a b b -<-.其中,所有正确结论的序号是A .②③④B ①③④C .①②④ D. ①②③在一个正方体1111ABCD A BC D -中,P 为正方形1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心,,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足MQ MN λ=的实数λ的值有A. 0个B. 1个 C 2个 D. 3个非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.点(,)P x y 在不等式组2,,2y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则z x y =+的最大值为_______.10.运行如图所示的程序框图,若输入4n =,则输出S 的值为 . 11.若4234512345(1)x mx a x a x a x a x a x -=++++, 其中26a =-,则实数m 的值为 ;12345a a a a a ++++的值为 .12.如图,已知O 的弦AB 交半径OC 于点D ,若3AD =,2BD =,且D 为OC 的中点,则CD 的长为 .{}n a 满足1,a t =,120n n a a +-+= (,)t n ∈∈**N N ,记数列{}n a 的前n 项和的最大值为()f t ,则()f t = .A1D 1A 1C 1B DC BOPNM Q已知函数sin ()xf x x=(1)判断下列三个命题的真假:①()f x 是偶函数;②()1f x < ;③当32x π=时,()f x 取得极小值. 其中真命题有____________________;(写出所有真命题的序号) (2)满足()()666n n f f πππ<+的正整数n 的最小值为___________. 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)已知函数2()cos cos f x x x x ωωω= (0)ω>的最小正周期为π.(Ⅰ)求2()3f π的值;(Ⅱ)求函数()f x 的单调区间及其图象的对称轴方程. 16.(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用X 表示4名乘客在第4层下电梯的人数,求X 的分布列和数学期望.17.(本小题共14分)如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值.18. (本小题共14分)已知函数221()()ln 2f x ax x x ax x =--+.()a ∈R . (I )当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程(e 2.718...=); (II )求函数()f x 的单调区间. 19.(本小题共13分)在平面直角坐标系xOy 中,设点(,),(,4)P x y M x -,以线段PM 为直径的圆经过ADOCPBE原点O .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)过点(0,4)E -的直线l 与轨迹W 交于两点,A B ,点A 关于y 轴的对称点为'A ,试判断直线'A B 是否恒过一定点,并证明你的结论.20. (本小题共13分)对于数列12n A a a a :,,,,若满足{}0,1(1,2,3,,)i a i n ∈=⋅⋅⋅,则称数列A 为“0-1数列”.定义变换T ,T 将“0-1数列”A 中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如A :1,0,1,则():0,1,1,0,0,1.T A 设0A 是“0-1数列”,令1(),k k A T A -=12k = ,,3,.(Ⅰ) 若数列2A :1,0,0,1,0,1,1,0,1,0,0,1. 求数列10,A A ;(Ⅱ) 若数列0A 共有10项,则数列2A 中连续两项相等的数对至少有多少对?请说明理由; (Ⅲ)若0A 为0,1,记数列k A 中连续两项都是0的数对个数为k l ,1,2,3,k =⋅⋅⋅.求k l 关于k 的表达式.海淀区高三年级第二学期期末练习数 学(理)答案及评分参考 2011.5选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9. 6 10. 11 11.32, 11613. 222, (4(1), (4t tt t t ⎧+⎪⎪⎨+⎪⎪⎩为偶数)为奇数) 14. ①② , 9 三、解答题(本大题共6小题,共80分) 15. (共13分) 解:(Ⅰ)1()(1cos 2)22f x x x =+ωω………………………2分1sin(2)26x =++πω, …………………………3分 因为()f x 最小正周期为π,所以22ππω=,解得1ω=, …………………………4分所以1()sin(2)62πf x x =++, ………………………… 5分 所以21()32πf =-. …………………………6分 (Ⅱ)分别由222,()262k x k k Z πππππ-≤+≤+∈,3222,()262k x k k Z πππππ+≤+≤+∈可得,()36k x k k Z ππππ-≤≤+∈,2,().63k x k k Z ππππ+≤≤+∈………………8分所以,函数()f x 的单调增区间为[,],()36k k k Z ππππ-+∈; ()f x 的单调减区间为2[,],().63k k k Z ππππ++∈………………………10分 由2,(62ππx k πk Z +=+∈)得,()26k πx πk Z =+∈. 所以,()f x 图象的对称轴方程为()26k πx πk Z =+∈. …………………………13分16.(共13分)解:(Ⅰ) 设4位乘客中至少有一名乘客在第2层下电梯的事件为A , …………………………1分由题意可得每位乘客在第2层下电梯的概率都是13, ……………………………3分 则4265()1()1381P A P A ⎛⎫=-=-=⎪⎝⎭ .……………………………6分(Ⅱ) X 的可能取值为0,1,2,3,4, …………………………7分 由题意可得每个人在第4层下电梯的概率均为13,且每个人下电梯互不影响, 所以,1(4,3X B . …………………………………11分14()433E X =⨯=. ………………………………13分17.(共14分)(Ⅰ)证明:设F 为DC 的中点,连接BF ,则DF AB = ∵AB AD ⊥,AB AD =,//AB DC , ∴四边形ABFD 为正方形, ∵O 为BD 的中点, ∴O 为,AF BD 的交点,∵2PD PB ==,∴PO BD ⊥, ………………………………..2分∵BD ==∴PO=12AO BD == 在三角形PAO 中,2224PO AO PA +==,∴PO AO ⊥,……………………………4分 ∵AO BD O = ,∴PO ⊥平面ABCD ; ……………………………5分 (Ⅱ)方法1:连接PF ,∵O 为AF 的中点,E 为PA 中点, ∴//OE PF ,∵OE ⊄平面PDC ,PF ⊂平面PDC ,∴//OE 平面PDC . ……………………………9分方法2:由(Ⅰ)知PO ⊥平面ABCD ,又AB AD ⊥,所以过O 分别做,AD AB 的平行线,以它们做,x y 轴,以OP 为z 轴建立如图所示的空间直角坐标系, 由已知得:(1,1,0)A --,(1,1,0)B -,(1,1,0)D -(1,1,0)F ,(1,3,0)C,P ,11(,22E --,则11(,22OE =--,(1,1,PF =,(1,1,PD =-,(1,3,PC = .A DO CPB EF∴12OE PF =-∴//OE PF∵OE ⊄平面PDC ,PF ⊂平面PDC ,∴//OE 平面PDC ; …………………………………9分(Ⅲ) 设平面PDC 的法向量为111(,,)n x y z =,直线CB 与平面PDC 所成角θ,则00n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩,即111111300x y x y ⎧+-=⎪⎨-=⎪⎩,解得1110y x =⎧⎪⎨=⎪⎩,令11z =,则平面PDC的一个法向量为)n = ,又(2,2,0)CB =--则sin cos ,θn CB =<>==, ∴直线CB 与平面PDC所成角的正弦值为3. ………………………………………14分18. (共14分)解:(I )当0a =时,()ln f x x x x =-,'()ln f x x =-, ………………………2分 所以()0f e =,'()1f e =-, ………………………4分 所以曲线()y f x =在(e,(e))f 处的切线方程为y x e =-+.………………………5分 (II )函数()f x 的定义域为(0,)+∞21'()()(21)ln 1(21)ln f x ax x ax x ax ax x x=-+--+=-,…………………………6分①当0a ≤时,210ax -<,在(0,1)上'()0f x >,在(1,)+∞上'()0f x <所以()f x 在(0,1)上单调递增,在(1,)+∞上递减; ……………………………………………8分②当102a <<时,在(0,1)和1(,)2a +∞上'()0f x >,在1(1,)2a上'()0f x < 所以()f x 在(0,1)和1(,)2a +∞上单调递增,在1(1,)2a上递减;………………………10分③当12a =时,在(0,)+∞上'()0f x ≥且仅有'(1)0f =,所以()f x 在(0,)+∞上单调递增; ……………………………………………12分④当12a >时,在1(0,)2a 和(1,)+∞上'()0f x >,在1(,1)2a上'()0f x < 所以()f x 在1(0,)2a 和(1,)+∞上单调递增,在1(,1)2a上递减……………………………14分19.(共13分) 解:(I )由题意可得OP OM ⊥, ……………………………2分所以O POM⋅= ,即(,xy x -= ………………………………4分即240x y -=,即动点P 的轨迹W 的方程为24x y = ……………5分 (II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -. 由244y kx x y=-⎧⎨=⎩消y整理得24160x kx -+=, ………………………………6分则216640k ∆=->,即|k >. ………………………………7分12124,16x x k x x +==. …………………………………9分直线212221':()y y A B y y x x x x --=-+212221222212212222121222112()1()4()41444 y 44y y y x x y x x x x y x x x x x x x x x x y x x x x x x x -∴=-++-∴=-++--∴=-+-∴=+……………………………………12分即2144x x y x -=+ 所以,直线'A B恒过定点(0,4). ……………………………………13分20. (共13分)解:(Ⅰ)由变换T 的定义可得1:0,1,1,0,0,1A …………………………………2分0:1,0,1A (4)分(Ⅱ) 数列0A 中连续两项相等的数对至少有10对 …………………………………5分证明:对于任意一个“0-1数列”0A ,0A 中每一个1在2A 中对应连续四项1,0,0,1,在0A 中每一个0在2A 中对应的连续四项为0,1,1,0,因此,共有10项的“0-1数列”0A 中的每一个项在2A 中都会对应一个连续相等的数对, 所以2A 中至少有10对连续相等的数对. …………………………………………………………8分 (Ⅲ) 设k A 中有k b 个01数对,1k A +中的00数对只能由k A 中的01数对得到,所以1k k l b +=,1k A +中的01数对有两个产生途径:①由k A 中的1得到; ②由k A 中00得到,由变换T 的定义及0:0,1A 可得k A 中0和1的个数总相等,且共有12k +个,所以12k k k b l +=+, 所以22k k k l l +=+,由0:0,1A 可得1:1,0,0,1A ,2:0,1,1,0,1,0,0,1A 所以121,1l l ==, 当3k ≥时,若k 为偶数,222k k k l l --=+4242k k k l l ---=+ 2422l l =+上述各式相加可得122421(14)11222(21)143k k kk l ---=++++==-- ,经检验,2k =时,也满足1(21)3k k l =-若k 为奇数,222k k k l l --=+ 4242k k k l l ---=+ 312l l =+上述各式相加可得12322(14)112221(21)143k k kk l ---=++++=+=+- ,经检验,1k =时,也满足1(21)3k k l =+所以1(21),31(21),3kk k k l k ⎧+⎪⎪=⎨⎪-⎪⎩为奇数为偶数…………………………………………………………………………………..13分说明:其它正确解法按相应步骤给分.北京市西城区2011年高三二模试卷数学(理科) 2011.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于 (A )1(B )0(C )2- (D )3-2.已知i 是虚数单位,则复数23z i+2i 3i =+所对应的点落在 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.在ABC ∆中,“0AB BC ⋅>”是“ABC ∆为钝角三角形”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分又不必要条件4.已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC .则下列结论不正确...的是 (A )//CD 平面PAF (B )DF ⊥平面PAF (C )//CF 平面PAB (D )CF ⊥平面PAD5.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为(A(B(C )2(D )36.函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan APB ∠=(A )10 (B )8 (C )87(D )77.已知数列{}n a 的通项公式为13n a n =-,那么满足119102k k k a a a +++++= 的整数k (A )有3个 (B )有2个 (C )有1个(D )不存在8.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +(A )最小值为15 (B)最小值为5 (C )最大值为15(D)最大值为5第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在ABC ∆中,若2B A =,:a b =A =_____. 10.在521()x x+的展开式中,2x 的系数是_____. 11.如图,AB 是圆O 的直径,P 在AB 的延长线上,PD切圆O 于点C .已知圆O2OP =,则PC =______;ACD ∠的大小为______.12.在极坐标系中,点(2,)2A π关于直线:cos 1l ρθ=的对称点的一个极坐标为_____.13.定义某种运算⊗,a b ⊗的运算原理如右图所示.设()(0)(2)f x x x x =⊗-⊗. 则(2)f =______;()f x 在区间[2,2]-上的最小值为______.14.数列{}n a 满足11a =,11n n n a a n λ+-=+,其中λ∈R , 12n = ,,.①当0λ=时,20a =_____;②若存在正整数m ,当n m >时总有0n a <,则λ的取值范围是_____.三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数cos 2()sin()4x f x x π=+.(Ⅰ)求函数()f x 的定义域; (Ⅱ)若4()3f x =,求s i n 2x 的值.16.(本小题满分13分)如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O = .将菱形ABCD 沿对角线AC折起,使BD =B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ; (Ⅱ)求二面角A B D O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N点的位置,使得CN =你的结论.17.(本小题满分13分)甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.(Ⅰ)求选出的4名选手均为男选手的概率.(Ⅱ)记X 为选出的4名选手中女选手的人数,求X 的分布列和期望.18.(本小题满分14分)已知函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.(Ⅰ)当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积; (Ⅱ)若函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.19.(本小题满分14分)已知椭圆2222:1x y M a b +=(0)a b >>,且椭圆上一点与椭圆的两个焦点构成的三角形周长为246+.M(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C , 求ABC ∆面积的最大值.20.(本小题满分13分)若m A A A ,,,21 为集合2}(,,2,1{≥=n n A 且)n ∈*N 的子集,且满足两个条件: ①12m A A A A = ;②对任意的A y x ⊆},{,至少存在一个},,3,2,1{m i ∈,使}{},{x y x A i = 或}{y . 则称集合组m A A A ,,,21 具有性质P .如图,作n 行m 列数表,定义数表中的第k 行第l 列的数为⎩⎨⎧∉∈=)(0)(1l l kl A k A k a .(Ⅰ)当4n =时,判断下列两个集合组是否具有性质P ,如果是请画出所对应的表格,如果不是请说明理由;集合组1:123{1,3},{2,3},{4}A A A ===; 集合组2:123{2,3,4},{2,3},{1,4}A A A ===. (Ⅱ)当7n =时,若集合组123,,A A A 具有性质P ,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合123,,A A A ;(Ⅲ)当100n =时,集合组12,,,t A A A 是具有性质P 且所含集合个数最小的集合组,求t 的值及12||||||t A A A ++ 的最小值.(其中||i A 表示集合i A 所含元素的个数)北京市西城区2011年高三二模试卷参考答案及评分标准数学(理科) 2011.5一、选择题:本大题共8小题,每小题5分,共40分.题号1 2 3 4 5 6 7 8 答案C C AD C B B A二、填空题:本大题共6小题,每小题5分,共30分.9. 30 10. 5 11.1;7512.)4π(或其它等价写法) 13.2-;6- 14.120;(21,2),k k k -∈*N . 注:11、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解:(Ⅰ)由题意,sin()04x π+≠, ………………2分 所以()4x k k π+≠π∈Z , ………………3分 所以()4x k k π≠π-∈Z , ………………4分函数()f x 的定义域为{x x ≠,4k k ππ-∈Z }. ………………5分(Ⅱ)c o s 2c o s 2()sin()sin cos cos sin444x x f x x x x ==πππ++ ………………7分2sin cos xx x=+ ………………8分22sin )sin )sin cos x x x x x x-==-+. ………………10分因为4()3f x =,所以cos sin 3x x -=. ………………11分 所以,2sin 21(cos sin )x x x =-- ………………12分81199=-= . ………………13分16.(本小题满分13分)(Ⅰ)证明:因为点O 是菱形ABCD 的对角线的交点,所以O 是AC 的中点.又点M 是棱BC 的中点,所以OM 是ABC ∆的中位线,//OM AB . ………………1分因为OM ⊄平面ABD ,AB ⊂平面ABD ,所以//OM 平面ABD . ………………3分 (Ⅱ)解:由题意,3OB OD ==,因为BD =所以90BOD ∠=,OB OD ⊥. ………………4分 又因为菱形ABCD ,所以OB AC ⊥,OD AC ⊥. 建立空间直角坐标系O xyz -,如图所示.(0,3,0),A D (0,0,3)B .所以((AB AD =-=-………………6分设平面ABD 的法向量为n =(,,)x y z ,则有0,0AB AD ⎧⋅=⎪⎨⋅=⎪⎩n n即:30,30z y ⎧-+=⎪⎨-+=⎪⎩令1x =,则y z ==n=(1. ………………7分 因为,AC OB AC OD ⊥⊥,所以AC ⊥平面BOD . 平面BOD 的法向量与AC 平行,所以平面BOD 的法向量为0(1,0,0)=n . ………………8分000cos ,⋅〈〉===n n n n n n 因为二面角A B D O --是锐角,所以二面角A B D O --的余弦值为. ……………9分 (Ⅲ)解:因为N 是线段BD 上一个动点,设111(,,)N x y z ,BN BD λ=,则111(,,3)(0,3,3)x y z λ-=-,所以1110,3,33x y z λλ===-, ……………10分则(0,3,33)N λλ-,,33)CN λλ=-,由CN ==,即29920λλ-+=,…………11分解得13λ=或3λ=, ……………12分 所以N 点的坐标为(0,2,1)或(0,1,2). ……………13分(也可以答是线段BD 的三等分点,2BN ND = 或2BN ND =)17.(本小题满分13分)解:(Ⅰ)事件A 表示“选出的4名选手均为男选手”.由题意知232254()C P A C C = ………………3分11110220=⨯=. ………………5分 (Ⅱ)X 的可能取值为0,1,2,3. ………………6分23225431(0)10620C P X C C ====⨯, ………………7分11212333225423337(1)10620C C C C P X C C +⨯⨯+====⨯, ………………9分 21332254333(3)10620C C P X C C ⨯====⨯, ………………10分 (2)1(0)(1)(3)P X P X P X P X ==-=-=-=920=. ………………11分 X 的分布列:X0 1 2 3 P120 720 920320………………12分179317()01232020202010E X =⨯+⨯+⨯+⨯=. ………………13分18、(本小题满分14分)解:(Ⅰ)22()e xx ax a f x x -+'=, ………………3分 当2a =时,2222()e xx x f x x -+'=, 12122(1)e e 1f -+'=⨯=,(1)e f =-, 所以曲线()y f x =在(1,(1))f 处的切线方程为e 2e y x =-, ………………5分 切线与x 轴、y 轴的交点坐标分别为(2,0),(0,2e)-, ………………6分 所以,所求面积为122e 2e 2⨯⨯-=. ………………7分 (Ⅱ)因为函数()f x 存在一个极大值点和一个极小值点,所以,方程20x ax a -+=在(0,)+∞内存在两个不等实根, ………………8分则240,0.a a a ⎧∆=->⎨>⎩ ………………9分 所以4a >. ………………10分 设12,x x 为函数()f x 的极大值点和极小值点,则12x x a +=,12x x a =, ………………11分 因为,512()()e f x f x =, 所以,1251212e e e x x x a x a x x --⨯=, ………………12分 即1225121212()e e x x x x a x x a x x +-++=,225e e a a a a a -+=,5e e a =, 解得,5a =,此时()f x 有两个极值点,所以5a =. ………………14分19.(本小题满分14分)解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+,所以24622+=+c a , ……………1分又椭圆的离心率为3,即3c a =,所以3c a =, ………………2分所以3a =,c =………………4分所以1b =,椭圆M 的方程为1922=+y x . ………………5分 (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , ………………6分 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x , ………………7分同理可得2219327nn x +-=, ………………8分所以1961||22++=n n BC ,222961||nn n n AC ++=, ………………10分 964)1()1(2||||212+++==∆n n n n AC BC S ABC , ………………12分 设21≥+=n n t ,则22236464899t S t t t ==≤++, ………………13分当且仅当38=t 时取等号,所以ABC ∆面积的最大值为83. ………………14分方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, ………………6分 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ① ………………7分因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=.由 1122(3,),(3,)CA x y CB x y =-=-,得 1212(3)(3)0x x y y --+=. ………………8分 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). ………………10分 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12==……………12分设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. ……………14分20.(本小题满分13分)(Ⅰ)解:集合组1具有性质P . ………………1分所对应的数表为: (3)分集合组2不具有性质P . ………………4分 因为存在{{2,3}1,2,3,4}⊆,有123{2,3}{2,3},{2,3}{2,3},{2,3}A A A ===∅ , 与对任意的A y x ⊆},{,都至少存在一个{1,2,3}i ∈,有}{},{x y x A i = 或}{y 矛盾,所以集合组123{2,3,4},{2,3},{1,4}A A A ===不具有性质P . ………………5分(Ⅱ)……………7分123{3,4,5,7},{2,4,6,7},{1,5,6,7}A A A ===. ………………8分 (注:表格中的7行可以交换得到不同的表格,它们所对应的集合组也不同) (Ⅲ)设12,,,t A A A 所对应的数表为数表M ,因为集合组12,,,t A A A 为具有性质P 的集合组, 所以集合组12,,,t A A A 满足条件①和②, 由条件①:12t A A A A = ,可得对任意x A ∈,都存在{1,2,3,,}i t ∈ 有i A x ∈, 所以1=xi a ,即第x 行不全为0,所以由条件①可知数表M 中任意一行不全为0. ………………9分1 1 1 1 1 1 1 1 1 11 1 0 0 0 00 0 0 0 0 01 1 0 0 00 1 1 0 0 1由条件②知,对任意的A y x ⊆},{,都至少存在一个{1,2,3,,}i t ∈ ,使}{},{x y x A i = 或}{y ,所以yi xi a a ,一定是一个1一个0,即第x 行与第y 行的第i 列的两个数一定不同.所以由条件②可得数表M 中任意两行不完全相同. ………………10分 因为由0,1所构成的t 元有序数组共有2t个,去掉全是0的t 元有序数组,共有21t-个,又因数表M 中任意两行都不完全相同,所以10021t≤-,所以7t ≥.又7t =时,由0,1所构成的7元有序数组共有128个,去掉全是0的数组,共127个,选择其中的100个数组构造100行7列数表,则数表对应的集合组满足条件①②,即具有性质P .所以7t =. ………………12分 因为12||||||t A A A +++ 等于表格中数字1的个数,所以,要使12||||||t A A A +++ 取得最小值,只需使表中1的个数尽可能少, 而7t =时,在数表M 中,1的个数为1的行最多7行;1的个数为2的行最多2721C =行; 1的个数为3的行最多3735C =行; 1的个数为4的行最多4735C =行;因为上述共有98行,所以还有2行各有5个1,所以此时表格中最少有722133543552304+⨯+⨯+⨯+⨯=个1.所以12||||||t A A A +++ 的最小值为304. ………………14分北京市东城区2010-2011学年第二学期高三综合练习数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。

北京初三数学2011年各区一模二模12题汇总(含答案)

北京初三数学2011年各区一模二模12题汇总(含答案)

2011年北京市一模、二模第12题汇总12.(11hdym)如图,矩形纸片ABC D 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O , 则1BO = ,n BO = .(2,12332n n --)…第一次折叠 第二次折叠 第三次折叠 图1 图2 …12.(11dcym) 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1O B 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2O B 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).(938,0 1)332(-n ,0)12.(11syym) 将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的BADCBA DC1O 1O 2O 1D 1D 2D 1O 2O 3O B ADCB ADC…① ② ③ ④位置是第 行第 列.(6,121n n +)12.(11fsym)如图,以边长为1的正方形的四边中点为顶点作四边形, 再以所得四边形四边中点为顶点作四边形,......依次作下去, 图中所作的第三个四边形的周长为________;所作的第n个四边形的周长为_________________.(2,42()2n)12.(11yqym)如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n块纸板的周长为n P ,则=-34P P ;1--n n P P = .(81, 121-⎪⎭⎫ ⎝⎛n )12.(11myym) 如图,一个空间几何体的主视图和左视图都是边长为1的正 三角形,俯视图是一个圆,那么这个几何体的侧面积是 . (12π)12.(11dxym).将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n 为正整数)个图中,挖去的所有三角形形的面积和为 (用含n 的代数式表示). ⎪⎭⎫⎝⎛25681)43(4或, n )(431-.(12题图)12.(11sjsym)已知:如图,在平面直角坐标系xOy 中,点1B 、点1C 的坐标分别为()0,1,()31,,将△11C OB绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使12OC OB =,得到△22C OB .将△22C OB 绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使23OC OB =,得到△33C OB ,如此下去,得到△n n C OB . (1)m 的值是_______________;(2)△20112011C OB 中,点2011C 的坐标:_____________.(2;(32,220102010)) 12.(11ysym)已知:点F 在正方形纸片ABCD 的边CD 上,AB=2,∠FBC=30°(如图1);沿BF 折叠纸片,使点C 落在纸片内点C '处(如图2);再继续以BC '为轴折叠纸片,把点A 落在纸片上的位置记作A '(如图3),则点D 和A '之间的距离为_________. (2-6)12.(11mtgym)已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当n = 8时,共向外作出了个小等边三角形; 当n = k 时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用 含k 的式子表示).183(-2)k23(2)k sk-A D A D D C 'F F F A 'B C B B图1 图2 图3n =3n =5……n =4D 4D 1D 2D 3ABCE 3E 2E 112.(11tongzym )已知ABC AB AC m ∆==中,,72A B C ∠=︒,1BB 平分A B C ∠交A C 于1B ,过1B 作12B B //B C 交AB 于2B ,作23B B 平分21A B B ∠,交A C 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .212332n n --12.(11changpem)如图,点E 、D 分别是正三角形ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的一边延长线和另一边反向延长线上的点,且BE =CD ,DB 的延长线交AE 于点F ,则图1中∠AFB 的度数为 ;若将条件“正三角形、正四边形、正五边形”改为“正n 边形”,其他条件不变,则∠AFB 的度数为 .(用n 的代数式表示,其中,n ≥3,且n 为整数)(0°,2180n n-⋅())图1E FB ADC图2AC DB FEM图3NAC DB F EM12.(11fangsem)如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)联结DE ,作DE 的中垂线,交AD 于点F . (1)若E 为AB 中点,则D F A E=.(2)若E 为AB 的n 等分点(靠近点A),则D FA E = .(251,42n n+) 12. (11fengtem)已知:如图,在R t ABC △中,点1D 是斜边A B 的中点,过点1D 作11D E AC ⊥于点E 1,联结1B E 交1C D 于点2D ;过点2D 作22D E AC ⊥于点2E ,联结2BE交1C D 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点45、D D 、…、n D ,分别记112233△、△、△、BD E BD E BD E …、n nBD E △的面积为123、、、S S S …n S .设△ABC 的面积是1, 则S 1= ,n S = (用含n 的代数式表示)(211,4(1)n +)12. (11huairem)如图7所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函数y =x4(x >0)的图象上,⊿OP 1A 1,⊿P 2A 1A 2,⊿P 3A 2A 3……⊿P n A n -1A n ……都是等腰三角形,斜边OA 1,A 1A 2……A n -1A n ,都在x 轴上,则y 1= .y 1+y 2+…y n = . (2, 2n )12.(11shijsem)如图平面内有公共端点的五条射线,,,,,OE OD OC OB OA 从射线OA 开始,在射线上写出数字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线 上;“2011”在射线 上.(OC ;OB ) 12.(11yanqem)正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(. 延长CB 交x 轴于点1A ,作正方形C C B A 111; 延长11B C 交x 轴于点2A ,作正方形1222C C B A … 按这样的规律进行下去,第3个正方形的面积为________; 第n 个正方形的面积为_____________(用含n 的代数式表示).4235)( , 22235-⎪⎭⎫ ⎝⎛nyo xAAAB B B CC CD 第12题图。

北京东城区中考数学二模试题及答案

北京东城区中考数学二模试题及答案

北京市东城区2010--2011学年第二学期初三综合练习(二)数 学 试 卷学校 姓名 考号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1. 21-的绝对值是 A. 21 B. 21- C. 2 D. -22. 下列运算中,正确的是A .235a a a += B .3412a a a ⋅= C .236a a a =÷ D .43a a a -= 3.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是A .18 B . 13 C . 38 D . 354.下列图形中,既是..轴对称图形又是..5. 若一个正多边形的一个内角等于150°,则这个正多边形的边数是A .9B .10C .11D .126. 则在这次活动中,该班同学捐款金额的众数和中位数是A .30,35B .50,35C .50,50D .15,50 7.已知反比例函数2k y x -=的图象如图所示,220根的情况是A .没有实根B . 有两个不等实根C .有两个相等实根D .无法确定D CB A8.用min{a ,b }表示a ,b 两数中的最小数,若函数}1,1m in{22x x y -+=,则y 的图象为二、填空题(本题共16分,每小题4分) 9. 反比例函数ky x=的图象经过点(-2,1),则k 的值为_______. 10. 已知一个几何体的三视图如图所示,则该几何体是 . 主视图俯视图11. 如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD ∥AB ,则∠a 的余弦值为__________. 12. 如图,Rt ABC △中,90ACB ∠=o,30CAB ∠=o,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120o到11A BC △的位置,则整个旋转过程中线段OH 所扫过 部分的面积(即阴影部分面积)为 . 三、解答题(本题共30分,每小题5分)13. 先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中33x =. 14. 解分式方程:11322x x x-+=--.15.如图,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将△ABC 先向下平移4个单位,得△A 1B 1C 1;再将△A 1B 1C 1沿y 轴翻折,得△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2; (2)求线段B 2C 长.AH BOC 1O1H1A1Cy O A B CxyA 1-1-1-1-11111111xy0BxyC xyD16. 如图,点D 在AB 上,DF 交AC 于点E ,CF AB ∥,AE EC =. 求证:AD CF =.17. 列方程或方程组解应用题为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的54还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2). (1)求直线QC 的解析式;(2)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3∶1两部分,求出此时a 的值.四、解答题(本题共20分,每小题5分)19. 如图,在梯形ABCD 中,AD //BC ,BD 是∠ABC 的平分线. (1)求证:AB =AD ;(2)若∠ABC =60°,BC =3AB ,求∠C 的度数 .20. 如图,四边形ABCD 是平行四边形,以AB 为直径的 ⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45︒.(1) 试判断CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为3,sin ∠ADE =65,求AE 的值.21.某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l 和图2.(1)第四个月销量占总销量的百分比是_______;A B CDE FABCD(2)在图2中补全表示B品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.图1 图222. 如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.(1)请在图4中画出拼接后符合条件的平行四边形;(2)请在图2中,计算裁剪的角度(即∠ABM的度数).CNDB图2图1图4F E D C BA图1OEDC BAR QP图2OEDC BA五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若a ∶b =231222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A在点C 的左侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值.24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似?25. 如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.北京市东城区2010--2011学年第二学期初三综合练习(二)数学试卷参考答案三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解: 原式222441444x x x x x =+++--- ………………3分23x =- . ………………4分当2x =,原式2271533244⎛⎫=-=-= ⎪ ⎪⎝⎭. ………………5分 14.(本小题满分5分) 解:32121=-+--x x x ………………1分 去分母得 x-1+1=3(x-2)解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3. ………………5分15.(本小题满分5分) 解:(1)A 1 点的坐标为(3,-1),B 1点的坐标为(2,-3),C 1点的坐标为(5,-3);A 2 点的坐标为(-3,-1),B 2点的坐标为(-2,-3),C 2点的坐标为(-5,-3).图略,每正确画出一个三角形给2分.(2)利用勾股定理可求B 2C………………5分16.(本小题满分5分) 证明:∵ CF AB ∥,∴ ∠A =∠ACF , ∠ADE =∠CFE . -------2分在△ADE 和△CFE 中, ∠A =∠ACF , ∠ADE =∠CFE ,AE EC =,∴ △ADE ≌△CFE . --------4分 ∴ AD CF =. ------5分17.(本小题满分5分)解:设小刚家4、5两月各行驶了x 、y 千米. --------------------------1分依题意,得 ⎪⎩⎪⎨⎧=+-=.2601.01.0,10054y x x y ----------------------------3分 解得 ⎩⎨⎧==.1100,1500y x -------------------------------4分ABCD E答:小刚家4月份行驶1500千米,5月份行驶了1100千米. -----------5分18.(本小题满分5分)解:(1)由题意可知 点C 的坐标为(1,1).…………………………………1分设直线QC 的解析式为y kx b =+. ∵ 点Q 的坐标为(0,2),∴ 可求直线QC 的解析式为2y x =-+.…………………………………2分 (2)如图,当点P 在OB 上时,设PQ 交CD 于点E ,可求点E 的坐标为(2a,1). 则522AP AD DE a ++=+,332CE BC BP a ++=-. 由题意可得 5323(3)22a a +=-.∴ 1a =. …………………………………4分 由对称性可求当点P 在OA 上时,1a =-∴ 满足题意的a 的值为1或-1. …………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)证明:∵BD 是∠ABC 的平分线,∴ ∠1=∠2.∵ AD //BC ,∴∠2=∠3. ∴ ∠1=∠3.∴AB=AD . ---------------------2分(2)作AE ⊥BC 于E ,DF ⊥BC 于F .∴ EF=AD=AB .∵ ∠ABC =60°,BC =3AB , ∴ ∠BAE =30°.∴ BE =21AB . ∴ BF =23AB=21BC .∴ BD=DC . ∴ ∠C =∠2.ABCD123E FF E D BA∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分 ∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6. 在Rt △ABE 中,sin ∠ABE =AB AE =65. ∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分 22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分A B D EO(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin ∠ABM =151302AM AB==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a ,∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分(2) ∵ a ∶b =2∴ 设2,a k b ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去).∴ 4,a b ==. …………………………5分(3) 当4,a b ==时,二次函数2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4).设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分24. (本小题满分7分)解:(1)四边形ABCE 是菱形.321G R Q P OE D C BA 证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB .∴ 四边形ABCE 是平行四边形.又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分(2)①四边形PQED 的面积不发生变化,理由如下:由菱形的对称性知,△PBO ≌△QEO ,∴ S △PBO = S △QEO∵ △ECD 是由△ABC 平移得到的,∴ ED ∥AC ,ED =AC =6.又∵ BE ⊥AC ,∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角,∴∠2>∠3.∴∠2不与∠3对应 .∴∠2与∠1对应 .即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 .可证 △OGC ∽△BOC .∴ CG :CO =CO :BC .即 CG :3=3:5 .∴ CG =95. ∴ PB =BC -PC =BC -2CG =5-2×95=75.B C A x y F O D E H M G ∴ BD =PB +PR +RF +DF =x +185+x +185=10. ∴ x =75∴ BP =75. ……………7分 25.(本小题满分8分)解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2.则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH ∴ 224233y x x =-++.……………2分(2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H .则AH =BH =1,GH =83-2=23.∵ EA ⊥AB ,GH ⊥AB ,∴ EA ∥GH .∴GH 是△BEA 的中位线 .∴EA =3GH =43.过B 作BM ⊥OC ,垂足为M .则MB =OA =AB .∵ ∠EBF =∠ABM =90°,∴ ∠EBA =∠FBM =90°-∠ABF .∴ R t △EBA ≌R t △FBM .∴ FM =EA =43.∵ CM =OC -OM =3-2=1,∴ CF =FM +CM =73.……………5分(3)要使四边形BCGH 的周长最小,可将点C 向上平移一个单位,再做关于对称轴对称的对称点C 1,得点C1的坐标为(-1,1).可求出直线BC1的解析式为1433y x=+.直线1433y x=+与对称轴x=1的交点即为点H,坐标为(1,53).点G的坐标为(1,23).……………8分。

2011年北京市各城区数学二模试题汇总 注意:是5个城区的哦!!

2011年北京市各城区数学二模试题汇总  注意:是5个城区的哦!!

xyO π2π1-1丰台区2011年高三年级第二学期统一练习(二)数学(理科)2011.5一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.在复平面内,复数121iz i-=+对应的点位于 (A) 第一象限 (B)第二象限 (C) 第三象限(D)第四象限2.下列四个命题中,假命题为(A) x ∀∈R ,20x > (B) x ∀∈R ,2310x x ++> (C) x ∃∈R ,lg 0x >(D) x ∃∈R ,122x =3.已知a >0且a ≠1,函数log a y x =,x y a =,y x a =+在同一坐标系中的图象可能是(A)(B) (C) (D)4.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是(A) 圆和直线 (B) 直线和直线 (C) 椭圆和直线 (D)椭圆和圆 5.由1,2,3,4,5组成没有重复数字且2与5不相邻的四位数的个数是(A) 120 (B) 84 (C) 60 (D) 486.已知函数sin()y A x ωϕ=+的图象如图所示,则该函数的解析式可能是(A) 441sin()555y x =+(B) 31sin(2)25y x =+(C) 441sin()555y x =-(D) 41sin(2)55y x =+7.已知直线l :0Ax By C ++=(A ,B 不全为0),两点111(,)P x y ,222(,)P x y ,若1122()()0Ax By C Ax By C ++++>,且1122Ax By C Ax By C ++>++,则(A) 直线l 与直线P 1P 2不相交(B) 直线l 与线段P 2P 1的延长线相交 (C) 直线l 与线段P 1P 2的延长线相交(D) 直线l 与线段P 1P 2相交OO O O x xxxyyyy1 11 1111 18.已知函数2()2f x x x =-,()2g x ax =+(a >0),若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得f (x 1)= g (x 2),则实数a 的取值范围是 (A) 1(0,]2(B) 1[,3]2(C) (0,3] (D)[3,)+∞二、填空题:本大题共6小题,每小题5分,共30分.9.圆C :222220x y x y ++--=的圆心到直线3x +4y +14=0的距离是. 10.如图所示,DB ,DC 是⊙O 的两条切线,A 是圆上一点,已知 ∠D =46°,则∠A =.11.函数2cos sin y x x x =-的最小正周期为,最大值 为.12.一个几何体的三视图如图所示,则该几何体的体积是.13.如果执行右面的程序框图,那么输出的a =___.14.如图所示,∠AOB =1rad ,点A l ,A 2,…在OA 上,点B 1,B 2,…在OB 上,其中的每一个实线段和虚线段的长均为1个长度单位,一个动点M 从O 点出发,沿着实线段和以O 为圆心的圆弧匀速运动,速度为l 长度单位/秒,则质点M 到达A 3点处所需要的时间为__秒,质点M 到达A n 点处所需要的时间为__秒.OA 1A 2 A 3 A 4B 1 B 2 B 3 B 4 AB正视图侧视图俯视图A三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知等差数列{}n a 的前n 项和为n S ,a 2=4,S 5=35. (Ⅰ)求数列{}n a 的前n 项和n S ;(Ⅱ)若数列{}n b 满足n a n b e =,求数列{}n b 的前n 项和n T .16.(本小题共14分)张先生家住H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(Ⅰ)若走L 1路线,求最多..遇到1次红灯的概率; (Ⅱ)若走L 2路线,求遇到红灯次数X 的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.17.(本小题共13分)已知平行四边形ABCD 中,AB =6,AD =10,BD =8,E 是线段AD 的中点.沿BD 将△BCD 翻折到△BC D ',使得平面BC D '⊥平面ABD . (Ⅰ)求证:C D '⊥平面ABD ; (Ⅱ)求直线BD 与平面BEC '所成角的正弦值; (Ⅲ)求二面角D BE C '--的余弦值.12A B D E C ' C18.(本小题共13分)已知函数2()ln (2)f x x ax a x =-+-. (Ⅰ)若()f x 在1x =处取得极值,求a 的值; (Ⅱ)求函数()y f x =在2[,]a a 上的最大值.19.(本小题共14分)已知抛物线P :x 2=2py (p >0).(Ⅰ)若抛物线上点(,2)M m 到焦点F 的距离为3.(ⅰ)求抛物线P 的方程;(ⅱ)设抛物线P 的准线与y 轴的交点为E ,过E 作抛物线P 的切线,求此切线方程; (Ⅱ)设过焦点F 的动直线l 交抛物线于A ,B 两点,连接AO ,BO 并延长分别交抛物线的准线于C ,D 两点,求证:以CD 为直径的圆过焦点F .20.(本小题共13分) 用[]a 表示不大于a 的最大整数.令集合{1,2,3,4,5}P =,对任意k P ∈和N*m ∈,定义51(,)[]i f m k ==∑,集合{N*,}A m k P =∈∈,并将集合A 中的元素按照从小到大的顺序排列,记为数列{}n a . (Ⅰ)求(1,2)f 的值; (Ⅱ)求9a 的值;(Ⅲ)求证:在数列{}n a中,不大于m 00(,)f m k 项.(考生务必将答案答在答题卡上,在试卷上作答无效)海淀区高三年级第二学期期末练习数学(理科) 2011.5选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数11i+在复平面上对应的点的坐标是A .(1,1) B. (1,1)- C. (1,1)-- D. (1,1)-2. 已知全集R,U =集合{}1,2,3,4,5A =,{|2}B x x =∈≥R ,下图中阴影部分所表示的集合为 A {1}B.{0,1} C. {1,2}D. {0,1,2} 3.函数21()log f x x x=-的零点所在区间 A .1(0,)2 B.1(,1)2C.(1,2)D.(2,3) 4.若直线l 的参数方程为13()24x tt y t =+⎧⎨=-⎩为参数,则直线l 倾斜角的余弦值为A .45-B .35-C .35D .455. 某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:甲 乙 9 8 8 1 7 7 9 9 6 1 0 2 2 5 6 7 9 9 5 3 2 0 3 0 2 3 7 1 0 4根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 A .甲运动员得分的极差大于乙运动员得分的极差B .甲运动员得分的的中位数大于乙运动员得分的的中位数C .甲运动员的得分平均值大于乙运动员的得分平均值D .甲运动员的成绩比乙运动员的成绩稳定6.一个锥体的主视图和左视图如图所示,下面选项中,不.可能是...该锥体的俯视图的是7.若椭圆1C :1212212=+b ya x(011>>b a )和椭圆2C :1222222=+b ya x(022>>b a )的焦点相同且12a a >.给出如下四个结论:① 椭圆1C 和椭圆2C 一定没有公共点; ②1122a b a b >; ③22212221b b a a -=-; ④1212a a b b -<-.其中,所有正确结论的序号是A .②③④B. ①③④C .①②④D.①②③8. 在一个正方体1111A B C D A B C D -中,P 为正方形1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心,,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足M Q λ=的实数λ的值有A. 0个B. 1个C. 2个D. 3个非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.点(,)P x y 在不等式组2,,2y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则z x y =+的最大值为_______.主视图左视图B ACDA1D 1A 1C 1B DCBOPNQ10.运行如图所示的程序框图,若输入4n =,则输出S 的值为 . 11.若4234512345(1)x mx a x a x a x a x a x -=++++, 其中26a =-,则实数m 的值为;12345a a a a a ++++的值为.12.如图,已知O 的弦AB 交半径OC 于点D ,若3AD =,2BD =,且D 为OC 的中点,则CD 的长为 .13.已知数列{}n a 满足1,a t =,120n n a a +-+=(,)t n ∈∈**N N ,记数列{}n a 的前n 项和的最大值为()f t ,则()f t = .14. 已知函数sin ()xf x x=(1)判断下列三个命题的真假: ①()f x 是偶函数;②()1f x <;③当32x π=时,()f x 取得极小值. 其中真命题有____________________;(写出所有真命题的序号) (2)满足()()666n n f f πππ<+的正整数n 的最小值为___________. 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题共13分)已知函数2()coscos f x x x x ωωω=(0)ω>的最小正周期为π.(Ⅰ)求2()3f π的值;(Ⅱ)求函数()f x 的单调区间及其图象的对称轴方程.16.(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X 表示4名乘客在第4层下电梯的人数,求X 的分布列和数学期望. 17.(本小题共14分)如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值.18. (本小题共14分)已知函数221()()ln 2f x ax x x ax x =--+.()a ∈R . (I )当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程(e 2.718...=); (II )求函数()f x 的单调区间.19.(本小题共13分)在平面直角坐标系xOy 中,设点(,),(,4)P x y M x -,以线段PM 为直径的圆经过原点O .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)过点(0,4)E -的直线l 与轨迹W 交于两点,A B ,点A 关于y 轴的对称点为'A ,试判断直线'A B 是否恒过一定点,并证明你的结论.20. (本小题共13分)对于数列12n A a a a :,,,,若满足{}0,1(1,2,3,,)i a i n ∈=⋅⋅⋅,则称数列A 为“0-1数列”.定义变换T ,T 将“0-1数列”A 中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如A :1,0,1,则():0,1,1,0,0,1.T A 设0A 是“0-1数列”,令1(),k k A T A -= 12k = ,,3,.(Ⅰ)若数列2A :1,0,0,1,0,1,1,0,1,0,0,1.求数列10,A A ;(Ⅱ) 若数列0A 共有10项,则数列2A 中连续两项相等的数对至少有多少对?请说明理由;A D OC PBE(Ⅲ)若0A 为0,1,记数列k A 中连续两项都是0的数对个数为k l ,1,2,3,k =⋅⋅⋅.求k l 关于k 的表达式.北京市朝阳区高三年级第二次综合练习数学测试题(理工类)2011.5(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)注意事项:1.答第一部分前,考生务必将自己的姓名、考试科目涂写在答题卡上.考试结束时,将试题卷和答题卡一并交回.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)已知全集U =R ,集合{|021}xA x =<<,3{|log 0}B x x =>,则U ()A B I ð=(A ){|1}x x >(B ){|0}x x >(C ){|01}x x <<(D ){|0}x x <(2)设,x y ∈R ,那么“0>>y x ”是“1>yx”的 (A )必要不充分条件(B )充分不必要条件 (C )充分必要条件 (D )既不充分又不必要条件(3)三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为(A ) 8 (B ) 4(C)D(4)已知随机变量X 服从正态分布(, 4)N a ,且(1)0.5P X >=,则实数a 的值为(A )1 (BC )2(D )4(5)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从正视图1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有 (A )120个(B )80个(C )40个(D )20个(6)点P 是抛物线x y 42=上一动点,则点P 到点(0,1)A -的距离与到直线1-=x 的距离和的最小值是 (ABC )2 (D )2(7)已知棱长为1的正方体1111ABCD A BC D -中,点E ,F 分别是棱1BB ,1DD 上的动 点,且1BE D F λ==1(0)2λ<≤.设EF 与AB 所成的角为α,与BC 所成的角为β,则αβ+的最小值(A )不存在(B )等于60︒(C )等于90︒(D )等于120︒(8)已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0 .设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S ,记11SSλ=,22S S λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为(A )32(B )12(C ) 1 (D )2 第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)已知复数z 满足1iz i =-,则z =. (10)曲线C :cos 1,sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为.(11)曲线233y x =-与x 轴所围成的图形面积为________.(12)已知数列{}n a 满足12a =,且*1120,n n n n a a a a n +++-=∈N ,则2a =;并归纳出数列{}n a 的通项公式n a =.(13)如图,PA 与圆O 相切点A ,PCB 为圆O 的割线,并且不过圆心O ,已知30BPA ∠=,PA =1PC =,则PB =;圆O 的 半径等于.(14)已知函数2()(1)1f x ax b x b =+++-,且(0, 3)a ∈,则对于任意 的b ∈R ,函数()()F x f x x =-总有两个不同的零点的概率是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+()x ∈R . (Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若0()23x f =,ππ(, )44x ∈-,求0cos 2x 的值.(16)(本小题满分13分)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响. (Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列,并求出均值E (X ).(17)(本小题满分13分)在长方形11AA B B 中,124AB AA ==,C ,1C 分别是AB ,11A B 的中点(如图1). 将此长方形沿1CC 对折,使二面角11A CC B --为直二面角,D ,E 分别是11A B ,1CC 的中点(如图2).(Ⅰ)求证:1C D ∥平面1A BE ; (Ⅱ)求证:平面1A BE ⊥平面11AA B B ; (Ⅲ)求直线1BC 与平面1A BE 所成角的正弦值.(18)(本小题满分13分)设函数2()ln ()f x x x a =+-,a ∈R . (Ⅰ)若0a =,求函数()f x 在[1,]e 上的最小值;(Ⅱ)若函数()f x 在1[, 2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数)(x f 的极值点.(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>经过点(2, 1)A ,离心率为2.过点(3, 0)B 的直线l 与椭圆C交于不同的两点,M N . (Ⅰ)求椭圆C 的方程; (Ⅱ)求BM BN ⋅的取值范围;(Ⅲ)设直线AM 和直线AN 的斜率分别为AM k 和AN k ,求证:AM AN k k +为定值.(20)(本小题满分14分)对于正整数, a b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b <≤.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{1, 2, 3,,23}A =⋅⋅⋅.(Ⅰ)存在q A ∈,使得201191 (091)q r r =+<≤,试求,q r 的值;图(1)(Ⅱ)求证:不存在这样的函数:{1,2,3}f A →,使得对任意的整数12,x x A ∈,若12||{1,2,3}x x -∈,则12()()f x f x ≠;(Ⅲ)若B A ⊆,12)(=B card (()card B 指集合B 中的元素的个数),且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”.求最大的m A ∈,使含m 的集合A 的有12个元素的任意子集为“和谐集”,并说明理由.北京市西城区2011年高三二模试卷数学(理科)2011.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于 (A )1(B )0(C )2-(D )3-2.已知i 是虚数单位,则复数23z i+2i 3i =+所对应的点落在(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.在ABC ∆中,“0AB BC ⋅>”是“ABC ∆为钝角三角形”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分又不必要条件4.已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC .则下列结论不正确...的是 (A )//CD 平面PAF (B )DF ⊥平面PAF (C )//CF 平面PAB (D )CF ⊥平面PAD5.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为(A(B(C )2(D )3 6.函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan APB ∠=(A )10 (B )8 (C )87(D )77.已知数列{}n a 的通项公式为13n a n =-,那么满足119102k k k a a a +++++= 的整数k(A )有3个 (B )有2个 (C )有1个(D )不存在8.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +(A )最小值为15 (B )最小值为5 (C )最大值为15(D第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在中,若2B A =,:a b =A =_____. 10.在521()x x+的展开式中,2x 的系数是_____. 11.如图,AB 是圆O 的直径,P 在AB 的延长线上,PD切圆O 于点C .已知圆O 2OP =,则PC =______;ACD ∠的大小为______.12.在极坐标系中,点(2,)2A π关于直线:cos 1l ρθ=的对称点的一个极坐标为_____.13.定义某种运算⊗,a b ⊗的运算原理如右图所示.ABC ∆设()(0)(2)f x x x x =⊗-⊗. 则(2)f =______;()f x 在区间[2,2]-上的最小值为______.14.数列{}n a 满足11a =,11n n n a a n λ+-=+,其中λ∈R , 12n = ,,.①当0λ=时,20a =_____;② 若存在正整数m ,当n m >时总有0n a <,则λ的取值范围是_____.三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数cos 2()sin()4x f x x π=+.(Ⅰ)求函数()f x 的定义域; (Ⅱ)若4()3f x =,求s i n 2x 的值.16.(本小题满分13分)如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O = .将菱形ABCD 沿对角线AC 折起,使BD =B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ; (Ⅱ)求二面角A B D O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N点的位置,使得CN =.17.(本小题满分13分)甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.M(Ⅰ)求选出的4名选手均为男选手的概率.(Ⅱ)记X 为选出的4名选手中女选手的人数,求X 的分布列和期望.18.(本小题满分14分)已知函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.(Ⅰ)当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;(Ⅱ)若函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.19.(本小题满分14分)已知椭圆2222:1x y M a b +=(0)a b >>且椭圆上一点与椭圆的两个焦点构成的三角形周长为246+.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C , 求ABC ∆面积的最大值.20.(本小题满分13分)若m A A A ,,,21 为集合2}(,,2,1{≥=n n A 且)n ∈*N 的子集,且满足两个条件: ①12m A A A A = ;②对任意的A y x ⊆},{,至少存在一个},,3,2,1{m i ∈,使}{},{x y x A i = 或}{y . 则称集合组m A A A ,,,21 具有性质P .如图,作n 行m 列数表,定义数表中的第k 行第l 列的数为⎩⎨⎧∉∈=)(0)(1l l kl A k A k a .(Ⅰ)当4n =时,判断下列两个集合组是否具有性质P ,如果是请画出所对应的表格,如果不是请说明理由;集合组1:123{1,3},{2,3},{4}A A A ===; 集合组2:123{2,3,4},{2,3},{1,4}A A A ===. (Ⅱ)当7n =时,若集合组123,,A A A 具有性质P ,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合123,,A A A ;(Ⅲ)当100n =时,集合组12,,,t A A A 是具有性质P 且所含集合个数最小的集合组,求t 的值及12||||||t A A A ++ 的最小值.(其中||i A 表示集合i A 所含元素的个数)北京市东城区2010-2011学年第二学期高三综合练习(二)数学 (理科)第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

2011年北京市中考数学模拟试卷

2011年北京市中考数学模拟试卷

2011年北京市中考数学模拟试卷2011年北京市中考数学模拟试卷一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()8.(4分)(2009•临沂)矩形ABCD 中,AD=8cm ,AB=6cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( ).CD .二、填空题(共4小题,每小题4分,满分16分) 9.(4分)(2013•昌平区二模)若分式的值为0,则x 的值为 _________ .10.(4分)(2012•开平区二模)如图,点A 、B 、C 是半径为6的⊙O 上的点,∠B=30°,则的长为 _________ .11.(4分)(2010•西城区一模)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,若AD=3,DB=5,DE=1.2,则BC= _________ .12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=_________.三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_________天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为_________%;请你补全右边的扇形统计图.22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=_________;(2)已知a﹣b=2,ab=3,求a4+b4的值.23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=_________;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.2011年北京市中考数学模拟试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.=;4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()=AB8.(4分)(2009•临沂)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的().C D.二、填空题(共4小题,每小题4分,满分16分)9.(4分)(2013•昌平区二模)若分式的值为0,则x的值为﹣2.解:若分式10.(4分)(2012•开平区二模)如图,点A、B、C是半径为6的⊙O上的点,∠B=30°,则的长为2π.∴l=.11.(4分)(2010•西城区一模)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=3,DB=5,DE=1.2,则BC= 3.2.∴12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.(∠BD=∠A=α∠.=三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)×﹣,﹣,.14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.,对不等式;不等式的解集为:15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.(故答案为17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.依题意,得18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.的坐标为)中,由)在双曲线上,可得的图象上,可得的解析式为的坐标为)中,,∴∴的解析式为19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.DM=CF=tanC==20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是2008年,增加了28天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为30%;请你补全右边的扇形统计图.×个城市,所占的百分比为:22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=34;(2)已知a﹣b=2,ab=3,求a4+b4的值.)∵23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由..解析式为:,时,∴m时,∴m24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=8;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)∴ACAP=AB﹣(AP=,PB=﹣∴解得.MQ(﹣(或y=25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.)依题意得OA=3OB=2AB=5,得:∴OD=,)∴∴﹣x+m∴∴﹣)×,x++得:y=)x+中,()GH=∵OG∵×d=××d=AB×参与本试卷答题和审题的老师有:自由人;HJJ;星期八;hbxglhl;lf2-9;Linaliu;wenming;733599;MMCH;110397;CJX;开心;ln_86;nhx600;zhjh;疯跑的蜗牛;xiu;117173;心若在;lanchong;王岑;zcx;gsls;lbz;jingjing;Liuzhx(排名不分先后)菁优网2014年3月16日。

【精品】2011中考数学二模北京各区压轴

【精品】2011中考数学二模北京各区压轴

( 2)解:
( 3)解:
11、(房山 24.)(本小题满分 7 分)如图,已知二次函数 y ax2 2ax c a 0
的图象与 x 轴负半轴交于点 A ( -1,0),与 y 轴正半轴交与点 B,顶点为 P,且 OB=3OA ,一次函数 y=kx+b 的图象经过 A 、B.
( 1)求一次函数解析式; ( 2)求顶点 P 的坐标; ( 3)平移直线 AB 使其过点 P,如果点M在平移后 的直线上,且 tan OAM 3 ,求点 M 坐标;
轴时,求平移后的抛物线 C 对应的函数关系式;
(3)在抛物线 y 1 x2 平移过程中,将△ PAB 沿直线 AB 翻折得到△ DAB ,点 D 能否落在 3
抛物线 C 上?如能,求出y 此时抛物线 C 顶点 P 的坐标;如不能,说明y 理由.
y 1 x2
3
B
B
A
O
x
A
O
x
备用图
数学试卷 第 3 页 (共 6 页)
( 1)求点 B 的坐标; ( 2)点 P 从 C 点出发,沿线段 CO 以 5 个单位 /秒的速度向终点 O 匀速运动, 过点 P 作 PH⊥OB,垂足为 H,设△ HBP 的面积为 S( S≠0),点 P 的运动时间 为 t 秒,求 S 与 t 之间的函数关系式(直接写出自变量 t 的取值范围); ( 3)在( 2)的条件下,过点 P 作 PM∥ CB 交线段 AB 于点 M ,过点 M 作 MR ⊥ OC,垂足为 R,线段 MR 分别交直线 PH、OB 于点 E、G,点 F 为线段 PM 的中点,联结 EF.
度向点 B 匀速运动.伴随着 P、Q 的运动, DE 保持垂直平分 PQ,且交 PQ 于点 D,交 y

北京市东城区中考二模数学试题(word版含答案)(最新编写)

北京市东城区中考二模数学试题(word版含答案)(最新编写)
答:该校平均每周做家务时间不少于 4 小时的学生约有 540人 20.解: 在△ ABE 中, AE BC , AB 5 , cos B 3
5
∴ BE= 3,AE= 4. ∴ EC=BC-BE =8-3=5 .
∵平行四边形 ABCD, ∴ CD=AB=5. ∴ △CED 为等腰三角形 .……2 分 ∴∠ CDE =∠ CED .
xOy 中,已知二次函数
y
2
ax +2 ax
c 的图像与 y 轴交于
点 C (0,3) ,与 x 轴交于 A、 B 两点,点 B 的坐标为 (-3,0)
( 1) 求二次函数的解析式及顶点 D 的坐标; ( 2) 点 M 是第二象限内抛物线上的一动点,若直线
1:2 的两部分,求出此时点 M 的坐标;
( 3) 点 P 是第二象限内抛物线上的一动点,问:点 最大面积是多少?并求出 此时点 P 的坐标 .
( 2) ∵ 正整数 m 满足 8 2m 2 ,
∴ m 可取的值为 1 和 2 .
又∵ 二次函数 y (1 m) x2 (4 m)x 3 ,
∴ m =2 .…… 4 分 ∴ 二次函数为 y -x2 2x 3 .
∴ A 点、 B 点的坐标分别为( -1,0)、( 3,0). 依题意翻折后的图象如图所示. 由图象可知符合题意的直线 y kx 3 经过点 A、B.
在 Rt CDE 中,CE 设⊙ O的半径为 r, CO 2 CE 2 EO 2
3. 4分 则在 Rt CE O中,
即 ( 6-r) 2 r 2 3, 解得 r
6 .
4
22.解: (1) i 4 1, i 2011 -i i 2012
5分
1…… 3 分
(2)方程 x2 2 x 2 0 的两根为

2011年东城初三数学一模试题及答案

2011年东城初三数学一模试题及答案

北京市东城区2010--2011学年第二学期初三综合练习(一)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.-2的相反数是 A. 2 B.21 C. 21- D. -2 2.根据国家统计局的公布数据,2010年我国GDP 的总量约为398 000亿元人民币. 将398 000 用科学记数法表示应为A. 398×103B. 0.398×106C. 3.98×105D. 3.98×106 3.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于A . 30° B. 40° C. 60° D . 70°4.如图,在△ABC 中,D 、E 分别是BC 、AC 边的中点. 若DE =2,则AB 的长度是 A .6 B .5 C .4 D .35.甲、乙、丙、丁四名学生10次小测验成绩的平均数(单位:分)和方差如下表: 则这四人中成绩最稳定的是A.甲B.乙C.丙D.丁 6.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于A .11πB .10πC .9πD .8π7. 若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的 数其十位数字与个位数字的和为9的概率是 A .901 B. 101 C. 91 D. 4548. 如图,在矩形ABCD 中,AB =5,BC =4,E 、F 分别是AB 、AD 的中点.动点R 从点B 出发,沿B →C →D →F 方向运动至点F 处停止.设点R 运动的路程为x ,EFR △的面积为y ,当y 取到最大值时,点R 应运动到A .BC 的中点处B .C 点处C .CD 的中点处 D .D 点处二、填空题(本题共16分,每小题4分) 9. 若分式53+x 有意义,则x 的取值范围是____________. 10. 分解因式:a 2b -2ab+b =________________.11. 已知A 、B 是抛物线y=x 2-4x +3上关于对称轴对称的两点,则A 、B 的坐标可能 是 .(写出一对即可) 12. 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ). 三、解答题(本题共30分,每小题5分) 13.计算:04sin 45(3)4︒+-π+-.14. 求不等式组46,1(3)22x x +≤⎧⎪⎨->-⎪⎩ 的整数解.15.先化简,再求值:1)1213(22-÷-+-x xxx x x ,其中13-=x .16. 如图,在四边形ABCD 中, AC 是∠DAE 的平分线,DA ∥CE ,∠AEB =∠CEB . 求证:AB=CB .17.列方程或方程组解应用题随着人们节能意识的增强,节能产品进入千家万户,今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米.18.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F . (1)求证:∠BAE =∠DAF ;(2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.四、解答题(本题共20分,每小题5分)19. 某中学的地理兴趣小组在本校学生中开展主题为“地震知识知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:(1)表中的m 的值为_______,n 的值为 .(2)根据表中的数据,请你计算“非常了解”的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有1500名学生,请根据调查结果估计这些学生中“比较了解”的人数约为多少?20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.(1)求证:AD=DC;(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径.21.在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=xk2的图象交于A(1,6),B(a,3)两点 .(1)求k1,k2的值;(2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.22. 如图1,在△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,得到四边形AEGF 是正方形.设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值. (1)请你帮小萍求出x 的值.(2) 参考小萍的思路,探究并解答新问题:如图2,在△ABC 中,∠BAC =30°,AD ⊥BC 于D ,AD =4.请你按照小萍的方法画图,得到四边形AEGF ,求△BGC 的周长.(画图所用字母与图1中的字母对应)图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程(m -1)x 2-(2m-1)x +2=0有两个正整数根.(1) 确定整数m 值;(2) 在(1)的条件下,利用图象写出方程(m -1)x 2-(2m -1)x +2+xm=0的实数根的个数.24. 等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F. (1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.图1 图2 图325. 如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2.(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?北京市东城区2010--2011学年第二学期初三综合练习(一)数学试卷参考答案三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解:04sin 45(3)4︒+-π+-=22422⨯-+1+4 ………………………………………4分 =5. …………………………………… 5分14.(本小题满分5分) 解:由①得:x ≤2. --------1分 由②得:x-3>-4,x >-1. --------2分∴原不等式组的解集为 -1<x≤2. --------3分 ∴原不等式组的整数解为 0,1,2. --------5分 15.(本小题满分5分)1)1213(22-÷-+-x x xx x x=xx x x x x x 1]12)1)(1(3[2-⨯--+---------2分 =213-+x x=12+-x x . --------3分 当13-=x 时,3133312-=-=+-x x .--------5分 16.(本小题满分5分)证明:∵AC 是∠DAE 的平分线, ∴∠1=∠2. -------1分又∵AD ∥EC ,∴∠2=∠3. ------2分 ∴∠1=∠3.∴AE=CE. --------3分 在△ABE 和△CBE 中,AE=CE , ∠AEB=∠CEB , BE=BE ,∴△ABE ≌△CBE. --------4分 ∴AB=CB. ------5分17.(本小题满分5分)解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得----------------3分 ---------------4分 经检验,x =30是所列方程的根.答:小明家2月份用气30立方米. -----------------5分 18.(本小题满分5分) 证明:(1)∵四边形ABCD 是平行四边形, ∴∠B=∠D.又 AE ⊥BC ,AF ⊥CD , ∴∠AEB=∠AFD.∴∠BAE=∠DAF.---------2分 (2)在Rt △ABE 中,sin ∠BAE=53,AE=4,可求 AB=5. ---------3分 又∵∠BAE=∠DAF , ∴ sin ∠DAF=sin ∠BAE=53. ABCDE231ABCDEF在Rt △ADF 中,AF=524, sin ∠DAF =53,可求DF=518-------4分 ∵ CD=AB=5. ∴CF=5-518=57. …………………………………………5分 四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)0.6;36;------------2分 (2)72°;补全图如下:60%比较了解不太了解2%18%------------4分(3)1500×0.6=900.答:学生中“比较了解”的人数约为900人 ------------5分 20.(本小题满分5分)(1)证明:在⊙O 中,OD ⊥AB ,CB ⊥AB ,∴AM =MB ,OD ∥BC . …………………1分 ∴AD =DC . ……………2分 (2)∵DE 为⊙O 切线,∴OD ⊥DE ……………3分 ∴四边形MBED 为矩形.∴DE ∥AB. ……………4分 ∴MB=DE =2,M D=BE =EC =1. 连接OB.在R t △OBM 中,OB 2=OM 2+BM 2.解得 OB=25. …………………5分 21.(本小题满分5分)解:(1)∵点A (1,6),B (a ,3)在反比例函数y =xk 2的图象上, ∴ k 2=1×6=6. --------1分 ∴ a ×3=6,a =2. ∴B (2,3).由点A (1,6),B (2,3)也在直线y=k 1x+b 上,MOA BCDE得⎩⎨⎧=+=+,32,611b k b k解得k 1=-3.∴k 1=-3, k 2=6. -----------------2分 (2) 设点P 的坐标为(m,n ). 依题意,得21×3(m +2+m -2)=18,m =6. -----------------3分 ∴ C (6,3),E (6,0). ∵ 点P 在反比例函数y =x6的图象上, ∴ n =1. ------------------4分 ∴PE :PC =1:2 . ------------------5分 22.(本小题满分5分)解: (1)设AD =x ,由题意得,BG=x -2,CG=x-3. 在Rt △BCG 中,由勾股定理可得 222(2)(3)5x x -+-=. 解得 6x =. --------------2分(2)参考小萍的做法得到四边形AEGF ,∠EAF=60°,∠EGF=120°,∠AEG=∠AFG= 90°,AE=AF=AD=4. 连结EF ,可得 △AEF 为等边三角形. ∴ EF=4.∴ ∠FEG=∠EFG= 30°. ∴ EG=FG.在△EFG中,可求,EG =∴△EFG 的周长=.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解: 由方程(m -1)x 2-(2m -1)x +2+xm=0可得)1(22)1(4)12()12(2-⨯-⨯--±--=m m m m x=)1(2)32(12)1(2)32()12(2-+±-=--±-m m m m m mGF ED CBA111-=m x ,.22=x ∵21,x x 均为正整数,m 也是整数, ∴m =2. ----------3分 (2)由(1)知x 2-3x +2+x2=0. ∴x 2-3x +2= -x2. 画出函数y = x 2-3x +2,y = -x2的图象,---------6分 由图象可知,两个函数图象的交点个数是1. ---------7分24. (本小题满分7分)(1)△EPF 为等边三角形. --------------1分 (2)设BP=x ,则CP =6-x.由题意可 △BEP 2x .△CFP 2)x -.△ABC 的面积为设四边形AEPF 的面积为y.∴ y =28x 2)2x --=2+-自变量x 的取值范围为3<x <6. --------------4分(3)可证△EBP ∽△PCF.∴BP BECF CP=. 设BP=x , 则 (6)8x x -=. 解得 124,2x x ==.∴ PE 的长为4或 --------------7分25.(本小题满分8分)解:(1)依题意,可知 C(0,8),则B(4,0) 将A(-2,0),B(4,0)代入 y=ax 2+bx +8,⎩⎨⎧=++=+-.08416,0824b a b a 解得⎩⎨⎧=-=.2,1b a228y x x ∴=-++配方得y2(1)9x =--+,顶点D (1,9). ---------3分 (2)假设满足条件的点P 存在,依题意设(2)P t ,, 由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+, 它与x 轴的夹角为45. 过点P 作PN ⊥y 轴于点N.依题意知,∠NPO=30°或∠NPO=60°.∵PN=2,∴ON= 332或23.∴存在满足条件的点P ,P 的坐标为(2,332 )和(2,23).-----------6分 (3)由上求得(80)(412)E F -,,,.当抛物线向上平移时,可设解析式为228(0)y x x m m =-+++>. 当8x =-时,72y m =-+. 当4x =时,y m =.720m ∴-+≤或12m ≤.由题意可得m 的范围为072m ∴<≤.∴ 抛物线最多可向上平移72个单位. -----------8分。

【2011东城二模】北京市东城区2010-2011学年第二学期高三综合练习(二)数学文-推荐下载

【2011东城二模】北京市东城区2010-2011学年第二学期高三综合练习(二)数学文-推荐下载

(Ⅰ)若 a 2 ,求证: f (x) 在 (1, ) 上是增函数;
(Ⅱ)求 f (x) 在[1, ) 上的最小值.
(19)(本小题共 14 分)
已知椭圆的中心在原点 O ,离心率 e 3 ,短轴的一个端点为 (0, 2) ,点 M 为直 2
线 y 1 x 与该椭圆在第一象限内的交点,平行于 OM 的直线 l 交椭圆于 A, B 两点. 2
Байду номын сангаас
(D) 2 3
(D)1
相关人员数 抽取人数
.6
32
48
64
.
x
y
4

.

三、解答题:本大题共 6 小题,共 80 分。解答应写出文字说明,演算步骤或证明过程。 (15)(本小题共 13 分)
已知 sin( A π ) 7 2 , A (0, π ) .
(Ⅰ)求 cos A 的值;
北京市东城区 2010-2011 学年度综合练习(二)
高三数学 (文科)
学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页,共 150 分。考 试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本 试卷和答题卡一并交回。

x 0,
x y 1 0,
(10)不等式组 3x 2 y 6 0 所表示的平面区域的面积等于
(11)在△ ABC 中,若 B 45, b 2a ,则 C
(12)某地为了建立调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业

2011北京东城中考二模数学(word解析)

2011北京东城中考二模数学(word解析)

2011年东城区中考二模数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.12-的绝对值是( ).A .12B .12- C .2 D .2-2.下列运算中,正确的是( ). A .235a a a += B .3412a a a ⋅= C .632a a a ÷= D .43a a a -=3.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( ).A .18B .13C .38D .354.下列图形中,既是..轴对称图形又是..中心对称图形的是( ).5.若一个正多边形的一个内角等于150︒,则这个正多边形的边数是( ). A .9 B .10 C .11 D .126.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:金额(元)20 30 35 50 100 学生数(人)3751510则在这次活动中,该班同学捐款金额的众数和中位数是( ).A .30,35B .50,35C .50,50D .15,507.已知反比例函数2k y x-=的图象如图所示,则一元二次方程22(21)10x k x k --+-=根的情况是( ).A .没有实根B .有两个不等实根C .有两个相等实根D .无法确定8.用}{min ,a b 表示a ,b 两数中的最小数,若函数22min{1,1}y x x =--, 则y 的图象为( ). OxyD C BA二、填空题(本题共16分,每小题4分) 主视图 左视图 9.反比例函数ky x=的图象经过点(2,1)-,则k 的值为_______.10.已知一个几何体的三视图如图所示,则该几何体是 .俯视图11.如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD AB ∥,则α∠的余弦值为__________.12.如图,Rt ABC △中,90ACB ∠=︒,30CAB ∠=︒,2BC =,O ,H 分别为边AB ,AC 的中点,将ABC △绕点B 顺时针旋转120︒到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为 .三、解答题(本题共30分,每小题5分)13.先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中332x =.14.解分式方程:11322x x x-+=--.AH BOC 1O1H1A1Cx y 0A 1-1-1-1-11111111x y 0B x y 0C x y 0D15.如图,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将ABC △先向下平移4个单位,得111A B C △;再将111A B C △沿y 轴翻折,得222A B C △. (1)画出111A B C △和222A B C △; (2)求线段2B C 长.16.如图,点D 在AB 上,DF 交AC 于点E ,CF AB ∥,AE EC =. 求证:AD CF =.17.列方程或方程组解应用题:为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号.“五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的45还少100千米,且这两个月共消耗93号汽油260升.若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.y xO18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,2AB =,1AD =,点Q 的坐标为(0,2).(1)求直线QC 的解析式;(2)点(,0)P a 在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3:1两部分,求出此时a 的值.四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD BC ∥,BD 是ABC ∠的平分线. (1)求证:AB AD =;(2)若60ABC ∠=︒,3BC AB =,求C ∠的度数.20.如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点,且45AED ∠=︒.(1)试判断CD 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为3,5sin 6ADE ∠=,求AE 的值.21.某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图1和图2. (1)第四个月销量占总销量的百分比是_______; (2)在图2中补全表示B 品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.图1 图222.如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.(1)请在图4中画出拼接后符合条件的平行四边形;(2)请在图2中,计算裁剪的角度(即ABM 的度数).CN D B M A 图2 图1五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程2220x ax b ++=,0a >,0b >. (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若:2:3a b =,且1222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A 在点C 的左侧),与y 轴的交点为B ,顶点为D .若点(,)P x y 是四边形ABCD 边上的点,试求3x y -的最大值.24.如图1,在ABCD△是ABC△沿CB方向平移得到的,连AC=.ECD==,6AB BC△中,5结AE,AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,⊥,垂足为点R.QR BD①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;△相似?②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与BOCBC A xy F O DE 25.如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,2OA AB ==,3OC =,过点B 作BD BC ⊥,交OA 于点D .将DBC ∠绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且1PQ =,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.2011年东城区中考二模数学试卷答案一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案ADCBDCAA二、填空题(本题共16分,每小题4分)题号 910 1112答案2-圆柱12π三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解:原式222441444x x x x x =+++--- 23x =-.当332x =时 , 原式233271533244⎛⎫=-=-= ⎪ ⎪⎝⎭. 14.(本小题满分5分)解:11322x x x -+=-- 去分母得113x -+= 解得3x =.经检验:3x =是原方程的根. 所以原方程的根为3x =. 15.(本小题满分5分)解:(1)1A 点的坐标为(3,1)-,1B 点的坐标为(2,3)-,1C 点的坐标为(5,3)-; 2A 点的坐标为(3,1)--,2B 点的坐标为(2,3)--,2C 点的坐标为(5,3)--.(2)利用勾股定理可求265B C =. 16.(本小题满分5分) 证明:∵CF AB ∥,∴A ACF ∠=∠,ADE CFE ∠=∠. 在ADE △和CFE △中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE CFE ≅△△. ∴AD CF =.17.(本小题满分5分)解:设小刚家4、5两月各行驶了x 、y 千米.依题意,得410050.10.1260y x x y ⎧=-⎪⎨⎪+=⎩ 解得15001100x y =⎧⎨=⎩ 答:小刚家4月份行驶1500千米,5月份行驶了1100千米. 18.(本小题满分5分) 解:(1)由题意可知点C 的坐标为(1,1). 设直线QC 的解析式为y kx b =+. ∵点Q 的坐标为(0,2),∴可求直线QC 的解析式为2y x =-+. (2)如图,当点P 在OB 上时,设PQ 交CD 于点E ,可求点E 的坐标为(,1)2a.则522AP AD DE a ++=+,332CE BC BP a ++=-.由题意可得5323(3)22a a +=-.∴1a =.由对称性可求当点P 在OA 上时,1a =- ∴满足题意的a 的值为1或1-.四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)证明:∵BD 是ABC ∠的平分线, ∴12∠=∠. ∵AD BC ∥, ∴23∠=∠. ∴13∠=∠.∴AB AD =.(2)作AE BC ⊥于E ,DF BC ⊥于F . ∴EF AD AB ==.∵60ABC ∠=︒,3BC AB =, ABCD EF∴12BE AB =. ∴3122BF AB BC ==.∴BD DC =. ∴2C ∠=∠.∵BD 是ABD ∠的平分线, ∴1230∠=∠=︒. ∴30C ∠=︒.20.(本小题满分5分) 解:(1)CD 与圆O 相切.证明:连接OD ,则224590AOD AED ∠=∠=⨯︒=︒. ∵四边形ABCD 是平行四边形,∴AB DC ∥.∴90CDO AOD ∠=∠=︒. ∴OD CD ⊥.∴CD 与圆O 相切.(2)连接BE ,则ADE ABE ∠=∠. ∴5sin sin 6ADE ABE ∠=∠=. ∵AB 是圆O 的直径,∴90AEB ∠=︒,236AB =⨯=. 在Rt ABE △中,5sin 6AE ABE AB ∠==. ∴5AE =. 21.(本小题满分5分) 解:(1)30%; (2)如图所示.(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. 22.(本小题满分5分)解:(1)将图4中的ABE △向左平移30cm ,CDF △向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的平行四边形ABCD .(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长, ∴30AB =. ∵纸带宽为15,∴151sin 302AM ABM AB ∠===. ∴30AMB ∠=︒.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解:(1)∵关于x 的一元二次方程2220x ax b ++=有实数根, ∴22(2)40a b =-≥V ,有220a b -≥,()()0a b a b +-≥. ∵0a >,0b >∴0a b +>,a b -≥0. ∴a b ≥.(2)∵:2:3a b =,∴设2a k =,3b k =.解关于x 的一元二次方程22430x kx k ++=, 得x k =-或3x k =-.当1x k =-,23x k =-时,由1222x x -=得2k =.当13x k =-,2x k =-时,由1222x x -=得25k =-(不合题意,舍去).∴4a =,23b =.(3)当4a =,23b =时,二次函数2812y x x =++与x 轴的交点坐标分别为(6,0)A -、(2,0)C -,与y 轴交点坐标为(0,12),顶点坐标D 为(4,4)--. 设3z x y =-,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于6-. 24.(本小题满分7分) 解:(1)四边形ABCE 是菱形.证明:∵ECD △是ABC △沿BC 方向平移得到的, ∴EC AB ∥,EC AB =. ∴四边形ABCE 是平行四边形.又∵AB BC =,∴四边形ABCE 是菱形.(2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,PBO QEO ≅△△, ∴PBO QEO S S =△△∵ECD △是由ABC △平移得到的, ∴ED AC ∥,6ED AC ==. 又∵BE AC ⊥, ∴BE ED ⊥∴QEO PBO BED PQED POED POED S S S S S S =+=+=四边形四边形四边形△△△11862422BE ED =⨯⨯=⨯⨯=.②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与COB △相似. ∵2∠是OBP △的外角, ∴23∠>∠. ∴2∠不与3∠对应 . ∴2∠与1∠对应 . 即21∠=∠,∴3OP OC == .过O 作OG BC ⊥于G ,则G 为PC 的中点 . 可证OGC BOC ∽△△. ∴::CG CO CO BC =. 即:33:5CG =. ∴95CG =. ∴9725255PB BC PC BC CG =-=-=-⨯=.∴1818=1055BD PB PR RF DF x x =+++=+++.∴75x = ∴75BP =.25.(本小题满分8分) 解:(1)由题意得(0,2)A 、(2,2)B 、(3,0)C .设经过A ,B ,C 三点的抛物线的解析式为22y ax bx =++.BC Axy F O DE HM HG H 则42209320a b a b ++=⎧⎨++=⎩ 解得 2343a b ⎧=-⎪⎪⎨⎪=⎪⎩∴224233y x x =-++.(2)由224233y x x =-++228=(1)33x --+.∴顶点坐标为8(1,)3G .过G 作GH AB ⊥,垂足为H . 则1AH BH ==,82233GH =-=.∵EA AB ⊥,GH AB ⊥, ∴EA GH ∥.∴GH 是BEA △的中位线 .∴433EA GH ==. 过B 作BM OC ⊥,垂足为M . 则MB OA AB ==.∵90EBF ABM ∠=∠=︒, ∴90EBA FBM ABF ∠=∠=︒-∠. ∴Rt Rt EBA FBM ≅△△.∴43FM EA ==. ∵321CM OC OM =-=-=, ∴73CF FM CM =+=. (3)要使四边形BCGH 的周长最小,可将点C 向上 平移一个单位,再做关于对称轴对称的对称点1C , 得点1C 的坐标为(1,1)-.可求出直线1BC 的解析式为1433y x =+.直线1433y x =+与对称轴1x =的交点即为点H ,坐标为5(1,)3.点G 的坐标为2(1,)3.2011年东城区中考二模数学试卷答案部分解析一、选择题 1. 【答案】A【解析】12-的绝对值是12,故选A .2. 【答案】D【解析】347a a a ⋅= 633a a a ÷=,43a a a -=,2a 与3a 不是同类项不可以合并相加减,故选D .3. 【答案】C【解析】一共8个球,其中3个黄球,故摸到黄球的概率是38,故选C .4. 【答案】B【解析】既是..轴对称图形又是..中心对称图形的是第二个图,第一个图是轴对称不是中心对称,第三个图是中心对称不是轴对称,最后一个图既不是中心对称也不是轴对称,故选B .5. 【答案】D【解析】一个正多边形的一个内角等于150︒,其外角等于30︒,外角和为360︒,边数3601230n ︒==,故选D .6. 【答案】C【解析】这组数据中,众数是50,中位数是第20和21的平均数为50,故选C .7. 【答案】A【解析】由反比例函数图像可知,20k ->,2k >.一元二次方程22(21)10x k x k --+-=,22=(21)41(1)450k k k --⨯⨯-=-+<V ,所以方程没有实数根,故选A .8. 【答案】A【解析】分别画出21y x =-,21y x =-的函数图像,取他们较小的那部分函数图像,故选A .二、填空题 9. 【答案】2- 【解析】反比例函数ky x=的图象经过点(2,1)-,212k =-⨯=-. 故答案为:2-.10. 【答案】圆柱【解析】由三视图可知该立体图形为圆柱. 故答案为:圆柱.11. 【答案】12【解析】∵CD AB ∥,∴30AOC C ∠=∠=︒,60α∠=︒,1cos =cos60=2α∠︒.故答案为:12.12. 【答案】π【解析】由题意知,通过转化,阴影部分的面积等于大扇形1BHH 面积减去小扇形1OBO 面积,2OB =,7BH =,22120π120π=π360360BH OB S ︒⨯︒⨯-=︒︒阴.故答案为:π.。

2011年北京市中考数学各区二模分类汇编—圆的综合练习

2011年北京市中考数学各区二模分类汇编—圆的综合练习

第6题图C ABOEDD圆的综合练习(08北京)19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长.(北京09)20. 已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于点M,经过B,M 两点的⊙O 交BC 于点G ,交AB 于点F,FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切; (2)当BC=4,cosC=13时,求⊙O 的半径.(10北京)20.已知:如图,在△ABC 中,D 是AB 边上一点,⊙O过D B C 、、三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是⊙O 的切线;(2)如果75ACB ∠=︒,⊙O 的半径为2,求BD 的长.(丰台二)6.如图,BD 是⊙O 的直径,∠CBD =30,则∠A 的度数是 A .30 B .45 C .60 D .75(大兴二)11.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于M ,CD =10cm ,DM ∶CM =1∶4,则弦AB 的长为 .(延庆二)6.如图,AB 是⊙O 的直径,弦AB CD ⊥于点E ,30=∠CDB , ⊙O 的半径为cm 3,则弦CD 的长为 A .cm 3 B .cm 23C .cm 32D .cm 9AO H CBA第11题图 第12题图(西城二)11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 .(石景山二)7. 已知:如图,⊙O 的半径为9,弦⊥AB 半径OC 于H ,32sin =∠BOC ,则AB 的长度为( ) A .6 B .12 C .9 D .53(朝阳二)6.如图,△MBC 中,∠B=90°,∠C=60°,MB=,点A 在MB 上,以AB 为直径作⊙O 与MC 相切于点D ,则CD 的长为石景山二)11.已知:如图,P ⊙与x 轴切于点O ,点P 的坐标为)1,0(,点A 在P ⊙上,且在第一象限,APO ∠=︒150,P ⊙沿x 轴正方向滚动,当点A 第一次落在x轴上时,点P 的坐标为(结果保留π).(第6题图)(2011房山二)20.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若2BC =,BD =52,求ADAO的值.(2011平谷二)20.如图,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点D ,DE ⊥AC 于点E . (1)求证DE 是O ⊙的切线;(2)若∠BAC =120°,AB =2,求△DEC 的面积.(2011怀柔二)19. 如图,已知AB 是⊙O 的直径,AD 是弦,∠DAB =22.5º,延长AB 到点C ,使得∠ACD =45º.(1)求证:CD 是⊙O 的切线; (2)若AB =22,求BC 的长.(2011顺义二)20. 已知:如图,AB 是O ⊙的直径,10AB =, DC 切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E . (1)求证:BC EC =; (2)若4cos 5BEC ∠=, 求DC的长.BBC=BE(2011顺义二)24. 已知:如图,ABC ∆内接于O , AB 为O的直径,AC BC =点D 是AC 上一个动点,连结AD 、CD 和BD , BD 与AC 相交于点E , 过点C 作PC CD ⊥于C , PC 与BD 相交于点P ,连结OP 和AP .(1) 求证:AD BP =; (2)如图1,若1tan 2ACD ∠=, 求证:DC AP ;(3) 如图2,设AD x = , 四边形APCD 的面积为y ,求y 与x 之间的关系式.(2011大兴二)20.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 交BC 于点D ,DE ⊥AC ,垂足为E . (1)判断DE 与⊙O 的位置关系,并证明你的结论; (2)如果⊙O 的直径为9,cos B =13 ,求DE 的长(2011朝阳二)19.如图,△ABC 内接于⊙O ,BC 是⊙O 的直径,OE ⊥AC ,垂足为E ,过点A 作⊙O 的切线与BC 的延长线交于点D ,sinD=21,OD=20.(1)求∠ABC 的度数;(2)连接BE ,求线段BE 的长. (2011延庆二)20.如图,AB 为⊙的直径,劣弧 ,CE //BD , 连接AE 并延长交BD 于D . 求证:(1)BD 是O ⊙的切线; (2)若O ⊙的半径为cm 2,AC =(2011燕山二)18.已知:如图,AB 是半圆的直径,AB=10,梯形图1图2BBB第20题图BD接于半圆,CE ∥AD 交AB 于E ,BE=2,求∠A 的余弦值.(2011昌平二)20.如图,已知点C 在⊙O 上,延长直径AB 到点P ,连接PC ,∠COB =2∠PCB .(1)求证:PC 是⊙O 的切线; (2)若AC =PC ,且PB =3,M 是⊙O 下半圆弧的中点,求MA 的长.(2011燕山二)21.已知:如图,AB 是⊙O 的直径,点C在⊙O 上,△ABC 的外角平分线BD 交⊙O 于D ,DE 与⊙O相切,交CB 的延长线于E.⑴ 判断直线AC 和DE 是否平行,并说明理由;⑵ 若∠A=30°,BE=1cm ,分别求线段DE 和 BD⌒ 的长(直接写出最后结果).(2011丰台二)20. 已知:如图,在Rt △ABC 中,∠C =90°,点E 在斜边AB 上,以AE为直径的⊙O 与BC 边相切于点D ,联结AD. (1)求证:AD 是∠BAC 的平分线;(2)若AC = 3,tan B =34,求⊙O 的半径.(2011门头沟二)20.已知:如图,O ⊙的直径AB 与弦CD 相交于点E ,BC BD =,O⊙的切线BF 与弦AD 的延长线相交于点F . (1)求证:CD BF ∥;(2)连结BC ,若O ⊙的半径为4,3cos 4BCD ∠=,求线段AD 、CD 的长.(2011西城二)21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC AD 交BC 于点E ,连结AB .(1)求证:2AB AE AD =⋅; (2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.AB CPO M NDE A O BC · ·B(2011东城二)20. 如图,四边形ABCD 是平行四边形,以AB为直径的⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45︒.(1) 试判断CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为3,sin ∠ADE =65,求AE 的值.(2011石景山二)20.已知:如图,ABC AF 为△的角平分线,以BC 为直径的圆与边AB交于点,D E 点为弧BD 的中点,联结CE 交AB 于H ,AC AH =. (1)求证:AC 与⊙O 相切;(2)若6=AC ,10=AB ,求EC 的长.(2011通州二)24.已知:如图14,⊙A 与y 轴交于C 、D 两点,圆心A 的坐标为(1,0),⊙A 的半径为5,过点C 作⊙A 的切线交x 轴于点B (-4,0).(1)求切线BC 的解析式;(2)若点P 是第一象限内⊙A 上的一点,过点P 作⊙A 的切线与直线BC 相交于点G ,且∠CGP=120°,求点G 的坐标.(2011海淀二)20.已知AB 是O ⊙的直径,C 是O ⊙上一点(不与A 、B 重合),过点C作O ⊙的切线CD ,过A 作CD 的垂线,垂足是点M . (1)如图1,若//CD AB ,求证:AM 是O ⊙的切线; (2)如图2,若AB =6,AM =4,求AC 的长.1图2图A2011密云二20. 如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N,交BC 的延长线于点E,直线CF 交EN 于点F,且.ECF E ∠=∠(1)证明CF 是O 的切线(2) 设⊙O 的半径为1.且AC=CE,求MO 的长.。

北京东城区2011-2012学年中考数学模拟试卷(含答案)

北京东城区2011-2012学年中考数学模拟试卷(含答案)

14.一连串分数,共有 6 个,是按照一种简单规律排成的 . 由于抄写的人笔头较慢,别人抄下来前 3 个,
他只抄了前两个,把第 3 个空着;别人把后面 3 个也抄好了,他才抄了第 4 个和第 5 个,把第 6 个也空
着 . 请你帮他补上:
1、 1、 20 10
、1、1、
.
54
15.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是
( 6 分)
( 8 分) ( 9 分) ( 10 分)
25.(本题 10 分)
- 11 - / 14
. ⑴ r =5 (3 分) ⑵ CF= 20 ( 3 分) ⑶ tan ∠BAD= 6 (4 分)
3
17
26.(本题 10 分)
解:( 1)政府没出台补贴政策前,这种蔬菜的收益额为
3000 800 2400000(元). ·················· 2 分
上,小圆在正方形的外部且与 CD切于点 N,则正方形 ABCD的边长为
▲.
三、解答题: ( 本大题共 10 小题,共 96 分,解答应写出必要的计算过程、推演步骤或文字说明
)
19. ( 本小题满分 8 分 ) 计算
(
2)0
1 tan 600
1 ()
1
6
2
3
20. ( 本小题满分 8 分 ) 请先将下式化简,再选择一个适当的无理数...代入求值.
7260000 元.
································
10 分
注:本卷只在第 26 题中,学生若出现答题时未写单位或未答分别扣除
1 分.
27.(本题 10 分)

2011中考北京东城一模数学答案

2011中考北京东城一模数学答案

北京市东城区2010--2011学年第二学期初三综合练习(一)数学试卷参考答案一、选择题(本题共32分,每小题4分)13.(本小题满分5分)解:4sin 45(3)4︒+-π+-=22422⨯-+1+4 ………………………………………4分=5. …………………………………… 5分 14.(本小题满分5分) 解:由①得:x ≤2. --------1分 由②得:x-3>-4,x>-1. --------2分∴原不等式组的解集为 -1<x ≤2. --------3分 ∴原不等式组的整数解为 0,1,2. --------5分 15.(本小题满分5分) 1)1213(22-÷-+-x x xx x x=xx x x x x x1]12)1)(1(3[2-⨯--+---------2分=213-+x x=12+-x x . --------3分当13-=x 时,3133312-=-=+-x x .--------5分16.(本小题满分5分)证明:∵AC 是∠DAE 的平分线, ∴∠1=∠2. -------1分又∵AD ∥EC ,∴∠2=∠3. ------2分 ∴∠1=∠3.∴AE=CE. --------3分 在△ABE 和△CBE 中, , ∠AEB=∠CEB , ,∴△ABE ≌△CBE. --------4分 ∴AB=CB. ------5分17.(本小题满分5分)解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x . ----------------3分解这个方程,得x =30. ---------------4分 经检验,x =30是所列方程的根.答:小明家2月份用气30立方米. -----------------5分 18.(本小题满分5分)证明:(1)∵四边形ABCD 是平行四边形, ∴∠B=∠D.又AE ⊥BC ,AF ⊥CD , ∴∠AEB=∠AFD.∴∠BAE=∠DAF.---------2分 (2)在Rt △ABE 中,sin ∠BAE=53,AE=4,可求 AB=5. ---------3分又∵∠BAE=∠DAF ,ABCDE2 31ABCDEF∴ sin ∠DAF=sin ∠BAE=53.在Rt △ADF 中,AF=524, sin ∠DAF =53,可求DF=518-------4分∵ CD=AB=5. ∴CF=5-518=57. …………………………………………5分四、解答题(本题共20分,每小题5分)19.(本小题满分5分)解:(1)0.6;36;------------2分(2)72°;补全图如下:------------4分(3)1500×0.6=900.答:学生中“比较了解”的人数约为900人 ------------5分 20.(本小题满分5分) (1)证明:在⊙O 中,OD ⊥AB ,CB ⊥AB ,∴AM =MB ,OD ∥BC . …………………1分 ∴AD =DC . ……………2分(2)∵DE 为⊙O 切线,∴OD ⊥DE ……………3分∴四边形MBED 为矩形.∴DE ∥AB. ……………4分 ∴MB=DE =2,M D=BE =EC =1.连接OB.在R t △OBM 中,OB 2=OM 2+BM 2. 解得 OB=25 . …………………5分21.(本小题满分5分)解:(1)∵点A (1,6),B (a ,3)在反比例函数y =xk 2的图象上,∴ k 2=1×6=6. --------1分 ∴ a ×3=6,a =2.60%比较了解不太了解2%18%MOA BCDE∴B (2,3).由点A (1,6),B (2,3)也在直线y=k 1x+b 上, 得⎩⎨⎧=+=+,32,611b k b k 解得k 1=-3.∴k 1=-3, k 2=6. -----------------2分 (2) 设点P 的坐标为(m,n ). 依题意,得21×3(m +2+m -2)=18,m =6. -----------------3分∴ C (6,3),E (6,0). ∵ 点P 在反比例函数y =x6的图象上,∴ n =1. ------------------4分 ∴PE :PC =1:2 . ------------------5分22.(本小题满分5分)解: (1)设AD =x ,由题意得,BG=x -2,CG=x-3. 在Rt △BCG 中,由勾股定理可得 222(2)(3)5x x -+-=. 解得 6x =. --------------2分(2)参考小萍的做法得到四边形AEGF ,∠EAF=60°,∠EGF=120°,∠AEG=∠AFG= 90°,AE=AF=AD=4. 连结EF ,可得 △AEF 为等边三角形. ∴ EF=4.∴ ∠FEG=∠EFG= 30°. ∴ EG=FG.在△EFG中,可求,E G =∴△EFG 的周长=. --------------5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分)GF EDCBA解: 由方程(m -1)x 2-(2m -1)x +2+xm=0可得)1(22)1(4)12()12(2-⨯-⨯--±--=m m m m x =)1(2)32(12)1(2)32()12(2-+±-=--±-m m m m m m111-=m x ,.22=x∵21,x x 均为正整数,m 也是整数, ∴m =2. ----------3分 (2)由(1)知x 2-3x +2+x2=0.∴x 2-3x +2= -x2.画出函数y = x 2-3x +2,y = -x2的图象,---------6分由图象可知,两个函数图象的交点个数是1. ---------7分24. (本小题满分7分)(1)△EPF 为等边三角形. --------------1分 (2)设BP=x ,则CP =6-x.由题意可 △BEP28x .△CFP的面积为2)2x -.△ABC的面积为. 设四边形AEPF 的面积为y. ∴y =-28x 2)2x --=2-+-.自变量x 的取值范围为3<x <6. --------------4分 (3)可证△EBP ∽△PCF.∴B P B EC FC P=.设BP=x , 则 (6)8x x -=.解得 124,2x x ==.∴ PE 的长为4或 --------------7分25.(本小题满分8分)解:(1)依题意,可知 C(0,8),则B(4,0) 将A(-2,0),B(4,0)代入 y=ax 2+bx +8,⎩⎨⎧=++=+-.08416,0824b a b a 解得⎩⎨⎧=-=.2,1b a配方得y,顶点D (1,9). ---------3分(2)假设满足条件的点存在,依题意设,由求得直线的解析式为, 它与轴的夹角为. 过点P 作PN ⊥y 轴于点N.依题意知,∠NPO=30°或∠NPO=60°. ∵PN=2,∴ON=332或23.∴存在满足条件的点,的坐标为(2,332 )和(2,23).-----------6分(3)由上求得.当抛物线向上平移时,可设解析式为. 当时,. 当时,.或.由题意可得m 的范围为.∴ 抛物线最多可向上平移72个单位. -----------8分228y x x ∴=-++2(1)9x =--+P (2)P t ,(08)(19)C D ,,,C D 8y x =+x 45 P P (80)(412)E F -,,,228(0)y x x m m =-+++>8x =-72y m =-+4x =y m =720m ∴-+≤12m ≤072m ∴<≤。

北京市东城区2011届高三综合练习(二)(数学文)(2011东城二模)1

北京市东城区2011届高三综合练习(二)(数学文)(2011东城二模)1

北京市东城区2010—2011学年第二学期高三综合练习(二)数 学 试 题(文)本试卷分第I 卷和第II 卷(非选择题)两部分,共150分。

考试时长120分钟。

考生务必将答 案填在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题,共40分)一、本大题8小题,每小题5分,共40分。

在每小题给出的四个选项中,选出符合题目要求的一项。

1.设集合{1,2,3,4,5},{1,2,3},{3,4,5},()U U A B A B === 则C = ( )A .{1,2,3,4}B .{1,2,4,5}C .{1,2,5}D .{3} 2.若复数22(3)(56)()m m m m i m R -+-+∈是纯虚数,则m 的值为 ( ) A .0 B .2 C .0或3D .2或33.如图,矩形长为6,宽为4,椭圆内接于矩形,在矩形内随机地撒 300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为 依据可以估计出椭圆的面积为 ( ) A .7.68 B .8.68C .16.32D .21.324.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰 三角形,如果直角三角形的直角边长为2,那么这个几何体的体 积为 ( ) A .43B .83C .4D .85.已知3sin ,4θθ=且在第二象限,那么2θ在( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A (1,2)是抛物线2:2C y px =与直线:(1)l y k x =+的一个交点,则抛物线C 的焦点到直线l的距离是( )A B C D .7.ABC ∆外接圆的圆心为O ,半径为1,且0,||||OA AB AC OA AB ++==,则CA CB ⋅ 等于( )A .32B C .3D .8.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数[()1]y f f x =+的零点个数是( )A .4B .3C .2D .1第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2011年中考二模数学试题(含答案)

2011年中考二模数学试题(含答案)
2 2
E A F
B
D
C
能表示 y 与 x 的函数关系的图像是( ▲ )
A
B
C
二、填空题(每小题 2 分,共 20 分请将正确答案填在答题纸上) 7、某种花粉直径为 0.00004098m,这个长度用科学计数法表示为 ▲ m(保留 3 个有效数字)
8、在坡度为 1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是 6m,斜坡上相邻两树间的坡面距 离是多少 ▲ m. ▲ ▲ . °.
入求值.
19、(7 分)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线 l 起跑,绕过 P 点跑回到 起跑线(如图所示) ;途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由 于心急,掉了球,浪费了 6 秒钟,乙同学则顺利跑完.事后,甲同学说: “我俩所用的全部时间的和为 50 秒” ,乙同学说: “捡球过程不算在内时,甲的速度是我的 1.2 倍” .根据图文信息,请问哪位同学获 胜?为什么? P
∴ m 2、m 3、m 3
当 m 1 时,原式=
1 1 3 (1 3) 6 1 1 3 (0 3) 9
-----------------------------------------7 分
(或者 当 m 0 时,原式=
或者 当 m 1 时,原式=
9、如图,直线 AB∥CD,∠A=45°,∠C=125°,则∠E= 3 10、用配方法将 y= x2-3x+2 化为 y=a (x-h)2+k 的形式是 4
11、已知⊙O 的直径为 6cm,圆心 O 到直线 l 的距离是 5cm,则直线 l 与⊙O 的位置关系是__▲___. 12 学校平面图的比例尺是 1:500,平面图上的校园面积为 1300 cm ,则学校的实际面积为 13、若实数 a 满足 a 1 2a ,则 2a 4a 5 =

2011年全国中考数学模拟汇编二2实数的运算

2011年全国中考数学模拟汇编二2实数的运算
答案:解:原式=2—1+ ………………………………………………………3分
=1+ .…………………………………………………………4分
9.(南京市建邺区2011年中考一模)计算: .
答案解:原式=1-2+33分
=-1+35分
10.(南京市鼓楼区2011年中考一模)
计算:(-3)-(cos30°-1)0-82×0.1252.
实数的运算
A组
一选择题
1.(2011上海市杨浦区中考模拟)两个连续的正整数的积一定是()
(A)素数;(B)合数;(C)偶数;(D)奇数.
【答案】C
2.(2011上海市杨浦区中考模拟)已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()
(A) ;(B) ;
(C) ;(D) .
【答案】D;
3、(2011双柏县中考模拟)下列运算正确的是()
2.(2011杭州市进化一中模拟)(本小题满分6分)
(1)
【答案】(1)解:原式= = ……………………………2分
3.(2011浙江金衢十一校联考)(6分)
(1)计算: .
【答案】(1)
------------------------2分
=1-------------------------------------------3分
A.1个B.2个C.3个D.4个
答案:B
15、(2011黄冈张榜中学模拟)下列运算正确的是()
A. B. C. D.
考查内容:
答案:D
16、(2011年徐汇区诊断卷)下列运算正确的是(▲)
A. ;B. ( 为实数);
C. ;D. .
考查内容:
答案:C

2011年北京东城初三二模数学试题答案

2011年北京东城初三二模数学试题答案

北京市东城区2010--2011学年第二学期初三综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分)题 号 1 2 3 45 6 7 8 答 案 A D CBD C A A二、填空题(本题共16分,每小题4分)题 号9 10 1112答 案-2圆柱12π三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解: 原式222441444x x x x x =+++--- ………………3分23x =- . ………………4分 当332x =时 ,原式233271533244⎛⎫=-=-=⎪ ⎪⎝⎭. ………5分 14.(本小题满分5分) 解:32121=-+--x x x ………………1分去分母得 x-1+1=3(x-2)解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3. ………………5分15.(本小题满分5分) 解:(1)A 1 点的坐标为(3,-1),B 1点的坐标为(2,-3),C 1点的坐标为(5,-3);A 2 点的坐标为(-3,-1),B 2点的坐标为(-2,-3),C 2点的坐标为(-5,-3).图略,每正确画出一个三角形给2分.(2)利用勾股定理可求B 2C =65. ………………5分16.(本小题满分5分) 证明:∵ C F AB ∥,∴ ∠A =∠ACF , ∠ADE =∠CFE . -------2分在△ADE 和△CFE 中, ∠A =∠ACF ,∠ADE =∠CFE ,A E E C =,ABCDEF∴ △ADE ≌△CFE . --------4分 ∴ A D C F =. ------5分17.(本小题满分5分)解:设小刚家4、5两月各行驶了x 、y 千米. --------------------------1分依题意,得 ⎪⎩⎪⎨⎧=+-=.2601.01.0,10054y x x y ----------------------------3分 解得 ⎩⎨⎧==.1100,1500y x -------------------------------4分答:小刚家4月份行驶1500千米,5月份行驶了1100千米. -----------5分18.(本小题满分5分)解:(1)由题意可知 点C 的坐标为(1,1).…………………………………1分设直线QC 的解析式为y kx b =+. ∵ 点Q 的坐标为(0,2),∴ 可求直线QC 的解析式为2y x =-+.…2分(2)如图,当点P 在OB 上时,设PQ 交CD 于点E ,可求点E 的坐标为(2a ,1).则522A P A D D E a ++=+,332C EBC B P a ++=-.由题意可得 5323(3)22a a +=-.∴ 1a =. …………………………………4分由对称性可求当点P 在OA 上时,1a =-∴ 满足题意的a 的值为1或-1. …………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)证明:∵BD 是∠ABC 的平分线,∴ ∠1=∠2.∵ AD //BC ,∴∠2=∠3. ∴ ∠1=∠3.∴AB=AD . ---------------------2分(2)作AE ⊥BC 于E ,DF ⊥BC 于F .∴ EF=AD=AB .ABD123∵ ∠ABC =60°,BC =3AB , ∴ ∠BAE =30°. ∴ BE =21AB . ∴ BF =23AB=21BC .∴ BD=DC .∴ ∠C =∠2.∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6. 在Rt △ABE 中,sin ∠ABE =ABAE =65.∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分AB CD EOF E D C BA22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin ∠ABM =151302A M A B==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0.∵ 0,0>>b a ,∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分(2) ∵ a ∶b =2∶3,∴ 设2,3a k b k ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =.当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去).∴ 4,23a b ==. …………………………5分(3) 当4,23a b ==时,二次函数2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4).设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分24. (本小题满分7分)解:(1)四边形ABCE 是菱形.证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB .∴ 四边形ABCE 是平行四边形.321GRQPOEDC BA又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分(2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,△PBO ≌△QEO , ∴ S △PBO = S △QEO∵ △ECD 是由△ABC 平移得到的, ∴ ED ∥AC ,ED =AC =6. 又∵ BE ⊥AC , ∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △B ED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角, ∴∠2>∠3.∴∠2不与∠3对应 . ∴∠2与∠1对应 .即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 . 可证 △OGC ∽△BOC . ∴ CG :CO =CO :BC . 即 CG :3=3:5 .∴ CG =95.∴ PB =BC -PC =BC -2CG =5-2×95=75 .∴ BD =PB +PR +RF +DF =x +185+x +185=10.∴ x =75∴ BP =75. ……………7分BCA xy FO D E HM HG H 25.(本小题满分8分) 解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2.则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH∴ 224233y x x =-++.……………2分(2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H .则AH =BH =1,GH =83-2=23.∵ EA ⊥AB ,GH ⊥AB , ∴ EA ∥GH .∴GH 是△BEA 的中位线 .∴EA =3GH =43.过B 作BM ⊥OC ,垂足为M . 则MB =OA =AB .∵ ∠EBF =∠ABM =90°,∴ ∠EBA =∠FBM =90°-∠ABF . ∴ R t △EBA ≌R t △FBM .∴ FM =EA =43.∵ CM =OC -OM =3-2=1,∴ CF =FM +CM =73.……………5分(3)要使四边形BCGH 的周长最小,可将点C 向上 平移一个单位,再做关于对称轴对称的对称点C 1,得点C 1的坐标为(-1,1).可求出直线BC 1的解析式为1433y x =+.直线1433y x =+与对称轴x =1的交点即为点H ,坐标为(1,53).点G 的坐标为(1,23).……………8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市东城区2010--2011学年第二学期初三综合练习(二)数 学试 卷学校 姓名 考号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1. 21-的绝对值是 A. 21 B. 21- C. 2 D. -22. 下列运算中,正确的是A .235a a a += B .3412a a a ⋅= C .236a a a =÷ D .43a a a -= 3.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是A .18 B . 13 C . 38 D . 354.下列图形中,既是..轴对称图形又是..5. 若一个正多边形的一个内角等于150°,则这个正多边形的边数是A .9B .10C .11D .126. 在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数是A .30,35B .50,35C .50,50D .15,50 7.已知反比例函数2k y x -=的图象如图所示,220根的情况是A .没有实根B . 有两个不等实根C .有两个相等实根D .无法确定D CB A8.用min{a ,b }表示a ,b 两数中的最小数,若函数}1,1m in{22x x y -+=,则y 的图象为二、填空题(本题共16分,每小题4分) 9. 反比例函数ky x=的图象经过点(-2,1),则k 的值为_______10. 已知一个几何体的三视图如图所示,则该几何体是 .11. 如图,将三角板的直角顶点放置在直线AB 上的点O处.使斜边CD ∥AB ,则∠a 的余弦值为__________. 12. 如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为 . 三、解答题(本题共30分,每小题5分)13. 先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =14. 解分式方程:11322x x x-+=--.15.如图,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将△ABC 先向下平移4个单位,得△A 1B 1C 1;再将△A 1B 1C 1沿y 轴翻折,得△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2; (2)求线段B 2C 长.AH BOC 1O1H 1A1CyA BC D16. 如图,点D 在AB 上,DF 交AC 于点E ,CF AB ∥,AE EC =. 求证:AD CF =.17. 列方程或方程组解应用题为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的54还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2). (1)求直线QC 的解析式;(2)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3∶1两部分,求出此时a 的值.四、解答题(本题共20分,每小题5分)19. 如图,在梯形ABCD 中,AD //BC ,BD 是∠ABC 的平分线. (1)求证:AB =AD ;(2)若∠ABC =60°,BC =3AB ,求∠C 的度数 .20. 如图,四边形ABCD 是平行四边形,以AB 为直径的 ⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45︒.(1) 试判断CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为3,sin ∠ADE =65,求AE 的值.A B CDE FABCD21.某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l 和图2.(1)第四个月销量占总销量的百分比是_______; (2)在图2中补全表示B 品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.图1 图222. 如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究. (1)请在图4中画出拼接后符合条件的平行四边形; (2)请在图2中,计算裁剪的角度(即∠ABM 的度数).图1图4F E D C BA图1O E D CB A R Q P 图2O E D C BA五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若a ∶b =21222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A在点C 的左侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点,试求3x -y 的最大值.24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似?25. 如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.北京市东城区2010--2011学年第二学期初三综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分)三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解: 原式222441444x x x x x =+++--- ………………3分23x =- . ………………4分当x =,原式227153344=-=-=⎝⎭. ………………5分14.(本小题满分5分) 解:32121=-+--x x x ………………1分 去分母得 x-1+1=3(x-2)解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3. ………………5分15.(本小题满分5分) 解:(1)A 1 点的坐标为(3,-1),B 1点的坐标为(2,-3),C 1点的坐标为(5,-3);A 2 点的坐标为(-3,-1),B 2点的坐标为(-2,-3),C 2点的坐标为(-5,-3).图略,每正确画出一个三角形给2分.(2)利用勾股定理可求B 2C ………………5分16.(本小题满分5分) 证明:∵ CF AB ∥,∴ ∠A =∠ACF , ∠ADE =∠CFE . -------2分在△ADE 和△CFE 中, ∠A =∠ACF , ∠ADE =∠CFE ,AE EC =,∴ △ADE ≌△CFE . --------4分 ∴ AD CF =. ------5分17.(本小题满分5分)解:设小刚家4、5两月各行驶了x 、y 千米. --------------------------1分依题意,得 ⎪⎩⎪⎨⎧=+-=.2601.01.0,10054y x x y ----------------------------3分 解得 ⎩⎨⎧==.1100,1500y x -------------------------------4分答:小刚家4月份行驶1500千米,5月份行驶了1100千米. -----------5分18.(本小题满分5分)解:(1)由题意可知 点C 的坐标为(1,1).…………………………………1分设直线QC 的解析式为y kx b =+. ∵ 点Q 的坐标为(0,2),∴ 可求直线QC 的解析式为2y x =-+.…………………………………2分 (2)如图,当点P 在OB 上时,设PQ 交CD 于点E ,可求点E 的坐标为(2a,1). 则522AP AD DE a ++=+,332CE BC BP a ++=-. 由题意可得 5323(3)22a a +=-.∴ 1a =. …………………………………4分 由对称性可求当点P 在OA 上时,1a =-∴ 满足题意的a 的值为1或-1. …………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)证明:∵BD 是∠ABC 的平分线,ABCD E∴ ∠1=∠2. ∵ AD //BC ,∴∠2=∠3. ∴ ∠1=∠3.∴AB=AD . ---------------------2分(2)作AE ⊥BC 于E ,DF ⊥BC 于F .∴ EF=AD=AB .∵ ∠ABC =60°,BC =3AB , ∴ ∠BAE =30°.∴ BE =21AB . ∴ BF =23AB=21BC .∴ BD=DC .∴ ∠C =∠2.∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分 ∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6. 在Rt△ABE 中,sin ∠ABE =AB AE =65. ∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分ABCD123E FBA(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分 22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin∠ABM =151302AM AB==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0.∵ 0,0>>b a ,∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分 (2) ∵ a ∶b =2∴设2,a k b ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.321GRQPOEDC BA当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去). ∴4,a b ==. …………………………5分(3)当4,a b ==时,二次函数2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4).设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分24. (本小题满分7分) 解:(1)四边形ABCE 是菱形.证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB .∴ 四边形ABCE 是平行四边形. 又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分 (2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,△PBO ≌△QEO , ∴ S △PBO = S △QEO∵ △ECD 是由△ABC 平移得到的, ∴ ED ∥AC ,ED =AC =6. 又∵ BE ⊥AC , ∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角, ∴∠2>∠3. ∴∠2不与∠3对应 . ∴∠2与∠1对应 . 即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 . 可证 △OGC ∽△BOC . ∴ CG :CO =CO :BC . 即 CG :3=3:5 .∴ CG =95.∴ PB =BC -PC =BC -2CG =5-2×95=75 .∴ BD =PB +PR +RF +DF =x +185+x +185=10.∴ x =75∴ BP =75. ……………7分25.(本小题满分8分) 解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2.则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH∴ 224233y x x =-++.……………2分 (2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H .则AH =BH =1,GH =83-2=23.∵ EA ⊥AB ,GH ⊥AB , ∴ EA ∥GH .∴GH 是△BEA 的中位线 . ∴EA =3GH =43. 过B 作BM ⊥OC ,垂足为M . 则MB =OA =AB .∵ ∠EBF =∠ABM =90°,∴ ∠EBA =∠FBM =90°-∠ABF . ∴ R t △EBA ≌R t △FBM .∴ FM =EA =43. ∵ CM =OC -OM =3-2=1, ∴ CF =FM +CM =73.……………5分 (3)要使四边形BCGH 的周长最小,可将点C 向上 平移一个单位,再做关于对称轴对称的对称点C 1,得点C 1的坐标为(-1,1). 可求出直线BC 1的解析式为1433y x =+. 直线1433y x =+与对称轴x =1的交点即为点H ,坐标为(1,53). 点G 的坐标为(1,23).……………8分。

相关文档
最新文档