2019年安徽省合肥市初中毕业学业考试模拟试卷(4)
安徽省合肥市2019-2020学年中考数学四模考试卷含解析
安徽省合肥市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A .x >1B .x≥1C .x >3D .x≥32.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .3.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A .B .C .D .4.如图1,在△ABC 中,AB=BC ,AC=m ,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE.设AP=x ,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )A .PDB .PBC .PED .PC5.一、单选题 二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个6.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -7.如图,在平面直角坐标系中,直线y=k 1x+2(k 1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x 在第二象限内的图象交于点C ,连接OC ,若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .3B .﹣12C .﹣3D .﹣68.方程(2)0x x +=的根是( )A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=29.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有( )个A .1个B .2 个C .3 个D .4个10.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A .140元B .150元C .160元D .200元11.若M (2,2)和N (b ,﹣1﹣n 2)是反比例函数y=k x 的图象上的两个点,则一次函数y=kx+b 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限12.下列博物院的标识中不是轴对称图形的是( )A .B .C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.15.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.16.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.17.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.e是△ABC的外接圆,其半径为5. 若点A在优弧BC上,18.如图,在△ABC 中,AB=AC,BC=8. O的值为_____________.则tan ABC三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在第一象限内当y 1<y 2时x 的取值范围.20.(6分)计算:20112(1)6tan 303π-︒⎛⎫+--+- ⎪⎝⎭解方程:544101236x x x x -++=-- 21.(6分)如图,AB 是⊙O 的直径,点C 是AB 延长线上的点,CD 与⊙O 相切于点D ,连结BD 、AD .求证;∠BDC =∠A .若∠C =45°,⊙O 的半径为1,直接写出AC 的长.22.(8分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩x (次/分),按成绩分成(155)A x <,(155160)B x <…,(160165)C x <…,D(165170)x <…,E(170)x …五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题: 该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是C 等级的人数.23.(8分)对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p,则称p 为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零.例如:下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数y=x-1,y=x -1,y=x 2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x 2-bx.①若其不变长度为零,求b 的值;②若1≤b≤3,求其不变长度q 的取值范围;(3) 记函数y=x 2-2x(x≥m)的图象为G 1,将G 1沿x=m 翻折后得到的函数图象记为G 2,函数G 的图象由G 1和G 2两部分组成,若其不变长度q 满足0≤q≤3,则m 的取值范围为 .24.(10分)如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE求证:四边形AOBE 是菱形若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积25.(10分)如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.26.(12分)问题提出(1)如图1,正方形ABCD 的对角线交于点O ,△CDE 是边长为6的等边三角形,则O 、E 之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD 中,以CD 为直径作半圆O ,点P 为弧CD 上一动点,求A 、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD 及弓形AMD 组成,AB=2m ,BC=3.2m ,弓高MN=1.2m(N 为AD 的中点,MN ⊥AD),小宝说,门角B 到门窗弓形弧AD 的最大距离是B 、M 之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B 到门窗弓形弧AD 的最大距离.27.(12分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x >1.故选C .考点:在数轴上表示不等式的解集.2.A【解析】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .3.B【解析】试题分析:根据题意得△=32﹣4m >0,解得m <.故选B .考点:根的判别式.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 4.C【解析】观察可得,点P 在线段AC 上由A 到C 的运动中,线段PE 逐渐变短,当EP ⊥AC 时,PE 最短,过垂直这个点后,PE 又逐渐变长,当AP=m 时,点P 停止运动,符合图像的只有线段PE ,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.5.B【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0,故正确.综上所述,正确的结论有3个.故选B.6.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.7.C【解析】【分析】如图,作CH ⊥y 轴于H .通过解直角三角形求出点C 坐标即可解决问题.【详解】解:如图,作CH ⊥y 轴于H .由题意B (0,2), ∵112OB CH ⋅⋅=, ∴CH=1, ∵tan ∠BOC=1,3CH OH = ∴OH=3,∴C (﹣1,3),把点C (﹣1,3)代入2k y x =,得到k 2=﹣3, 故选C .【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8.C【解析】试题解析:x (x+1)=0,⇒x=0或x+1=0,解得x 1=0,x 1=-1.故选C .9.C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定△ADG ≌△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC ∠=45〫,再抓住△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA ,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG ≌△FDG ,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x ,由勾股定理得:EG 2=BE 2+BG 2,即:(x+6)2=62+(12﹣x )2,解得:x=4∴AG=GF=4,BG=8,BG=2AG ,②正确;∵△ADG ≌△FDG ,△DCE ≌△DFE ,∴∠ADG=∠FDG ,∠FDE=∠CDE∴∠GDE=12ADC ∠=45〫.③正确; BE=EF=6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.10.B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x 元,则有:20+0.8x=x ﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.故选B .考点:一元一次方程的应用11.C【解析】【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入k y x=得,k=b (﹣1﹣n 2),即 241b n =--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入k y x =, 得k=4,把(b ,﹣1﹣n 2)代入k y x =得: k=b (﹣1﹣n 2),即241b n =--, ∵k=4>0,241b n =--<0, ∴一次函数y=kx+b 的图象经过第一、三、四象限,故选C .【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键.12.A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误二、填空题:(本大题共6个小题,每小题4分,共24分.)13.31°.【解析】试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案是31°.考点:平行线的性质.14.(32,32)【解析】【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=32,∵四边形ODEF是正方形,∴DE=OD=32.∴E点的坐标为:(32,32).故答案为:(32,32).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=12(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°16.85【解析】【分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.17【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+40403+/时;40403+.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.18.2【解析】【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.试题解析:如图,作AD⊥BC,垂足为D,连接OB,∵AB=AC,∴BD=CD=12BC=12×8=4,∴AD垂直平分BC,∴AD过圆心O,在Rt△OBD中,OD=222254OB BD-=-=3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC=84ADBD==2,故答案为2.【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵3261m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.20.(1)10;(2)原方程无解.【解析】【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=3 231693+-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(1)详见解析;(2)1+2【解析】【分析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结OD.如图,CDQ与Oe相切于点D,OD CD,∴⊥2BDC90∠∠∴+︒=,ABQ是Oe的直径,ADB90∠∴︒=,即1290∠∠+︒=,1BDC∠∠∴=,OA ODQ=,1A∠∠∴=,BDC A∠∠∴=;(2)解:在Rt ODCV中,C45∠︒Q=,2212OC ODAC OA OC∴==∴=+=+.【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.22.(1)C;(2)100【解析】【分析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400⨯1040=100(人)答:估计该校九年级男生跳绳成绩是C等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.23.详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)①首先由函数y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G 的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,∴函数y=x1的不变值为:2或1,q=1﹣2=1;(1)①函数y=1x1﹣bx,令y=x,则x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=12b+.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,∴函数G的图象关于x=m对称,∴G:y=22)22()(2(2)()m xx x x mm x x mn-⎧-≥⎨--<⎩.∵当x1﹣1x=x时,x3=2,x4=3;当(1m﹣x)1﹣1(1m﹣x)=x时,△=1+8m,当△<2,即m<﹣18时,q=x4﹣x3=3;当△≥2,即m≥﹣18时,x 5x 6 ①当﹣18≤m≤2时,x 3=2,x 4=3,∴x 6<2,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m=1,当x 6=x 3时,m=3;当2<m <1时,x 3=2(舍去),x 4=3,此时2<x 5<x 4,x 6<2,q=x 4﹣x 6>3(舍去);当1≤m≤3时,x 3=2(舍去),x 4=3,此时2<x 5<x 4,x 6>2,q=x 4﹣x 6<3;当m >3时,x 3=2(舍去),x 4=3(舍去),此时x 5>3,x 6<2,q=x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.24.(1)见解析;(2)S 四边形ADOE =【解析】【分析】(1) 根据矩形的性质有OA=OB=OC=OD ,根据四边形ADOE 是平行四边形,得到OD ∥AE ,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE 为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB ∥CD ,根据平行线的性质有∠BAC=∠ACD ,求出∠DCA=60°,求出AD=根据面积公式S ΔADC ,即可求解.【详解】(1)证明:∵矩形ABCD ,∴OA=OB=OC=OD.∵平行四边形ADOE ,∴OD ∥AE ,AE=OD.∴AE=OB.∴四边形AOBE 为平行四边形.∵OA=OB ,∴四边形AOBE 为菱形.(2)解:∵菱形AOBE ,∴∠EAB=∠BAO.∵矩形ABCD ,∴AB ∥CD.∴∠BAC=∠ACD ,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=23.∴SΔA DC=1223232⨯⨯=.∴S四边形ADOE =23.【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强. 25.(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,OD OBDOE BOFOE OF⎧⎪∠∠⎨⎪⎩===,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)333+;(2)353+;(2)小贝的说法正确,理由见解析,11055153+. 【解析】【分析】 (1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt △ANO 中,设AO=r ,由勾股定理可求出r ,在Rt △OEB 中,由勾股定理可得BO 长,易知BP 长.【详解】解:(1)如图1,连接AC ,BD ,对角线交点为O ,连接OE 交CD 于H ,则OD=OC .∵△DCE 为等边三角形,∴ED=EC ,∵OD=OC∴OE 垂直平分DC ,∴DH 12=DC=1. ∵四边形ABCD 为正方形,∴△OHD 为等腰直角三角形,∴OH=DH=1,在Rt △DHE 中,HE 3=3∴31;(2)如图2,补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,AD=6,DO=1,∴AO 22AD DO =+=15,3OP DO ==Q∴AP=AO+OP=15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中, 设AO=r ,则ON=r ﹣1.2.∵AN 2+ON 2=AO 2,∴1.62+(r ﹣1.2)2=r 2,解得:r 53=, ∴AE=ON 53=-1.2715=, 在Rt △OEB 中,OE=AN=1.6,BE=AB ﹣AE 2315=, ∴BO 22110515OE BE =+=, ∴BP=BO+PO 110553=+,∴门角B到门窗弓形弧AD的最大距离为5 153+.【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.27.21x+;2.【解析】【分析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()2221 21112x xxx x x x---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.。
合肥市2019-2020学年九年级学业水平考试模拟卷四语文试题A卷
合肥市2019-2020学年九年级学业水平考试模拟卷四语文试题A卷姓名:________ 班级:________ 成绩:________一、字词书写1 . 给下列加线字注音凸颧骨(_____)愕然(_____)嗤笑(_____)惘然(_____)潺潺(_____)恣睢(______)二、现代文阅读善于“折叠”自己陈大昊①把51张白纸重叠在一起,厚度最多不过几厘米。
但把一张足够大的白纸折叠51次,厚度竟然超过了地球和太阳之间的距离。
人生从来不是平铺直叙,如何“折叠”自己,决定着人生的厚度、事业的成败。
②“折叠”是智慧的迂回。
毛泽东军事生涯中的“得意之笔”四渡赤水,最初的作战计划并非如此。
红军因为急于一口吃掉敌人,结果遇挫,被迫开始一渡赤水。
红军在毛泽东的指挥下声东击西,穿插迂回,与敌人巧妙周旋,以三万劣势兵力牵着数十万敌人的鼻子走,成就了四渡赤水这一红军长征史上的光辉战例。
这次行动,周恩来称之为走“之”字路。
实践证明,最近的距离不一定是直线,而看似“折叠”弯曲的“之”字路线,往往是达到最终目的的最佳路径。
成事的最高境界在于,以最小代价换取最大胜利。
那些不讲科学的蛮干、急功近利的“速成”,不仅难以到达成功的彼岸,还可能在途中触礁、搁浅。
像河流一样“折叠”蜿蜒,才能避开前面的障碍,实现波浪式前进。
③“折叠”是生动的重复。
重复是工作生活的常态,许多人都在“重复昨天的故事”,但并非所有量的积累都能产生质的飞跃。
老驴拉磨般的简单重复、机械重复,结局多是“原地转圈”“涛声依旧”。
法国作家罗曼·罗兰曾说:“大部分人在二三十岁上就死去了,因为过了这个年龄,他们只是自己的影子,此后的余生则是在模仿自己中度过。
”在“折叠”中创新,在创新中重复,坚持“不作寻常重复”,进行生动的重复,方能书写出彩华章。
④“折叠”是耐心的坚持。
有人做过一个计算:如果干一件事的成功率仅为1%,反复尝试100次,成功的概率竟然能达到63%。
【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考数学四月模拟试卷含解析
安徽省合肥市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A.12B.25C.35D.7182.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm3.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-4.下面调查中,适合采用全面调查的是()A.对南宁市市民进行“南宁地铁1号线线路”B.对你安宁市食品安全合格情况的调查C.对南宁市电视台《新闻在线》收视率的调查D.对你所在的班级同学的身高情况的调查5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是()A.①②④B.①③C.①②③D.①③④6.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )A .1B .2C .3D .47.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π8.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.9. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S 和时间t 的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )A .赛跑中,兔子共休息了50分钟B .乌龟在这次比赛中的平均速度是0.1米/分钟C .兔子比乌龟早到达终点10分钟D .乌龟追上兔子用了20分钟 10.下列分式是最简分式的是( )A .223aa bB .23a a a -C .22a b a b ++ D .222a ab a b-- 11.若一次函数y =(2m ﹣3)x ﹣1+m 的图象不经过第三象限,则m 的取值范图是( ) A .1<m <32B .1≤m <32C .1<m≤32D .1≤m≤3212.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是()A .91032π⎛⎫-⎪⎝⎭米2 B .932π⎛⎫- ⎪⎝⎭米2 C .9632π⎛⎫- ⎪⎝⎭米2 D .()693π-米2 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).14.如图,直线a ∥b ,正方形ABCD 的顶点A 、B 分别在直线a 、b 上.若∠2=73°,则∠1= .15.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= .16.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .18.若m+1m=3,则m2+21m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.20.(6分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?21.(6分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.22.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-a S 四边形ADCB =21122ADC ABC S S b ab +=-+V V S 四边形ADCB =211()22ADB BCD S S c a b a +=+-V V ∴221111()2222b abc a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a 2+b 2=c 2 23.(8分)佳佳向探究一元三次方程x 3+2x 2﹣x ﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b (k≠0)的图象与x 轴交点的横坐标即为一元一次方程kx+b (k≠0)的解,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交点的横坐标即为一元二次方程ax 2+bx+c=0(a≠0)的解,如:二次函数y=x 2﹣2x ﹣3的图象与x 轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x 2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x 3+2x 2﹣x ﹣2的图象与x 轴交点的横坐标,即可知方程x 3+2x 2﹣x ﹣2=0的解.佳佳为了解函数y=x 3+2x 2﹣x ﹣2的图象,通过描点法画出函数的图象.x … ﹣3﹣52﹣2﹣32﹣1﹣12 012 132 2 …y … ﹣8 ﹣218 0 58m ﹣98﹣2 ﹣1580 35812 …(1)直接写出m 的值,并画出函数图象;(2)根据表格和图象可知,方程的解有 个,分别为 ; (3)借助函数的图象,直接写出不等式x 3+2x 2>x+2的解集.24.(10分)如图,抛物线y=ax 2+bx+c 与x 轴相交于点A (﹣3,0),B (1,0),与y 轴相交于(0,﹣32),顶点为P .(1)求抛物线解析式;(2)在抛物线是否存在点E ,使△ABP 的面积等于△ABE 的面积?若存在,求出符合条件的点E 的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F ,使得以A 、B 、P 、F 为顶点的四边形为平行四边形?直接写出所有符合条件的点F 的坐标,并求出平行四边形的面积.25.(10分)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5 km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)26.(12分)一次函数()y kx b k 0=+≠的图象经过点()A 11-,和点()B 15,,求一次函数的解析式.27.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件? (2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个; ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率. 详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个, 概率为451=902. 故选A .点睛:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 2.B 【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm ,故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 3.D 【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 4.D 【解析】 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答. 【详解】A 、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B 、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C 、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D 、对你所在的班级同学的身高情况的调查适宜采用普查方式; 故选D . 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 5.B 【解析】∵函数图象的对称轴为:x=-2b a =132-+=1,∴b=﹣2a ,即2a+b=0,①正确;由图象可知,当﹣1<x <3时,y <0,②错误; 由图象可知,当x=1时,y=0,∴a ﹣b+c=0, ∵b=﹣2a ,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x 1,y 1)、(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2;当x 1<x 2<1时,y 1>y 2; 故④错误; 故选B .点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理. 6.B 【解析】 【分析】根据余角的性质,可得∠DCA 与∠CBE 的关系,根据AAS 可得△ACD 与△CBE 的关系,根据全等三角形的性质,可得AD 与CE 的关系,根据线段的和差,可得答案. 【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°, ∠DCA=∠CBE ,在△ACD 和△CBE 中,ACD CBEADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS), ∴CE=AD=3,CD=BE=1, DE=CE−CD=3−1=2, 故答案选:B. 【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质. 7.D 【解析】 【分析】如图,连接OD .根据折叠的性质、圆的性质推知△ODB 是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式180n rl π= 来求»AD 的长 【详解】解:如图,连接OD.解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB-∠DOB=50°,∴»AD的长为5018180π⨯=5π.故选D.【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.8.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.9.D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.。
2019年安徽省合肥四十五中中考数学四模试卷 含解析
2019年安徽省合肥四十五中中考数学四模试卷一、选择题(共10小题)1.截至2019年4月23日12时,关于“人民海军成立70周年”的全网信息量达到41.9万条,其中41.9万用科学记数法表示为( ) A .441.910⨯B .54.1910⨯C .341910⨯D .60.41910⨯2.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .3.9的平方根是( ) A .3±B .3C . 4.5±D .4.54.下列运算正确的是( ) A .2(1)21a a --=-+ B .3252()x y x y =C .826x x x ÷=D .22(3)9x x +=+5.一元二次方程2410kx x ++=有两个实数根,则k 的取值范围是( ) A .4k >B .4k …C .4k …D .4k …且0k ≠6.如图,//AB CD ,DE BE ⊥,BF 、DF 分别为ABE ∠、CDE ∠的角平分线,则(BFD ∠=)A .110︒B .120︒C .125︒D .135︒7.如图,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交于(1,2)A ,(2,1)B --两点,若12y y <,则x 的取值范围是( )A.1x<B.2x<-C.20x-<<或1x>D.2x<-或01x<< 8.如图,ABC∆中,18BC=,若BD AC⊥于D点,CE AB⊥于E点,F,G分别为BC、DE的中点,若10ED=,则FG的长为()A.214B.106C.8D.99.如图是某商品标牌的示意图,Oe与等边ABC∆的边BC相切于点C,且Oe的直径与ABC∆的高相等,已知等边ABC∆边长为4,设Oe与AC相交于点E,则AE的长为( )A.3B.1C.31-D.3 210.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P D Q→→运动,点E、F的运动速度相同.设点E的运动路程为x,AEF∆的面积为y,能大致刻画y与x的函数关系的图象是()A .B .C .D .二、填空题(共4小题,每小题5分,满分20分)11.化简:242x x -=- . 12.已知一组数据6、2、4、x 、5的平均数是4,则这组数据的方差为 .13.如图,在扇形AOC 中,B 是弧AC 上一点,且AB 、BC 分别是O e 的内接正方形、正五边形的边.若1OA =,则弧AC 长为 .14.在等边ABC ∆中,3AB =,点D 是边BC 上一点,点E 在直线AC 上,且BAD CBE ∠=∠,当1BD =时,则AE 的长为 .三、(共2小题,每小题8分,满分16分) 15.计算:312sin 60(2)12||8-︒+---.16.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.四、(共2小题,每小题8分,满分16分)17.在坐标系中,ABC ∆的三个顶点坐标分别为(2,4)A -,(3,2)B -,(6,3)C -. (1)画出ABC ∆关于x 轴对称的△111A B C ;(2)以M 点为位似中心,在第一象限中画出将△111A B C 按照2:1放大后的位似图形△222A B C ;(3)△222A B C 面积为 .(直接写出答案)18.观察以下等式:第1个等式:2(1)(1)1x x x -+=-; 第2个等式:23(1)(1)1x x x x -++=- 第3个等式:324(1)(1)1:x x x x x -+++=-⋯ 按照以上规律,解决下列问题:(1)写出第4个等式:432(1)(1)x x x x x -++++= ;(2)写出你猜想的第n 个等式:1(1)(1)n n x x x x --++⋯++= ; (3)请利用上述规律,确定201920182221++⋯++的个位数字是多少? 五、(共5小题,每小题10分,满分58分)19.如图,建筑物的高CD 为17.32米,在其楼顶C ,测得旗杆底部B 的俯角α为60︒,旗杆顶部A 的仰角β为20︒,请你计算旗杆的高度.(sin 200.342︒≈,tan 200.364︒≈,cos 200.940︒≈3 1.732≈,结果精确到0.1米)20.如图,已知ABC ∆,(1)尺规作图:作AD 平分BAC ∠交BC 于D 点,再作AD 的垂直平分线交AB 于E 点,交AC 于F 点(保留作图痕迹,不写作法); (2)连接DE ,DF 证明:四边形AEDF 是菱形; (3)若7BE =,4AF =,3CD =,求BD 的长.21.学校随机抽取了九年级部分学生进行体育模拟测试,将成绩统计分析并绘制了频数分布表和统计图,按得分划分成A 、B 、C 、D 、E 、F 六个等级,绘制成如下所示的两幅统计图表(不完整的)等级 得分x (分) 频数(人)A 95100x <… 4B 9095x <… m C8590x <…nD 8085x <… 24E 7580x <… 8 F7075x <…4请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是 ,其中m = ,n = ; (2)扇形统计图中E 等级对应扇形的圆心角α= ︒;(3)已知该校九年级共有700名学生,可以估计体育测试成绩在A 、B 两个等级的人数共有 人;(4)该校决定从本次抽取的A 等级学生(记为甲、乙、丙、丁)中随机选择2名作为代表参加全市体育交流活动,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.22.我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品种草莓,已知该草莓的成本为每千克10元,草莓成熟后投人市场销售.经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?(3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.23.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120︒的等腰三角形,顶角顶点分别为D,E,F(点E,F在AB的同侧,点D在AB的另一侧)(1)如图1,若点C是AB的中点,则ADE∠=︒;(2)如图2,若点C不是AB的中点,①求证:DEF∆为等边三角形;②如图3,连接CD,若90AB=,求EF的长.ADC∠=︒,3参考答案一、选择题(共10小题)1.截至2019年4月23日12时,关于“人民海军成立70周年”的全网信息量达到41.9万条,其中41.9万用科学记数法表示为( ) A .441.910⨯B .54.1910⨯C .341910⨯D .60.41910⨯【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a <…,n 为整数,据此判断即可.解:41.9万5419000 4.1910==⨯. 故选:B .2.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .【分析】根据从正面看得到的图形是主视图,可得答案. 解:从正面看,故选:C .3.9的平方根是( ) A .3±B .3C . 4.5±D .4.5【分析】根据平方根的性质和求法,求出9的平方根是多少即可. 解:9的平方根是: 93=±.故选:A .4.下列运算正确的是( ) A .2(1)21a a --=-+B .3252()x y x y =C .826x x x ÷=D .22(3)9x x +=+【分析】根据同底数的除法,单项式乘多项式的法则,积的乘方及幂的乘方运算法则,完全平方公式计算即可.解:A 、2(1)22a a --=-+,故A 错误; B 、积的乘方等于乘方的积,故B 错误;C 、同底数幂的除法底数不变指数相减,故C 正确;D 、和的平方等于平方和加积的二倍,故D 错误;故选:C .5.一元二次方程2410kx x ++=有两个实数根,则k 的取值范围是( ) A .4k >B .4k …C .4k …D .4k …且0k ≠【分析】根据一元二次方程的定义和根的判别式的意义得到0k ≠且△2440k =-…,然后求出两不等式的公共部分即可. 解:根据题意得0k ≠且△2440k =-…, 解得4k …且0k ≠. 故选:D .6.如图,//AB CD ,DE BE ⊥,BF 、DF 分别为ABE ∠、CDE ∠的角平分线,则(BFD ∠= )A .110︒B .120︒C .125︒D .135︒【分析】先过E 作//EG AB ,根据平行线的性质即可得到360ABE BED CDE ∠+∠+∠=︒,再根据DE BE ⊥,BF ,DF 分别为ABE ∠,CDE ∠的角平分线,即可得出135FBE FDE ∠+∠=︒,最后根据四边形内角和进行计算即可.解:如图所示,过E 作//EG AB ,//AB CD Q , //EG CD ∴,180ABE BEG ∴∠+∠=︒,180CDE DEG ∠+∠=︒, 360ABE BED CDE ∴∠+∠+∠=︒,又DE BE ⊥Q ,BF ,DF 分别为ABE ∠,CDE ∠的角平分线, 11()(36090)13522FBE FDE ABE CDE ∴∠+∠=∠+∠=︒-︒=︒, ∴四边形BEDF 中,36036013590135BFD FBE FDE BED ∠=︒-∠-∠-∠=︒-︒-︒=︒.故选:D .7.如图,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交于(1,2)A ,(2,1)B --两点,若12y y <,则x 的取值范围是( )A .1x <B .2x <-C .20x -<<或1x >D .2x <-或01x <<【分析】根据一次函数图象位于反比例函数图象的下方,可得不等式的解. 解:一次函数图象位于反比例函数图象的下方, 由图象可得2x <-,或01x <<, 故选:D .8.如图,ABC ∆中,18BC =,若BD AC ⊥于D 点,CE AB ⊥于E 点,F ,G 分别为BC 、DE 的中点,若10ED =,则FG 的长为( )A .214B .106C .8D .9【分析】连接EF 、DF ,根据直角三角形的性质得到192EF BC ==,得到FE FD =,根据等腰三角形的性质得到FG DE ⊥,152GE GD DE ===,根据勾股定理计算即可. 解:连接EF 、DF ,BD AC ⊥Q ,F 为BC 的中点,192DF BC ∴==, 同理,192EF BC ==, FE FD ∴=,又G 为DE 的中点, FG DE ∴⊥,152GE GD DE ===, 由勾股定理得,22214FG EF EG =-=, 故选:A .9.如图是某商品标牌的示意图,O e 与等边ABC ∆的边BC 相切于点C ,且O e 的直径与ABC ∆的高相等,已知等边ABC ∆边长为4,设O e 与AC 相交于点E ,则AE 的长为()A .3B .1C .31-D .32【分析】连接OC ,并过点O 作OF CE ⊥于F ,根据等边三角形的性质,等边三角形的高等于底边的32倍.已知边长为4的等边三角形ABC 与O e 等高,说明O e 的半径为3,即3OC =,又60ACB ∠=︒,故有30OCF ∠=︒,在Rt OFC ∆中,可得出FC 的长,利用垂径定理即可得出CE 的长.解:连接OC ,过点O 作OF CE ⊥于F , ABC ∆Q 为等边三角形,边长为4, ABC ∴∆的高为23,即3OC =,O Q e 与BC 相切于点C , OC BC ∴⊥,又60ACB ∠=︒Q , 30OCF ∴∠=︒,在Rt OFC ∆中,33cos30322FC OC =︒=⨯=g , OF Q 过圆心,且OF CE ⊥, 23CE FC cm ∴==, 431AE cm ∴=-=.故选:B .10.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P D Q →→运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,AEF ∆的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【分析】分F 在线段PD 上,以及线段DQ 上两种情况,表示出y 与x 的函数解析式,即可做出判断.解:当F 在PD 上运动时,AEF ∆的面积为12(02)2y AE AD x x ==g 剟, 当F 在AD 上运动时,AEF ∆的面积为2111(6)3(24)222y AE AF x x x x x ==-=-+<g …, 图象为:故选:A .二、填空题(共4小题,每小题5分,满分20分)11.化简:242x x -=- 2x + . 【分析】分子利用平方差公式进行因式分解,然后约分即可. 解:原式(2)(2)22x x x x +-==+-.故答案是:2x +.12.已知一组数据6、2、4、x 、5的平均数是4,则这组数据的方差为 2 . 【分析】先根据平均数的定义求出x 的值,再依据方差的公式计算可得.解:由题意知624545x ++++=⨯, 解得:3x =,则这组数据的方差为222221[(64)(24)(44)(34)(54)]25⨯-+-+-+-+-=,故答案为2.13.如图,在扇形AOC 中,B 是弧AC 上一点,且AB 、BC 分别是O e 的内接正方形、正五边形的边.若1OA =,则弧AC 长为910π .【分析】连接OB ,根据AB 、BC 分别是O e 的内接正方形、正五边形的边求得中心角的度数,从而求得弧所对的圆心角的度数,然后利用弧长公式求解即可. 解:如图,连接OB ,AB Q 、BC 分别是O e 的内接正方形、正五边形的边, 90AOB ∴∠=︒,72BOC ∠=︒, 9072162AOC ∴∠=︒+︒=︒, ∴弧AC 的长为:1621918010ππ⨯=, 故答案为:910π.14.在等边ABC ∆中,3AB =,点D 是边BC 上一点,点E 在直线AC 上,且BAD CBE ∠=∠,当1BD =时,则AE 的长为 2或2. 【分析】分两种情形分别画出图形,利用全等三角形或相似三角形的性质解决问题即可. 解:分两种情形:①如图1中,当点D 在边BC 上,点E 在边AC 上时.ABC∆Q是等边三角形,3AB BC AC∴===,60ABD BCE∠=∠=︒,BAD CBE∠=∠Q,()ABD BCE ASA∴∆≅∆,1BD EC∴==,2AE AC EC∴=-=.②如图2中,当点D在边BC上,点E在AC的延长线上时.作//EF AB交BC的延长线于F.60CEF CAB∴∠=∠=︒,60ECF ACB∠=∠=︒,ECF∴∆是等边三角形,设EC CF EF x===,60ABD BFE∠=∠=︒Q,BAD FBE∠=∠,ABD BFE∴∆∆∽,∴BD AB EF BF=∴133x x=+,32x ∴=, 39322AE AC CE ∴=+=+=, 综上,AE 的长为2或92; 故答案为:2或92. 三、(共2小题,每小题8分,满分16分) 15.计算:312sin 60(2)||8-︒+---.【分析】原式利用特殊角的三角函数值,负整数指数幂法则,以及二次根式性质,绝对值的代数意义计算即可求出值.解:原式11288=--+= 16.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.【分析】设绳索长x 尺,竿长y 尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.解:设绳索长x 尺,竿长y 尺, 依题意,得:5152x y y x -=⎧⎪⎨-=⎪⎩, 解得:2015x y =⎧⎨=⎩.答:绳索长20尺,竿长15尺.四、(共2小题,每小题8分,满分16分)17.在坐标系中,ABC ∆的三个顶点坐标分别为(2,4)A -,(3,2)B -,(6,3)C -. (1)画出ABC ∆关于x 轴对称的△111A B C ;(2)以M 点为位似中心,在第一象限中画出将△111A B C 按照2:1放大后的位似图形△222A B C ;(3)△222A B C 面积为 14 .(直接写出答案)【分析】(1)根据关于x 轴对称的点的坐标特征写出1A 、1B 、1C 的坐标,然后描点即可; (2)延长1MA 到2A 使212MA MA =,延长1MB 到2B 使212MB MB =,延长1MC 到2C 使212MC MC =,从而得到△222A B C ;(3)用一个矩形的面积分别减去三个三角形的面积可计算出)△222A B C 面积. 解:(1)如图,△111A B C 为所作; (2)如图,△222A B C 为所作;(3)△222A B C 面积1118442628214222=⨯-⨯⨯-⨯⨯-⨯⨯=.故答案为14. 18.观察以下等式:第1个等式:2(1)(1)1x x x -+=-; 第2个等式:23(1)(1)1x x x x -++=- 第3个等式:324(1)(1)1:x x x x x -+++=-⋯ 按照以上规律,解决下列问题:(1)写出第4个等式:432(1)(1)x x x x x -++++= 51x - ; (2)写出你猜想的第n 个等式:1(1)(1)n n x x x x --++⋯++= ; (3)请利用上述规律,确定201920182221++⋯++的个位数字是多少? 【分析】(1)仿照阅读材料中的等式写出第4个等式即可; (2)归纳总结得到一般性规律,写出即可; (3)利用得出的规律化简,计算即可求出值. 解:(1)4325(1)(1)1x x x x x x -++++=-; (2)11(1)(1)1n n n x x x x x -+-++⋯++=-;(3)原式201920182020(21)(2221)21=-++⋯++=-,122=Q ,224=,328=,4216=,5232=,2∴的个位数2,4,8,6循环, 20205054=⨯Q ,20202∴的个位数为6,则原式的个位数为5.故答案为:(1)51x -;(2)11n x +- 五、(共5小题,每小题10分,满分58分)19.如图,建筑物的高CD 为17.32米,在其楼顶C ,测得旗杆底部B 的俯角α为60︒,旗杆顶部A 的仰角β为20︒,请你计算旗杆的高度.(sin 200.342︒≈,tan 200.364︒≈,cos 200.940︒≈ 1.732≈,结果精确到0.1米)【分析】首先根据题意分析图形;本题涉及到两个直角三角形,借助公共边CE 等价转换,解这两个三角形可得AE 、BE 的值,再利用AB AE BE =+,进而可求出答案. 解:根据题意,再Rt BCE ∆中,90BEC ∠=︒,tan BECEα=, 17.3210tan 60 1.732BE CE ∴=≈=︒米,再Rt ACE ∆中,90AEC ∠=︒,tan AECEβ=, tan 20100.364 3.64AE CE ∴=︒≈⨯=g 米, 17.32 3.6420.9621.0AB AE BE ∴=+=+=≈米,答:旗杆的高约为21.0米. 20.如图,已知ABC ∆,(1)尺规作图:作AD 平分BAC ∠交BC 于D 点,再作AD 的垂直平分线交AB 于E 点,交AC 于F 点(保留作图痕迹,不写作法); (2)连接DE ,DF 证明:四边形AEDF 是菱形; (3)若7BE =,4AF =,3CD =,求BD 的长.【分析】(1)利用基本作图方法得出MN 是线段AD 的垂直平分线,进而得出//DE AC ,同理可得://DF AE ,进而得出答案;(2)先证明四边形AEDF 是平行四边形,再根据菱形的判定即可求解;(3)利用菱形的性质得出AE DE DF AF ===,再利用平行线分线段成比例定理得出答案. 解:(1)作图如下:(2)证明:Q 根据作法可知:EF 是线段AD 的垂直平分线, AE DE ∴=,AF DF =, EAD EDA ∴∠=∠, AD Q 平分BAC ∠, BAD CAD ∴∠=∠, EDA CAD ∴∠=∠, //DE AC ∴,同理可得://DF AE , ∴四边形AEDF 是平行四边形,AE DE =Q ,∴平行四边形AEDF 是菱形;(2)AEDF Q Y 是菱形, AE DE DF AF ∴===, 4AF =Q ,4AE DE DF AF ∴====, //DE AC Q , ∴BD BECD AE =, ∴734BD =, 解得:214BD =. 21.学校随机抽取了九年级部分学生进行体育模拟测试,将成绩统计分析并绘制了频数分布表和统计图,按得分划分成A 、B 、C 、D 、E 、F 六个等级,绘制成如下所示的两幅统计图表(不完整的)等级 得分x (分) 频数(人)A95100x <…4B 9095x <… mC 8590x <…n D 8085x <…24 E7580x <… 8 F 7075x <…4 请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是 80 ,其中m = ,n = ;(2)扇形统计图中E 等级对应扇形的圆心角α= ︒;(3)已知该校九年级共有700名学生,可以估计体育测试成绩在A 、B 两个等级的人数共有 人;(4)该校决定从本次抽取的A 等级学生(记为甲、乙、丙、丁)中随机选择2名作为代表参加全市体育交流活动,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)用D 组的频数除以它所占的百分比得到样本容量;用样本容量乘以B 组所占的百分比得到m 的值,然后用样本容量分别减去其它各组的频数即可得到n 的值;(2)用E 组所占的百分比乘以360︒得到α的值;(3)利用样本估计整体,用700乘以A 、B 两组的频率和可估计体育测试成绩在A 、B 两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.解:(1)2430%80÷=,所以样本容量为80;8015%12m =⨯=,80124248428n =-----=;故答案为80,12,28;(2)E 等级对应扇形的圆心角α的度数83603680=⨯︒=︒;故答案为36.(3)124 70014080+⨯=,所以估计体育测试成绩在A、B两个等级的人数共有140人;故答案为140.(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率21 126==.22.我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品种草莓,已知该草莓的成本为每千克10元,草莓成熟后投人市场销售.经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?(3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.【分析】(1)依据题意利用待定系数法可得出每天的销售量y(千克)与销售单价x(元/千克)之间函数关系:25700y x=-+,(2)根据销售利润=销售量⨯(售价-进价),列出平均每天的销售利润w(元)与销售价x(元/千克)之间的函数关系式.(3)将(2)中的数据代入计算即可.解:(1)设y与x的函数关系式为(0)y kx b k=+≠.把(12,400)A,(14,350)B分别代入得1240014350k b k b +=⎧⎨+=⎩, 解得25700k b =-⎧=⎨=⎩y ∴与x 的函数关系式为25700y x =-+由题意知257000102810x x x -+⎧∴⎨⎩…剟… (2)设每天的销售利润为w 元,由题意知(10)(25700)w x x =--+2259507000x x =-+-225(19)2025x =--+250a =-<Q ,∴当19x =时,w 取最大值,为2025.当该品种草莓定价为19元/千克时,每天销售获得的利润最大,为2025元(3)能销售完这批草莓当19x =时,2519700225y =-⨯+=,2253067506000⨯=>∴按照(2)中的方式进行销售,能销售完23.如图,点C 为线段AB 上一点,分别以AB 、AC 、CB 为底作顶角为120︒的等腰三角形,顶角顶点分别为D ,E ,F (点E ,F 在AB 的同侧,点D 在AB 的另一侧)(1)如图1,若点C是AB的中点,则ADE∠=90︒;(2)如图2,若点C不是AB的中点,①求证:DEF∆为等边三角形;②如图3,连接CD,若90ADC∠=︒,3AB=,求EF的长.【分析】(1)如图1,作辅助线,构建高线,根据等腰三角形三线合一的性质得DC AE CE==,证明HED EDC CED∠=∠=∠,可得90AED AEH HED∠=∠+∠=︒;(2)①作辅助线,构建等边三角形AEH,先证明四边形BDHF、四边形AECH是平行四边形,得对边相等,再证明AEH∆是等边三角形,由SAS证明DHE FCE∆≅∆,可得DE EF=,DEH FEC∠=∠,所以DEF∆是等边三角形;②过E作EM AB⊥于M,先得2AC=,1BC CD==,证明306090ECD∠=︒+︒=︒,根据勾股定理得213DE=,则可得EF的长.解:(1)如图1,过E作EH AB⊥于H,连接CD,设EH x=,则2AE x=,3AH,AE EC=Q,223AC AH x∴==,CQ是AB的中点,AD BD=,CD AB∴⊥,120ADB∠=︒Q,30DAC∴∠=︒,2DC x∴=,2DC CE x∴==,//EH DCQ,HED EDC CED∴∠=∠=∠,60AEH∠=︒Q,120AEC∠=︒,60HEC∴∠=︒,30HED∴∠=︒,90AED AEH HED ∴∠=∠+∠=︒; 故答案为:90;(2)①延长FC 交AD 于H ,连接HE ,如图2,CF FB =Q ,FCB FBC ∴∠=∠,120CFB ∠=︒Q ,30FCB FBC ∴∠=∠=︒,同理:30DAB DBA ∠=∠=︒,30EAC ECA ∠=∠=︒, DAB ECA FBD ∴∠=∠=∠,////AD EC BF ∴,同理////AE CF BD ,∴四边形BDHE 、四边形AECH 是平行四边形, EC AH ∴=,BF HD =,AE EC =Q ,AE AH ∴=,60HAE ∠=︒Q ,AEH ∴∆是等边三角形,AE AH HE CE ∴===,60AHE AEH ∠=∠=︒, 120DHE ∴∠=︒,DHE FCE ∴∠=∠.DH BF FC ==Q ,()DHE FCE SAS ∴∆≅∆,DE EF ∴=,DEH FEC ∠=∠,60DEF CEH ∴∠=∠=︒,DEF ∴∆是等边三角形;②如图3,过E 作EM AB ⊥于M ,90ADC ∠=︒Q ,30DAC ∠=︒, 60ACD ∴∠=︒,30DBA ∠=︒Q ,30CDB DBC ∴∠=∠=︒, 12CD BC AC ∴==, 3AB =Q , 2AC =Q ,1BC CD ==, 30ACE ∠=︒Q ,60ACD ∠=︒, 306090ECD ∴∠=︒+︒=︒, AE CE =Q ,112CM AC ∴==, 30ACE ∠=︒Q ,23CE ∴= Rt DEC ∆中,222223211()3DE CD CE =+=+=, 由①知:DEF ∆是等边三角形, 21EF DE ∴==.。
安徽省2019年初中学业水平考试模拟语文试卷及答案
2019年安徽省初中学业水平考试模拟试卷语文(试题卷)注意事项:1.你拿到的试卷满分为150分(其中卷面书写占5分),考试时间为150分钟。
2.试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。
请务必在“答题卷...”上答题,在“试题卷”上答题是无效的。
3.答题过程中,可以随时使用你所带的正版学生字典。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、语文积累与综合运用(35分)1.默写古诗文中的名句名篇。
(10分)(1)补写出下列名句中的上句或下句。
(任选其中....6.句.)①群臣进谏,。
(《战国策·齐策一》)②大漠孤烟直,。
(王维《使至塞上》)③,大庇天下寒士俱欢颜。
(杜甫《茅屋为秋风所破歌》)④,草色入帘青。
(刘禹锡《陋室铭》)⑤几处早莺争暖树,。
(白居易《钱塘湖春行》)⑥,铜雀春深锁二乔。
(杜牧《赤壁》)⑦无言独上西楼,月如钩。
(李煜《相见欢》)⑧,亲射虎,看孙郎。
(苏轼《江城子·密州出猎》)(2)默写文天祥《过零丁洋》的后四句...。
2.阅读下面的文字,完成(1)~(4)题。
(9分)汉字是中华民族的文化ɡuī宝。
汉字书法具有无与伦比的美感,或古朴或拙趣,或厚重或飘逸,或平正或险绝。
汉隶的笔画如鸟儿张开的翅膀,魏碑的方笔似古木舒展的神姿,行草的线条像飞天舞动的飘带,楷书的结构如君子端庄的举止。
徜徉于汉字的时光长廊,追寻汉字书法唤发的历史厚重和现代典雅,体验书写的敬意与喜悦,让汉字之美流连于指尖心上。
(1)根据拼音写出相应的汉字,给加点字注音。
guī()宝拙.()趣徜.()徉(2)文中画线的句子中有错别字的一个词是“”,这个词的正确写法是“”。
(3)文中“无与伦比”的“伦”与选项中“伦”的意思相同的一项是()。
A.天伦之乐B.语无伦次C.英勇绝伦(4)这段文字运用拟人、、等修辞手法,展现了汉字书法的神韵。
3.运用课外阅读积累的知识,完成(1)~(2)题。
2019年安徽省初中学业水平考试 阶段检测卷(四)
2019年安徽省初中学业水平考试阶段检测卷(四)(第八~九单元)(时间:50分钟,满分:60分)可能用到的相对原子质量:H:1O:16S:32Fe:56Cu:64 Zn:65一、本大题包括10小题,每小题2分,共20分。
每小题的4个选项中只有1个符合题意。
1.下列有关金属的说法中,错误的是( )A.铜质插头是利用铜的导电性B.钨制成灯丝是利用钨的熔点低C.铝制成铝箔是利用铝的延展性D.用铁锅炒菜是利用铁的导热性2.下列溶液中,溶剂不是水的是( )A.蔗糖溶液 B.生理盐水 C.碘的酒精溶液 D.稀盐酸3.下列与金属相关的说法正确的是( )A.生铁和钢的性能完全相同B.炼铁过程中只发生物理变化C.常温下所有金属均为固态D.铁在潮湿的空气中易生锈4.下列反应中属于置换反应的是( ) A.Fe+CuSO4=== FeSO4+Cu B.2NO+O2=== 2NO2C.3CO+Fe2O3=====高温 2Fe+3CO2D.2NaCl=====通电 2Na+Cl2↑5.为了减缓铁制品的锈蚀,下列做法不正确的是( )A.在车、船的表面喷涂油漆B.将使用后的菜刀用布擦干C.洗净铁制品表面的油膜D.在铁制品表面镀上一层锌6.将100 g 98%的浓硫酸注入900 g水中,所得稀硫酸中溶质的质量分数为( )A.9.8% B.10.0% C.10.9% D.11.1%7.下列四个实验中只需要完成三个就可以证明Zn、Cu、Ag三种金属的活动性顺序,其中不必进行的实验是( )A.将锌片放入稀硫酸中B.将铜片放入稀硫酸中C.将铜片放入硝酸银溶液中D.将锌片放入硝酸银溶液中8.20 ℃时,取甲、乙、丙、丁四种纯净物各40 g,分别加入四个各盛有100 g水的烧杯中,充分溶解,其溶解情况如下表所示:下列说法正确的是( )A.所得的四杯溶液都是饱和溶液B.丁溶液的溶质质量分数最大C .20 ℃时四种物质溶解度的大小关系为丁>甲>乙>丙D .四杯溶液中各加入20 ℃的100 g 水后,溶液质量相等,且均为不饱和溶液9.如图是甲、乙两种固体物质的溶解度曲线。
2019届安徽合肥市初中数学毕业考试九年级数学中考模拟试卷(含答案)
2019届安徽合肥市初中毕业考试九年级数学中考模拟试卷一、选择题1、如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变2、下列调查中,调查方式选择合理的是()A.了解某河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y﹣8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查3、若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )A.B.C.D.04、下列结论正确的是( )A.若a2=b2,则a=b; B.若a>b,则a2>b2;C.若a,b不全为零,则a2+b2>0; D.若a≠b,则 a2≠b25、设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定6、下列说法正确的是( )A.没有最小的正数B.﹣a表示负数C.符号相反两个数互为相反数D.一个数的绝对值一定是正数7、如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A. ①与②相似B. ①与③相似C. ①与④相似D. ②与④相似8、计算的正确结果是()A.0 B.C.D.9、小强用8块棱长为3 cm的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )A.从左面看这个积木时,看到的图形面积是27cm2B.从正面看这个积木时,看到的图形面积是54cm2C.从上面看这个积木时,看到的图形面积是45cm2D.分别从正面、左面、上面看这个积木时,看到的图形面积都是72cm210、⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为()A.B.C.D.二、填空题11、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°, CD=2,则阴影部分图形的面积为。
【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考第四次模拟数学试题含解析
安徽省合肥市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着B.沉C.应D.冷2.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)3.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a24.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.35.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.如图,矩形ABCD 的边AB=1,BE 平分∠ABC,交AD 于点E,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F,则图中阴影部分的面积是()A .2-4πB .324π-C .2-8πD .324π- 7.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .88.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④9.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .6B .8C .10D .1210.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠ABE=20°,那么∠EFC′的度数为( )A .115°B .120°C .125°D .130°11.一元二次方程x 2﹣3x+1=0的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .以上答案都不对12.已知:如图,在平面直角坐标系xOy 中,等边△AOB 的边长为6,点C 在边OA 上,点D 在边AB 上,且OC =3BD ,反比例函数y =k x (k≠0)的图象恰好经过点C 和点D ,则k 的值为( )A .813B .81316C .813D .8134 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知双曲线k 1y x+=经过点(-1,2),那么k 的值等于_______. 14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是 _______.16.如图,已知函数y =3x+b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x+b >ax ﹣3的解集是_____.17.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D=_____度.18.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) 先化简,再求值:2213242x x x x --⎛⎫÷-- ⎪--⎝⎭,其中x 是满足不等式﹣12(x ﹣1)≥12的非负整数解.20.(6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?21.(6分)如图,正方形ABCD 中,E ,F 分别为BC ,CD 上的点,且AE ⊥BF ,垂足为G .(1)求证:AE =BF ;(2)若BE 3AG =2,求正方形的边长.22.(8分)如图,在ABC V 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =.(1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.23.(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.24.(10分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.25.(10分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.26.(12分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.27.(12分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键2.A【解析】【分析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【详解】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵AEO ODCOAE CODOA CO∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故选A.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.3.D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.4.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.5.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形6.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV -S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴ ,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE V −S EBF 扇形 =1×2−123-24π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式7.C【解析】【分析】作辅助线,构建全等三角形:过D 作GH ⊥x 轴,过A 作AG ⊥GH ,过B 作BM ⊥HC 于M ,证明△AGD ≌△DHC ≌△CMB ,根据点D 的坐标表示:AG=DH=-x-1,由DG=BM ,列方程可得x 的值,表示D 和E 的坐标,根据三角形面积公式可得结论.【详解】解:过D 作GH ⊥x 轴,过A 作AG ⊥GH ,过B 作BM ⊥HC 于M ,设D(x ,6x), ∵四边形ABCD 是正方形,∴AD =CD =BC ,∠ADC =∠DCB =90°,易得△AGD ≌△DHC ≌△CMB(AAS),∴AG =DH =﹣x ﹣1,∴DG =BM ,∵GQ =1,DQ =﹣6x,DH =AG =﹣x ﹣1, 由QG+DQ =BM =DQ+DH 得:1﹣6x =﹣1﹣x ﹣6x , 解得x =﹣2,∴D(﹣2,﹣3),CH =DG =BM =1﹣62-=4, ∵AG =DH =﹣1﹣x =1,∴点E 的纵坐标为﹣4,当y =﹣4时,x =﹣32, ∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.8.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.9.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,。
安徽省合肥市2019-2020学年中考数学四模试卷含解析
安徽省合肥市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .102.计算(﹣ab 2)3的结果是( )A .﹣3ab 2B .a 3b 6C .﹣a 3b 5D .﹣a 3b 63.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .1255.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 2s 0.51=甲,2s 0.62=乙,2s 0.48=丙,2s 0.45=丁,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁6.如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .3 n mileB .2 n mileC .3n mileD .2 n mile7.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A.﹣2 B.23C.2 D.48.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°9.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B.C.D.10.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元11.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+112.﹣2的绝对值是()A.2 B.12C.12-D.2-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.14.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .15.把多项式9x 3﹣x 分解因式的结果是_____.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x 及其方差s 2如下表所示: 甲乙 丙 丁 x 1′05″331′04″26 1′04″26 1′07″29 s 21.1 1.1 1.3 1.6 如果选拔一名学生去参赛,应派_________去.17.计算:()235y y ÷=____________18.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A ,B ,W 三个空座位,且只有A ,B 两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W 的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A ,B 的概率.20.(6分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.21.(6分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.22.(8分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120 角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)23.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(10分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC. (1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.25.(10分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.26.(12分)先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.27.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.2.D【解析】【分析】根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab 2)3=﹣a 3b 6,故选D .【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.3.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .4.B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°, ∴2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.D【解析】【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.B【解析】【分析】【详解】如图,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=2×60=302n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=602n mile.故选B.7.C【解析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.8.C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE ∥CD ,∴∠1=∠EBC=16°,故选:C .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.9.C【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mn y x的图象在第二、四象限. 故选D.10.A【解析】【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 11.A【解析】【分析】先根据0<k <1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k <1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.12.A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2n﹣1,2n﹣1).【解析】【详解】解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).14.y=﹣1x+1.【解析】【分析】由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】。
【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考数学模拟试题(4)含解析
安徽省合肥市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3 B .2,1 C .24,3 D .4,32.如图,将△ABC 绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,若∠ACB=30°,则∠DAC 的度数是( )A .60oB .65oC .70oD .75o3.如图,在Rt △ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM ,ON 上滑动,下列结论:①若C ,O 两点关于AB 对称,则OA=23;②C ,O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为π.其中正确的是( )A .①②B .①②③C .①③④D .①②④4.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,﹣1),C (﹣2,﹣1),D (﹣1,1).以A 为对称中心作点P (0,2)的对称点P 1,以B 为对称中心作点P 1的对称点P 2,以C 为对称中心作点P 2的对称点P 3,以D 为对称中心作点P 3的对称点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2010的坐标是( )A .(2010,2)B .(2010,﹣2)C .(2012,﹣2)D .(0,2) 5.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是67.-4的相反数是( )A .14B .14-C .4D .-48.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sinα米B .800tanα米C .800sin α米D .800tan α米 9.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( ) A .3804.2×103B .380.42×104C .3.8042×106D .3.8042×105 10.已知二次函数(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x3x m0-+=的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=311.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A.5.46×108B.5.46×109C.5.46×1010D.5.46×101112.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:7+(-5)=______.14.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD 绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.15.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF1=BE1+DF1;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧设AB=a,MN=b,则ba2﹣1.16.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有_____个,第n 幅图中共有_____个.17.如图,直线x=2与反比例函数2y x =和1y x =-的图象分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是_____.18.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.20.(6分)为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 31,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?21.(6分)(1)计算:(12-)﹣112﹣(π﹣2018)0﹣4cos30°(2)解不等式组:34(1)223xx x x ≥-⎧⎪-⎨-≤⎪⎩,并把它的解集在数轴上表示出来. 22.(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A 、C 两地海拔高度约为1000米,山顶B 处的海拔高度约为1400米,由B 处望山脚A 处的俯角为30°,由B 处望山脚C 处的俯角为45°,若在A 、C 两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)23.(8分)已知y 关于x 的二次函数22(0).y ax bx a =--≠(1)当2,4a b ==时,求该函数图像的顶点坐标.(2)在(1)条件下,(,)P m t 为该函数图像上的一点,若p 关于原点的对称点p '也落在该函数图像上,求m 的值(3)当函数的图像经过点(1,0)时,若12113(,),(,)22A y B y a-是该函数图像上的两点,试比较1y 与2y 的大小.24.(10分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?25.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.26.(12分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .27.(12分)如图,在平行四边形ABCD 中,BD 是对角线,∠ADB=90°,E 、F 分别为边AB 、CD 的中点.(1)求证:四边形DEBF 是菱形;(2)若BE=4,∠DEB=120°,点M 为BF 的中点,当点P 在BD 边上运动时,则PF+PM 的最小值为 ,并在图上标出此时点P 的位置.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.2.D【解析】【详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.3.D【解析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA AC==②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A 、C 、B 、O 四点共圆,则AB 为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC 是直径时,AB 与OC 互相平分,但AB 与OC 不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.详解:在Rt △ABC 中,∵°2,30BC BAC ,=∠=∴224,4223AB AC ,==-=①若C.O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则23OA AC ==;所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE ,∵°90AOB ACB ,∠=∠= ∴12,2OE CE AB === 当OC 经过点E 时,OC 最大,则C.O 两点距离的最大值为4;所以②正确;③如图2,当°30ABO ∠=时, °90OBC AOB ACB ∠=∠=∠=,∴四边形AOBC 是矩形,∴AB 与OC 互相平分,但AB 与OC 的夹角为°°60120、,不垂直, 所以③不正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2为半径的圆周的1,4则:90π2π,180⨯= 所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.4.B【解析】分析:根据题意,以A 为对称中心作点P (0,1)的对称点P 1,即A 是PP 1的中点,结合中点坐标公式即可求得点P 1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A 为对称中心作点P (0,1)的对称点P 1,即A 是PP 1的中点,又∵A 的坐标是(1,1),结合中点坐标公式可得P 1的坐标是(1,0);同理P 1的坐标是(1,﹣1),记P 1(a 1,b 1),其中a 1=1,b 1=﹣1.根据对称关系,依次可以求得:P 3(﹣4﹣a 1,﹣1﹣b 1),P 4(1+a 1,4+b 1),P 5(﹣a 1,﹣1﹣b 1),P 6(4+a 1,b 1),令P 6(a 6,b 1),同样可以求得,点P 10的坐标为(4+a 6,b 1),即P 10(4×1+a 1,b 1),∵1010=4×501+1,∴点P 1010的坐标是(1010,﹣1),故选:B .点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.5.C【解析】【分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a =1,解得b=-2a , 2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 6.D【解析】【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,。
安徽省合肥市2019年中考数学模拟试卷(附答案)
安徽省合肥市2019年中考数学模拟试卷(含答案)一.选择题(满分40分,每小题4分)1.二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC 是()A.3:2 B.2:3 C.D..4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.若点A(x1,2)、B(x2,5)都在反比例函数y=的图象上,则一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°7.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则∠C的度数为()A.24°B.56°C.66°D.76°8.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m9.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x ≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4 B.5 C.6 D.7二.填空题(满分20分,每小题5分)11.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.12.一个不透明布袋里共有5个球(只有颜色不同),其中3个是黑球,2个是白球,从中随机摸出一个球,记下颜色后放回、搅匀,再随机摸出一个球,则两次摸出的球是一黑一白的概率是.13.已知点P在反比例函数y=图象的第二象限上,PM⊥x轴,PN⊥y轴,M、N为垂足,矩形PMON的面积为2,则k=.14.如图,⊙O是△ABC的外接圆,∠BAC=60°,OD⊥BC于点D,若BC=2,则劣弧BC 的长为(结果保留π)三.解答题(满分16分,每小题8分)15.(8分)计算:﹣(﹣2)0+|1﹣|+2cos30°.16.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB长为28cm,灯罩BC长为15cm,底座AD厚度为3cm,根据使用习惯,灯臂AB 的倾斜角∠DAB固定为60°.(1)当BC转动到与桌面平行时,求点C到桌面的距离;(2)在使用过程中发现,当BC转到至∠ABC=145°时,光线效果最好,求此时灯罩顶端C到桌面的高度(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,结果精确到个位).四.解答题(满分16分,每小题8分)17.(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A,B,C在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°,得到△A1BC1,画出△A1BC1;(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的三角形面积之比为1:4,请你在网格内画出△AB2C2.18.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.五.解答题(满分20分,每小题10分)19.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象=4.限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD(1)求反比例函数解析式;(2)求点C的坐标.20.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.六.解答题21.(12分)某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?七.解答题22.(12分)在平面直角坐标系xOy中,若抛物线y=x2+bx+c顶点A的横坐标是﹣1,且与y轴交于点B(0,﹣1),点P为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线y=x2+bx+c向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.八.解答题23.(14分)在△ABC中,∠ABC=120°,线段AC绕点C顺时针旋转60°得到线段CD,连接BD.(1)如图1,若AB=BC,求证:BD平分∠ABC;(2)如图2,若AB=2BC,①求的值;=时,直接写出四边形ABCD的面积为.②连接AD,当S△ABC参考答案一.选择题1.解:∵二次函数y =x 2+2x +3中a =1>0,∴二次函数y =x 2+2x +3的图象的开口向上,故选:A .2.解:根据勾股定理得,BC ===13, 所以,cos C ==. 故选:A .3.解:∵∠ACB =90°,CD 是AB 边上的高,∴∠ADC =∠CDB =∠ACB =90°,∵∠A +∠B =90°,∠A +∠ACD =90°, ∴∠ACD =∠B ,∴△ACD ∽△CBD , ∴=== ∴=,故选:B .4.解:A 、是轴对称图形,也是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故正确;D 、是轴对称图形,也是中心对称图形.故错误.故选:C .5.解:根据反比例函数图象性质,k =﹣4<0,函数在二、四象限,函数y 随x 的增大而增大,即y 越大,x 越大,所以x 1<x 2,由于函数在二、四象限,而A 、B 两点y 值都大于0,所以A 、B 两点在第二象限, 所以x 1、x 2都小于0,故选:A .6.解:∵∠A +∠C =180°,∠A :∠C =5:7,∴∠C =180°×=105°.故选:C . 7.解:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B =90°﹣∠BAD =90°﹣24°=66°,∴∠C =∠B =66°.故选:C .8.解:根据题意,得OA =12,OC =4.所以抛物线的顶点横坐标为6, 即﹣==6,∴b =2,∵C (0,4),∴c =4,所以抛物线解析式为:y =﹣x 2+2x +4 =﹣(x ﹣6)2+10当y =8时,8=﹣(x ﹣6)2+10,解得x 1=6+2,x 2=6﹣2. 则x 1﹣x 2=4. 所以两排灯的水平距离最小是4. 故选:D .9.解:过点H 作HE ⊥BC ,垂足为E .∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.10.证明:如图,∵BF∥CD,∴△CEO∽△BEF,∴,且BF=1,CE=2BE,∴CO=2,∵BF∥CD,∴,且AD=BD,∴OD=BF=,∴CD=CO+OD=,∵∠C=90°,AD=BD,∴AB=2CD=5,故选:B.二.填空题11.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或12.解:设黑球为A、B、C;白球为1,2,列树状图为:所有可能情况有25种,其中两次摸出的球是一黑一白的结果有12,两次摸出的球是一黑一白的概率为=,故答案为:.13.解:由题意k<0,|k|=2,∴k=﹣2,故答案为﹣214.解:如图,连接OB,OC∵∠BOC=2∠BAC,且∠BAC=60°,∴∠BOC=120°∵O D⊥BC,OB=OC∴BD=CD=BC=,∠BOD=∠BOC=60°∴OB=2∴劣弧BC的长==故答案为:三.解答题15.解:原式=3﹣1+﹣1+2×,=3﹣1+﹣1+,=5﹣2.16.解:(1)当BC转动到与桌面平行时,如图2所示:作CM⊥EF于M,BP⊥AD于P,交EF于N,则CM=BN,PN=3,∵∠DAB=60°,∴∠ABP=30°,∴AP=AB=14,BP=AP=14,∴CM=BN=BP+PN=14+3≈14×1.7+3≈27(cm),即点C到桌面的距离为27cm;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,如图3所示:则∠QBN=90°,CM=BN,PN=3,由(1)得:QM=BN=26.8,∵∠DAB=60°,∴∠ABP=30°,∵∠ABC=145°,∴∠CBQ=145°﹣90°﹣30°=25°,在Rt△BCQ中,sin∠CBQ=,∴CQ=BC×sin25°≈15×0.4=6,∴CM=CQ+QM≈6+27=33(cm),即此时灯罩顶端C到桌面的高度约为33cm.四.解答题17.解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△AB2C2即为所求.18.解:(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.五.解答题=4,19.解:(1)∵∠ABO=90°,S△BOD∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).20.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.六.解答21.解:(1)根据题意得y=w(x﹣10)=(﹣2x+100)(x﹣10)=﹣2x2+120x﹣1000;(2)∵y=﹣2x2+120x﹣1000=﹣2(x﹣30)2+800,∴当x=30时,y取得最大值,最大值为800,答:当售价定为30元时,每天的销售利润最大,最大利润是800元.七.解答22.解:(1)∵抛物线y=x2+bx+c顶点A的横坐标是﹣1,∴x=﹣=﹣1,即=﹣1,解得b=2.∴y=x2+2x+c.将B(0,﹣1)代入得:c=﹣1,∴抛物线的解析式为y=x2+2x﹣1.(2)∵抛物线向下平移了4个单位.∴平移后抛物线的解析式为y=x2+2x﹣5,PQ=4.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣2.将y=﹣2代入y=x2+2x﹣5得:x2+2x﹣5=﹣2,解得:x=﹣3或x=1.∴点Q的坐标为(﹣3,﹣2)或(1,﹣2).八.解答23.(1)证明:连接AD,由题意知,∠ACD=60°,CA=CD,∴△ACD是等边三角形,∴CD=AD,又∵AB=CB,BD=BD,∴△ABD≌△CBD(SSS),∴∠CBD=∠ABD,∴BD平分∠ABC;(2)解:①连接AD,作等边三角形ACD的外接圆⊙O,∵∠ADC=60°,∠ABC=120°,∴∠ADC+∠ABC=180°,∴点B在⊙O上,∵AD=CD,∴,∴∠CBD=∠CAD=60°,在BD上截取BM,使BM=BC,则△BCM为等边三角形,∴∠CMB=60°,∴∠CMD=120°=∠CBA,又∵CB=CM,∠BAC=∠BDC,∴△CBA≌△CMD(AAS),∴MD=AB,设BC=BM=1,则AB=MD=2,∴BD=3,过点C作CN⊥BD于N,在Rt△BCN中,∠CBN=60°,∴∠BCN=30°,∴BN=BC=,CN=BC=,∴ND=BD﹣BN=,在Rt△CN D中,CD===,∴AC=,∴==;②如图3,分别过点B,D作AC的垂线,垂足分别为H,Q,设CB=1,AB=2,CH=x,则由①知,AC=,AH=﹣x,在Rt△BCH与Rt△BAH中,BC2﹣CH2=AB2﹣AH2,即1﹣x2=22﹣(﹣x)2,解得,x=,∴BH==,在Rt△ADQ中,DQ=AD=×=,∴==,∵AC为△ABC与△ACD的公共底,∴==,∵S=,△ABC=,∴S△ACD∴S=+=,四边形ABCD故答案为:.。
安徽省合肥市2019年中考数学模拟试卷
2019年安徽省合肥市中考数学模拟试卷一.选择题(满分40分,每小题4分)1.二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC 是()A.3:2 B.2:3 C.D..4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.若点A(x1,2)、B(x2,5)都在反比例函数y=的图象上,则一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°7.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则∠C的度数为()A.24°B.56°C.66°D.76°8.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m9.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x ≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4 B.5 C.6 D.7二.填空题(满分20分,每小题5分)11.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.12.一个不透明布袋里共有5个球(只有颜色不同),其中3个是黑球,2个是白球,从中随机摸出一个球,记下颜色后放回、搅匀,再随机摸出一个球,则两次摸出的球是一黑一白的概率是.13.已知点P在反比例函数y=图象的第二象限上,PM⊥x轴,PN⊥y轴,M、N为垂足,矩形PMON的面积为2,则k=.14.如图,⊙O是△ABC的外接圆,∠BAC=60°,OD⊥BC于点D,若BC=2,则劣弧BC 的长为(结果保留π)三.解答题(满分16分,每小题8分)15.(8分)计算:﹣(﹣2)0+|1﹣|+2cos30°.16.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB长为28cm,灯罩BC长为15cm,底座AD厚度为3cm,根据使用习惯,灯臂AB 的倾斜角∠DAB固定为60°.(1)当BC转动到与桌面平行时,求点C到桌面的距离;(2)在使用过程中发现,当BC转到至∠ABC=145°时,光线效果最好,求此时灯罩顶端C到桌面的高度(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,结果精确到个位).四.解答题(满分16分,每小题8分)17.(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A,B,C在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°,得到△A1BC1,画出△A1BC1;(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的三角形面积之比为1:4,请你在网格内画出△AB2C2.18.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.五.解答题(满分20分,每小题10分)19.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象=4.限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD(1)求反比例函数解析式;(2)求点C的坐标.20.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.六.解答题21.(12分)某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?七.解答题22.(12分)在平面直角坐标系xOy中,若抛物线y=x2+bx+c顶点A的横坐标是﹣1,且与y轴交于点B(0,﹣1),点P为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线y=x2+bx+c向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.八.解答题23.(14分)在△ABC中,∠ABC=120°,线段AC绕点C顺时针旋转60°得到线段CD,连接BD.(1)如图1,若AB=BC,求证:BD平分∠ABC;(2)如图2,若AB=2BC,①求的值;=时,直接写出四边形ABCD的面积为.②连接AD,当S△ABC。
安徽省合肥市2019-2020学年第四次中考模拟考试数学试卷含解析
安徽省合肥市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .1839π-C .9932π-D .1833π-2.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤73.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A .50°B .60°C .70°D .80°4.﹣2×(﹣5)的值是( ) A .﹣7 B .7 C .﹣10 D .10 5.cos30°的值为( ) A .1 B .12C .33 D .3 6.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,BD 平分∠ABC ,∠A =130°,则∠BDC 的度数为( )A .100°B .105°C .110°D .115°7.如果2a b -=,那么22b a a ba a-+÷的值为( )A .1B .2C .1-D .2-8.已知a 为整数,且3<a<5,则a 等于( ) A .1B .2C .3D .49.如图所示几何体的主视图是( )A .B .C .D .10.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE11.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( )A .a c =B .0ab >C .1a c +=D .1b a -=12.化简:(a+343a a --)(1﹣12a -)的结果等于( ) A .a ﹣2B .a+2C .23a a --D .32a a -- 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,半圆O 的直径AB=7,两弦AC 、BD 相交于点E ,弦CD=72,且BD=5,则DE=_____.14.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)15.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.16.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.17.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.18.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S 阴影=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.20.(6分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?21.(6分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120 130 (180)每天销量y(kg)100 95 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?22.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)23.(8分)问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.24.(10分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(I)AC的长等于_____.(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).25.(10分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.26.(12分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,连接OD,PD,得△OPD。
2019年安徽省初中学业水平考试数学模拟试卷4附答案
2019年安徽省初中学业水平考试数学模拟试卷4附答案2019 年安徽省初中学业水平考试数学模拟试卷(四)时间:120分钟满分:150分题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中,最小的实数是(A)A.-2 B.-1C.0 D. 22.下列运算正确的是(C)A.(2x)2=2x2B.x2·x3=x6C.2x+3x=5x D.(x2)3=x53.如图所示的几何体,从上面看得到的平面图形是(B)A B C D4.截至2018年5月底,我国的外汇储备为31 100亿元,将31 100亿用科学记数法表示为(B)A.0.311×1012B.3.11×1012C.3.11×1013D.3.11×10115.如图,已知AB∥CD,OM是∠BOF的平分线,∠2=70°,则∠1的度数为(D)A.100°B.125°C.130°D.140°1829.如图,Rt△ABC中,∠BCA=90°,AC=BC,点D是BC的中点,点F在线段AD上,DF=CD,BF交CA于E点,过点A作DA的垂线交CF的延长线于点G.下列结论中错误的是(C)A.CF2=EF·BF B.AG=2DCC.AE=EF D.AF·EC=EF·EB10.如图,已知边长为4的正方形ABCD,E是BC 边上一动点(与B,C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的大致图象是(B)AC D二、填空题(本大题共4小题,每小题5分,满分20分)11.要使式子x +2x 有意义,则x 的取值范围为__x ≥-2且x ≠0__.12.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数: 移栽棵数 101 00010 000 20000成活棵数 89 910 9 008 18004依此估计这种幼树成活的概率是__0.9__.(结果用小数表示,精确到0.1)13.如图,在△ABC 中,∠ACB =90°,AC =1,AB=2,以A 为圆心,AC 长为半径画弧,交AB 于D ,则扇形CAD 的周长是__2+π3__(结果保留π).14.在▱ABCD 中,AE 平分∠BAD 交边BC 于E ,DF平分∠ADC 交边BC 于F ,若AD =11,EF =5,则AB =__8或3__.三、(本大题共2小题,每小题8分,满分16分)15.解方程3x 2-5x +1=0.解:∵a =3,b =-5,c =1,∴Δ=b 2-4ac =(-5)2-4×3×1=13>0,∴x =5±136,∴原方程的解为x 1=5+136,x 2=5-136.16.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1,3,6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用n (n +1)2(n ≥1)表示. 请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.解:(1)证明:∵n (n +1)2×8+1=4n 2+4n +1=(2n +1)2,∴任意一个三角形数乘8再加1是一个完全平方数;(2)∵第n 个三角形数为n (n +1)2,第n +1个三角形数为(n +1)(n +2)2,∴这两个三角形数的和为n (n +1)2+(n+1)(n+2)2=(n+1)(2n+2)2=(n+1)2,即连续两个三角形数的和是一个完全平方数.四、(本大题共2小题,每小题8分,满分16分)17.如图,渔政310船在南海海面上沿正东方向以20海里/小时的速度匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场,若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值)解:过点C作CD⊥AB交AB的延长线于点D,由已知可得,∠BDC=90°,∠CBD=60°,∠ADC=90°,∠CAD=45°,∴BD=CDtan 60°=33CD,AD=CD,∵AB=20×0.5=10(海里),∴10+BD=CD,即10+33CD=CD,解得,CD=15+53(海里),∴BD=AD-AB=15+53-10=5+53(海里),∵5+5320=1+34(小时),∴渔政310船再航行1+34小时,离我渔船C的距离最近.18.如图,在10×10的方格纸中,有一格点三角形AB C.(说明:顶点都在网格线交点处的三角形叫作格点三角形)(1)将△ABC先向右平移5格再向下平移2格,画出平移后的△A′B′C′;(2)在所给的方格纸中,画一个与△ABC相似、且面积为6个平方单位的格点△DEF.解:(1)如图,△A′B′C′就是△ABC先向右平移5格再向下平移2格得到的三角形;(2)∵△DEF的面积是6个方格单位,△ABC的面积是3个方格单位,∴S△DEF∶S△ABC=2∶1,∴它们的边长的比=2∶1,根据网格AB=12+22=5,BC=12+42=17,AC=22+22=22,∴DE=2AB=10,EF=2BC=34,DF=2AC=4,∴作出三边分别为10,34,4的△DEF就是所要求作的三角形.故△DEF就是所要求作的三角形.五、(本大题共2小题,每小题10分,满分20分)19.如图,四边形ABCD为菱形,已知A(0,3),B(-4,0).(1)求点C的坐标;(2)求经过点D的反比例函数解析式.解:(1)∵A(0,3),B(-4,0),∴OA=3,OB=4,∴AB =OA2+OB2=32+42=5,在菱形ABCD中,AD=BC =AB=5,∴OC=BC-OB=1,∴C(1,0);(2)在菱形ABCD中,AD∥BC,AD=5,∴D(5,3),设经过点D的反比例函数解析式为y=kx,把D(5,3)代入y=kx中,得k5=3,∴k=15,∴y=15x.20.小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图.(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)解:(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=1 4;(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=612=12.六、(本题满分12分)21.如图,BE是△ABC的外接⊙O的直径,CD是△ABC的高.(1)求证:AC BE =DC BC ;(2)已知:AB =11,AD =3,CD =6,求⊙O 的直径BE 的长.(1)证明:连接EC ,∵BE 是直径,∴∠BCE =∠ADC=90°,又∵∠A =∠E ,∴△ADC ∽△ECB ,∴CD ∶BC =AC ∶BE ;(2)解:由题意知,BD =11-3=8,在Rt △ACD 中,由勾股定理知,AC =AD 2+CD 2=35,Rt △BCD 中,由勾股定理知,BC =BD 2+CD 2=10,由(1)知,CD ∶BC=AC ∶BE ,∴BE =AC·BC CD=55. 七、(本题满分12分)22.如图,在矩形ABCD 中对角线AC ,BD 相交于点F ,延长BC 到点E ,使得四边形ACED 是一个平行四边形,平行四边形对角线AE交BD,CD分别为点G和点H.(1)证明:DG2=FG·BG;(2)若AB=5,BC=6,则线段GH的长度.(1)证明:∵ABCD是矩形,且AD∥BC,∴△ADG∽△EBG,∴DGBG=AGGE,又∵△AGF∽△EGD,∴AGGE=FGDG,∴DGBG=FGDG,∴DG2=FG·BG;(2)解:∵ACED为平行四边形,AE,CD相交点H,∴DH=12DC=12AB=52,∴在直角三角形ADH中,AH2=AD2+DH2,∴AH=132,∴AE=13.又∵△ADG∽△EBG,∴AGGE=ADBE=12,∴AG=12GE=13×AE=13×13=133,∴GH=AH-AG=132-133=136.八、(本题满分14分)23.如图1抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B 的坐标为(3,0).(1)求抛物线的函数解析式;(2)如图2,T是抛物线上的一点,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,求点T的坐标;(3)如图3,过点A的直线与抛物线相交于E,且E点的横坐标为2,与y轴交于点F;直线PQ是抛物线的对称轴,G是直线PQ上的一动点,试探究在x轴上是否存在一点H,使D,G,H,F四点围成的四边形周长最小?若存在,求出这个最小值及点G,H的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y=a(x-1)2+4,∵点B 的坐标为(3,0),∴4a+4=0,∴a=-1,∴此抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3;(2)∵y=-x2+2x+3,∴当x=0时,y=3,∴点D 的坐标为(0,3),∵点B的坐标为(3,0),∴BD=32+32=32.设M(m,0),则DM=32+m2.∵MN∥BD,∴MN BD=AMAB,即MN32=1+m4,∴MN=324(1+m),∵△DNM∽△BMD,∴DMBD=MNDM,即DM2=BD·MN,∴9+m2=32×324(1+m),解得m=32或m=3(舍去),当m=32时,y=-⎝⎛⎭⎪⎪⎫32-12+4=154.故所求点T的坐标为⎝⎛⎭⎪⎪⎫32,154;(3)在x 轴上存在一点H ,能够使D ,G ,H ,F 四点围成的四边形周长最小.理由如下:∵y =-x 2+2x +3,对称轴方程为x =1,∴当x =2时,y =-4+4+3=3,∴点E (2,3).∴设直线AE 的解析式为y =kx +n ,∴⎩⎪⎨⎪⎧ -k +n =0,2k +n =3,解得⎩⎪⎨⎪⎧k =1,n =1.∴直线AE 的解析式为y =x +1,∴点F (0,1),∵D (0,3),∴D 与E 关于x =1对称,作点F 关于x 轴的对称点F ′(0,-1),连接EF ′交x 轴于H ,交对称轴x =1于G ,则四边形DFHG 的周长即为最小.设直线EF ′的解析式为y =px +q ,∴⎩⎪⎨⎪⎧q =-1,2p +q =3,解得⎩⎪⎨⎪⎧ p =2,q =-1.∴直线EF ′的解析式为y =2x -1,∴当y =0时,2x -1=0,得x =12,即H ⎝ ⎛⎭⎪⎪⎫12,0,当x =1时,y =1,即G (1,1);∴DF =2,FH =F ′H =12+⎝ ⎛⎭⎪⎪⎫122=52,GH =12+⎝ ⎛⎭⎪⎪⎫122=52,DG =12+22=5,∴使D ,G ,H,F四点所围成的四边形周长最小值为DF+FH+HG+GD=2+52+52+5=2+25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年安徽数学中考模拟试卷
一、选择题(共10小题,每小题4分,满分40分) 1.2-的倒数是( ) A.2 B.
21 C.2
1
- D.2- 2. 在下面的四个几何体中,它们各自的左视图与主视图不相同的是( )
A B C D
3.下列运算正确的是( )
A .a 2
•a 4
=a 8
B . 3x+4y=7xy
C . (x ﹣2)2
=x 2
﹣4
D . 2a•3a=6a 2
4.数轴上点A 表示的实数可能是( )
A .
B .
C .
D .
5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数
是( )
A .32°
B .58°
C .68°
D .60°
6.为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2016年4月份用电量的调查结果:
那么关于这15户居民月用电量(单位:度),下列说法错误的是( )
A .平均数是43.25
B .众数是30
C .方差是82.4
D .中位数是42
7. 分式方程
1
12
x x =+的解是( ) A. x=1 B. x=-1 C. x=2 D. x=-2
8.如图,经过点B (﹣2,0)的直线b kx y +=与直线24+=x y 相 交于点A (﹣1,﹣2),则不等式24+x <b kx +<0的解集为( ) A.2-<x B.12-<<-x C.1-<x D.1->x
9.如图,四边形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=3,BC=5,则EF 的值
是( )
A .
B .2
C .
D .2
10.如图,正方形ABCD 的边长为4,动点P 在正方形ABCD 的边上沿B C D →→运动,运动到点D 停止,设BP x =,ABP ∆的面积y , 则y 关于x 的函数图象大致为( )
二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)
11.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1.4960亿是______________________________. 12.某电子产品经过11月,12月连续两次降价,售价由3900元降到了2500元。
设平均每月降价的百分率为X ,根据题意列出方程为______________________________.
13.如图,AB 为⊙O 直径,CD 为⊙O 的弦,∠ACD=25°,∠BAD 的度数为_______________.
14. 如图,在菱形ABCD 中,AB=BD ,点E 、F 分别在AB 、AD 上,且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论:
①△ABD 是正三角形;②若AF=2DF ,则EG=2DG ;③△AED ≌△DFB ;④S 四边形BCDG =
CG 2
;
A B C D
其中正确的结论是_______________
三、(本题共 2 小题,每小题 8 分,满分 16 分)
15. 计算:01
201660tan 3221-︒+-+⎪⎭
⎫
⎝⎛-
四、(本题共 2 小题,每小题 8 分,满分 16 分) 17. △ABC 在平面直角坐标系xOy 中的位置如图所示.
(1)将△ABC 向下平移4个单位,作出平移后的△A 1B 1C 1. (2)作△ABC 关于原点O 成中心对称的△A 2B 2C 2.
18. 如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75cm .展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC . (参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
五、(本题共2小题,每小题10分,满分20分)
19. 如图,已知AC 是⊙O 的直径,PA ⊥AC ,连接OP ,弦CB ∥OP ,直线PB 交直线AC 于点D .
(1)证明:直线PB 是⊙O 的切线;
(2)若BD=2PA ,OA=3,PA=4,求BC 的长.
O
C B A
20. 我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)李老师采取的调查方式是(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共件,其中B班征集到作品,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)
六、(本题满分12 分)
21.对于任意的实数x,记f(x)=.
例如:f(1)==,f(﹣2)==
(1)计算f(2),f(﹣3)的值;
(2)试猜想f(x)+f(﹣x)的值,并说明理由;
(3)计算f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014).
七、(本题满分 12 分)
22. 已知关于x 的方程03)13(2
=+++x m mx . (1)求证: 不论m 为任何实数,此方程总有实数根;
(2)若抛物线3)13(2+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,
试确定此抛物线的解析式;(温馨提示:整数点的横、纵坐标都为整数) (3)若点P (1x ,1y )与Q (n x +1,2y )在(2)中抛物线上 (点P 、Q 不重合), 且
21y y =,求代数式20001651242121++++n n n x x 的值.
八、(本题满分 14 分)
23. 在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角
板的两直角边分别能与AB 、BC 边相交于点E 、F ,连接EF . (1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;
(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,
在这个过程中,请你观察、探究并解答: ① ∠PEF 的大小是否发生变化?请说明理由;
② 在旋转中,当点F 与BC 边中点重合时,求四边形AEFP 的面积; ③ 直接写出从开始到停止,线段EF 的中点所经过的路线长.
备用图。