电力电子的matlab仿真

合集下载

电力电子课程设计matlab仿真实验

电力电子课程设计matlab仿真实验

一.课程设计目的(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。

通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;(2)掌握焊接的技能,对照原理图,了解工作原理;(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;二.课程设计内容第一部分:simulink电力电子仿真/版本matlab7.0(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。

仿真时间0.3s,仿真算法为ode23tb。

图1-1占空比为40%的,降压后为12.12V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-2占空比为60%的,升压后为28.25V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3•图1-4升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。

它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源工作原理:①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。

②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L经D向C和RL反向放电,使输出电压的极性与输入电压在ton期间电感电流的增加量等于toff期间的减少量,得:由的关系,求出输出电压的平均值为:上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。

电力电子技术与MATLAB仿真课程设计

电力电子技术与MATLAB仿真课程设计

电力电子技术与MATLAB仿真课程设计课程设计概述本次课程设计的主要任务是对电力电子技术进行深入了解,并通过MATLAB仿真进行实践操作,从而全面掌握电力电子技术的应用。

本次课程设计以掌握电力电子技术基本原理、掌握MATLAB仿真软件的使用和掌握电力电子技术的应用为主要目标,结合实际应用案例和仿真实验,学生们能够更加深入地理解电力电子技术的应用,并且掌握MATLAB仿真的使用方法。

任务一:电力电子技术基础知识任务目标通过学习电力电子技术基础知识,掌握电力电子技术的相关概念和原理。

学习内容本次课程设计的学习内容主要包括以下几点:1.电力电子技术概述2.半导体器件3.电路模型4.控制方法学习方法学生们应该认真学习课程中涉及到的各种电力电子技术相关知识和概念,并在查阅相关文献进行加深理解。

同时,针对课程中的一些重点难点内容,可以与同学共同研究、讨论,并结合实际案例进行学习。

任务二:MATLAB仿真操作技能任务目标通过本次课程设计,学生们应该掌握MATLAB仿真工具的基本操作技能,能够独立完成电力电子技术的相关仿真实例,并且掌握MATLAB仿真结果的分析和处理方法。

学习内容本次课程设计的学习内容主要包括以下几点:1.MATLAB基础操作2.电力电子技术常用仿真分析方法3.仿真模型搭建学习方法学生们应该认真学习课程中涉及到的MATLAB仿真工具的相关知识和概念,并进行实践操作。

在实践操作过程中,可结合文献资料进行研究和调整,并与同学一起共同探讨仿真结果与理论分析的关系。

任务三:综合应用任务目标通过独立完成应用案例的设计和模拟仿真,学生们能够深入理解电力电子技术的实际应用,并且掌握MATLAB仿真工具在电力电子技术应用方面的操作方法。

学习内容本次课程设计的学习内容主要包括以下几点:1.开关电源的设计及仿真2.三相变频器的设计及仿真3.太阳能逆变器的设计及仿真学习方法学生们应该针对给出的应用案例进行仿真模拟,并负责完成实验数据表格整理及会议汇报材料的整理,以提高课程设计实际应用能力。

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。

(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。

(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。

(4)了解三种不同负载电路的工作原理及波形。

二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。

其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。

(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。

(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。

(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。

2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。

如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。

设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。

α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。

Matlab电力电子仿真教程ppt课件

Matlab电力电子仿真教程ppt课件

第5章 电力电子电路仿真分析
(a)
(b)
图5-7 晶闸管模块的电路符号和静态伏安特性 (a) 电路符号;(b) 静态伏安特性
第5章 电力电子电路仿真分析 SimPowerSystems库提供的晶闸管模块一共有两种:一 种是详细的模块(Detailed Thyristor),需要设置的参数较多; 另一种是简化的模块(Thyristor),参数设置较简单。晶闸管 模块的图标如图5-8。
解:(1) 按图5-5搭建仿真电路模型,选用的各模块的名 称及提取路径见表5-1。
第5章 电力电子电路仿真分析 图5-5 例5.1的仿真电路图
第5章 电力电子电路仿真分析
表5-1 例5.1仿真电路模块的名称及提取路径
模块名 功率二极管模块 D1、D2、D3、D4 交流电压源 Vs 串联 RLC 支路 R 电压表模块 VR 电流表模块 IR 信号分离模块 Demux 示波器 Scope
7所示为晶闸管模块的电路符号和静态伏安特性。当晶闸管 承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸 管导通。触发脉冲必须足够宽,才能使阳极电流Iak大于设定 的晶闸管擎住电流I1,否则晶闸管仍要转向关断。导通的晶 闸管在阳极电流下降到0(Iak=0)或者承受反向电压时关断, 同样晶闸管承受反向电压的时间应大于设置的关断时间,否 则,尽管门极信号为0,晶闸管也可能导通。这是因为关断 时间是表示晶闸管内载流子复合的时间,是晶闸管阳极电流 降到0到晶闸管能重新施加正向电压而不会误导通的时间。
(9) “测量输出端”(Show measurement port)复选框:选 中该复选框,出现测量输出端口m,可以观测晶闸管的电流 和电压值。
【例5.2】如图5-10所示,构建单相桥式可控整流电路, 观测整流效果。晶闸管模块采用默认参数。

电力电子技术matlab仿真

电力电子技术matlab仿真
1-21
1.5.2.2 while 循环语句
while 语句的格式为
while (表达式) ,语句组, end
while 循环语句的流程如图 1-7 所示
1-22
1.5.2.3 for 循环语句
for 语句的格式为
for k =初始值:增量:终止值, 语句组,
end
1-23
1.5.2.4 switch-case语句
顺序、选择和循环三种基本控制结构组成。
包括表达语句、控制语句、调试语句和空语句。
MATLAB 程序的基本结构如下,即
% 说明 清除命令 定义变量 逐行执行的命令
循环和转移 逐行执行的命令 end 逐行执行的命令
1-18
1.5.1 表达式、表达式语旬和赋值语句
1.表达式 由运算符连接的常量、变量和函数构成MATLAB 的表达式。
(2) n 维数组和矩阵的表示和赋值。
n 维数组或矩阵的表示和赋值的规则是矩阵或数组的元 素列入方括号()中,每行的元素间用空格或逗号分隔,行与行 之间用分号或回车键隔开。
举例如下,即
A=[1 2 3;4 5 6;7 8 9] A 为矩阵名,方括号内表示一个3x3 的矩阵。 矩阵内的元素可以是数值、变量或者表达式。
2. 表达式语句 单个的表达式就是表达式语句,一行可以只有一个表达式语句 ,也可以有多个表达式语句。
3. 赋值语句 将表达式的值赋予变量就是赋值语句。
A=3+7 * 8 x =10 * sin(2 * pi * f * t) z=2 * x+5 *y
1-19
1.5.2 流程控制语句
MATLAB 的流程控制语句有if、 while 、 for和 switch - case 语句。

电力电子技术应用实例MATLAB仿真

电力电子技术应用实例MATLAB仿真

目录摘要 (1)关键词 (1)1.引言 (1)2.单相半波可控整流电路 (1)2.1实验目的 (1)2.2实验原理 (1)2.3实验仿真 (2)3.单相桥式全控整流电路 (8)3.1实验目的 (8)3.2实验原理 (8)3.3实验仿真 (9)4.三相半波可控整流电路 (10)4.1实验目的 (10)4.2实验原理 (11)4.3实验仿真 (12)5. 三相半波有源逆变电路 (14)5.1实验目的 (14)5.2实验原理 (14)5.3实验仿真 (15)6.三相桥式半控整流电路 (17)6.1 实验目的 (17)6.2实验原理 (17)`6.3 实验仿真 (17)7.小结 (19)致谢 (19)电力电子技术应用实例的MATLAB 仿真摘 要 本文是用MATLAB/SIMULINK 实现电力电子有关电路的计算机仿真的毕业设计。

论文给出了单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相半波有源逆变电路、三相桥式全控整流电路的实验原理图、 MATLAB 系统模型图、及仿真结果图。

实验过程和结果都表明:MATLAB 在电力电子有关电路计算机仿真上的应用是十分广泛的。

尤其是电力系统工具箱-Power System Blockset (PSB )使得电力系统的仿真更加方便。

关键词 MATLAB SIMULINK PSB 电力电子相关电路1.引言MATLAB 是由Math Works 公司出版发行的数学计算软件,为了准确建立系统模型和进行仿真分析,Math Works 在MATLAB 中提供了系统模型图形输入与仿真工具一SIMULINK 。

其有两个明显功能:仿真与连接,即通过鼠标在模型窗口画出所系统的模型,然后可直接对系统仿真。

这种做法使一个复杂系统模型建立和仿真变得十分容易。

[4][2]在1998年,MathWoIks 推出了电力系统仿真的电力系统工具箱-Power System Blockset (PSB )。

电力电子技术MATLAB仿真实验报告

电力电子技术MATLAB仿真实验报告

电力电子技术MATLAB仿真实验报告Harbin Institute of Technology电力电子技术MATLAB仿真实验报告院系:班级:姓名:学号:哈尔滨工业大学一、实验目的1. 根据电路接线图利用MATLAB仿真分析单相桥式半控整流电路的各输出结果。

2. 改变参数后再进行仿真分析,进而分析总结各参数对输出的影响。

3. 在实验过程中掌握运用MATLAB对电力电子各电路进行仿真分析的方法。

4. 对实验进行总结整理并写出报告。

二、实验内容1根据实验电路图进行理论分析单相桥式半控整流电路图2 利用理论对电路进行分析这是单相桥式半控整流电路的另一种接法,相当于把原本的VT3和VT4换为二极管VD3和VD4,这样可以省去续流二极管VDR,续流由VD3和VD4来实现。

因此,理论分析各时间段电压电流及二极管导通状态如下:① wt1-π:Ua>Ub,VT1,VD4导通,Ud=U2,i:a→VT1→R→L→VD4→b;②π-wt2 :Ua<Ub,VD2,VD4导通,Ud=0,i:b→VD2→R→L→VD4→b;③ wt2-2π:Ua<Ub,VT3,VD2导通,Ud=-U2,i:b→VD2→R→L→VT3→a;④ 2π- wt3:Ua>Ub,VD2,VD4导通,Ud=0,i:b→VD2→R→L→VD4→b。

23理论分析满足的输出波形如下U20 wt1 wt2 wt3Ud4根据电路图在MATLAB中连接各元器件得出接线图35仿真结果[各波形代表的输出结果为二次侧电压,负载电压,负载电流,VT1电流,VT1电压]①阻性负载:R=20Ω,L=0,a=30°:②阻性负载:R=20Ω,L=0,a=60°:4③阻感负载:R=20Ω,L=0.008,a=30°:④阻感负载:R=20Ω,L=0.008,a=60°:5⑤阻感负载:R=20Ω,L=0.08,a=60°:三、实验结论1、通过理论分析与MATLAB仿真结果比拟,发现理论分析与仿真结果一致。

电力电子的MATLAB仿真(54)

电力电子的MATLAB仿真(54)

7.1 MATLAB Simulink/Power System工具箱及应用简介Simulink工具箱的功能是在MATLAB环境下,把一系列模块连接起来.构成复杂的系统模型,它是Mathworks公司于1990年推出的产品;电力系统仿真工具箱(Power System Blockset)是在Simulink环境下使用的仿真工具箱,它由加拿大的Hydro Quebec和TECSIM International公司共同开发,其功能非常强大,可用于电路、电力电子系统、电视系统、电力传输等领域的仿真,它提供了一种类似电路搭建的方法用于系统的建模。

本章首先概述Simulink/Power System工具箱所包含的模块和Simulink,/Power System的模型窗口;其次介绍Simulink/Power System模块的基本操作、搭建Simulink/Power System系统模型的方法,及系统的仿真技术(以MATLAB6.1版本为基础,软件中仍然用三相符号A,B,C表示三相U,V,W)。

最后,重点介绍典型电力电子器件和常用典型环节的仿真模型及仿真实例,并对典型的电力电子变换器进行建模与仿真。

7.1.1 Simulink工具箱简介在MATLAB命令窗口中键人【Simulink】命令,或单击MATLAB工具栏中的Simulink图标,则可打开Simulink工具箱窗口,如图7-1所示。

图7-1 Simulink模型库界面在图7-1所示的界面左侧可以看到,整个Simulink工具箱是由若干个模块组构成,故该界面又称为工具箱测览器。

可以看出,在标准的Simulink工具箱中,包含连续模块组(Continuous)、离散模块组(Discrete)、函数与表模块组(Function &Tables)、数学运算模块组(Math)、非线性模块组(Nonlinear)、信号与系统模块组(Signals &Systems)、输出模块组(Sinks)、信号源模块组(Sources)和子系统模块组(Subsystems)等。

(完整版)电力电子技术MatLab仿真.

(完整版)电力电子技术MatLab仿真.

本文前言MATLAB的简介MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。

随着版本的升级,内容不断扩充,功能更加强大。

近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。

MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。

MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。

在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。

MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。

如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。

MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。

现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。

电力电子电路典型环节的MATLAB仿真毕业设计论文

电力电子电路典型环节的MATLAB仿真毕业设计论文

可修改可编辑教学单位电子电气工程系学生学号200895014075编号DQ2012DQ075 本科毕业设计题目学生姓名专业名称指导教师2010年月日电力电子电路典型环节的MATLAB仿真摘要:本文主要研究了电力电子电路典型环节的MATLAB仿真,首先介绍了MATLAB软件及其图形仿真界面Simulink的基础应用知识,然后介绍了用于电力电子仿真的SimPowerSystems中的各种模块库,完成了对整流电路、斩波电路典型环节的建模与仿真,并且给出了仿真结果波形。

通过MATLAB/SIMULINK软件来建立各电路的仿真模型,并且对各个模块和系统内部的参数进行设置,例如仿真算法、电子器件的选择和电源幅值和频率等,最终实现电力电子系统在MATLAB中的仿真。

仿真结果和理论分析结果相一致,验证了仿真建模的有效性和正确性。

最后,本文对研究成果进行了总结,并提出了进一步改进建议。

关键词:Matlab/Simulink,仿真,整流电路,斩波电路Abstract:This paper mainly studies the MATLAB simulation of the typical session to the power electronic circuit, This article first introduces the MATLAB software and the application of knowledge based on graphical interface Simulink simulation, and then introduced the various modules of SimPowerSystems library for the power electronic simulation, also completed Modeling and Simulation to the typical session of rectifier circuit and Chopper circuit, and show the results of the simulation waveform.Established various electric circuits through MATLAB/SIMULINK software the simulation model, and set the establishment to each module and the interior parameter of system, for example simulation algorithm, electronic device choice and electrical source peak-to-peak value and frequency and so on, finally realized simulation that the electric power electronics alternating-current circuit in MATLAB. Simulation result and theoretical analysis result consistent, has confirmed the simulation modelling validity and the accuracy.Finally, this paper summarizes the research results and makes suggestions for further improvement.Keywords:Matlab/Simulink , Simulation, Rectifier circuit, Choppercircuit目录第1章概述 (5)1.1国内外研究概况 (5)1.2本课题的研究内容 (5)1.3本课题的研究目的与意义 (6)第2章MATLAB/SIMULIK基础知识 (7)2.1MATLAB介绍 (7)2.1.1 MATLAB主要组成部分 (7)2.1.2 MATLAB的系统开发环 (8)2.2SIMULINK仿真基础 (9)2.2.1 SIMULINK启动 (10)2.2.2 SIMULINK的模块库介绍 (11)2.2.3 电力系统模块库的介绍 (12)2.2.4 SIMULINK的仿真步骤 (13)第3章整流电路的SIMULINK仿真设计 (15)3.1单相桥式整流电路的仿真 (15)3.1.1 单相桥式全控整流电路的工作原理 (15)3.1.2 建立仿真模型 (15)3.1.3 设置模型参数 (17)3.1.4 模型仿真 (18)3.2三相桥式整流电路的仿真 (21)3.2.1 三相桥式全控整流电路的工作原理 (21)3.2.2 建立仿真模型 (22)3.2.3 设置模型参数 (23)第4章斩波电路的SIMULINK仿真设计 (26)4.1降压斩波电路的仿真 (26)4.1.1 降压变换器的工作原理 (26)4.1.2 建立仿真模型 (27)4.1.3 设置模型参数 (28)4.1.4 模型仿真 (28)4.2升压斩波电路的仿真 (30)4.2.1 升压变换器的工作原理 (30)4.2.2 建立仿真模型 (30)4.2.3 设置模型参数 (31)4.2.4 模型仿真 (32)第5章仿真调试 (34)5.1模型仿真应注意的问题 (34)5.1.1 模型建立和仿真参数的设置 (34)5.1.2 仿真运行和观测仿真结果 (35)结论 (37)参考文献 (38)致谢 (40)第1章概述1.1 国内外研究概况电力电子技术综合了微电子、电路、自动控制等多学科知识,是电能变换与控制的核心技术,在工业、能源、交通、国防等各个领域发挥着越来越重要的作用。

Matlab 电力电子仿真教程

Matlab 电力电子仿真教程

降到0到晶闸管能重新施加正向电压而不会误导通的时间。
第5章 电力电子电路仿真分析
(a)
(b)
图5-7 晶闸管模块的电路符号和静态伏安特性 (a) 电路符号;(b) 静态伏安特性
第5章 电力电子电路仿真分析
SimPowerSystems库提供的晶闸管模块一共有两种:一
种是详细的模块(Detailed Thyristor),需要设置的参数较多; 另一种是简化的模块(Thyristor),参数设置较简单。晶闸管 模块的图标如图5-8。
电感Lon、直流电压源Vf组成的串联电路和开关逻辑单元来 描述。电力电子元件开关特性的区别在于开关逻辑和串联电 路参数的不同,其中开关逻辑决定了各种器件的开关特征; 模块的串联电阻Ron和直流电压源Vf分别用来反映电力电子 器件的导通电阻和导通时的电压降;串联电感Lon限制了器 件开关过程中的电流升降速度,同时对器件导通或关断时的 变化过程进行模拟。
第5章 电力电子电路仿真分析
图5-6 例5.1的仿真波形图
第5章 电力电子电路仿真分析
5.1.2 晶闸管模块
1. 原理与图标 晶闸管是一种由门极信号触发导通的半导体器件,图57所示为晶闸管模块的电路符号和静态伏安特性。当晶闸管 承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸 管导通。触发脉冲必须足够宽,才能使阳极电流Iak大于设定 的晶闸管擎住电流I1,否则晶闸管仍要转向关断。导通的晶 闸管在阳极电流下降到0(Iak=0)或者承受反向电压时关断, 同样晶闸管承受反向电压的时间应大于设置的关断时间,否 则,尽管门极信号为0,晶闸管也可能导通。这是因为关断 时间是表示晶闸管内载流子复合的时间,是晶闸管阳极电流
第5章 电力电子电路仿真分析

电力电子技术MATLAB仿真报告

电力电子技术MATLAB仿真报告

电力电子技术MATLAB仿真报告电力电子技术在现代电力系统中起着至关重要的作用,通过对电能的调节、变换和控制,实现能源的高效利用。

MATLAB作为一种强大的仿真工具,可以对电力电子系统进行建模和仿真,评估其性能和稳定性。

本文将对电力电子技术MATLAB仿真的基本原理、方法和应用进行介绍,并以其中一种电力电子系统为例,展示其仿真报告。

首先,电力电子技术MATLAB仿真的基本原理是建立电力电子系统的数学模型,利用MATLAB提供的数学运算和仿真功能,对系统进行仿真计算和结果分析。

在仿真过程中,需要确定系统的输入和输出参数,选择适当的模型和算法,并设置合理的仿真时间和步长,以获得准确和可靠的仿真结果。

其次,电力电子技术MATLAB仿真的方法包括建模、仿真计算和结果分析。

建模是指将电力电子系统抽象为数学模型,包括元件的电路模型、电压电流方程和控制算法等。

仿真计算是通过数学运算和差分方程求解,得出系统的动态响应和稳态工作点。

结果分析是对仿真结果进行可视化和统计分析,评估系统的性能、稳定性和失效机制等。

最后,以其中一种电力电子系统为例,展示电力电子技术MATLAB仿真报告。

假设我们要仿真一个直流调压器,控制电路使用的是PID控制算法。

仿真目的是评估系统的调节性能和稳定性,在不同的负载、输入电压和控制参数下,分析系统的输出电压和电流的动态响应和稳态误差。

首先,进行建模。

我们需要确定直流调压器的电路模型和控制算法。

电路模型由电源、开关元件、电容和负载组成,控制算法采用PID控制器。

然后,设置仿真参数,包括仿真时间、步长和初始条件等。

其次,进行仿真计算。

利用MATLAB提供的仿真工具,求解直流调压器的数学模型,得到系统的动态响应。

通过改变负载、输入电压和控制参数,对系统的性能和稳定性进行分析和比较。

可以绘制输出电压和电流的波形图,以及误差和响应时间的曲线。

最后,进行结果分析。

对仿真结果进行可视化和统计分析,评估直流调压器的性能和稳定性。

基于matlab的电力电子技术仿真设计_课程设计

基于matlab的电力电子技术仿真设计_课程设计

基于matlab地电力电子技术仿真设计第1章绪论1.1 MA TLAB 地产生过程和影响在20 世纪七十年代后期地时候:时任美国新墨西哥大学计算机科学系主任地Cleve Moler 教授出于减轻学生编程负担地动机,为学生设计了一组调用LINPACK和EISPACK库程序地“通俗易用”地接口,此即用FORTRAN编写地萌芽状态地MATLAB.经几年地校际流传,在Little 地推动下,由Little、Moler、Steve Bangert 合作,于1984 年成立了 MathWorks 公司,并把 MATLAB 正式推向市场.从这时起,MATLAB 地内核采用C语言编写,而且除原有地数值计算能力外,还新增了数据图视功能.MA TLAB以商品形式出现后,仅短短几年,就以其良好地开放性和运行地可靠性,使原先控制领域里地封闭式软件包(如英国地UMIST,瑞典地LUND 和SIMNON,德国地KEDDC)纷纷淘汰,而改以MATLAB为平台加以重建.在时间进入20 世纪九十年代地时候,MATLAB已经成为国际控制界公认地标准计算软件.到九十年代初期,在国际上30 几个数学类科技应用软件中,MA TLAB在数值计算方面独占鳌头,而Mathematica 和Maple 则分居符号计算软件地前两名.Mathcad 因其提供计算、图形、文字处理地统一环境而深受中学生欢迎.MathWorks 公司于1993 年推出MA TLAB4.0 版本,从告别DOS 版.电力电子技术MA TLAB实践:电力电子技术中有关电能地变换与控制过程,有各种电路原理地分析与研究、大量地计算、电能变换地波形测量、绘制与分析等,都离不开MATLAB.首先,它地运算功能强大,应用于交流电地可控整流、直流电地有源逆变与无源逆变中存在地整流输出地平均值、有效值、与电路功率计算、控制角、导通角计算.其次,MA TLAB地SimpowerSystems实体图形化仿真模型系统,把代表晶闸管、触发器、电阻、电容、电源、电压表等实物地特有符号连接成一个整流装置电路或是一个系统,更简单方便,节省设计制作时间和成本等.再有,交流技术讨论地电能转换与控制,需要对各种电压与电流波形进行测量、绘制与分析,MA TLAB提供了功能强大且方便使用地图形函数,特别适合完成这项任务.MathWorks 公司瞄准应用范围最广地Word ,运用DDE 和OLE,实现了MATLAB与Word 地无缝连接,从而为专业科技工作者创造了融科学计算、图形可视、文字处理于一体地高水准环境.1997 年仲春,MA TLAB5.0 版问世,紧接着是5.1、5.2,以及和1999 年春地5.3 版.与4.0 相比,现今地 MA TLAB 拥有更丰富地数据类型和结构、更友善地面向对象、更加快速精良地图形可视、更广博地数学和数据分析资源、更多地应用开发工具.(关于MATLAB5.0 地特点下节将作更详细地介绍.)诚然,到1999 年底,Mathematica 也已经升到4.0 版,它特别加强了以前欠缺地大规模数据处理能力.Mathcad 也赶在2000 年到来之前推出了Mathcad 2000 ,它购买了Maple 内核和库地部分使用权,打通了与MA TLAB地接口,从而把其数学计算能力提高到专业层次. 但是,就影响而言,至今仍然没有一个别地计算软件可与MA TLAB匹敌. 在欧美大学里,诸如应用代数、数理统计、自动控制、数字信号处理、模拟与数字通信、时间序列分析、动态系统仿真等课程地教科书都把MATLAB作为内容.这几乎成了九十年代教科书与旧版书籍地区别性标志.在那里,MA TLAB是攻读学位地大学生、硕士生、博士生必须掌握地基本工具. 在国际学术界,MATLAB已经被确认为准确、可靠地科学计算标准软件.在许多国际一流学术刊物上,(尤其是信息科学刊物),都可以看到MATLAB地应用.在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发地首选软件工具.如美国National Instruments 公司信号测量、分析软件LabVIEW,Cadence 公司信号和通信分析设计软件SPW等,或者直接建筑在MA TLAB之上,或者以MATLAB为主要支撑.又如 HP司地VXI 硬件,TM公司地DSP,Gage 公司地各种硬卡、仪器等都接受MATLAB地支持.1.2 MA TLAB 地基本组成和特点经过近20 年实践,人们已经意识到:MATLAB作为计算工具和科技资源,可以扩大科学研究地范围、提高工程生产地效率、缩短开发周期、加快探索步伐、激发创造活力.那么作为当前最新版本地MATLAB 7.0 究竟包括哪些内容?有哪些特点呢?5.0以前版本地MATLAB语言比较简单.它只有双精度数值和简单字符串两种数据类型,只能处理1 维、2 维数组.它地控制流和函数形式也都比较简单.这一方面与当时软件地整体水平有关,另方面与MA TLAB仅限于数值计算和图形可视应用地设计目标有关.从 5.0 版起,MA TLAB 对其语言进行了根本性地变革,使之成为一种高级地“阵列”式语言.1.3 MA TLAB 语言地传统优点MA TLAB自问世起,就以数值计算称雄.MA TLAB进行数值计算地基本处理单位是复数数组(或称阵列),并且数组维数是自动按照规则确定地.这一方面使MATLAB程序可以被高度“向量化”,另方面使用户易写易读.对一般地计算语言来说,必须采用两层循环才能得到结果.这不但程序复杂,而且那讨厌地循环十分费时. MA TLAB 处理这类问题则简洁快捷得多,它只需直截了当地一条指令y = exp(-2*t).*sin(5*t) ,就可获得.这就是所谓地“数组运算”.这种运算在信号处理和图形可视中,将被频繁使用.当A地列数大于行数时,x 有无数解.一般程序就必须按以上不同情况进行编程.然而对 MATLAB来说,那只需一条指令:x=A\b .指令是简单地,但其内涵却远远超出了普通教科书地范围,其计算地快速性、准确性和稳定性都是普通程序所远不及地.第2章 MATLAB软件及仿真集成环境Simulink简介MATLAB软件是美国MathWorks公司在20世纪80年代中期推出地高性能数值计算软件,经过近30年地开发和更新换代,该软件已成为合适多学科功能十分强大地软件系统,成为线性代数、数字信号处理、自动控制系统分析、动态系统仿真等方面地强大工具.MATLAB中含有一个仿真集成环境Simulink,其主要功能是实现各种动态系统建模、仿真与分析.在MA TLAB启动后地系统界面中地命令窗口输入”SIMULINK”指令就可以启动SIMULINK仿真环境.启动SIMULINK后就进入了浏览器既模版库,在图中左侧为以目录结构显示地17类模版库名称(因软件版本地不同,库地数量及其他细节可能不同),选中模版库后,即会在右侧窗口出现该模型库中地各种元件或子库.Simulink支持连续、离散系统以及连续离散混合系统、非线性系统等多种类型系统地仿真分析,本书中将主要介绍和电力电子电路仿真有关地元件模式及仿真方法.对于电力电子电路及系统地仿真,除需使用Simulink中地基本模板外,用到地主要元件模型集中在电气系统仿真库SimPowerSystem中,该模型库提供了电气系统中常用元件地图形化地图形化元件模型,包括无源元件、电力电子器件、触发器、电机和测量元件等.图形地元件模型使使用者可以快速并且形象地构建所需仿真系统结构.在Simulink系统中,执行菜单“File”下“New”、“Model”命令即可产生一个新地仿真模型编辑窗口,在窗口中可以采用形象地图形编辑地方法建立仿真对象、编辑元件及系统相关参数,进而完成电路及系统地仿真系统.具体步骤为:建立一个新地仿真模型编辑窗口后,首先从Simulink模块中选择所仿真电路或系统所需要地元件或模块搭建系统,方法为在Simulink模块库中所选元件位置按住鼠标左键将元件拖拽至所建编辑窗口地合适位置,不断重复该过程直至所有元件均放置完毕.在窗口中用鼠标左键单击元件图形,元件四周将出现黑色小方块,表示元件已经选中,对该元件可以进行复制(Ctrl+V)、粘贴(Ctrl+V)、旋转(Ctrl+R)、旋转(Ctrl+I)、删除(Delete)等操作,也可以在元件处按住鼠标左键将元件拖拽移动.需要改变元件大小时可以选定该元件,将鼠标移至元件四周地黑色小方块,待鼠标指针变为箭头形状时按住鼠标左键将元件拖拽至合适尺寸.(4)需要改变元件参数,可以在该元件处双击鼠标左键,即可弹出该元件地参数设置对话窗口进行参数设置.将元件放置完毕后,可采用信号线将元件间连接构成电路或系统结构图,将鼠标放置在元件端子处,但鼠标指针变为“+”字形状时,按住鼠标左键移动至需要连线地另一元件端子处,当鼠标指针变为“+”字形状时,松开鼠标左键及建立两端子之间地连线,若为控制模块间传递信号,则在连线端部将出现箭头表示信号地流向,不断重复该过程直至系统连接完毕.仿真电路或系统模型建立完毕后,还需要使用“Simulink”菜单中地”Confihuration Parameters”命令对仿真起止时间、仿真步长、允许误差和求解算法进行设置和选择,参数地具体选择方法与所仿真电路相关.(7)仿真模型建立完毕后,可以使用“file”菜单中地”Save”命令进行保存.2.1 常用电气系统仿真库元件及仿真模型对于电力电子电路及系统地仿真除需使用Simulink中地基本模块外,用到地主要元件模型集中在电气系统仿真库SimPowerSystem中,该模型库提供了电气系统之中常用元件地图形化元件模型,包括无源元件、电力电子器件、触发器、电机和测量元件等.用鼠标单击“SimPowerSystem”,即会在右侧出现该模型库中八个模版库(子库),下面主要介绍电源模版库、电气元件模版库、电气测量模版库及电力电子器件模版库.2.2 电气元件模块库用鼠标双击“Elements”图标,在窗口中显示29种电气元件.这些可以分为三大类:负载元件、传输线和变压器.双击串联RLC支路元件将弹出该元件地参数设置对话框,在“Resistance”、“Inducatance”、“Capacitance”参数下可以分别设置三个元件地参数,如果电路中不含三者中地某个元件,则相应参数应设为0(电阻或电感)或inf(电容),在电路图形符号中这类元件也将自动消失.串联RLC负载元件则是通过设置每个元件地容量,由程序自动计算元件地参数.并联RLC支路元件和并联RLC负载元件用于描述由电阻、电容、电感并联地电路,参数设置方法类似.在不考虑变压器铁心饱和时不勾选“Saturable core”.在“Magnetition resistance Rm”和“Magnetition res istance LM”参数下分别设置变压器地励磁绕组电阻、电感地标幺值.其他类型地变压器参数设置方法类似.第3章单相半波可控整流电路仿真3.1 电阻负载3.1.1 工作原理(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流.(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零.(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零.(4)直到电源电压u2地下一周期地正半波,脉冲uG在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复.3.1.2 电路图及工作原理U1SW图3-1 单相半波可控整流电路如上图所示,当晶闸管VT处于断态时,电路中电流Id=0,负载上地电压为0,U2全部加在VT 两端,在触发角α处,触发VT使其导通,U2加于负载两端,当电感L地存在时,使电流id不能突变,id从0开始增加同时L地感应电动势试图阻止id增加,这时交流电源一方面供给电阻R消耗地能量,一方面供给电感L吸收地电磁能量,到U2由正变负地过零点处处id已经处于减小地过程中,但尚未降到零,因此VT仍处于导通状态,当id减小至零,VT关断并承受反向压降,电感L延迟了VT地关断时刻使U形出现负地部分.3.1.3 仿真模型图3-2 单相半波可控整流电路电阻负载电路仿真模型3图 3-3 示波器环节参数设置菜单图3-4 单相半波可控整流电路电阻负载电路波形3.2 阻感负载图3-5单相半波可控整流电路电阻电感负载电路仿真模型图3-6单相半波可控整流电路电阻电感负载电路波形3.3 接续流二极管图3-7 单相半波可控整流电路电阻电感负载接续流二极管电路波形图3-8 单相半波可控整流电路电阻电感负载接续流二极管电路波形第4章单相桥式全控整流电路仿真4.1 单相桥式全控整流电路在单相桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂.当为电阻负载时,若4个晶闸管均不导通,负载电流id为零,ud也为零,VT1、VT4串联承受电压u2,设VT1和VT4地漏电阻相等,则各承受u2地一半.若在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a端经VT1、R、VT4流回电源b端.当u2过零时,流经晶闸管地电流也降到零,VT1和VT4关断.在u2负半周,仍在触发延迟角α处触发VT2和VT3,VT2和VT3导通,电流从电源b端流出,经VT3、R、VT2流回电源a端.到u2过零时,电流又将为零,VT2和VT3关断.此后又是VT1和VT4导通,如此循环地工作下去,便构成了一个全波整流系统.SW u1图4-1 单相全控桥整流电路单相桥式全控整流电路电阻负载地电路采用四只晶闸管构成全控桥式全控整流电路,采用Trig14、Trig23两个触发脉冲环节分别产生1、4管及2、3管地驱动信号,由于两对晶闸管分别于正、负半周导通,触发延迟角相差180°,因此两个触发环节地延迟时间相差180°.电路中交流电源电压峰值为100V,频率为50Hz,初始相角为0°,负载电阻为2Ω.仿真结果如下图:图4-2单相桥式全控整流电路电阻负载仿真模型图4-3单相桥式全控整流电路电阻负载仿真波形4.2 单相桥式全控整流电路电阻电感负载单相桥式全控整流电路电阻电感负载与单相桥式全控整流电路电阻负载差别在于负载不同,将负载参数设为R=1Ω,L=0.1H,其他参数不变,仿真结果如下图:图4-4单相桥式全控整流电路电阻电感负载仿真模型图4-5单相桥式全控整流电路电阻电感负载仿真波形第5章三相桥式全控整流电路仿真5.1三相桥式全控整流电路电阻负载电路三相桥式全控整流电路电阻负载电压峰值为100V,频率为50Hz,初始相角为30°,负载为电阻负载,电阻为2Ω.由于三相桥式全控整流电路α角地起点为相电压交点,因此本模型中队因α角为60°地A、B、C三相对应地六个触发环节中地延迟时间分别为 3.33ms、6.67ms、10ms、13.33ms、16.67ms、0.仿真结果如下图:图5-1三相桥式全控整流电路电阻负载电路仿真模型图5-2 三相桥式全控整流电路仿真电阻负载仿真波形5.2三相桥式全控整流电路电阻电感负载电路图5-3三相桥式全控整流电路电阻电感负载电路仿真模型图5-4三相桥式全控整流电路电阻电感负载电路波形图总结通过这几天对课程设计所作地努力,成功完成了对电力电子技术中地单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相桥式半控整流电路地计算机仿真实验.通过实践证明了MA TLAB/SIMUINK在电力电子仿真上地广泛应用.特别在数值计算应用最广地电气信息类学科中,熟练掌握MA TLAB可以大大提高分析研究地效率.通过这个课题学习MA TLAB软件地基本知识和使用技巧,熟练应用在电力电子技术中地建模与仿真.运用MA TLAB对电力电子电路进行仿真,加深了对电力电子知识地认识.通过老师与文献地帮助,掌握MATLAB软件,会了一些简单地操作与应用.致谢课程设计不仅仅是完成一篇论文地过程,而是一个端正态度地过程,是大学生活地一个过程,是在踏入社会前地历练过程.这个过程将使我受益匪浅!在这次课程设计中,使我明白了自己原来知识还比较欠缺.自己要学习地东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低.通过这次课程设计,我才明白学习是一个长期积累地过程,在以后地工作、生活中都应该不断地学习,努力提高自己知识和综合素质.在此要感谢我地指导老师柏逢明老师地指导,感谢老师给我地帮助.在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大.在整个设计中我懂得了许多东西,也培养了我独立工作地能力,树立了对自己工作能力地信心,相信会对今后地学习工作生活有非常重要地影响.而且大大提高了动手地能力,使我充分体会到了在创造过程中探索地艰难和成功时地喜悦.虽然这个设计做地也不太好,但是在设计过程中所学到地东西是这次课程设计地最大收获和财富,使我终身受益.参考文献[1] 洪乃刚.电力电子和电力拖动控制系统地MA TLAB仿真.机械工业出版社.2006.[2] 李维波.MA TLAB在电器工程中地应用.中国电力出版社.2007.[3] 王正林.MA TLAB/Simulink与控制系统仿真.电子工业出版社.2005.[4] 陈桂明.应用MA TLAB建模与仿真.机械工业出版社.2009.[5] 张葛祥,李娜.MATLAB仿真技术与应用.清华大学出版社.2008[6] 工兆安等.电力电子技术[M].北京:机械工业出版社.2007[7] 张平.MATLAB基础与应用简明教程[M].北京:北京航空航天大学出版社.2009[8] 飞思科技产品研发中心编.MA TLAB6.5应用接口编程.电子工业出版社.2008。

matlab在电力电子技术仿真中的应用

matlab在电力电子技术仿真中的应用

matlab在电力电子技术仿真中的应用随着电子技术的不断发展,电力电子技术已经成为现代电力系统中至关重要的一环。

而在电力电子技术的研究与开发过程中,仿真技术则成为了不可或缺的一部分。

它可以快速准确地模拟电力电子系统的工作情况,从而为电力电子技术的开发与优化提供重要的帮助。

而MATLAB作为一种强大的计算机软件,在电力电子技术仿真中经常被使用。

一、MATLAB在电力电子技术仿真中的应用1. 电力电子系统仿真在现代电力系统中,电力电子系统是必不可少的部分。

其中包括各种控制器、逆变器、整流器等电子设备。

MATLAB可以通过建立电力电子系统的模型,快速准确地模拟系统的工作情况。

用户只需要编写一些简单的代码,就可以通过模拟电力电子系统的状态来预测电流波形、功率因数、电压降等运行参数,从而更好地研究该系统的各种工作状态。

2. 电力电子系统设计优化电力电子系统的设计与优化是电力电子技术的核心。

在电力电子设备设计过程中,需要对一系列的设计参数进行优化,以达到更好的工作性能。

而MATLAB可以通过控制系统设计工具箱,对电力电子系统设计进行优化。

用户可以通过MATLAB的仿真分析、自动控制、多目标优化等功能,快速准确地推导出最优设计方案。

3. 电力电子系统控制电力电子系统的控制是其重要组成部分。

输入控制信号可以对输出电流/电压进行合理的控制,从而实现电力电子系统的稳定运行。

MATLAB提供了多种控制器的设计方法,例如PID、模糊控制、神经网络控制等。

通过制定合理的电流/电压控制策略,可以快速准确地实现对电力电子系统的控制,从而实现系统的稳定运行。

二、MATLAB在电力电子仿真中的优势1. 操作简单MATLAB是一种运算速度非常快、操作简单的软件。

通过五芯化的界面、丰富的工具箱、可视化工具等,用户可以快速地实现电力电子系统的仿真、设计与优化。

2. 精度高MATLAB可以进行高精度的计算和仿真,能够更快、更准确地分析电力电子系统的各种特性。

电力电子技术MATLAB仿真报告

电力电子技术MATLAB仿真报告

斩波电路仿真一、降压斩波电路(Buck变换器)1可关断晶闸管(GTO)的仿真⑴可关断晶闸管模型与晶闸管类似,可关断晶闸管导通条件同传统晶闸管,但是可在门极信号为0的任意时刻关断,可关断晶闸管模型有两个输入端和两个输出端,第一个输入与输出是阳极媏(a)与阴极端(k),第二个输入(g)是门极控制信号端如图①,当勾选“Show measurement port”项时便显示第二个输出端(m)如图②,这是可关断晶闸管检测输出向量[I ak U ak]端,可连接仪表检测流经可关断晶闸管的电流(I ak)与正向压降(U ak),可关断晶闸管组件的符号和仿真模型图如图所示。

图①图②可关断晶闸管组件的符号和仿真模型⑵可关断晶闸管参数及其设置在模型结构图中,当鼠标双击模型时,则弹出晶闸管参数对话框,如下图所示由图可知,GTO的参数设置与晶闸管参数设置几乎完全相同,只是多了两项 “Current 10% fall time Tf(s)”:电流下降时间Tf。

“Current tail time Tt(s)”:电流拖尾时间Tt。

对于可关断晶闸管GTO模型的电路仿真时,同样宜采用Ode23tb与Oder15s算法。

二、 Buck变换器的仿真⑴电路图及工作原理在t=0时刻驱动GTO导通,电源E向负载供电,由于电感L的存在,负载电流i缓慢上升(电流不能突变),当t=t1时刻,控制GTO关断负载电流经二极管续流,电感L释放电能,负载电流i下降,至一个周期结束再驱动GTO导通重复上一个周期过程,当电路工作于稳态时,负载电流在一个周期的初值和终值相等,此时负载电压平均值为U0=ton*E/(ton+tof)=αE降压斩波电路(阻感负载)原理图⑵建立仿真模型根据原理图用matalb软件画出正确的仿真电路图,整体模型如图所示仿真参数:选择ode23tb算法,将相对误差设置为1e-3,开始仿真时间设置为0,停止仿真时间设置为0.003。

⑶模型参数简介与设置①直流电压源“Amplitude”:直流电压幅值,单位V.测量“measurements”选择是否测量电压设置A=100V,“measurements”选None(不测量电压),如右图所示②二极管“Resistance Ron(Ohms)”:晶闸管导通电阻Ron(Ω)。

电力系统的matlab simulink仿真及应用

电力系统的matlab simulink仿真及应用
目前常用的电力系统仿真软件有: (1) 邦纳维尔电力局(Bonneville Power Administration, BPA)开发的BPA 程序和EMTP( Electromagnetic Transients Program)程序;
第1章 概 述
(2) 曼尼托巴高压直流输电研究中心(Manitoba HVDC Research Center)开发的PSCAD /EMTDC (Power System Computer Aided Design/Electromagnetic Transients Program including Direct Current)程序;
第1章 概 述
现在的SIMULINK都直接捆绑在MATLAB之上,版本也 从1993年的MATLAB4.0/ Simulink 1.0版升级到了2007年的 MATLAB 7.3/Simulink 6.6版,并且可以针对任何能够用数 学描述的系统进行建模,例如航空航天动力学系统、卫星控 制制导系统、通讯系统、船舶及汽车动力学系统等,其中包 括连续、离散、条件执行、事件驱动、单速率、多速率和混 杂系统等。由于SIMULINK的仿真平台使用方便、功能强大, 因此后来拓展的其它模型库也都共同使用这个仿真环境,成 为了MATLAB仿真的公共平台。
第1章 概 述
1983年的春天,Cleve到斯坦福大学进行访问, MATLAB深深吸引住了身为工程师的John Little。John Little 敏锐地觉察到MATLAB在工程领域的广阔前景,于是同年, 他和Cleve Moler、Steve Bangert一起用C语言开发了第二代 MATLAB专业版,由Steve Bangert主持开发编译解释程序; Steve Kleiman完成图形功能的设计;John Little和Cleve Moler主持开发各类数学分析的子模块,撰写用户指南和大 部分的M文件。

电力电子的Matlab仿真技术

电力电子的Matlab仿真技术
MATLAB提供了丰富的矩阵运算处理功能,是基于矩阵运算 的处理工具。
2 符号运算功能
3 丰富的绘图功能与计算结果的可视化
具有高层绘图功能——二维、三维绘图; 具有底层绘图功能——句柄绘图; 使用plot函数可随时将计算结果可视化,图形可修饰和控制
4 图形化程序编制功能
动态系统进行建模、仿真和分析的软件包 用结构图编程,而不用程序编程 只需拖几个方块、连几条线,即可实现编程功能
当用户估计要解决的问题是比较困难的,或者不能使用ode45,或者即使使用效果也不好,就可以用 ode15s。
ode23s:它是一种单步解法器,专门应用于刚性系统,在弱误差允许下的效果好于ode15s。它能
解决某些ode15s所不能有效解决的stiff问题。
ode23t:是梯形规则的一种自由插值实现。这种解法器适用于求解适度stiff的问题而用户又需
5 丰富的MATLAB工具箱
MATLAB主工具箱 符号数学工具箱 SIMULINK仿真工具箱 控制系统工具箱 信号处理工具箱 图象处理工具箱 通讯工具箱 系统辨识工具箱 神经元网络工具箱 金融工具箱
许多学科,在 MATLAB中都有专 用工具箱,现已有 几十个工具箱,但 MATLAB语言的扩 展开发还远远没有 结束,各学科的相 互促进,将使得 MATLAB更加强大
ode23:二/三阶龙格-库塔法,它在误差限要求不高和求解的问题不太难的情况下,可能会比
ode45更有效。也是一个单步解法器。
ode113:是一种阶数可变的解法器,它在误差容许要求严格的情况下通常比ode45有效。ode113
是一种多步解法器,也就是在计算当前时刻输出时,它需要以前多个时刻的解。
ode15s:是一种基于数字微分公式的解法器(NDFs)。也是一种多步解法器。适用于刚性系统,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子的 MATLAB 仿真计算机控制技术 课程设计资料2010 年 4 月前 言电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用形 很强的课程。

由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和 困难,一般常用波形分析的方法来研究。

仿真技术为电力电子电路的分析提供了崭新的方法。

我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的 作用。

掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并 且可以调动学生的积极性。

实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的, 也受到学时的限制。

而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。

仿 真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。

目录第一章 MATLAB 基础11.1 MATLAB 介绍11.2 MATLAB 的安装与启动21.3 MATLAB 环境3第二章 MATLAB/Simulink/Power System 工具箱简介 72.1 Simulink 工具箱简介 72.2 Power System 工具箱简介 102.3Simulink/Power System 的模型窗口 132.4Simulink/Power System 模块的基本操作 17第三章 电力电子电路仿真实训 21实训一单相半波可控整流电路仿真实训 21实训二单相桥式半控整流电路仿真实训 29实训三单相桥式全控整流电路仿真实训 35实训四单相桥式全控有源逆变电路仿真实训 42实训五 单相交流调压电路仿真实训 45实训六 降压斩波电路仿真实训 48实训七 升压斩波电路仿真实训 51实训八 升降压斩波电路实训 54实训九三相半波不可控整流电路仿真实训 57实训十三相半波可控整流电路仿真实训 59实训十一三相桥式全控整流电路仿真实训 67实训十二三相半波可控整流电路有源逆变电路仿真实训 72实训十三三相桥式有源逆变电路仿真实训 75第 1 章 MATLAB 基础MATLAB 介绍 MATLAB 是一种科学计算软件。

MATLAB 是 Matrix Laboratory(矩阵实验室)的缩写,这是一种 以矩阵为基础的交互式程序计算语言。

早期的 MATLAB 主要用于解决科学和工程的复杂数学计算问 题。

由于它使用方便、输入便捷、运算高效、适应科技人员的思维方式,并且有绘图功能,有用户 自行扩展的空间,因此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学 和科学研究的常用软件。

MATLAB 由美国 Mathworks 公司于 1984 年开始推出,历经升级,到 2001 年已经有了 6.0 版, 现在 MATLAB 、、 版都已相继面世。

早期的 MATLAB 在 DOS 环境下运行,1990 年推出 了 Windows 版本。

1993 年, Mathworks 公司又推出了 MATLAB 的微机版,充分支 持 在 MicrosoftWindows 界面下的编程,它的功能越来越强大,在科技和工程界广为传播,是各种科学计 算软件中使用频率最高的软件。

1993 年出现了 SIMULINK,这是基于框图的仿真平台,SIMULINK 挂接在 MATLAB 环境上, 以 MATLAB 的强大计算功能为基础,以直观的模块框图进行仿真和计算。

SIMULINK 提供了各种 仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大便利。

在 SIMULINK 平台上,拖拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。

在 SIMULINK 平台上,仿真模型的可读性很强,这就避免了在 MATLAB 窗口使用 MATLAB 命令和函数仿真时, 需要熟悉记忆大量 M 函数的麻烦,对广大工程技术人员来说,这无疑是最好的福音。

现在的 MATLAB 都同时捆绑了 SIMULINK,SIMULINK 的版本也在不断地升级,从 1993 年的 MATLAB 4.0/ SIMULINK 1.0 版到 2001 年的 MATLAB 6.1/SIMULINK 4.1 版,2002 年即推出了 MATLAB 6.5 /SIMULINK 5.0 版。

MATLAB 已经不再是单纯的"矩阵实验室"了,它已经成为一个高级计算 和仿真平台。

SIMULINK 原本是为控制系统的仿真而建立的工具箱,在使用中易编程、易拓展,并且可以解 决 MATLAB 不易解决的非线性、变系数等问题。

它能支持连续系统和离散系统的仿真,支持连续离 散混合系统的仿真,也支持线性和非线性系统的仿真,并且支持多种采样频率(Multirate)系统的仿 真, 也就是不同的系统能以不同的采样频率组合,这样就可以仿真较大、较复杂的系统。

因此,各科学 领域根据自己的仿真需要,以 MATLAB 为基础,开发了大量的专用仿真程序,并把这些程序以模块 的形式都放人 SIMULINK 中,形成了模块库。

SIMULINK 的模块库实际上就是用 MATLAB 基本语 句编写的子程序集。

现在 SIMULINK 模块库有三级树状的子目录,在一级目录下就包含了 SIMULINK 最早开发的数学计算工具箱、控制系统工具箱的内容,之后开发的信号处理工具箱(DSPBlocks)、通 信 系 统 工 具 箱 (Comm) 等 也 并 行 列 入 模 块 库 的 一 级 子 目 录 , 逐 级 打 开 模 块库浏览器 (SIMULINKLibraryBrowser)的目录,就可以看到这些模块。

从 SIMULINK4.1 版开始,有了电力系统模块库(Power System Blockset),该模块库主要由 加拿大 HydroQuebec 和 TECSIMInternational 公司共同开发。

在 SIMULINK 环境下用电力系统模块 库的模块,可以方便地进行 RLC 电路、电力电子电路、电机控制系统和电力系统的仿真。

本书中电netsh.net、 h ttp:1.3.1 力电子电路的仿真就是在 MATLAB/SIMULINK 环境下,主要使用电力系统模块库和 SIMULINK 两个模块库进行。

通过电力电子电路的仿真,不仅展示了 MATLAB/SIMULINK 的强大功能,并且 1.3.2 可以学习控制系统仿真的方法和技巧,研究电路的原理和性能。

本资料主要是介绍电力电子电路的仿真,因此对 MATLAB 只介绍与本书有关的内容。

MATLAB 1.3.31.3.4 功能强大,有关 MATLAB 的书刊已经很多,对 MATLAB 更深入的要求,可以阅读其他介绍书籍。

现在因特网上有大量的 MATLAB 资源,如有关 MATLAB 的新消息,免费的工具箱下载,有关 2. MATLAB 的讨论和讲座等,读者可以进入这些网站,以获取更多的信息。

有关 MATLAB 的网站很 1.12.2.12.2.22.2.32.2.42.2.52.2.6Zoom in:放大模型显示比例。

Zoom out:缩小模型显示比例. Fit system view:自动选择最合适的显示比例。

Normal(100%):以正常工作比倒(100%)显示模型 4.Simulation(仿真)菜单 start (Ctrl +T):启动或暂停仿真。

stop:停止仿真。

Simulation parameters.. (Ctrl +E):设置仿真参数 Normal:常规标准仿真。

Accelerator:加速仿真。

5.Format(格式设定)菜单 Font :字体选择。

Text alignment :文字对齐方式。

Flip name:模块标题名称上下换位。

Hide name:显示/隐藏模块名。

Flip block(Ctrl+1):将功能模块图旋转 180。

Rotate block(Ctrl +R):将功能模块图顺时针旋转 90*。

Show drop Shadow:显示或隐藏模块的阴影。

Show port labels:显示或隐藏子系统输入输出字符与空框或有示意图框 Foreground color:设置前景颜色。

Background color:设置背景颜色。

Screen color:设置屏幕颜色。

能,归纳起来可分为 5 类。

图 2-15 所示的 Simulink 模型窗口工具栏自左到右有 15 个按钮,其功能分述如下。

1.文件管理类 文件管理类包括 4 个按钮: 第 1 个按钮:单击该按钮将创建一个新模型文件,相当于在主菜单"File''中执行"New''命 令。

第 2 个按钮:单击该按钮将打开一个已存在的模型文件,相当于在主菜单"File''中执行"Open'' 命令。

第 3 个按钮:单击该按钮将保存模型文件,相当于在主菜单"File''中执行"Save"命令。

第 4 个按钮:单击该按钮将打印模型文件,相当于在主菜单"File''中执行"Print"命令。

2.对象管理类 对象管理类包括以下 3 个按钮: 第 5 个按钮:单击该按钮,将选中的模型文件剪切到剪贴板上,相当于在主菜单"Edit" 中执 行"Cut"命令。

第 6 个按钮:单击该按钮,将选中的模型文件复制到剪贴板上,相当于在主菜单"Edit"中执行 "Copy"命令。

第 7 个按钮:单击该按钮,将剪贴板上的内容粘贴到模型窗口的指定位置,相当于在主菜单"Edit'' 中执行"Paste''命令。

3.命令管理类 命令管理类包括以下两个按钮: 第 8 个按钮:单击该按钮将撤销前次操作,相当于在主菜单"Edit''中执行"Undo Delete"命 令。

第 9 个按钮:单击该按钮将重复前次操作,相当于在主菜单"Edit''中执行"Redo Delete"命 令。

4.窗口切换类 窗口切换类包括以下 4 个按钮: 第 10 个按钮:单击该按钮将打开 Simulink 库浏览器,相当于在主菜单项"View"中执行"Show Library Browser"命令。

相关文档
最新文档