2018中考数学真题分类汇编解析版-19.3.一次函数的应用

合集下载

3.3一次函数的应用(第1部分)-2018年中考数学试题分类汇编(word解析版)

3.3一次函数的应用(第1部分)-2018年中考数学试题分类汇编(word解析版)

第三部分函数及其图象3.3 一次函数的应用【一】知识点清单1、一次函数的应用根据实际问题列一次函数关系式;一次函数的应用【二】分类试题及参考答案与解析一、选择题二、填空题1.(2018年重庆A卷-第17题-4分)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地,甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.【知识考点】一次函数的应用.【思路分析】根据题意和函数图象中的数据可以分别求得甲乙两车刚开始的速度和后来乙车的速度,再根据题目中的数据即可解答本题.【解答过程】解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为:=小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.2.(2018年重庆B卷-第17题-4分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.【知识考点】一次函数的应用.【思路分析】由图象可知:家到学校总路程为1200米,分别求小玲和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的一半”,得速度为60米/分,可得返回时又用了10分钟,此时小玲已经走了25分,还剩5分钟的总程.【解答过程】解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.【总结归纳】本题考查了一次函数的图象的性质的运用,路程=速度×时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象.三、解答题1.(2018年上海-第22题-10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【知识考点】一次函数的应用.【思路分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【解答过程】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【总结归纳】本题考查一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.2.(2018年陕西-第21题-7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,。

2018年全国有关中考数学试题分类汇编(一次函数)(K12教育文档)

2018年全国有关中考数学试题分类汇编(一次函数)(K12教育文档)

2018年全国有关中考数学试题分类汇编(一次函数)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年全国有关中考数学试题分类汇编(一次函数)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年全国有关中考数学试题分类汇编(一次函数)(word版可编辑修改)的全部内容。

2018年全国有关中考数学试题分类汇编(一次函数)一、选择题1所示,那1、(2007福建福州)已知一次函数(1)y a x b =-+的图象如图么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2、(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )B A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <3、(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y =2(x +2)5、(2007浙江宁波)如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C(A )x l =1,x 2=2 (B )x l =—2,x 2=-1 (C )x l =1,x 2=—2 (D)x l =2,x 2=-16、(2007四川乐山)已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )C A.20y -<<B.40y -<<C.2y <-D.4y <-7、(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B图1Oxy图(6)0 2 -4xyOxy AB1- y x =- 2图2A .0B .1C .2D .3二、填空题1、(2007福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

2018年中考数学【一次函数】试题汇集及解析

2018年中考数学【一次函数】试题汇集及解析

2018年中考数学【一次函数】试题汇集训练卷一、选择题1.给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A. B. C. D.3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。

A.5B.4C.3D.24.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.5.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.6.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是()A. B. C. D.7.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.9.一次函数和反比例函数在同一直角坐标系中大致图像是()A. B. C. D.10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是()A.线段始终经过点B.线段始终经过点C.线段始终经过点D.线段不可能始终经过某一定点11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.13.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.14.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。

2018中考数学试题分类汇编考点14一次函数含解析20180714449

2018中考数学试题分类汇编考点14一次函数含解析20180714449

2018中考数学试题分类汇编:考点14一次函数一.选择题(共19小题)1.(2018•常德)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.2.(2018•湘西州)一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2)B.(0,﹣2)C.(2,0)D.(﹣2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2的图象与y轴的交点坐标.【解答】解:当x=0时,y=x+2=0+2=2,∴一次函数y=x+2的图象与y轴的交点坐标为(0,2).故选:A.3.(2018•娄底)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4B.y=2x+4C.y=2x+2D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.4.(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为()A.B.C.﹣2D.2【分析】根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.【解答】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,故选:A.5.(2018•枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.6.(2018•贵阳)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【解答】解:∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意;故选:C.7.(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.8.(2018•沈阳)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.9.(2018•呼和浩特)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,则常数b=()A.B.2C.﹣1D.1【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b ﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.10.(2018•泰州)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P、Q 同时停止运动,若点P 与点Q 的速度之比为1:2,则下列说法正确的是()A.线段PQ 始终经过点(2,3)B.线段PQ 始终经过点(3,2)C.线段PQ 始终经过点(2,2)D.线段PQ 不可能始终经过某一定点【分析】当OP=t 时,点P 的坐标为(t,0),点Q 的坐标为(9﹣2t,6).设直线PQ 的解析式为y=kx+b(k≠0),利用待定系数法求出PQ 的解析式即可判断;【解答】解:当OP=t 时,点P 的坐标为(t,0),点Q 的坐标为(9﹣2t,6).设直线PQ 的解析式为y=kx+b(k≠0),将P(t,0)、Q(9﹣2t,6)代入y=kx+b,,解得:,∴直线PQ 的解析式为y=x+.∵x=3时,y=2,∴直线PQ 始终经过(3,2),故选:B.11.(2018•株洲)已知一系列直线y=a k x+b(a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b>0)分别与直线y=0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子(1≤i≤k,1≤j≤k,i≠j),下列一定正确的是()A.大于1B.大于0C.小于﹣1D.小于0【分析】利用待定系数法求出x i ,x j 即可解决问题;【解答】解:由题意x i =﹣,x j =﹣,∴式子=>0,故选:B.12.(2018•资阳)已知直线y 1=kx+1(k<0)与直线y 2=mx (m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx 的解集为()A.xB.C.xD.0【分析】由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx 的解集为.【解答】解:把(,m)代入y 1=kx+1,可得m=k+1,解得k=m﹣2,∴y 1=(m﹣2)x+1,令y 3=mx﹣2,则当y 3<y 1时,mx﹣2<(m﹣2)x+1,解得x<;当kx+1<mx 时,(m﹣2)x+1<mx,解得x>,∴不等式组mx﹣2<kx+1<mx 的解集为,故选:B.13.(2018•湘潭)若b>0,则一次函数y=﹣x+b 的图象大致是()A.B.C.D.【分析】根据一次函数的k、b 的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=x+b 中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,故选:C.14.(2018•遵义)如图,直线y=kx+3经过点(2,0),则关于x 的不等式kx+3>0的解集是()A.x>2B.x<2C.x≥2D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x 的不等式kx+3>0的解集为x<2,故选:B.15.(2018•包头)如图,在平面直角坐标系中,直线l 1:y=﹣x+1与x 轴,y 轴分别交于点A 和点B,直线l 2:y=kx(k≠0)与直线l 1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【分析】利用直线l:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,1过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l:y=kx,可得k=.2:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,【解答】解:直线l1即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),:y=kx,可得把C(,)代入直线l2=k,即k=,故选:B.16.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.17.(2018•陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.18.(2018•南充)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+2【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.故选:C.19.(2018•南通模拟)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.二.填空题(共11小题)20.(2018•郴州)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是y=﹣x+4.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.21.(2018•上海)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而减小.(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.22.(2018•长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为2.(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.23.(2018•济宁)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1>y 2.(填“>”“<”“=”)【分析】根据一次函数的性质,当k<0时,y 随x 的增大而减小.【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2.故答案为:>.24.(2018•海南)如图,在平面直角坐标系中,点M 是直线y=﹣x 上的动点,过点M 作MN ⊥x 轴,交直线y=x 于点N,当MN≤8时,设点M 的横坐标为m,则m 的取值范围为﹣4≤m≤4.【分析】先确定出M,N 的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M 在直线y=﹣x 上,∴M(m,﹣m),∵MN⊥x 轴,且点N 在直线y=x 上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.25.(2018•重庆)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为200米.【分析】由图象可知:家到学校总路程为1200米,分别求小玲和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的一半”,得速度为60米/分,可得返回时又用了10分钟,此时小玲已经走了25分,还剩5分钟的总程.【解答】解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.26.(2018•温州)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为2.【分析】延长DE交OA于F,如图,先利用一次函数解析式确定B(0,4),A(4,0),利用三角函数得到∠OBA=60°,接着根据菱形的性质判定△BCD为等边三角形,则∠BCD=∠COE=60°,所以∠EOF=30°,则EF=OE=1,然后根据三角形面积公式计算.【解答】解:延长DE交OA于F,如图,当x=0时,y=﹣x+4=4,则B(0,4),当y=0时,﹣x+4=0,解得x=4,则A(4,0),在Rt△AOB中,tan∠OBA==,∴∠OBA=60°,∵C是OB的中点,∴OC=CB=2,∵四边形OEDC是菱形,∴CD=BC=DE=CE=2,CD∥OE,∴△BCD为等边三角形,∴∠BCD=60°,∴∠COE=60°,∴∠EOF=30°,∴EF=OE=1,△OAE的面积=×4×1=2.故答案为2.27.(2018•邵阳)如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是x=2.【分析】一次函数y=ax+b 的图象与x 轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b 的图象与x 轴相交于点(2,0),∴关于x 的方程ax+b=0的解是x=2.故答案为x=2.28.(2018•徐州)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c 为常数)行驶路程收费标准调价前调价后不超过3km 的部分起步价6元起步价a 元超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:①填空:a=7,b=1.4,c=2.1.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.【分析】①a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;②当x>3时,y1与x的关系,有两部分组成,第一部分为6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;③当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价;【解答】解:①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元;故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3;函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y 2=7+(x﹣3)×1.4,整理得,y 2=1.4x+2.8;所以,当y 1=y 2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=,y=9;所以,函数y 1与y 2的图象存在交点(,9);其意义为当x时是方案调价前合算,当x时方案调价后合算.29.(2018•安顺)正方形A 1B 1C 1O,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置,点A 1,A 2,A 3…和点C 1,C 2,C 3…分别在直线y=x+1和x 轴上,则点B n 的坐标为(2n ﹣1,2n﹣1).【分析】根据一次函数图象上点的坐标特征可得出点A 1的坐标,结合正方形的性质可得出点B 1的坐标,同理可得出点B 2、B 3、B 4、…的坐标,再根据点的坐标的变化即可找出点B n 的坐标.【解答】解:当x=0时,y=x+1=1,∴点A 1的坐标为(0,1).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).∵四边形A 2B 2C 2C 1为正方形,∴点B 2的坐标为(3,2).同理可得:点A 3的坐标为(3,4),点B 3的坐标为(7,4),点A 4的坐标为(7,8),点B 4的坐标为(15,8),…,∴点B n 的坐标为(2n ﹣1,2n﹣1).故答案为:(2n ﹣1,2n﹣1).30.(2018•天门)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y=﹣x+4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2018=.【分析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C、D、E,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC=CA 1=P 1C=3,设A 1D=a,则P 2D=a,∴OD=6+a,∴点P 2坐标为(6+a,a),将点P 2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A 1A 2=2a=3,P 2D=,同理求得P 3E=、A 2A 3=,∵S 1=×6×3=9、S 2=×3×=、S 3=××=、……∴S 2018=,故答案为:.三.解答题(共19小题)31.(2018•上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b 中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.32.(2018•南通模拟)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1h或6.25h,两车之间的距离为500km.33.(2018•天津)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数101520 (x)方式一的总费用(元)150175200…100+5x方式二的总费用(元)90135180 (9x)(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.【分析】(Ⅰ)根据题意可以将表格中空缺的部分补充完整;(Ⅱ)根据题意可以求得当费用为270元时,两种方式下的游泳次数;(Ⅲ)根据题意可以计算出x在什么范围内,哪种付费更合算.【解答】解:(I)当x=20时,方式一的总费用为:100+20×5=200,方式二的费用为:20×9=180,当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,故答案为:200,100+5x,180,9x;(II)方式一,令100+5x=270,解得:x=34,方式二、令9x=270,解得:x=30;∵34>30,∴选择方式一付费方式,他游泳的次数比较多;(III)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25,∴当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,但x>25时,小明选择方式一的付费方式.34.(2018•大庆)某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【解答】解:(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;(2)设购买排球m个,则购买篮球(60﹣m)个.根据题意得:60﹣m≤2m,解得m≥20,又∵排球的单价小于蓝球的单价,∴m=20时,购买排球、篮球总费用的最大购买排球、篮球总费用的最大值=20×60+40×120=6000元.35.(2018•重庆)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.【分析】(1)先把A(5,m)代入y=﹣x+3得A(5,﹣2),再利用点的平移规律得到C(3,2),接着利用两直线平移的问题设CD的解析式为y=2x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;(2)先确定B(0,3),再求出直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,然后求出直线y=2x+3与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【解答】解:(1)把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式为y=2x﹣4;(2)当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,2x﹣4=0,解得x=2,则直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,当y=0时,2x+3=0,解的x=﹣,则直线y=2x+3与x轴的交点坐标为(﹣,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为﹣≤x≤2.36.(2018•临安区)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?【分析】(1)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b,使用待定系数法求解即可;(2)根据题意,从图象上看,30小时以内的上网费用都是60元;(3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x的值即可.【解答】解:(1)当x≥30时,设函数关系式为y=kx+b,则,解得.所以y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)由75=3x﹣30解得x=35,所以5月份上网35个小时.37.(2018•宿迁)某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L).(1)求y与x之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的,按此建议,求该辆汽车最多行驶的路程.【分析】(1)根据题意可知,y=40﹣,即y=﹣0.1x+40(2))∵油箱内剩余油量不低于油箱容量的,即当y=40×=10,求x的值.【解答】解:(1)由题意可知:y=40﹣,即y=﹣0.1x+40∴y与x之间的函数表达式:y=﹣0.1x+40.(2)∵油箱内剩余油量不低于油箱容量的∴当y=40×=10,则10=﹣0.1x+40.∴x=30故,该辆汽车最多行驶的路程是30km.38.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.【解答】解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元根据题意得:解得x=400经检验,x=400为原方程的解∴x+100=500答:一件A型、B型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+1160039.(2018•盐城)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【解答】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60米/分钟.乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kx+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40x.40.(2018•黄石)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转。

2018年中考数学真题汇编一次函数

2018年中考数学真题汇编一次函数

中考数学真题汇编 : 一次函数一、选择题1. 给出以下函数:①y=﹣ 3x+2;② y=;③ y=2x2;④ y=3x,上述函数中切合条作“当x>1 时,函数值y 随自变量x 增大而增大“的是()A.①③B.③④C.②④D.②③【答案】 B2. 把函数 y=x 向上平移 3 个单位,以下在该平移后的直线上的点是()A. B.C.D.【答案】 D3. 在平面直角坐标系中,过点(1,2 )作直线l ,若直线 l 与两坐标轴围成的三角形面积为4,则知足条件的直线 l 的条数是()。

【答案】 C4. 假如规定 [x] 表示不大于x 的最大整数,比如[2.3]=2,那么函数y=x ﹣ [x] 的图象为()A.B.C.D.【答案】 A5. 如图 , 函数和(是常数,且) 在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】 B6.如图,菱形的边长是4厘米, , 动点以 1 厘米 / 秒的速度自点出发沿方向运动至点停止, 动点以 2 厘米 / 秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒 , 记的面积为, 下边图象中能表示与之间的函数关系的是( ) A. B.C.D. 【答案】 D7. 如图,直线都与直线l 垂直,垂足分别为M,N, MN=1,正方形ABCD的边长为,对角线AC在直线l 上,且点 C 位于点M处,将正方形ABCD沿l 向右平移,直到点 A 与点N 重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y 对于x 的函数图象大概为()A. B.C. D.【答案】 A8. 如图,二次函数y=ax 2+bx 的图象张口向下,且经过第三象限的点P.若点P 的横坐标为-1 ,则一次函数y=( a-b ) x+b 的图象大概是()A. B. C. D.【答案】 D9. 一次函数和反比率函数在同向来角坐标系中大概图像是()A. B. C. D.【答案】 A10. 如图,平面直角坐标系向轴正方向运动,同时,点动,若点与点的速度之比为中,点从点的坐标为,出发向点运动,当点,则以下说法正确的选项是(轴,垂足为,点抵达点时,点)从原点出发、同时停止运A.线段一直经过点B.线段一直经过点C.线段一直经过点D.线段不行能一直经过某必定点【答案】 B11. 某通信企业就上宽带网推出A,B,C 三种月收费方式.这三种收费方式每个月所需的花费y(元)与上网时间x(h)的函数关系以下图,则以下判断错误的选项是()A. 每个月上网时间不足25 h 时,选择 A 方式最省钱 B.每个月上网花费为60 元时,B 方式可上网的时间比 A 方式多C. 每个月上网时间为35h 时,选择 B 方式最省钱D. 每个月上网时间超出70h 时,选择 C 方式最省钱【答案】 D二、填空题12. 将直线向上平移 2 个单位长度,平移后直线的分析式为________.【答案】13. 已知点A( x1, y 1) 、 B(x2,y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x1< x2时,y1与 y2的大小关系为________.【答案】y1>y214. 已知点是直线上一点,其横坐标为. 若点与点对于轴对称,则点的坐标为 ________.【答案】(,)15. 礼拜天,小明上午8: 00 从家里出发,骑车到图书室去借书,再骑车回到家,他离家的距离y(千米)与时间t (分钟)的关系以下图,则上午8: 45 小明离家的距离是________千米。

2018年全国中考数学真题汇编:函数与一次函数(含详细解析)

2018年全国中考数学真题汇编:函数与一次函数(含详细解析)
全国中考数学真题汇编:函数与一次函数
一 .选择题
1.( 上海 ,第 3 题 4 分)下列 y 关于 x 的函数中,是正比例函数的为(
C、y= x ; 2
D、 y= x 1 . 2
【答案】 C
【解析】 y
x
1 x ,是正比例函数,选
C。
22
2、( ·湖南省常德市,第 5 题 3 分)一次函数 y
③2< x≤3;分别求出 y 关于 x 的函数解析式,然后根据函数的图象与性质即可求解.
解答:
解:由题意可得 BQ=x.
①0≤x≤1时, P 点在 BC 边上, BP=3x,
则△ BPQ 的面积 = BP?BQ,
解 y= ?3x?x= x2;故 A 选项错误; ②1< x≤2时, P 点在 CD 边上, 则△ BPQ 的面积 = BQ?BC,
7.( 湖北鄂州第 7 题 3 分)
如图,直线 y=x-2 与 y 轴交于点 C,与 x 轴交于点 B,与反比例函数
的图象在第一象
限交于点 A,连接 OA,若 S△AOB S△ BOC = 1:2 ,则 k 的值为( )
A.2
B.3
C. 4
D.6
【答案】 B.
第 6 页 共 93 页
考点:反比例函数与一次函数的交点问题 . 8. ( ?浙江衢州 ,第 6 题 3 分) 下列四个函数图象中,当 是【 】
(即 2 千米),这一段图象由左至右呈上升趋势一条线段 ,线段末端点的坐标为( 5,2);原地
休息的 6 分钟内都是距离原地 2 千米(即纵坐标为 2 不变),这一段图象表现出来是平行 x 轴
的一条线段 .6 分钟之后 S (千米 )是随时间 t (分)增大而减小至距离原地为 0 千米(回到原

2018年全国中考数学真题《函数与一次函数》分类汇编解析

2018年全国中考数学真题《函数与一次函数》分类汇编解析

函数与一次函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征 点P(x ,y )在第一象限0,0>>⇔y x点P(x ,y )在第二象限0,0><⇔y x 点P(x ,y )在第三象限0,0<<⇔y x 点P(x ,y )在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x ,y )在x 轴上0=⇔y ,x 为任意实数 点P(x ,y )在y 轴上0=⇔x ,y 为任意实数点P(x ,y )既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x ,y )在第一、三象限夹角平分线上⇔x 与y 相等 点P(x ,y )在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x ,y )到坐标轴及原点的距离: (1)点P(x ,y )到x 轴的距离等于y (2)点P(x ,y )到y 轴的距离等于x(3)点P(x ,y )到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

2018中考数学真题分类汇编解析版-19.3.一次函数的应用

2018中考数学真题分类汇编解析版-19.3.一次函数的应用

一、选择题二、填空题1.(2018·杭州,15,4分)某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是答案:60≤v≤80,解析:由图可知甲车的速度为40km/h,设从9点后经过t 小时,乙车恰好追上甲车. 则满足vt =40+40t,则4040-=v t ,题中说明是10至11点追上,即1≤t≤2,可得240401≤-≤v ,解得60≤v≤80三、解答题 1.(2018·南充,23,10分)(本小题满分10分)某销售商准备在南充采购一批丝绸,经调查,用10 000元采购A 型丝绸的件数与用8 000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).思路分析:(1)利用“采购A 型丝绸的件数与采购B 型丝绸的件数相等”列出等量关系. (2)根据题意列出不等式,表示出w 关于m 的函数关系,分类讨论. 解:(1)设A 型进价为x 元,则B 型进价为(x -100)元,根据题意得: 100008000100x x =-. 解得x =500,经检验,x =500是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元.(2)①∵16,50.m m m ≥⎧⎨≤-⎩解得16≤m ≤25.②w =(800-500-2n )m +(600-400-n )(50-m )=(100-n )m +(10000-50n ).当50≤n <100时,100-n >0,w 随m 的增大而增大. 故m =25时,w 最大=12500-75n . 当n =100时,w 最大=5000.当100<n ≤150时,100-n <0,w 随m 的增大而减小. 故m =16时,w 最大=11600-66n .综上所述:w 最大=12500755000=n n n n n ≤⎧⎪⎨⎪≤⎩-,50<100, 10011600-66, 100<150.2.(2018·德州,23,12) 为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元? 思路分析:(1)额头待定系数法确定一次函数关系式; (2)由每台的利润×销量=总利润,列出方程,求出想获得10000万元的年利润减肥的销售单价. 解答过程:解:(1)因为该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系. 设y =kx +b (k ≠0),把每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台两组对应值代入,得4060045550k b k b +=⎧⎨+=⎩,解得101000k b =-⎧⎨=⎩.∴该一次函数为:y =-10x +1000;(2) 因此设备的销售单价为x ,成本价为30万元,则每台的利润为(x -30)万元 由题意,得(x -30)(-10x +1000)=10000, 解得:1280,50x x ==.因为,此设备的销售单价不得高于70万元, 所以,x =50.答:该公司想获得10000万元的年利润,则该设备的销售单价应是50万元. 3.(2018·山东泰安,20,9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完). 思路分析:(1)设乙种图书售价每本x 元,由于甲种图书每本的售价是乙种图书每本售价的1.4倍,故甲种图书售价为每本1.4x 元.根据等量关系“用1400元购买乙种图书的本数减去用1680元购买甲种图书的本数等于10本”列出分式方程求解;(2)设甲种图书进货a 本,总利润w 元,先构建w 关于a 的一次函数,再利用不等式求得a 的取值范围,最后利用一次函数的增减性求得书店获得最大利润时(即w 取得最大值) a 的大小.解答过程:解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意,得:xx 4.116801400-=10. 解得:x =20.经检验,x =20是原方程的解.所以,甲种图书售价为每本1.4×20=28元.答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a 本,总利润w 元,则w =(28-20-3)a +(28-14-2)(1200-a )=a +4800.又∵20a +14×(1200-a )≤20000,解得a ≤31600. ∵w 随a 的的增大的增大,∴当a 最大时w 最大. ∴当a =533本时w 最大.此时,乙种图书进货本数为1200-533=667(本).答:甲种图书进货533本,乙种图书进货667本时利润最大. 4.(2018·临沂市,24,9分) 甲、乙两人分别从A ,B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B 地后,乙继续前行.设出发xh 后,两人相距ykm ,图中折线表示从两人出发至乙到达A 地的过程中y 与x 之间的函数关系. 根据图中信息,求:(1)点Q 的坐标,并说明它的实际意义; (2)甲、乙两人的速度.QO531415210PN Mx/hy/km第24题图思路分析:(1)先求出直线PQ 的函数解析式,然后再求出点Q 的坐标;由点Q 位于x 轴上,并联系甲乙的位置来描述它的实际意义;(2)由点M 可知甲已到达点A ,由总路程为10km 即可求出甲的速度;再由点Q 的位置可知甲乙相遇时的时间,由此建立方程可求出乙的速度.解答过程:(1)设直线PQ 的解析式为y =kx +b ,代入点(0,10)和(14,152)的坐标,得 1154210k b b ⎧+=⎪⎨⎪=⎩,,解得:1010k b =-⎧⎨=⎩,,故直角PQ 的解析式为y =-10x +10, 当y =0时,x =1,故点Q 的坐标为(1,0),该点表示甲乙两人经过1小时相遇.(2)由点M 的坐标可知甲经过53h 达到B 地,故甲人的速度为:10km ÷53h =6km /h ;设乙人的速度为xkm /h ,由两人经过1小时相遇,得: 1·(x +6)=10,解得:x =4, 故乙人的速度为4km /h . 5.(2018·成都,26,8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200 m 2,若甲种花卉的种植面积不少于200 m 2,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?思路分析:(1)由图可知,当0≤x ≤300时,y 与x 是正比例函数,设y =k 1x ,把点(300,39000)代入即可求得y =k 1x ;当x >300时,y 与x 是一次函数,设y =k 2x +b ,把点(300,39000),(500,55000) 代入即可求得y =k 2x +b ;(2) 设甲种花卉种植为a m 2,则乙种花卉种植(1200-a ) m 2,根据题意,列不等式组求得不等式组的解,根据a 得取值范围,一次函数的性质,分类讨论,确定最佳种植方案.解:(1)当0≤x ≤300时,设y =k 1x ,把点(300,39000)代入y =k 1x ,得39000=300k 1,解得k 1=130. ∴y =130x .当x >300时,设y =k 2x +b ,把点(300,39000),(500,55000) 代入y =k 2x +b ,得⎩⎨⎧=+=+.550005003900030022b k b k ,解得⎩⎨⎧==.15000802b k ,∴y =80x +15000. 所以⎩⎨⎧>+≤≤=).300(1500080)3000(130x x x x y ,(2)设甲种花卉种植为a m 2,则乙种花卉种植(1200-a ) m 2,根据题意,得 ∴⎩⎨⎧-≤≥).1200(2200a a a ,解得200≤a ≤800.当200≤a <300时,W 1=130a +100(1200-a )=30a +120000. 当a =200时,W 最小值=126000(元).当300≤a ≤800时,W 2=80a +15000+100(1200-a )=135000-20a . 当a =800时,W 最小值=119000(元). ∵119000<126000,,∴当a =800时,总费用最低,最低为119000元.此时乙种花卉种植面积为1200-800=400(m 2).所以应分配甲种花卉种植面积为800 m 2,乙种花卉种植面积为400 m 2,才能使种植总费用最少,最少总费用为119000元.6(2018·无锡市,25,8)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600kg 的这种水果,已知水果店每售出1kg 该水果可获利润10元,未售出的部分每1kg 将亏损6元.以x (单位:kg ,2 000≤x ≤3 000)表示A 酒店本月对这种水果的需求量,y (元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式; (2)问:当A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?思路分析:(1)由于2 000≤x ≤3 000,根据题意需分2 000≤x ≤2 600和2 600<x ≤3 000两种情况讨论求y 关于x 的函数表达式;(2)由于表达式是分段函数,故需分2 000≤x ≤2 600和2 600<x ≤3 000两种情况讨论求A 酒店本月对这种水果的需求量范围.解答过程:解:(1)当2 000≤x ≤2 600时,y =10x -6(2600-x )=16x -15600;当2 600<x ≤3 000时,y =2600×10=26000.∴y 关于x 的函数表达式为y =()()16156002000260002600x x x -⎧⎪⎨<⎪⎩,≤≤2600≤3000;(3)(2)①当2 000≤x ≤2 600时,y =16x -15600≥22000,x ≥2350,∴2350≤x ≤2600; ②当2 600<x≤3 000时,y =26000>22000,成立,综上所述:2350≤x ≤3000不少于22000.答:当A 酒店本月对这种水果的需求量不小于2350kg 且不大于3000kg 时,该水果店销售这批水果所获的利润不少于22000元. 7.(2018江苏宿迁,24,10分)(本小题满分10分)某种型号汽油油箱容量为40L ,每行驶100km 耗油10L ,设一辆加满油的该型号汽车行驶路程为x (km ),行驶过程中油箱内剩余油量为y (L ). (1)求y 与x 之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱剩余油量不低于油箱容量的41,按此建议,求该辆汽车最多行驶的路程.思路分析:(1)利用油箱内有油40L ,每行驶100km 耗油10L ,进而得出余油量与行驶路程之间的函数关系式即可;(2)根据“油箱剩余油量不低于油箱容量的41”列出不等式求解即可. 解:(1)1040x y -=; (2)由题意得:41401040⨯≥-x ,解得:x ≤300,答该辆汽车最多行驶的路程为300千米. 8.(2018·绍兴,19,8分) 一辆汽车行驶时的耗油量为0.1升/千米,如图是邮箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. (2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.思路分析:第(1)问通过观察图像可知,函数图象经过点(400,30),因此汽车行驶400千米时,油箱内剩余油量为30升;利用已经行驶的路程乘每千米耗油量,加上剩余的油量,就能算出加满油时油箱的油量;第(2)问结合第一问,利用待定系数法可求函数关系式,再利用函数关系式列方程可以求出已行驶的路程. 解答过程:解:(1)由图形可知汽车行驶400千米时,油箱内剩余油量为30升; ∵汽车行驶时的耗油量为0.1升/千米,∴行驶400千米的耗油量为400×0.1=40(升),40+30=70(升),∴加满油时油箱的油量为70升. (2)设其函数关系式为y =kx +b ,则⎩⎨⎧=+=3040070b x b ,解得⎩⎨⎧=-=701.0b k ,∴y =-0.1x +70;当y =-0.1x +70=5时,解得x =650.综上,y 关于x 的函数关系式为y =-0.1x +70;该汽车在剩余油量5升时,已行驶的路程为650千米. 9.(2018·绍兴,24,14分)如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP =x 千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.思路分析:(1)用路程除以速度,即可得所求时间(对照本题计算结果,要注意体会同时发车的上行车、下行车的位置关于BC 中点对称这一特征);(2)先求出上行车、下行车相遇的时间,再以相遇前、相遇后进行分类讨论求解;(3)本题之所以能求出“x 满足的条件”,是因为该乘客“可选择走到B 站或走到C 站乘下行车前往A 站”,因此总体上可分为两大类进行研究,即:①走到B 站乘下行车;②走到C 站乘下行车.解答过程:解:(1)∵5÷30=61,∴第一班上行车到B 站、第一班下行车到C 站的用时均为61小时(或10分钟); (2)∵3×5÷30=21,∴行驶21小时,上行车、下行车将分别到达D 站、A 站.∵3×5÷(30+30)=41,∴行驶41小时,上行车、下行车相遇.在相遇前:y =15-60t ;在相遇后s =60t -15, ∴s 与t 的函数关系式为s =⎪⎩⎪⎨⎧≤≤-≤≤+-)2141(1560)410(1560t t t t .(3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设该乘客到达A 站总时间为t分钟.①当x =2.5时,往B 站用时30分钟,还需再等下行车5分钟,t =30+5+10=45,不合题意. 往C 站亦然. ②当x <2.5时,该乘客只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5-x )千米. 如果能乘上右侧第一辆下行车,则3055x x -≤,解得x ≤75,∴0<x ≤75,此时1874≤t <20,符合题意.如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎪⎩⎪⎨⎧-≤>3010575x xx ,解得75<x ≤710,此时2771≤t <2874,符合题意.如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎪⎩⎪⎨⎧-≤>30155710x xx ,解得710<x ≤715,此时3575≤t <3771,不合题意.综上,如果往B 站坐下行车,x 应满足0<x ≤710.③当x >2.5时,该乘客需往C 站坐下行车,离他左边最近的下行车离B 站是(5-x )千米,离他右边最近的下行车离C 站也是(5-x )千米.如果乘上右侧第一辆下行车,则3055-5xx -≤,解得x ≥5,不合题意. 如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎪⎩⎪⎨⎧-≤-<3010555x x x ,解得4≤x <5,此时30<t ≤32,符合题意.如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎪⎩⎪⎨⎧-≤-<3015554x x x ,解得3≤x <4,此时42<t ≤44,不合题意.综上,如果往C 站坐下行车,x 应满足4≤x <5.综①、②、③得, x 应满足的条件为0<x ≤710或4≤x <5. 10.(2018湖北武汉,20,8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数). (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案.思路分析:考察与不等式、一次函数相关的利润问题.(1)用A 型钢板x 块, B 型钢板(100-x )块分别表示出C 、D 型钢板的数量,根据C 型钢板不少于120块,D 型钢板不少于250块列不等式组;(2)每种钢板的利润乘以每种钢板的块数,求和得到总利润y ,根据函数的性质求最值. 解答过程:(1)解:(1)设A 型钢板x 块,则B 型钢板有(100-x )块. ()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得20≤x ≤25.又因为x 为整数,所以x=20,21,22,23,24,25,购买方案共有6种. (2)设全部出售后共获利y 元,则 y=100(2x+100-x )+120【x+3(100-x )】=-140x+46000, 因为k=140<0,所以y 随着x 的增大而减小, 当x==20时,y=-140×20+46000=43200元. 获利最大的方案为购买A 型20块,B 型80块.11.(2018·盐城,24,10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图像信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式.t y 2400BAO 24 60(分钟)(米)思路分析:(1)当两人出发24分时,图像与x 轴相交即为两人相遇;由图像可知甲步行60分时到达图书馆,即可根据“速度=路程÷时间”计算出甲的速度;(2)先分析出点A 、B 的坐标,再利用待定系数法确定函数关系式.解答过程:(1)24,40 v 甲=2400÷60=40(米/分) (2)v 甲+v 乙=2400÷24=100, ∵v 甲=40,∴v 乙=60, ∵2400÷60=40(分),40×40=1600(米),∴A (40,1600) 由图可知:B (60,2400),设线段AB 所表示的函数表达式为:y =kt +b (k ≠0)将点A 、B 的坐标代入表达式得⎩⎨⎧=+=+240060160040b k b k ,解得:⎩⎨⎧==040b k ,∴线段AB 所表示的函数表达式为:y =40t (40<t <60).12.(2018·天津市,23,10分) 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证旅游每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数). (I )根据题意,填写下表:游泳次数 10 15 20 … x 方式一的总费用(元) 150 175 … 方式二的总费用(二) 90 135 …(II )若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (III )当x >20时,小明选择哪种付费方式更合算?思路分析:(1)当游泳次数为20时,方式一的总费用为:100+5×20=200(元),方式二的总费用为:9×20=180(元). 当游泳次数为x 时,方式一的总费用为(100+5x )元,方式二的总费用为9x 元.(2)当总费用为270元时,分别求出两种付费方式的游泳次数,再进行比较即可;(3)先求出何时两种付费方式一样合算,再进行分类讨论.解答过程:(I )200,5x +100,180,9x . (II )方式一:5x +100=270,解得x =34. 方式二:9x =270,解得x =30. ∵34>30,∴小明选择方式一游泳次数比较多.(III )设方式一与方式二的总费用的差为y 元, 则y =(5x +100)﹣9x ,即y =﹣4x +100. 当y =0时,即﹣4x +100=0,解得x =25.∴当x =25时,小明选择这两种方式一样合算. ∵﹣4<0,∴y 随x 的增大而减小.∴当20<x <25时,有y >0,小明选择方式二更合算; 当x >25时,有y <0,小型选择方式一更合算.13.(2018·湖州市,22,10分) “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲,乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需要110吨和70吨有机化肥,两个仓库到A ,B 两个果园的路程如下表所示:路程(千米)甲仓库 乙仓库 A 果园15 25 B 果园20 20设甲仓库运往A 果园x 吨有机化肥,若汽车每吨每千米的运费为2元, (1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内) 运量(吨) 运费(元)甲仓库 乙仓库 甲仓库 乙仓库 A 果园 x 110-x 2×15x 2×25(110-x ) B 果园(2)设总运费为y元,求y关于x的函数表达式,并求甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?思路分析:(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B果园(80-x)吨,乙仓库运往A果园(110-x)吨,乙仓库运往B果园(x-10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.解答过程:(1)填写表示,如图:运量(吨) 运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110-x2×15x2×25(110-x)B果园80-x x-10 2×20(80-x) 2×20(x-10)(2)y=2×15x+2×25(110-x)+2×20(80-x)+2×20(x-10),即y=-20x+8300.在一次函数y=-20x+8300中,∵-20<0,且10≤x≤80,当x=80时,y最小=6700(元).即当甲仓库运往A果园80吨有机化肥时,总运费最省,是6700元.14.(2018·南京,25,9)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16 min 回到家中,设小明出发第t min时的速度为v m/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2m i n时离家的距离为m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.思路分析:(1)0-2m i n时速度为100 m/min,100×2=2;(2)当2<t≤5时,速度为160m/min,离家的距离(s)=前面2分钟走的路程+后面(t-2)分钟走的路程,即s=200+160(t-2);(3)前面5分钟走的路程为200+160×3=580,后面11分钟走的路程为80×11=880,则第5分钟时,小明离家不是最远.设t分钟时,小明离家最远,此时离家距离为200+160×3+80(t-5),回家时走的路程为80(16-t),由往返路程相等可得方程,解得t及离家最远距离,从而可画出图象.解答过程:(1)200.(2)根据题意,当2<t≤5时,s与t之间的函数表达式为s=200+160(t-2),即s=160-120.(3)前面5分钟走的路程为200+160×3=580,后面11分钟走的路程为80×11=880,则第5分钟时,小明离家不是最远.设t分钟时,小明离家最远,根据题意得,200+160×3+80(t-5)=80(16-t),解得t=6.25,80×(16-6.25)=780.s与t之间的函数图像如图所示.15.(2018·荆门,22,10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000元;放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a =10000 (020),1008000 (2050).t t t ⎧⎨+⎩≤≤<≤y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值; (2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元,问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)思路分析:(1)根据“放养10天的总成本为166000元;放养30天的总成本为178000元”列方程组求解;(2)利用待定系数法求两条线段的解析式;(3)分20天前和20天后两种情况列函数解析式求解.解:(1)依题意得10166000,30178000.m n m n +=⎧⎨+=⎩解得600,160000.m n =⎧⎨=⎩(2)①当0≤t ≤20时,设y =k 1t +b 1,由图象得11116,2028.b k b =⎧⎨+=⎩解得113,516.k b ⎧=⎪⎨⎪=⎩∴y =35t +16.②当20<t ≤50时,设y =k 2t +b 2,由图象得22222028,5022.k b k b +=⎧⎨+=⎩解得221,532.k b ⎧=-⎪⎨⎪=⎩ ∴y =-15t +32.综上,y =316(020),5132(2050).5t t t t ⎧+⎪⎨⎪-+⎩≤≤<≤(3)W =ya -mt -n .①当0≤t ≤20时,W =10000(35t +16)-600t -160000=5400t .∵5400>0,∴当t =20时,W 最大=5400×20=108000.5020 t /天y /(元/kg)1628 22 第22题图②当20<t≤50时,W=(-15t+32)(100t+8000)-600t-160000=-20t2+1000t+96000=-20(t-25)2+108500.∵-20<0,抛物线的开口向下,∴当t=25时,W最大=108500.∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.16.(2018·怀化市,20,10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B 两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数关系式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.思路分析:(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围(注意取整),再根据(1)得出的y与x的函数关系式,利用一次函数的增减性,结合自变量的取值即可得出费用最省的方案.解答过程:解:(1)由题知y=90x+70(21-x),整理得y与x的函数关系式为y=20x+1470(0≤x≤21,且x为整数);(2)由(1)知y=20x+1470,∴y随x的增大而增大,∵21-x<x,∴x>10.5,∴x的最小整数值为11,∴当x=11时,y最小=20×11+1470=1690,此时21-x=10.综上,费用最省的方案是:购买A种树苗11棵,购买B种树苗10棵,该方案所需费用为1690元.第11 页共11 页。

2018全国数学中考分类汇编-一次函数

2018全国数学中考分类汇编-一次函数

2018全国数学中考分类汇编-一次函数一、单选题1.【2018年湖南省湘潭市中考数学试卷】若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.【答案】C【解析】分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.详解:∵一次函数中∴一次函数的图象经过一、二、四象限,故选:C.点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.2.【湖南省常德市2018年中考数学试卷】若一次函数的函数值随的增大而增大,则()A.B.C.D.【答案】B【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.3.【湖南省株洲市2018年中考数学试题】已知一系列直线分别与直线相交于一系列点,设的横坐标为,则对于式子,下列一定正确的是( )A.大于1 B.大于0 C.小于-1 D.小于0【答案】B点睛:本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题.4.【湖南省邵阳市2018年中考数学试卷】小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8s C.3s D.预测结果不可靠【答案】A【解析】【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【详解】(1)设y=kx+b依题意得,,解得,∴y=﹣0.2x+15.8,当x=5时,y=﹣0.2×5+15.8=14.8,故选A.【点睛】本题考查一次函数的应用、待定系数法等知识,根据表格中的数据确定出成绩与月份的函数关系是解题的关键.学科*网5.【广西壮族自治区玉林市2018年中考数学试卷】等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【答案】B【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键. 6.【四川省资阳市2018年中考数学试卷】已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>B.<x<C.x<D.0<x<【答案】B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx的解集为<x<.【详解】把(,m)代入y1=kx+1,可得m=k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<;当kx+1<mx时,(m﹣2)x+1<mx,解得x>,∴不等式组mx﹣2<kx+1<mx的解集为<x<,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.【贵州省贵阳市2018年中考数学试卷】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)【答案】C【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.【河南省2018年中考数学试卷】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B 以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【答案】C【解析】分析:通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.详解:过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴DE•AD=a.∴DE=2.点睛:本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.9.【辽宁省沈阳市2018年中考数学试卷】在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.10.【辽宁省葫芦岛市2018年中考数学试卷】如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<4【答案】A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.11.【内蒙古呼和浩特市2018年中考数学试卷】若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,则常数b=()A.B.2C.﹣1D.1【答案】B【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.学科*网二、填空题12.【湖北省十堰市2018年中考数学试卷】如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为_____.【答案】﹣3<x<0【解析】【分析】先把不等式x(kx+b)<0化为或,然后利用函数图象分别解两个不等式组即可得解.【详解】不等式x(kx+b)<0化为或,利用函数图象得为无解,的解集为﹣3<x<0,所以不等式x(kx+b)<0的解集为﹣3<x<0,故答案为:﹣3<x<0.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.【四川省乐山市2018年中考数学试题】已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=______;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=______.【答案】 1详解:当y=0时,有(k-1)x+k+1=0,解得:x=-1-,∴直线l1与x轴的交点坐标为(-1-,0),同理,可得出:直线l2与x轴的交点坐标为(-1-,0),∴两直线与x轴交点间的距离d=-1--(-1-)=-.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(-1,-2).(1)当k=2时,d=-=1,∴S2=×|-2|d=1.故答案为:1.(2)当k=3时,S3=;当k=4时,S4=;…;S2018=,∴S2+S3+S4+……+S2018=,=,=2-,=.故答案为:.点睛:本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.14.【广西壮族自治区贵港市2018年中考数学试卷】如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(_______).【答案】2n﹣1,0【详解】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.【点睛】本题考查了规律题——点的坐标,一次函数图象上点的坐标特征等,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A1、A2、A3…的点的坐标是解决本题的关键.15.【黑龙江省大庆市2018年中考数学试卷】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.【答案】0<m<【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×m×m,∵m>0,解得OD=m,由直线与圆的位置关系可知m <6,解得m<,故答案为:0<m<.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.16.【上海市2018年中考数学试卷】如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)【答案】减小【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.17.【吉林省长春市2018年中考数学试卷】如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)【答案】2【解析】【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n 的取值范围,在其内任取一数即可得出结论.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥,故答案为:2.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.18.【湖南省郴州市2018年中考数学试卷】如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是_____.【答案】【详解】如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4,又∵∠1=60°,∴∠2=30°,sin∠2=,∴CD=2,cos∠2=cos30°=,OD=2,∴C(2,2),【点睛】本题考查了菱形的性质、待定系数法求一次函数解析式,利用锐角三角函数得出C 点坐标是解题关键.学科*网19.【山东省东营市2018年中考数学试题】如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是_____.【答案】【解析】分析:因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.详解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是()2017故答案为:()2017点睛:本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.20.【湖南省邵阳市2018年中考数学试卷】如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.【答案】x=2【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.21.【江苏省淮安市2018年中考数学试题】如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是_____.【答案】()n﹣1【解析】分析:根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n C n D n的面积=()n﹣1,故答案为:()n﹣1.点睛:本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.22.【四川省内江市2018年中考数学试题】如图,直线y=﹣x+1与两坐标轴分别交于A,B 两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1=__________.【答案】由题意可知:△BT1M≌△T1T2N≌△T n-1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴S△BT1M=××=,S1=S矩形OMT1P1,S2=S矩形P1NT2P2,∴S1+S2+S3+…+S n-1=(S△AOB-n•S△NBT1)=×(-n×)=.故答案为.点睛:本题考查一次函数的应用,规律型-点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.23.【山东省威海市2018年中考数学试题】如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x 于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为__.【答案】(22018,22017).【解析】分析:根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.点睛:本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.三、解答题24.【四川省内江市2018年中考数学试题】某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?【答案】(1)A、B两种型号的手机每部进价各是2000元、1500元;(2)①有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②购进A种型号的手机27部,购进B种型号的手机13部时获利最大.(2)①设A种型号的手机购进a部,则B种型号的手机购进(40-a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.详解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40-a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40-a)=-100a+24000,∵-10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=-100×27+24000=21700(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.点睛:此题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,找出满足题意的等量关系与不等关系是解本题的关键.学科*网25.【四川省内江市2018年中考数学试卷】某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元.(1)若商场用500000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?【答案】(1)A、B两种型号的手机每部进价各是2000元、1500元;(2)①有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②购进A种型号的手机27部,购进B种型号的手机13部时获利最大.【解析】分析:(1)A、B两种型号的手机每部进价各是x元、y元,根据每部型号手机的进价比每部型号手机的进价多500元以及商场用500000元共购进型号手机10部,型号手机20部列方程组,求出方程组的解即可得到结果;详解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;点睛:此题考查了一次函数的应用,一元一次不等式的应用,二元一次方程组的应用,找出满足题意的等量关系与不等关系是解本题的关键.26.【湖北省恩施州2018年中考数学试题】某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【答案】(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30-a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,(3)设总费用为w元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.27.【湖南省张家界市2018年初中毕业学业考试数学试题】阅读理解题在平面直角坐标系中,点到直线的距离公式为: ,例如,求点到直线的距离.解:由直线知:所以到直线的距离为:根据以上材料,解决下列问题:(1)求点到直线的距离.(2)若点到直线的距离为,求实数的值.【答案】(1)1;(2)1或-3.【解析】分析:(1)根据点到直线的距离公式求解即可;(2)根据点到直线的距离公式,列出方程即可解决问题.详解:由直线知:A=3,B=-4,C=-5,∴点到直线的距离为:d=;(2)由点到直线的距离公式得:∴|1+C|=2解得:C=1或-3.点睛:本题考查点到直线的距离公式的运用,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.28.【新疆自治区2018年中考数学试题】已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【答案】(1)y=和y=2x﹣3.(2)点P在一次函数图象上.【解析】分析:(1)将点(2,1)代入y=,求出k的值,再将k的值和点(2,1)代入解析式y=kx+m,即可求出m的值,从而得到两个函数的解析式;(2)将x=-1代入(1)中所得解析式,若y=-5,则点P(-1,-5)在一次函数图象上,否则不在函数图象上.点睛:本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.29.【湖北省武汉市2018年中考数学试卷】用1块A型钢板可制成2块C型钢板和1块D 型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.【答案】(1)A、B型钢板的购买方案共有6种;(2)购买A型钢板20块,B型钢板80块时,获得的利润最大.【解析】【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.(2)设总利润为w,根据题意得,w=100[2x+(100﹣x)]+120[x+3(100﹣x)]=﹣140x+46000,∵﹣140<0,∴y随着x的增大而减小,∴当x=20时,w max=﹣140×20+46000=43200元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点睛】本题主要考查了一元一次不等式组的应用,一次函数的应用,弄清题意,正确找出题中的不等关系列出不等式组,找出数量间的关系列出函数解析式是解题的关键.30.【湖南省常德市2018年中考数学试卷】某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【答案】(1)该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)需要支付这两种水果的货款最少应是1500元.【详解】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:,答:该店5月份购进甲种水果190千克,购进乙种水果10千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400,∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90,∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500,∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,弄清题意,找准等量关系列出方程组,找出各数量间的关系列出函数解析式是解题的关键. 学科*网31.【江苏省盐城市2018年中考数学试题】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.【答案】(1)24;40;(2)线段AB的表达式为:y=40t(40≤t≤60)【解析】分析:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;。

全国2018年中考数学真题分类汇编第10讲一次函数第2课时一次函数的应用无答案20180919253

全国2018年中考数学真题分类汇编第10讲一次函数第2课时一次函数的应用无答案20180919253

第2课时一次函数的应用知识点1 一次函数建模知识点2 一次函数的实际应用知识点1 一次函数建模(2018·广州)(2018·兰州)(2018·云南)知识点2 一次函数的实际应用10.(2018·仙桃)甲、乙两车从A地出发,匀速驶向B地.甲车以80 km/h的速度行驶1 h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④(2018·咸宁)(2018·杭州)(2018·重庆B)(2018·重庆A )17. A ,B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发。

途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地。

甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有千米。

【答案】 90【解析】 甲车先行40分钟(402603=h ),所行路程为30千米,因此甲车的速度为3045/23=km h 。

乙车的初始速度为44521060/3乙乙⨯=+⇒=V V km h ,因此乙车故障后速度为60-1050/=km h 。

121212212121336050()453274145()4524033345290⎧+=+=++⨯⎧⎪⎪⎪⇒⇒=⎨⎨+=⎪⎪⨯+++⨯=⎩⎪⎩∴⨯=t t t t t t t t t t t km(2018·绍兴)(2018·衢州)(2018·丽水)10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x (h)的函数关系如图所示,则下列判断错误..的是(▲)A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱(2018·连云港)25.(2018·南通)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为/km h;km h,快车的速度为/(2)解释图中点C的实际意义,并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km. (2018·龙东)(2018·齐齐哈尔)24.(2018·盐城)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t _______分钟时甲乙两人相遇,甲的速度为_______米/分钟;(2)求出线段AB所表示的函数表达式.(2018·长春)(2018·吉林)23.(满分10分)(2018·仙桃)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价y 1(元)、生产成本y 2(元)与产量x (kg )之间的函数关系.(1)求该产品销售价y 1(元)与产量x (kg )之间的函数关系式; (2)直接写出生产成本y 2(元)与产量x (kg )之间的函数关系式; (3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?25.(2018·徐州)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)(第23y kg0 138设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.解:(1)a=7, b=1.4, c=2.1(2)12.10.3y x =-(3)有交点为31(,9)7其意义为当317x<时是方案调价前合算,当317x>时方案调价后合算.。

2018年中考数学真题分类汇编专题4 一元一次方程及其应用 试题含解析

2018年中考数学真题分类汇编专题4 一元一次方程及其应用 试题含解析

一元一次方程及其应用一、选择题1.(2018·湖北省武汉·3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.2013【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.2.(2018•湖北恩施•3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.3.(2018•甘肃白银,定西,武威•3分)已知,下列变形错误的是()A. B. C. D.【答案】B【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】由得,3a=2b,A. 由得,所以变形正确,故本选项错误;B. 由得3a=2b,所以变形错误,故本选项正确;C. 由可得,所以变形正确,故本选项错误;D.3a=2b变形正确,故本选项错误.故选B.二.填空题(要求同上一.)1. (2018•四川成都•3分)已知,且,则的值为________.【答案】12【考点】解一元一次方程,比例的性质【解析】【解答】解:设则a=6k,b=5k,c=4k∵∴6k+5k-8k=6,解之:k=2∴a=6×2=12故答案为:12【分析】设,分别用含k的式子表示出a、b、c的值,再根据,建立关于k的方程,求出k的值,就可得出a的值。

3.3一次函数的应用(第3部分)-2018年中考数学试题分类汇编(word解析版)

3.3一次函数的应用(第3部分)-2018年中考数学试题分类汇编(word解析版)

第三部分函数及其图象3.3 一次函数的应用【一】知识点清单1、一次函数的应用根据实际问题列一次函数关系式;一次函数的应用【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖南邵阳市-第7题-3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8s C.3s D.预测结果不可靠【知识考点】一次函数的应用.【思路分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答过程】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=5时,y=﹣0.2×5+15.8=14.8.故选:A.【总结归纳】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题三、解答题1.(2018年贵州省铜仁市-第23题-12分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【知识考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答过程】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.【总结归纳】本题主要考查二元一次方程组和一元一次不等式及一次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程和函数解析式,特别注意不能忽略每张桌子配套的椅子所产生的费用.2.(2018年贵州省遵义市-第25题-12分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【知识考点】一元二次方程的应用;一次函数的应用.【思路分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答过程】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【总结归纳】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.3.(2018年江苏省无锡市-第25题-8分)一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?【知识考点】一次函数的应用.【思路分析】(1)列函数解析式时注意在获得的利润里减去未出售的亏损部分;(2)由(1)y≥22000即可.【解答过程】解:(1)由题意:当2 000≤x≤2 600时,y=10x﹣6(2600﹣x)=16x﹣15600;当2 600<x≤3 000时,y=2600×10=26000(2)由题意得:当2 000≤x≤2 600时,16x-15600≥22000解得:x≥2350,当2 600<x≤3 000时,利润为26000也满足条件,∴当A酒店本月对这种水果的需求量小于等于3000,不少于2350kg时,该水果店销售这批水果所获的利润不少于22000元.【总结归纳】本题考查一次函数和一元一次不等式,求函数关系式和列不等式时,要注意理解题意.4.(2018年山东省潍坊市-第23题-11分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【知识考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【思路分析】(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.【解答过程】解:(1)设每台A型,B型挖据机一小时分别挖土x立方米和y立方米,根据题意得解得:∴每台A型挖掘机一小时挖土30立方米,每台B型挖掘机一小时挖土15立方米(2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12﹣m)台.根据题意得W=4×300m+4×180(12﹣m)=480m+8640∵∴解得∵m≠12﹣m,解得m≠6∴7≤m≤9∴共有三种调配方案,方案一:当m=7时,12﹣m=5,即A型挖据机7台,B型挖掘机5台;方案二:当m=8时,12﹣m=4,即A型挖掘机8台,B型挖掘机4台;方案三:当m=9时,12﹣m=3,即A型挖掘机9台,B型挖掘机3台.…∵480>0,由一次函数的性质可知,W随m的减小而减小,∴当m=7时,W小=480×7+8640=12000此时A型挖掘机7台,B型挖据机5台的施工费用最低,最低费用为12000元.【总结归纳】本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.5.(2018年四川省南充市-第23题-8分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).【知识考点】一次函数的应用;分式方程的应用.【思路分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.【解答过程】解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元根据题意得:解得x=400经检验,x=400为原方程的解∴x+100=500答:一件A型、B型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600【总结归纳】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.6.(2018年四川省巴中市-第28题-8分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.【知识考点】二元一次方程组的应用;一元一次不等式组的应用;一次函数的应用.【思路分析】(1)根据“2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元”,建立方程组即可得出结论;(2)根据题意建立函数关系式,由A型桌椅不少于120套,B型桌椅不少于70套,确定出x的范围;(3)根据一次函数的性质,即可得出结论.【解答过程】解:(1)设A型桌椅的单价为a元,B型桌椅的单价为b元,根据题意知,,解得,,即:A,B两型桌椅的单价分别为600元,800元;(2)根据题意知,y=600x+800(200﹣x)+200×10=﹣200x+162000(120≤x≤140),(3)由(2)知,y=﹣200x+162000(120≤x≤140),∴当x=140时,总费用最少,即:购买A型桌椅140套,购买B型桌椅60套,总费用最少,最少费用为134000元.【总结归纳】本题考查一次函数的应用,二元一次方程的应用,一元一次不等式组的应用,读懂题意,列出方程组或不等式是解本题的关键.7.(2018年黑龙江省齐齐哈尔市-第22题-10分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.【知识考点】一次函数的应用.【思路分析】(1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后,大客车行驶的路程,从而可得结论;(3)先计算直线AF的解析式为:S=t﹣20,计算小轿车驶过景点入口6km时的时间为66分,再计算大客车到达终点的时间:t=+35=70,根据路程与时间的关系可得小轿车行驶6千米的速度与80作比较可得结论.【解答过程】解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.【总结归纳】本题考查了运用待定系数法求一次函数的解析式的运用,路程=速度×时间的关系式的运用,在解答中求出函数关系式及两车的速度是关键,并注意运用数形结合的思想.。

2018年中考数学真题汇编--一次函数(含答案)

2018年中考数学真题汇编--一次函数(含答案)

A.
B.
C.
D.
【答案】 D
3.在平面直角坐标系中,过点( 1,2)作直线 l ,若直线 l 与两坐标轴围成的三角形面积为 直线 l 的条数是( )。
4,则满足条件的
A.5
B.4 C.3 D.2
【答案】 C
4.如果规定 [x] 表示不大于 x 的最大整数,例如 [2.3]=2 ,那么函数 y=x ﹣[x] 的图象为( )
2018 年中考数学真题汇编 --一次函数
一、选择题
1.给出下列函数:① y=﹣ 3x+2;② y= ;③ y=2x 2;④ y=3x ,上述函数中符合条作 “当 x>1 时,函数值 y
随自变量 x 增大而增大 “的是( )
A. ①③ 【答案】 B
B. ③④
C. ②④
D. ②③
2.把函数 y=x 向上平移 3 个单位,下列在该平移后的直线上的点是 ( )
平移的距离为 x,正方形 ABCD 的边位于
之间分的长度和为 y,则 y 关于 x 的函数图象大致为( )
A.
B.
C.
D.
【答案】 A 8.如图,二次函数 y=ax2+bx 的图象开口向下,且经过第三象限的点 y= ( a-b) x+b 的图象大致是( )
P.若点 P 的横坐标为 -1,则一次函数
动了 秒 ,记
的面积为
,下面图象中能表示 与 之间的函数关系的是 ( )
A.
B.
C.
D.
【,垂足分别为 M , N, MN=1 ,正方形 ABCD 的边长为
,对角线
AC 在直线 l 上, 且点 C 位于点 M 处,将正方形 ABCD 沿 l 向右平移, 直到点 A 与点 N 重合为止, 记点 C

2018中考数学真题分类汇编解析版-19.2.一次函数图象及其性质

2018中考数学真题分类汇编解析版-19.2.一次函数图象及其性质

一、选择题1.(2018·济宁,12,3分)在平面直角坐标系中,已知一次函数y =21x -+的图象经过P 1(1x ,1y )、P 2(2x ,2y )两点,若1x <2x ,则1y ________2y .(填“>”“<”或“=”)答案:>.解析:在y =21x -+中,因为k =-2,所以y 随x 的增大而减小.因为1x <2x ,则1y >2y . 2. (2018·南充,7,3分)直线y =2x 向下平移2个单位得到的直线是 A .y =2(x +2) B .y =2(x -2) C .y =2x -2 D .y =2x +2答案:C .解析:y =2x 向下平移2个单位得到的直线是y =2x -2,也可以从(0,0)平移到(0,-2)得到答案C .3.(2018·德州,10,4)给出下列函数:①y =-3x +2;②y =3x;③y =2x 2;④y =3x .上述函数中符合条件”当x >1时,函数值y 随自变量x 的增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③答案:.B ,解析:∵x >1>0,y =2x 2的对称轴是y 轴,开口向上,∴y =3x 和y =2x 2的函数值y 随自变量x 的增大而增大,故③④符合题意. 4.(2018•枣庄市,5,3) 如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )第5题图A .-5B .32C .52D .7答案:B ,解析:∵y =kx +b 的图象l 过(0,1)和(-2,0),∴1-20b k b =⎧⎨+=⎩,,解得1=21k b ⎧⎪⎨⎪=⎩,,∴y =12x +1,又A (3,m )在直线l 上,∴m =32+1=52,故选C .5.(2018·常德,4,3分)若一次函数y =(k -2)x +1的函数值y 随x 的增大而增大,则A .k <2B .k >2C .k >0D .k <0答案.B ,解析:因为一次函数y =kx +b 的函数值y 随x 的增大而增大,所以k -2>0,解得k >2,故选B . 6.(2018江苏宿迁,8,3分)在平面直角坐标系中,过点A (1,2)作直线l 与两坐标轴围成的三角形的面积为4,则满足条件的直线l 的条数是A .5B .4C .3D .2答案:C ,解析:设直线l 的解析式为y=kx+b ,把A (1,2)代入得2=k+b ,即b=2-k ,∴y=kx+2-k ,与坐标轴交点坐标为(0,2-k ),(kk 2-,0).∵与两坐标轴围成的三角形的面积为4,∴42221=-⋅-k k k ,①当k<0时,原式可化为:8)2(2=--kk ,解得k=-2;②当0<k<2时,原式可化为k k 8)2(2=-,解得246-=k ;③当k>2时,原式可化为k k 8)2(2=-,解得246+=k 故选C .7.(2018·株洲市,10,3分)已知一系列直线y =a k x +b (a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子ji j i x x a a --(1≤i ≤k ,1≤j ≤k ,i ≠j ),下列一定正确的是( )A .大于1B .大于0C .小于-1D . 小于0 B ,解析:对于y =a k x +b ,令y =0,则x =k a b -,所以x i -x j =i a b-+j a b =ji j i a a a a b )(-,ji j i x x a a --=ji j i ji a a a a b a a )(--=b a a j i .因为a k 均不相等且不为零,a k 同号,b >0,所以0>b a a j i ,故选B . 8.(2018·娄底市,9,3分)将直线y=2x ﹣3向右平移2个单位,再向上平移3个单位,所得的直线的表达式为( ) A .y=2x ﹣4 B .y=2x+4 C .y=2x+2 D .y=2x ﹣2A ,解析:在平面直角坐标系中,直线平移时k 的值不变,只有b 发生变化,将图形的平移转化为图形上某点的平移,找出一个特殊的点代入求k 的值;或直接根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.写出平移后的直线解析式:y=2(x ﹣2)﹣3+3=2x ﹣4. 9.(2018·绍兴,6,4分)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点A (-1,2),B (1,3),C (2,1),D (6,5),则此函数A .当x <1时,y 随x 的增大而增大B .当x <1时,y 随x 的增大而减小C .当x >1时,y 随x 的增大而增大D .当x >1时,y 随x 的增大而减小答案:A ,解析:从图像可知,当x ≤1时,y 随x 的增大而增大;当1≤x ≤2时,y 随x 的增大而减小;当x ≥2时,y 随x 的增大而增大.因此本题的正确答案是A . 10(2018·内江市,12,3分)如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 坐标分别为(2,1),(6,1),∠BAC=90°,∠BAC=90°,AB=AC ,直线AB 交y 轴于点P,若△ABC 与△ABC 关于点P 成中心对称,则点A′的坐标为( )A.(-4,-5)B.(-5,-4)C.(-3,-4)D.(-4,-)A 解析:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形, ∴A (4,3),设直线AB 解析式为y=kx+b ,则 43,21,k b k b +=⎧⎨+=⎩解得1,1,k b =⎧⎨=-⎩∴直线AB 解析式为y=x ﹣1, 令x=0,则y=﹣1, ∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称, ∴点P 为AA'的中点,设A'(m ,n ),则42m +=0,32n+=﹣1, ∴m=﹣4,n=﹣5, ∴A'(﹣4,﹣5)二、填空题1.(2018安徽,13,5分)如图,正比例函数y =kx 与反比例函数y =x6的图象有一个交点A (2,m ),AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l .则直线l 对应的函数表达式是答案.y =23x -3.,解析:∵点A (2,m )在反比例函数y =x 6的图象上,∴m =26=3,∴点A 坐标为(2,3),∵AB ⊥x 轴于点B ,∴点B 坐标为(2,0),∵点A (2,3)在直线y =kx 上,∴3=2k ,k =23,根据题意设直线l 对应的函数表达式为y =23x +b ,∵点B (2,0)在直线l 上,∴0=2×23+b ,b =-3.∴直线l 对应的函数表达式为y =23x -3.4.(2018眉山市,14,3分)已知点A (x 1,y 1)、B (x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为 .答案:y 1>y 2,解析:由于一次函数图象经过二、四象限,∴k <0,y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2 5.(2018·扬州市,18,3分)如图,在等腰Rt △ABO ,∠A =90°,点B 的坐标为(0,2),若直线:l )0(≠+=m m mx y 把△ABO 分成面积相等的两部分,则m 的值为 .5.5132-,解析:直线:l )0(≠+=m m mx y 与x 轴交于点(-1,0),与y 轴交于点(0,m ),与AB 交于点C ,由题意可知:直线AB 的表达式为y =-x +2,解方程组2y mx my x =+⎧⎨=-+⎩得x =21m m -+,∴CD=21m m -+;S △BCE =12S △ABO =12=12×BE ×CD =12·21mm -+·(2-m ),解得m =5132±,由于5132+>2,故舍去,∴m 的值为5132-. 6. 已知点A 是直线y =x +1上一点,其横坐标为– 12,若点B 与点A 关于y 轴对称,则点B 的坐标为 .答案:(12,12),解析:∵点A 是直线y =x +1上一点,其横坐标为– 12,∴y =– 12+1= 12,∴A (– 12,12),∵点B 与点A 关于y 轴对称,∴点B 坐标为(12,12).7.(2018·温州市,15,3分) 如图,直线 343y x =-+与 x 轴、y 轴分别交于 A ,B 两点,C 是 OB 的中点,D 是 AB 上一点,四边形 OEDC 是菱形,则△OAE 的面积为.答案:23,解析:已知直线方程,且A ,B 两点分别为直线与x 轴、y 轴的交点,则A 点坐标为(43,0),B 点坐标为(0,4),则OB =4,OA =43,又因为△OAB 为直角三角形,所以∠OBA = 60°;C 点坐标为(0,2),又因为四边形 OEDC 是菱形,所以OC =CD =BC ,又因为∠OBA = 60°,所以△BCD 为等边三角形,D 点坐标为(3,3),则E 点坐标为(3,1),则△OEA 的面积S =14312⨯⨯=23. 8.(2018·天津市,16,3分)将直线y =x 向上平移2个单位长度,平移后直线的解析式为 . 答案:y =x +2 解析:设平移后直线的解析式为y =kx +b ,易知k =2,平移后直线经过点(0,2),将(0,2)代入y =x +b 得b =2,∴平移后直线的解析式为y =x +2. 95. (2018·内江市,25,6分)如图,直线y=-x+1与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等分,分点分别为1231,,,n P P P P -……,,过每个分点作x 轴的垂线分别交直线AB 于1231,,,n T T T T -……,,用1231,,,n S S S S -……,分别表示11212,,Rt T OP Rt T PP ∆∆……,第18题答图xy E DAB OC xy ABO第18题图121n n n Rt T P P ---∆的面积,则1231n S S S S -+++……+= .14n n- 解析:∵P 1,P 2,P 3,…,P n ﹣1是x 轴上的点,且OP 1=P 1P2=P 2P3=…=P n ﹣2P n ﹣1=1n ,分别过点p 1、p 2、p 3、…、p n ﹣2、p n ﹣1作x 轴的垂线交直线y=﹣x+1于点T 1,T 2,T 3,…,T n ﹣1,∴T 1的横坐标为:1n ,纵坐标为:1﹣1n,∴S 1=12×1n (1﹣1n )=12n(1﹣1n )同理可得:T 2的横坐标为:2n ,纵坐标为:1﹣2n,∴S 2=12n(1﹣2n ),T 3的横坐标为:3n ,纵坐标为:1﹣3n ,S 3=12n(1﹣3n )…S n ﹣1=12n (1﹣1n n-)∴S 1+S 2+S 3+…+S n ﹣1=12n [n ﹣1﹣12(n ﹣1)]= 14×1n (n ﹣1)=14n n-.三、解答题 1.(2018·山东泰安,22,9分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数y =xm的图象经过点E ,与AB 交于点F . (1)若点B 的坐标为(-6,0),求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若AF -AE =2,求反比例函数的表达式.思路分析:(1)由B 点坐标及边AD 、AB 的长,可求点A 与点E 的坐标,这样利用待定系数法即可求反比例函数、一次函数的表达式;(2)在Rt △ADE 中,由勾股定理可求AE 的长,再由AF -AE =2求得AF 的长,进而得BF 的长.不妨设E 点横标为a ,则F 点横标为a -3,由于点E 、F 均在反比例函数图象上,故它们的坐标之积相等,据此列方程求得a 的值,则易于计算m 的值,确定出反比例函数的表达式.解答过程:解:(1)∵B (-6,0),AD =3,AB =8,E 为CD 的中点,∴E (-3,4),A (-6,8). ∵反比例函数图象过点E (-3,4),∴m =-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b ,∴⎩⎨⎧=+-=+-.43,86b k b k 解得⎪⎩⎪⎨⎧=-=.0,34b x k∴y =34-x .(2)∵AD =3,DE =4,∴AE =5.∵AF -AE =2,∴AF =7.∴BF =1. 设E 点坐标为(a ,4),则F 点坐标为(a -3,1).∵E ,F 两点在y =x m 图象上,∴4a =a -3,解得a =-1.∴E (-1,4),∴m =-4,∴y =x4-. 2(2018·重庆B 卷,22,10)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2,直线l 2与y 轴交于点D . (1)求直线l 2的解析式; (2)求△BDC 的面积.【思路分析】(1)先求出点A 的坐标,再由平移求出直线l 3的为y =12x -4,进而求出点C 的坐标;直线l 2的解析式为y =kx +b ,将A 、C 两点坐标代入得方程组解答即可锁定直线l 2的解析式;(2)先求出B 、D 两点坐标,进而得到线段BD 的长,C 点的横坐标的绝对值即为△BDC 的边BD 上的高,由三角形的面积公式计算即可.l 3l 2l 1y xOCDBA 22题图A B C DEFO xy【解题过程】22.解:(1)在y=12x中,当x=2时,y=1;易知直线l3的解析式为y=12x-4,当y=-2时,x=4,故A(2,1),C(4,-2).设直线l2的解析式为y=kx+b,则2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,故直线l2的解析式为y=-32x+4.(2)易知D(0,4),B(0,-4),从而DB=8.由C(4,-2),知C点到y轴的距离为4,故S△BDC=12BD•Cx=12×8×4=16.【知识点】一次函数的应用平移一次函数解析式的求法3.(2018·无锡市,26,10)如图,平面直角坐标系中,已知点B的坐标为(6,4)(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.思路分析:(1)①当△ABC与△AOC全等且拼成矩形,可通过作垂线构造矩形的方法,也可找OB中点画圆的方法找到AC两点,再作直线AC;②当△ABC与△AOC全等且拼成筝形时,作OB的垂直平分线即可;(2),当△ABC与△AOC全等且拼成筝形时,先借助勾股定理列方程求出OA和OC的长,从而得A、C的坐标,在用待定系数法求AC的解析式;当△ABC与△AOC全等且拼成矩形,直接利用待定系数法求AC得解析式.解答过程:答案:解:(1)方法一:过B作BA⊥x轴于A,过B作BC⊥y轴于C,作直线AC(见答图①);方法二:连接OB,作OB的垂直平分线交OB于D,以D为圆心,DO为半径作圆D,交x轴于A,交y 轴于C,作直线AC(见答图②);方法三:连接OB,作OB的垂直平分线交x轴于A,交y轴于C,作直线AC(见答图③);① ②③ ④(2)不唯一,①当∵△AOC ≌△ABC 时,过B 作BC ⊥y 轴于E ,过B 作BA ⊥x 轴于F (见答图④),则四边形OEBF 是矩形,∴OE =6,OF =4,设OA =a ,则AE =6-a ,∵OA =BA =a ,AB 2=AE 2+BE 2 ,∴a 2=(6-a )2+42,解得a =313,∴A (313,0);同法,设OC =c ,CF =c -4, ∵CO =CB =c ,CB 2=CF 2+BF 2, ∴c 2=(c -4)2+62,解得c =213,∴C (0,213),设AC 解析式为y =kx +b ,把A (313,0)、C (0,213),代入得1303132k b b ⎧+=⎪⎪⎨⎪=⎪⎩,,解得32132k b ⎧=-⎪⎪⎨⎪=⎪⎩,,∴AC 得表达式为31322y x =-+;②当∵△AOC ≌△CBA 时(见答图①),可得∴OA =6,OB =4,点A 的坐标为(6,0),C (0,4),设AC 解析式为y =kx +b ,把A 、C 代入得604k b b +=⎧⎨=⎩,,解得234k b ⎧=-⎪⎨⎪=⎩,,∴AC 得表达式为243y x =-+.4.(2018·杭州,20,10分)设一次函数b kx y +=(b k ,是常数,0≠k )的图象过A (1,3),B (-1,-1)两点,(1)求该一次函数的表达式; (2)若点()2,22aa +在该一次函数图象上,求a 的值;(3)已知点C ()11,y x ,D ()22,y x 在该一次函数图象上,设()()2121y y x x m --=,判断反比例函数xm y 1+=的图象所在的象限,说明理由。

2018年全国中考数学真题分类 函数初步(含平面直角坐标系)解析版(精品文档)

2018年全国中考数学真题分类 函数初步(含平面直角坐标系)解析版(精品文档)

2018年全国中考数学真题分类函数初步(含平面直角坐标系)(二)一、选择题1. (2018广东省,10,3)如图,点P是菱形ABCD边上的一动点,它从点A出发沿A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为【答案】B【思路分析】根据面积的变化情况及阶段判断函数图象.【解题过程】P点在线段AB上,高越来越大,底不变,面积越来越大;P在线段AD上,高不变,底不变,面积不变;P在线段CD上,底不变,高越来越小,面积越来越小,故选B.【知识点】函数图象2. (2018海南省,6,3分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(-2,3) B.(3,-1) C.(-3,1) D.(-5,2)【答案】C【解析】∵点A的坐标是(4,3),∴由图可知点B的坐标为(3,1),∴把点B向左平移6个单位长度后.得到的点B1的坐标为(3-6,1)即(-3,1),故选择C.【知识点】平面直角坐标系中点的坐标,平移变换3. (2018山东省东营市,4,3分)在平面直角坐标系中,若点P(2m+)在第二象m-,1限,则m 的取值范围是( )A. 1m <-B. 2m >C. 12m -<<D. 1m >- 【答案】C【解析】解:由点P 在第二象限,得:2010m m -<⎧⎨+>⎩,解得:12m -<<。

故选C.【知识点】平面直角坐标系中每个象限点的特点,解不等式组。

4. (2018山东省东营市,9,3分)如图所示,已知△ABC 中,BC=12,BC 边上的高h =6,D 为BC 边上一点,EF ∥BC, 交AC 于点F,设点E 到BC 的距离为x ,则△DEF 的面积y 关于x 的函数3. 故选C.【知识点】圆柱侧面展形,勾股定理,最小值。

【九年级数学试题】2018年全国各地中考数学真题汇编:一次函数(含答案)

【九年级数学试题】2018年全国各地中考数学真题汇编:一次函数(含答案)

2018年全国各地中考数学真题汇编:一次函数(含答案)
中考数学真题汇编一次函数
一、选择题
1给出下列函数①=﹣3x+2;②= ;③=2x2;④=3x,上述函数中符合条作“当x>1时,函数值随自变量x增大而增大“的是()
A ①③
B ③④ c ②④ D ②③
【答案】B
2把函数=x向上平移3个单位,下列在该平移后的直线上的点是( )
A B c D
【答案】D
3在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条的直线l的条数是()。

A5 B4 c3 D2
【答案】c
4如果规定[x]表示不大于x的最大整数,例如[23]=2,那么函数=x﹣[x]的图象为()
A B
c D
【答案】A
5如图,函数和 ( 是常数,且 )在同一平面直角坐标系的图象可能是()
A B c D
【答案】B
6如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为 ,下面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题二、填空题1.(2018·杭州,15,4分)某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是答案:60≤v≤80,解析:由图可知甲车的速度为40km/h,设从9点后经过t 小时,乙车恰好追上甲车. 则满足vt =40+40t,则4040-=v t ,题中说明是10至11点追上,即1≤t≤2,可得240401≤-≤v ,解得60≤v≤80三、解答题 1.(2018·南充,23,10分)(本小题满分10分)某销售商准备在南充采购一批丝绸,经调查,用10 000元采购A 型丝绸的件数与用8 000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).思路分析:(1)利用“采购A 型丝绸的件数与采购B 型丝绸的件数相等”列出等量关系. (2)根据题意列出不等式,表示出w 关于m 的函数关系,分类讨论. 解:(1)设A 型进价为x 元,则B 型进价为(x -100)元,根据题意得: 100008000100x x =-. 解得x =500,经检验,x =500是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元.(2)①∵16,50.m m m ≥⎧⎨≤-⎩解得16≤m ≤25.②w =(800-500-2n )m +(600-400-n )(50-m )=(100-n )m +(10000-50n ).当50≤n <100时,100-n >0,w 随m 的增大而增大. 故m =25时,w 最大=12500-75n . 当n =100时,w 最大=5000.当100<n ≤150时,100-n <0,w 随m 的增大而减小. 故m =16时,w 最大=11600-66n .综上所述:w 最大=12500755000=n n n n n ≤⎧⎪⎨⎪≤⎩-,50<100, 10011600-66, 100<150.2.(2018·德州,23,12) 为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元? 思路分析:(1)额头待定系数法确定一次函数关系式; (2)由每台的利润×销量=总利润,列出方程,求出想获得10000万元的年利润减肥的销售单价. 解答过程:解:(1)因为该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系. 设y =kx +b (k ≠0),把每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台两组对应值代入,得4060045550k b k b +=⎧⎨+=⎩,解得101000k b =-⎧⎨=⎩.∴该一次函数为:y =-10x +1000;(2) 因此设备的销售单价为x ,成本价为30万元,则每台的利润为(x -30)万元 由题意,得(x -30)(-10x +1000)=10000, 解得:1280,50x x ==.因为,此设备的销售单价不得高于70万元, 所以,x =50.答:该公司想获得10000万元的年利润,则该设备的销售单价应是50万元. 3.(2018·山东泰安,20,9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完). 思路分析:(1)设乙种图书售价每本x 元,由于甲种图书每本的售价是乙种图书每本售价的1.4倍,故甲种图书售价为每本1.4x 元.根据等量关系“用1400元购买乙种图书的本数减去用1680元购买甲种图书的本数等于10本”列出分式方程求解;(2)设甲种图书进货a 本,总利润w 元,先构建w 关于a 的一次函数,再利用不等式求得a 的取值范围,最后利用一次函数的增减性求得书店获得最大利润时(即w 取得最大值) a 的大小.解答过程:解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意,得:xx 4.116801400-=10. 解得:x =20.经检验,x =20是原方程的解.所以,甲种图书售价为每本1.4×20=28元.答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a 本,总利润w 元,则w =(28-20-3)a +(28-14-2)(1200-a )=a +4800.又∵20a +14×(1200-a )≤20000,解得a ≤31600. ∵w 随a 的的增大的增大,∴当a 最大时w 最大. ∴当a =533本时w 最大.此时,乙种图书进货本数为1200-533=667(本).答:甲种图书进货533本,乙种图书进货667本时利润最大. 4.(2018·临沂市,24,9分) 甲、乙两人分别从A ,B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B 地后,乙继续前行.设出发xh 后,两人相距ykm ,图中折线表示从两人出发至乙到达A 地的过程中y 与x 之间的函数关系. 根据图中信息,求:(1)点Q 的坐标,并说明它的实际意义; (2)甲、乙两人的速度.QO531415210PN Mx/hy/km第24题图思路分析:(1)先求出直线PQ 的函数解析式,然后再求出点Q 的坐标;由点Q 位于x 轴上,并联系甲乙的位置来描述它的实际意义;(2)由点M 可知甲已到达点A ,由总路程为10km 即可求出甲的速度;再由点Q 的位置可知甲乙相遇时的时间,由此建立方程可求出乙的速度.解答过程:(1)设直线PQ 的解析式为y =kx +b ,代入点(0,10)和(14,152)的坐标,得 1154210k b b ⎧+=⎪⎨⎪=⎩,,解得:1010k b =-⎧⎨=⎩,,故直角PQ 的解析式为y =-10x +10, 当y =0时,x =1,故点Q 的坐标为(1,0),该点表示甲乙两人经过1小时相遇.(2)由点M 的坐标可知甲经过53h 达到B 地,故甲人的速度为:10km ÷53h =6km /h ;设乙人的速度为xkm /h ,由两人经过1小时相遇,得: 1·(x +6)=10,解得:x =4, 故乙人的速度为4km /h . 5.(2018·成都,26,8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200 m 2,若甲种花卉的种植面积不少于200 m 2,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?思路分析:(1)由图可知,当0≤x ≤300时,y 与x 是正比例函数,设y =k 1x ,把点(300,39000)代入即可求得y =k 1x ;当x >300时,y 与x 是一次函数,设y =k 2x +b ,把点(300,39000),(500,55000) 代入即可求得y =k 2x +b ;(2) 设甲种花卉种植为a m 2,则乙种花卉种植(1200-a ) m 2,根据题意,列不等式组求得不等式组的解,根据a 得取值范围,一次函数的性质,分类讨论,确定最佳种植方案.解:(1)当0≤x ≤300时,设y =k 1x ,把点(300,39000)代入y =k 1x ,得39000=300k 1,解得k 1=130. ∴y =130x .当x >300时,设y =k 2x +b ,把点(300,39000),(500,55000) 代入y =k 2x +b ,得⎩⎨⎧=+=+.550005003900030022b k b k ,解得⎩⎨⎧==.15000802b k ,∴y =80x +15000. 所以⎩⎨⎧>+≤≤=).300(1500080)3000(130x x x x y ,(2)设甲种花卉种植为a m 2,则乙种花卉种植(1200-a ) m 2,根据题意,得 ∴⎩⎨⎧-≤≥).1200(2200a a a ,解得200≤a ≤800.当200≤a <300时,W 1=130a +100(1200-a )=30a +120000. 当a =200时,W 最小值=126000(元).当300≤a ≤800时,W 2=80a +15000+100(1200-a )=135000-20a . 当a =800时,W 最小值=119000(元). ∵119000<126000,,∴当a =800时,总费用最低,最低为119000元.此时乙种花卉种植面积为1200-800=400(m 2).所以应分配甲种花卉种植面积为800 m 2,乙种花卉种植面积为400 m 2,才能使种植总费用最少,最少总费用为119000元.6(2018·无锡市,25,8)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600kg 的这种水果,已知水果店每售出1kg 该水果可获利润10元,未售出的部分每1kg 将亏损6元.以x (单位:kg ,2 000≤x ≤3 000)表示A 酒店本月对这种水果的需求量,y (元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式; (2)问:当A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?思路分析:(1)由于2 000≤x ≤3 000,根据题意需分2 000≤x ≤2 600和2 600<x ≤3 000两种情况讨论求y 关于x 的函数表达式;(2)由于表达式是分段函数,故需分2 000≤x ≤2 600和2 600<x ≤3 000两种情况讨论求A 酒店本月对这种水果的需求量范围.解答过程:解:(1)当2 000≤x ≤2 600时,y =10x -6(2600-x )=16x -15600;当2 600<x ≤3 000时,y =2600×10=26000.∴y 关于x 的函数表达式为y =()()16156002000260002600x x x -⎧⎪⎨<⎪⎩,≤≤2600≤3000;(3)(2)①当2 000≤x ≤2 600时,y =16x -15600≥22000,x ≥2350,∴2350≤x ≤2600; ②当2 600<x≤3 000时,y =26000>22000,成立,综上所述:2350≤x ≤3000不少于22000.答:当A 酒店本月对这种水果的需求量不小于2350kg 且不大于3000kg 时,该水果店销售这批水果所获的利润不少于22000元. 7.(2018江苏宿迁,24,10分)(本小题满分10分)某种型号汽油油箱容量为40L ,每行驶100km 耗油10L ,设一辆加满油的该型号汽车行驶路程为x (km ),行驶过程中油箱内剩余油量为y (L ). (1)求y 与x 之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱剩余油量不低于油箱容量的41,按此建议,求该辆汽车最多行驶的路程.思路分析:(1)利用油箱内有油40L ,每行驶100km 耗油10L ,进而得出余油量与行驶路程之间的函数关系式即可;(2)根据“油箱剩余油量不低于油箱容量的41”列出不等式求解即可. 解:(1)1040x y -=; (2)由题意得:41401040⨯≥-x ,解得:x ≤300,答该辆汽车最多行驶的路程为300千米. 8.(2018·绍兴,19,8分) 一辆汽车行驶时的耗油量为0.1升/千米,如图是邮箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. (2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.思路分析:第(1)问通过观察图像可知,函数图象经过点(400,30),因此汽车行驶400千米时,油箱内剩余油量为30升;利用已经行驶的路程乘每千米耗油量,加上剩余的油量,就能算出加满油时油箱的油量;第(2)问结合第一问,利用待定系数法可求函数关系式,再利用函数关系式列方程可以求出已行驶的路程. 解答过程:解:(1)由图形可知汽车行驶400千米时,油箱内剩余油量为30升; ∵汽车行驶时的耗油量为0.1升/千米,∴行驶400千米的耗油量为400×0.1=40(升),40+30=70(升),∴加满油时油箱的油量为70升. (2)设其函数关系式为y =kx +b ,则⎩⎨⎧=+=3040070b x b ,解得⎩⎨⎧=-=701.0b k ,∴y =-0.1x +70;当y =-0.1x +70=5时,解得x =650.综上,y 关于x 的函数关系式为y =-0.1x +70;该汽车在剩余油量5升时,已行驶的路程为650千米. 9.(2018·绍兴,24,14分)如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP =x 千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.思路分析:(1)用路程除以速度,即可得所求时间(对照本题计算结果,要注意体会同时发车的上行车、下行车的位置关于BC 中点对称这一特征);(2)先求出上行车、下行车相遇的时间,再以相遇前、相遇后进行分类讨论求解;(3)本题之所以能求出“x 满足的条件”,是因为该乘客“可选择走到B 站或走到C 站乘下行车前往A 站”,因此总体上可分为两大类进行研究,即:①走到B 站乘下行车;②走到C 站乘下行车.解答过程:解:(1)∵5÷30=61,∴第一班上行车到B 站、第一班下行车到C 站的用时均为61小时(或10分钟); (2)∵3×5÷30=21,∴行驶21小时,上行车、下行车将分别到达D 站、A 站.∵3×5÷(30+30)=41,∴行驶41小时,上行车、下行车相遇.在相遇前:y =15-60t ;在相遇后s =60t -15, ∴s 与t 的函数关系式为s =⎪⎩⎪⎨⎧≤≤-≤≤+-)2141(1560)410(1560t t t t .(3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设该乘客到达A 站总时间为t分钟.①当x =2.5时,往B 站用时30分钟,还需再等下行车5分钟,t =30+5+10=45,不合题意. 往C 站亦然. ②当x <2.5时,该乘客只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5-x )千米. 如果能乘上右侧第一辆下行车,则3055x x -≤,解得x ≤75,∴0<x ≤75,此时1874≤t <20,符合题意.如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎪⎩⎪⎨⎧-≤>3010575x xx ,解得75<x ≤710,此时2771≤t <2874,符合题意.如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎪⎩⎪⎨⎧-≤>30155710x xx ,解得710<x ≤715,此时3575≤t <3771,不合题意.综上,如果往B 站坐下行车,x 应满足0<x ≤710.③当x >2.5时,该乘客需往C 站坐下行车,离他左边最近的下行车离B 站是(5-x )千米,离他右边最近的下行车离C 站也是(5-x )千米.如果乘上右侧第一辆下行车,则3055-5xx -≤,解得x ≥5,不合题意. 如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎪⎩⎪⎨⎧-≤-<3010555x x x ,解得4≤x <5,此时30<t ≤32,符合题意.如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎪⎩⎪⎨⎧-≤-<3015554x x x ,解得3≤x <4,此时42<t ≤44,不合题意.综上,如果往C 站坐下行车,x 应满足4≤x <5.综①、②、③得, x 应满足的条件为0<x ≤710或4≤x <5. 10.(2018湖北武汉,20,8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数). (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案.思路分析:考察与不等式、一次函数相关的利润问题.(1)用A 型钢板x 块, B 型钢板(100-x )块分别表示出C 、D 型钢板的数量,根据C 型钢板不少于120块,D 型钢板不少于250块列不等式组;(2)每种钢板的利润乘以每种钢板的块数,求和得到总利润y ,根据函数的性质求最值. 解答过程:(1)解:(1)设A 型钢板x 块,则B 型钢板有(100-x )块. ()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得20≤x ≤25.又因为x 为整数,所以x=20,21,22,23,24,25,购买方案共有6种. (2)设全部出售后共获利y 元,则 y=100(2x+100-x )+120【x+3(100-x )】=-140x+46000, 因为k=140<0,所以y 随着x 的增大而减小, 当x==20时,y=-140×20+46000=43200元. 获利最大的方案为购买A 型20块,B 型80块.11.(2018·盐城,24,10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图像信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式.t y 2400BAO 24 60(分钟)(米)思路分析:(1)当两人出发24分时,图像与x 轴相交即为两人相遇;由图像可知甲步行60分时到达图书馆,即可根据“速度=路程÷时间”计算出甲的速度;(2)先分析出点A 、B 的坐标,再利用待定系数法确定函数关系式.解答过程:(1)24,40 v 甲=2400÷60=40(米/分) (2)v 甲+v 乙=2400÷24=100, ∵v 甲=40,∴v 乙=60, ∵2400÷60=40(分),40×40=1600(米),∴A (40,1600) 由图可知:B (60,2400),设线段AB 所表示的函数表达式为:y =kt +b (k ≠0)将点A 、B 的坐标代入表达式得⎩⎨⎧=+=+240060160040b k b k ,解得:⎩⎨⎧==040b k ,∴线段AB 所表示的函数表达式为:y =40t (40<t <60).12.(2018·天津市,23,10分) 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证旅游每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数). (I )根据题意,填写下表:游泳次数 10 15 20 … x 方式一的总费用(元) 150 175 … 方式二的总费用(二) 90 135 …(II )若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (III )当x >20时,小明选择哪种付费方式更合算?思路分析:(1)当游泳次数为20时,方式一的总费用为:100+5×20=200(元),方式二的总费用为:9×20=180(元). 当游泳次数为x 时,方式一的总费用为(100+5x )元,方式二的总费用为9x 元.(2)当总费用为270元时,分别求出两种付费方式的游泳次数,再进行比较即可;(3)先求出何时两种付费方式一样合算,再进行分类讨论.解答过程:(I )200,5x +100,180,9x . (II )方式一:5x +100=270,解得x =34. 方式二:9x =270,解得x =30. ∵34>30,∴小明选择方式一游泳次数比较多.(III )设方式一与方式二的总费用的差为y 元, 则y =(5x +100)﹣9x ,即y =﹣4x +100. 当y =0时,即﹣4x +100=0,解得x =25.∴当x =25时,小明选择这两种方式一样合算. ∵﹣4<0,∴y 随x 的增大而减小.∴当20<x <25时,有y >0,小明选择方式二更合算; 当x >25时,有y <0,小型选择方式一更合算.13.(2018·湖州市,22,10分) “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲,乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需要110吨和70吨有机化肥,两个仓库到A ,B 两个果园的路程如下表所示:路程(千米)甲仓库 乙仓库 A 果园15 25 B 果园20 20设甲仓库运往A 果园x 吨有机化肥,若汽车每吨每千米的运费为2元, (1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内) 运量(吨) 运费(元)甲仓库 乙仓库 甲仓库 乙仓库 A 果园 x 110-x 2×15x 2×25(110-x ) B 果园(2)设总运费为y元,求y关于x的函数表达式,并求甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?思路分析:(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B果园(80-x)吨,乙仓库运往A果园(110-x)吨,乙仓库运往B果园(x-10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.解答过程:(1)填写表示,如图:运量(吨) 运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110-x2×15x2×25(110-x)B果园80-x x-10 2×20(80-x) 2×20(x-10)(2)y=2×15x+2×25(110-x)+2×20(80-x)+2×20(x-10),即y=-20x+8300.在一次函数y=-20x+8300中,∵-20<0,且10≤x≤80,当x=80时,y最小=6700(元).即当甲仓库运往A果园80吨有机化肥时,总运费最省,是6700元.14.(2018·南京,25,9)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16 min 回到家中,设小明出发第t min时的速度为v m/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2m i n时离家的距离为m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.思路分析:(1)0-2m i n时速度为100 m/min,100×2=2;(2)当2<t≤5时,速度为160m/min,离家的距离(s)=前面2分钟走的路程+后面(t-2)分钟走的路程,即s=200+160(t-2);(3)前面5分钟走的路程为200+160×3=580,后面11分钟走的路程为80×11=880,则第5分钟时,小明离家不是最远.设t分钟时,小明离家最远,此时离家距离为200+160×3+80(t-5),回家时走的路程为80(16-t),由往返路程相等可得方程,解得t及离家最远距离,从而可画出图象.解答过程:(1)200.(2)根据题意,当2<t≤5时,s与t之间的函数表达式为s=200+160(t-2),即s=160-120.(3)前面5分钟走的路程为200+160×3=580,后面11分钟走的路程为80×11=880,则第5分钟时,小明离家不是最远.设t分钟时,小明离家最远,根据题意得,200+160×3+80(t-5)=80(16-t),解得t=6.25,80×(16-6.25)=780.s与t之间的函数图像如图所示.15.(2018·荆门,22,10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000元;放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a =10000 (020),1008000 (2050).t t t ⎧⎨+⎩≤≤<≤y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值; (2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元,问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)思路分析:(1)根据“放养10天的总成本为166000元;放养30天的总成本为178000元”列方程组求解;(2)利用待定系数法求两条线段的解析式;(3)分20天前和20天后两种情况列函数解析式求解.解:(1)依题意得10166000,30178000.m n m n +=⎧⎨+=⎩解得600,160000.m n =⎧⎨=⎩(2)①当0≤t ≤20时,设y =k 1t +b 1,由图象得11116,2028.b k b =⎧⎨+=⎩解得113,516.k b ⎧=⎪⎨⎪=⎩∴y =35t +16.②当20<t ≤50时,设y =k 2t +b 2,由图象得22222028,5022.k b k b +=⎧⎨+=⎩解得221,532.k b ⎧=-⎪⎨⎪=⎩ ∴y =-15t +32.综上,y =316(020),5132(2050).5t t t t ⎧+⎪⎨⎪-+⎩≤≤<≤(3)W =ya -mt -n .①当0≤t ≤20时,W =10000(35t +16)-600t -160000=5400t .∵5400>0,∴当t =20时,W 最大=5400×20=108000.5020 t /天y /(元/kg)1628 22 第22题图②当20<t≤50时,W=(-15t+32)(100t+8000)-600t-160000=-20t2+1000t+96000=-20(t-25)2+108500.∵-20<0,抛物线的开口向下,∴当t=25时,W最大=108500.∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.16.(2018·怀化市,20,10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B 两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数关系式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.思路分析:(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围(注意取整),再根据(1)得出的y与x的函数关系式,利用一次函数的增减性,结合自变量的取值即可得出费用最省的方案.解答过程:解:(1)由题知y=90x+70(21-x),整理得y与x的函数关系式为y=20x+1470(0≤x≤21,且x为整数);(2)由(1)知y=20x+1470,∴y随x的增大而增大,∵21-x<x,∴x>10.5,∴x的最小整数值为11,∴当x=11时,y最小=20×11+1470=1690,此时21-x=10.综上,费用最省的方案是:购买A种树苗11棵,购买B种树苗10棵,该方案所需费用为1690元.第11 页共11 页。

相关文档
最新文档