化工原理实验报告离心泵试验
离心泵性能测定实验报告doc
离心泵性能测定实验报告篇一:离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:XX.11.21一、实验题目:离心泵性能实验。
二、实验时间:XX.11.21三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。
通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。
通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。
六、实验目的及任务:1、了解离心泵的构造,掌握其操作和调节方法。
2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3、熟悉孔板流量计的构造、性能及安装方法。
4、测定孔板流量计的孔流系数。
5、测定管路特性曲线。
七、基本原理:1、离心泵特性曲线的测定。
离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。
图(1)、泵的扬程He式中:——泵出口处的压力。
——泵入口处的真空度。
——压力表和真空表测压口之间的垂直距离,=0.85m。
(2)、泵的有效功率和效率。
由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3 由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装臵的转动效率,一般取1.02、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
离心泵实验报告资料
北京化工大学化工原理实验报告实验名称:离心泵实验班级:化工****姓名: ***学号: 20110111** 序号: *同组人: *** *** ***设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第1套实验日期: 2013-**-**一、实验摘要本实验使用FFRS Ⅲ型第1套实验设备,通过测量离心泵进出口截面的流量、压强、电机输入功率等量,根据He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f 、Pa =0.9P 电 、η=Pe Pa ⁄得到 He~q v 、Pa~q v 、η~q v 关系曲线,即离心泵特性曲线;同理得管路的特性曲线;通过涡轮流量计测得的管路流量,根据C o =q v A 0√ρ2∆p 和R e =duρμ⁄得到孔板流量计的孔流系数C o 与雷诺数R e ,从而绘制C o 和R e 曲线图。
该实验提供了一种测量泵和管路的特性曲线以及标定孔板流量计孔流系数的的方法,其结果可为泵、管路和孔板流量计的实际应用与工艺设计提供重要参考。
关键词:离心泵,特性曲线,孔板流量计二、实验目的1. 了解离心泵的构造,掌握其操作和调节方法。
2. 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3. 了解孔板流量计的构造和原理,测定其孔流系数。
4. 测定管路特性曲线。
5. 测定相同转速下双泵并联特性曲线三、实验原理1. 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
离心泵性能是指在叶轮结构、尺寸、转速等固定的情况下,泵输送液体具有的特性。
其中He~q v 、Pa~q v 、η~q v 关系曲线称为离心泵特性曲线。
根据此曲线可以求出最佳操作范围,作为选泵的依据。
(1) 泵的扬程He扬程是离心泵对单位牛顿流体作的有效功。
在泵的进出管路取两个截面,忽略流体阻力,列机械能衡算可知扬程为:He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f =H 2−H 1+∆Z +u 22−u 122gm式中,H 2——出口截面静压能,mH 20;H 1——进口截面静压能,mH 20;(2)泵的有效功率和效率轴功率取输入电机功率Pa 的90%,即:Pa =0.9P 电 kW 有效功率:P e =(p 2−p 1)q v 1000⁄=ρgq v H e 1000⁄ kW 泵的效率:η=Pe Pa ⁄ 总效率:η总=Pe P 电⁄通过仪器仪表直接测量电功率、进出口截面静压能、液体流量、温度等。
江苏大学化工原理实验二__离心泵的性能测定
实验二 离心泵的性能测定实验报告一、 实验目的1. 熟悉离心泵的操作,了解离心泵的结构和特性。
2. 学会离心泵的特性曲线的测定方法。
3. 了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。
二、 实验原理离心泵的特性主要指泵的流量、扬程、效率和功率,在一定的转速下,离心泵的流量、扬程、效率和功率均随流量的改变而改变。
即离心泵的三条特性曲线:①扬程和流量的特性曲线()e e Q f H =; ②功率消耗和流量的特性曲线()e Q f N =轴; ③效率和流量的特性曲线()e Q f =η。
与离心泵的设计、加工情况有关,需由实验测定。
三条特性曲线中的Q e 和N 轴由实验测定。
H e 和η由以下格式计算: 由伯努利方程可知:gu u h g pg p H e 22120012-++-=ρρ即gu u h H H H e 221200-+++=真空表压强表 式中:He ——泵的扬程(m ——液柱)压强差H ——压强表测得的表压 真空表H ——真空表测得的真空度 0h ——压强表和真空表中心的垂直距离 0u ——泵的出口管内流体的速度1u ——泵的进口管内流体的速度g ——重力加速度流体通过泵之后,实际得到的有效功率:102ρe e e Q H N =;离心泵的效率:轴N Ne =η。
在实验中,泵的轴功率由所测得的电机的输入功率N 入计算:入电传轴N N ηη=; 式中:e N ——离心泵的有效功率 e Q ——离心泵的输液量 ρ——被输送液体的密度 入N ——电机的输入功率 轴N ——离心泵的轴功率 η——离心泵的效率传η——传动效率,联轴器直接传动时取1.00三、 实验流程1.离心泵2.真空表3.压力表4.流量计5.循环水箱6.引水阀7.上水阀8.调节阀 9.排水阀 10.底阀四、 实验操作步骤1.关闭调节阀。
2.开启引水阀,反复开启和关闭放气阀,尽可能排除泵内的空气。
排气结束,关闭引水阀。
离心泵性能实验报告
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号: 2010姓名:同组人:实验日期:一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆、电机输入功率Ne 以及流量Q (t V ∆∆/)这些参数的关系,根据公式0e H H H H ++=压力表真空表、转电电轴ηη••=N N 、102e ρ⋅⋅=He Q N 以及轴N Ne =η可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ∆=2/0与雷诺数μρdu =Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He :e 0H H H H =++真空表压力表v1.0 可编辑可修改式中:H 真空表——泵出口的压力,2mH O ,H 压力表——泵入口的压力,2mH O0H ——两测压口间的垂直距离,0H 0.85m = 。
离心泵性能实验报告
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号:2010姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及Ne 可以得出102N 轴离心泵的特性曲线;再根据孔板流量计的孔流系数C 0u 0 / 2 p 与雷诺数Re du的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He:H e H 真空表H 压力表H 0式中: H 真空表——泵出口的压力,mH 2O ,H 压力表——泵入口的压力,mH 2 OH 0——两测压口间的垂直距离,H 00.85m。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:Ne Q HeN 轴, Ne102式中 Ne ——泵的有效效率,kW ;Q ——流量, m 3/s ; He ——扬程, m ;3由泵输入离心泵的功率N 轴为: N 轴 N 电电 转式中: N 电 ——电机的输入功率, kW电 ——电机效率,取0.9;转 ——传动装置的效率,一般取1.0;2.孔板流量计空留系数的测定在水平管路上装有一块孔板, 其两侧接测压管, 分别与压差传感器两端连接。
离心泵实验报告
北京化工大学化工原理实验报告实验名称:离心泵实验班级:化工****姓名: ***学号: 20110111** 序号: *同组人: *** *** ***设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第1套实验日期: 2013-**-**一、实验摘要本实验使用FFRS Ⅲ型第1套实验设备,通过测量离心泵进出口截面的流量、压强、电机输入功率等量,根据He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f 、Pa =0.9P 电 、η=Pe Pa ⁄得到 He~q v 、Pa~q v 、η~q v 关系曲线,即离心泵特性曲线;同理得管路的特性曲线;通过涡轮流量计测得的管路流量,根据C o =q v A 0√ρ2∆p 和R e =duρμ⁄得到孔板流量计的孔流系数C o 与雷诺数R e ,从而绘制C o 和R e 曲线图。
该实验提供了一种测量泵和管路的特性曲线以及标定孔板流量计孔流系数的的方法,其结果可为泵、管路和孔板流量计的实际应用与工艺设计提供重要参考。
关键词:离心泵,特性曲线,孔板流量计二、实验目的1. 了解离心泵的构造,掌握其操作和调节方法。
2. 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3. 了解孔板流量计的构造和原理,测定其孔流系数。
4. 测定管路特性曲线。
5. 测定相同转速下双泵并联特性曲线三、实验原理1. 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
离心泵性能是指在叶轮结构、尺寸、转速等固定的情况下,泵输送液体具有的特性。
其中He~q v 、Pa~q v 、η~q v 关系曲线称为离心泵特性曲线。
根据此曲线可以求出最佳操作范围,作为选泵的依据。
(1) 泵的扬程He扬程是离心泵对单位牛顿流体作的有效功。
在泵的进出管路取两个截面,忽略流体阻力,列机械能衡算可知扬程为:He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f =H 2−H 1+∆Z +u 22−u 122gm式中,H 2——出口截面静压能,mH 20;H 1——进口截面静压能,mH 20;(2)泵的有效功率和效率轴功率取输入电机功率Pa 的90%,即:Pa =0.9P 电 kW 有效功率:P e =(p 2−p 1)q v 1000⁄=ρgq v H e 1000⁄ kW 泵的效率:η=Pe Pa ⁄ 总效率:η总=Pe P 电⁄通过仪器仪表直接测量电功率、进出口截面静压能、液体流量、温度等。
离心泵性能综合实验(化工原理实验)
离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。
二、实验原理1、气缚现象离心泵靠离心力输送液体。
离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。
若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。
所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。
同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。
2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。
图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。
设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。
但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。
由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。
在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。
离心泵特性曲线测定实验报告
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。
化工原理:2-1离心泵的工作压力及性能参数(液体密度粘度对水泵性能的影响)
化工原理:2-1离心泵的工作压力及性能参数(液体密度粘度对水泵性能的影响)特别说明:由于360摘手不能对全文剪切复制,现以形式剪切上传。
【2-1】在用水测定离心泵性能的实验中,当流量为26m3/h时,离心泵出口处压强表和入口处真空表的读数分别为152kPa和24.7kPa,轴功率为2.45kW,转速为2900r/min。
若真空表和压强表两测压口间的垂直距离为0.4m,泵的进、出口管径相同,两测压口间管路流动阻力可忽略不计。
试计算该泵的效率,并列出该效率下泵的性能。
[答:泵的效率为53.1%,其它性能略]【2-2】如本题附图所示的输水系统,管路直径为φ80×2mm,当流量为26m3/h时,吸入管路的能量损失为6J/kg,排出管路的压头损失为0.8m,压强表读数为245kPa,吸入管轴线到U形管汞面的垂直距离h = 0.5m,当地大气压强为98.1kPa,试计算:(1)泵的升扬高度与扬程;(2)泵的轴功率(η=70%);(3)泵吸入口压差计读数R。
[答:(1)ΔZ = 24.9m, H =30.84m; (2)N = 4.32kW; (3)R = 0.3573m]离心泵在化工生产中应用最为广泛,这是由于其具有性能适用范围广(包括流量、压头及对介质性质的适应性)、体积小、结构简单、操作容易、流量均匀、故障少、寿命长、购置费和操作费均较低等突出优点。
因而,本章将离心泵作为流体力学原理应用的典型实例加以重点介绍。
一. 离心泵的基本结构和工作原理讨论离心泵的基本结构和工作原理,要紧紧扣住将动能有效转化为静压能这个主题来展开。
(一)离心泵的基本结构离心泵的基本部件是高速旋转的叶轮和固定的蜗牛形泵壳。
具有若干个(通常为4~12个)后弯叶片的叶轮紧固于泵轴上,并随泵轴由电机驱动作高速旋转。
叶轮是直接对泵内液体做功的部件,为离心泵的供能装置。
泵壳中央的吸入口与吸入管路相连接,吸入管路的底部装有单向底阀。
泵壳侧旁的排出口与装有调节阀门的排出管路相连接。
实验二离心泵特性曲线测定
实验二离心泵特性曲线测定离心泵特性曲线的测定化工原理实验报告学院:化学工程学院专业:化学工程与工艺班级:姓名:某某某学号:某某某序号:某某同组者姓名:某某某,某某某指导教师:某某某,某某某日期:离心泵特性曲线的测定一、实验目的1、了解离心泵结构与特性,熟悉离心泵的使用;2、测定离心泵的特性曲线;二、基本原理1、扬程(压头)H(m)分别取离心泵进口真空表和出口压力表处为1、2截面,列柏努利方程得:pupuz111Hz222Hfg2gg2g因两截面间的管长很短,通常可忽略阻力损失项Hf,流速的平方差也很小故可忽略,则:p2p1Hg22式中ρ:流体密度,kg/m3;p1、p2:分别为泵进、出口的压强,Pa;u1、u2:分别为泵进、出口的流速,m/;z1、z2:分别为真空表、压力表的安装高度,m。
由上式可知,由真空表和压力表上的读数及两表的安装高度差,就可算出泵的扬程。
2、轴功率N(W)其中,N电为泵的轴功率,ω为电机功率。
3、效率η(%)泵的效率η是泵的有效功率与轴功率的比值。
反映泵的水力损失、容积损失N=0.94ω和机械损失的大小。
泵的有效功率Ne可用下式计算:NeHQg故泵的效率为4、泵转速改变时的换算泵的特性曲线是在定转速下的实验测定所得。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q的变化,多个实验点的转速n将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n下(可取离心泵的额定转速)的数据。
换算关系如下:HQg100%N离心泵特性曲线的测定流量Q'QnnnHH()2n扬程nNN()3n轴功率效率Q'HgQHgNN三、实验装置流程示意图图2-1流体流动阻力与泵性能综合实验流程简图四、实验步骤及注意事项1、打开总电源和仪表电源开关,把离心泵电源转换开关旋到“直接”位置。
离心泵停止按钮亮。
2、水泵灌水(注意:在打开灌水阀时要慢慢打开,且只打开一定的开度;不要开得太大,否则会损坏压力表。
离心泵综合实验报告
离心泵综合实验报告篇一:XX化工原理实验报告(离心泵性能实验)化工原理实验报告(离心泵性能实验)班级:姓名:同组人:XX年11月一、报告摘要本次实验通过测量离心泵工作时,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p、电机输入功率Ne以及流量Q这些参数的关系,根据公式NeQHe??=He?H压力表+H真空表+H0N轴=N电?电?转Ne=102N轴、、以及C0?u0/可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数与雷诺数Re??du?的变化规律作出C0-Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p,根据已知公式可以求出不同阀门开度下的He-Q关系式,并作图可以得到管路特性曲线图。
二、目的及任务①、了解离心泵的构造,掌握其操作和调节方法。
②、测定离心泵在恒定转速下的特征曲线,并确定泵的最佳工作范围。
③、熟悉孔板流量计的构造、性能及安装方法。
④、测定孔板流量计的孔流系数。
⑤、测定管路特征曲线。
三、实验原理1、离心泵特征曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图中的曲线。
由于流体流经泵是,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等等,因此,实际压头比理论压头小,且难以通过计算求得,因此常通过实验方法,直接测定其参数间的关系,并将测出的He-Q,N-Q,η-Q三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)、泵的扬程He式中He?H压力表+H真空表+H0H压力表H真空表——泵出口处的压力,mH2O——泵入口处的真空度,mH2OH0——压力表和真空表测压口之间的垂直距离,H0=0.85m。
(2)、泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为?=NeN轴Ne=QHe?102式中 Ne——泵的有效功率,kW:3Q——流量,m/s;He——扬程,m;3kg/mρ——流体密度,。
化工原理实验离心泵实验PPT教案
Q (m3/h)
1—单泵特离性心曲泵线的工作2点—管路 特性曲线
第123页/共38页
四、实验原理
4、不同转速
下的H-Q曲
线的测定:
离心泵特性曲线是 在一定转速下测定的 ,当转速 n 变化时 ,其Q、H、N也随 之发生变化。
Q2 n2 Q1 n1
H2 H1
n2 n1
2
He, m
25
20
Hz50
15
[m]
H0
H0=0.6
第89页/共38页
四、实验原理
(2)功率:
N轴 N电机 电机 传动 [kw]
电机- 电机效率,取0.9; - 联轴节传动装置的效率,取1.0;
传动
(3)效率 :
Ne N轴
N
e
QHe 102
[kw]
第第190页页/共/共3388页页
H-Q N-Q η-Q
H e ,3m5
离心泵的串、并联
数据处理注意事项
1、将计算示例放在附录部分。
2、每种计算类型只要处理其中一组数 据,也就是说扬程、流量、轴功率 、有效功率、效率等每种都只要计 算其中一组即可。
3、在开始计算之前,要说明“以什么 表的第某组数据为例”,然后写出 原始数据。每一计算过程都应包括 :公式、数据代入、答案和单位。
密度:可查表或按下式计算
0.003589285t2 0.0872501t 1001.44 [kg/m3]
管路特性曲线方H程e : C DQ2
C z p
g
本实验的 C值很小, 为什么?
第234页/共38页
He (m)
45 40 35 30 25 20 15 10 5 0
0 2 4 6 8 10 12 14 Q (m3/h)
离心泵实验报告
序 号
水流量 qv/m3•h-1
出口 平均表压 p2/mH2O
入口 平均表压 p1/mH2O
电机 功率和 P 电/kW
水温度 t/℃
并联 扬程 He/mH2O
并联 轴功率 Pa/kW
1 2 3 4 5 6 7 8 9 10 11 12 13 14
并联 效率
η
% % % % % % % % % % % % % %
序 号
频 率 /Hz
水流量 出口表压 入口表压 水温度 出口流速
/m3•h-1 p2/mH2O
p1/mH2O
t/℃ u2/m•s-1
1 50
2 46
3 42
4 38
5 34
6 30
7 26
8 22
9 18
10 14
11 10
12 7
13 5
入口流速 u1/m•s-1
需要能量 H/mH2O
以第三组数据为例进行计算:
以第三组数据为例进行计算:
,
查表得,当
,
,
时,水的密度
进口流速
,
,进口流速
扬程
轴功率
有效功率 泵的效率 同理求出其余各组的扬程 、轴功率 和泵的效率
七、实验结果作图及分析
1. 分别在同一坐标系内做出 50Hz 和 40Hz 时单泵的特性曲线,并拟合关系式。
He/(mH20)
2.0
24
50Hz 2850r/min
等固定的情况下,泵输送液体具有的特性。其中 、 、 关系曲线称为离心泵特性曲线。根据
此曲线可以求出最佳操作范围,作为选泵的依据。 (1) 泵的扬程 He 扬程是离心泵对单位牛顿流体作的有效功。在泵的进出管路取两个截面,忽略流体阻力,列机械能衡
化工原理实验-——液体流动,、离心泵
实验一流动过程综合实验实验1-1 流体阻力测定实验一、实验装置⒈实验装置流程图如图1-2所示。
⒉流量测量:在图1-2中由转子流量计22、23测量。
⒊直管段压强降的测量:差压变送器和倒置U形管直接测取压差值。
图一、流体综合实验装置流程示意图1:水箱:2:水泵;3:入口真空表;4:出口压力表;5,16:缓冲罐:6,14测局部阻力近端阀;7,15:测局部阻力远端阀;8,17:粗糙管测压阀;9,21:光滑管测压阀;10:局部阻力阀;11:文丘里流量计;12:压力传感器;13:涡流流量计;18:阀门;19光滑管阀;20:粗糙管阀;22:小流量计;23:大流量计;24阀门25:水箱放水阀;26:倒U型管放空阀;27: 倒U型管;28,30:倒U型管排水阀;29,31: 倒U型管平衡阀;32:功率表;33:变频调速器设备主要参数二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,Pa ·s 。
⒉局部阻力系数ζ的测定 22'u P h ff ζρ=∆=' (1-4)2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图1-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式:P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f(1-6)在b~b '之间列柏努利方程式:P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
(化工原理实验)离心泵特性实验
曲线标注与说明
在曲线上标注关键点和数 据,提供必要的说明和解 释。
结果异常原因剖析
实验操作问题
检查实验操作过程是否存在问题,如测量误 差、操作不当等。
数据处理错误
检查数据处理过程是否存在错误,如计算错 误、数据筛选不当等。
设备故障或损坏
检查实验设备是否出现故障或损坏,导致实 验结果异常。
其他可能因素
数据记录与处理
详细记录实验过程中的各项数据,并进行必要的处理,如数据筛 选、计算等。
数据可视化
利用图表等方式将数据直观地呈现出来,便于分析和比较。
特性曲线绘制技巧分享
01
02
03
曲线类型选择
根据实验数据和需求选择 合适的曲线类型,如流量扬程曲线、效率-流量曲线 等。
坐标轴设置
合理设置坐标轴的范围和 刻度,使曲线更加清晰易 读。
工业应用前景展望
01
随着工业技术的不断发展,离心泵的 应用领域将不断扩大,对离心泵的性 能和可靠性要求也将不断提高。
02
未来离心泵的发展趋势将是高效、节 能、环保、智能化。例如,采用先进 的CFD技术对离心泵进行优化设计, 提高效率和可靠性;采用新材料和新 工艺减轻离心泵的重量和体积;应用 智能控制技术实现离心泵的远程监控 和自动调节等。
估其性能。
数据处理流程
数据整理
将实验测量得到的数据进行整理,包 括流量、扬程、功率等参数。
数据分析
对整理后的数据进行统计分析,如计 算平均值、标准差等,以评估数据的 可靠性和精度。
性能曲线绘制
根据实验数据,绘制离心泵的性能曲 线,如流量-扬程曲线、流量-效率曲 线等。
结果对比
将实验结果与理论值或其他实验结果 进行对比分析,以验证实验结果的准 确性和可靠性。
离心泵特性曲线实验报告
化工原理实验报告实验名称:离心泵特性曲线实验报告姓名:张克川专业:化学工程与工艺(石油炼制)班级:化工11203学号:201202681离心泵特性曲线实验报告一、 实验目的1. 了解离心泵的结构与特征,熟悉离心泵的使用。
2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作范围。
3. 熟悉孔板流量计的构造与性能以及安装方法。
4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。
5. 测量管路特性曲线。
二、 基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
2.1扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+P 1ρg +U 122g+H=z 2+P 2ρg+U 222g+∑h f (1-1)由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有H=(z 1-z 2)+p 1−p 2ρg=H 1+H 2(表值)+H 3 (1-2)由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.2轴功率N 的测量与计算N=N 电k(w) (1-3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取0.902.3效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体经过泵时所获得的实际功率,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne 可用下式计算:N e =HQ ρg (1-4)η=HQρg N×100% (1-5)2.4 转速改变时各参数的换算泵的特性曲线是在定转速下的实验测定所得。
离心泵性能测定实验报告
离心泵性能测定实验报告篇一:离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:XX.11.21一、实验题目:离心泵性能实验。
二、实验时间:XX.11.21三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。
通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。
通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。
六、实验目的及任务:1、了解离心泵的构造,掌握其操作和调节方法。
2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3、熟悉孔板流量计的构造、性能及安装方法。
4、测定孔板流量计的孔流系数。
5、测定管路特性曲线。
七、基本原理:1、离心泵特性曲线的测定。
离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。
图(1)、泵的扬程He式中:——泵出口处的压力。
——泵入口处的真空度。
——压力表和真空表测压口之间的垂直距离,=0.85m。
(2)、泵的有效功率和效率。
由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3 由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装臵的转动效率,一般取1.02、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理
班级: XXXXXX
指导老师: XXX
小组: XXX
组员:XXX XXX
XXX XXX
实验时间: X年X月X日
3
3
4
4
5
6
7
1.泵的扬程与流量关系曲线的测定(H e~Q) (7)
2.泵的轴功率与流量关系曲线的测定(N轴~Q) (8)
3.泵的总效率与流量关系曲线的测定(η~Q) (10)
1
4.计算示例 (12)
(1)泵的扬程与流量关系曲线的测定(H e~Q) (12)
(2)泵的轴功率与流量关系曲线的测定(N轴~Q) (12)
(3)泵的总效率与流量关系曲线的测定(η~Q) (13)
14
14
15
改变流量,测得不同流量下离心泵的各项性能参数,流量通过涡轮流量计测量。
实验中直接测量量有P真空表、P压力表、电机功率N电、水流量Q、水温℃。
根据上述测量量来计算泵的扬程He、泵的有效功率Ne、泵的总效率η。
从而绘制He-Q、
N e-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围。
2
关键词:离心泵特性曲线
二、实验目的及任务
①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵的扬程与流量关系曲线。
3
4
由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为
轴
N Ne
=
η 102
e ρ
⋅⋅=
He Q N
式中Ne——泵的有效效率,kW;
Q——流量,m3/s;
He——扬程,m;
ρ——流体密度,kg/ m3。
5
1----水箱2----离心泵3----涡轮流量计4----流量调节阀
其中,离心泵型号:WB70/055
H0=0.2m η电=0.9 η传=1.0
五、操作要点
①打开主管路的切换阀门,关闭流量调节阀门,按变频仪灰色按钮启动泵,
固定转速(频率在50Hz),观察泵出口表读数在0.2Mpa左右时,即可
开始实验。
②通过流量调节阀,调节流量,从0到最大(流量由涡轮流量计测得),
记录相关数据,完成离心泵特性曲线实验
③每个实验都可测15组数据,实验完后再测几组数据验证,若基本吻合,
则可停泵(按变频仪红色按钮停泵),关闭流量调节阀。
做好卫生工作,
同时记录设备的相关数据(如离心泵型号、额定流量、扬程、功率等)。
6
六、实验数据记录与处理
1.泵的扬程与流量关系曲线的测定(H e~Q)
计算公式:H e=H压力表+H压力真空表+H0
7
2.泵的轴功率与流量关系曲线的测定(N轴~Q)计算公式:N轴=N电η电η转
8
N轴~Q关系曲线的测定数据处理与记录表
N轴为泵轴输入离心泵的功率η电=0.9 η转=1
9
10
11
4.计算示例
N轴=N电η电η转
=0.45x0.9x1
=0.41kW
12
13
(3)泵的总效率与流量关系曲线的测定(η~Q )
以第二组为例, Q =0.53m 3
/h, H e =22.00m,ρ=997.396kg/m 3
, 泵的有效功率 102ρQHe Ne =
七、实验结果及分析
根据上表数据,绘制WB70/055型离心泵的特性曲线如图所示:
八、误差分析
1.调解仪器状态时仪器无法处于完全稳定的状态,读数不准确。
14
2.电机效率η电取0.9;传动装置的效率η传取1.0。
均为近似值,与真实值有偏差。
3.由于液体流动和管壁有摩擦,会产生热量导致温度变化,且该变化在管道中各部也不完全相同,属分布参数,而温度变送器仅检测所在点温度,不具有完全代表性,导致密度计算稍有偏差。
4.所使用的水已经在蓄水池中存放多时,且并不纯净,不能保证其密度与理
是离心泵的一种特性)。
真空表的读数增大,这是因为随着流量增大,吸水管的压力损失增大,管内压强降低,反映在进口真空表的读数增大(注意真空值增大,压强是减小的)。
④试分析气缚现象与气蚀现象的区别。
15
答:气蚀现象是流体在高速流动和压力变化条件下,与流体接触的金属表面上发生洞穴状腐蚀破坏的现象。
它是离心泵设计不足或运行工况偏离设计产生的一种不正常状况。
常发生在如离心泵叶片叶端的高速减压区,在此形成空穴,空穴在高压区被压破并产生冲击压力,破坏金属表面上的保护膜,而使腐蚀速度加快。
气蚀的特征是先在金属表面形成许多细小的麻点,然后逐渐扩大成洞穴。
气缚现象是离心泵启动时,若泵内存有空气,由于空气密度很低,
以,带一体化表头,也可带模拟量输出配数字显示仪表。
压力采用压力变送器配数字显示仪表。
16。