遗传算法I

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法

遗传算法

1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)

改善 (独立于问题的) 否
终止?
终止? 是 结束

结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。

遗传算法

遗传算法
适应度越高的染色体被选择的可能性越大,其遗传 基因在下一代群体中的分布就越广,其子孙在下一代 出现的数量就越多。
2019/12/10
4
轮盘法
6.5% 25.4%
42.2%
(1) 计算每个染色体xi 的适应度f(xi);
35.9%
popsize
(2) 找出群体的适应度之和;SUM f ( xi )
群体(population) 由染色体组成的集合。
代遗传操作 遗传操作作用于群体而产生新的群体。
2019/12/10
2
二、基本算法
用于比较不同的解以 确定哪 一个解是更好 的一个措施。
2019/12/10
3
三、基本遗传算子
选择算子(Selection)
用于模拟生物界去劣存优的自然选择现象。它从旧 种群中选择出适应性强的某些染色体,放人匹配集(缓 冲区),为染色体交换和变异运算产生新种群作准备。
1
一、相关概念
染色体(chromosome)或个体(individual) 把每一个 可能的解编码为一个向量,用来描述基本的遗传结构。 例如,用0,1 组成的串可以表示染色体。
基因
向量中的每一个元素
适应度(fitness) 每个染色体所对应的一个适应值。 在优化问题中,适应度来自于一个目标评价函数。
(7) 重复执行(5)(6)直到缓冲区中有足够多的染色体。
2019/12/10
5
交叉算子(Crossover)
具体做法:
(1) 缓冲区中任选两个染色体(双染色体);
(2) 随机选择交换点位置J,0<J<L(染色体长度);
(3) 交换双亲染色体交换点右边的部分。(单点交叉)

遗传算法

遗传算法

5.3.3 多交配位法
单交配位方法只能交换一个片段的基 因序列,但多交配位方法能够交换多 个片段的基因序列 1101001 1100010 1100000 1101011
交配前
交配后
5.3.4 双亲单子法
两个染色体交配后,只产生一个子染 色体。通常是从一般的交配法得到的 两个子染色体中随机地选择一个,或 者选择适应值较大的那一个子染色体
6.1.4 基于共享函数的小生境实现方 法
6.1.1 小生境遗传算法的生物 学背景
•小生境是特定环境下的生存环境
•相同的物种生活在一起,共同繁 衍后代 •在某一特定的地理区域内,但也 能进化出优秀的个体 •能够帮助寻找全部全局最优解和 局部最优解(峰顶)
6.1.2 基于选择的小生境实现 方法
•只有当新产生的子代适应度超过 其父代个体的适应度时,才进行 替换,否则父代保存在群体中 •这种选择方式有利于保持群体的 多样性 •这种方法有利于使得某些个体成 为它所在区域中的最优个体
5.1.3 实数编码的实现方法(续)
•适合于精度要求较高的问题 •便于较大空间的遗传搜索 •改善了遗传算法的计算复杂性, 提高了效率 •便于遗传算法与经典优化算法混 合使用 •便于设计针对问题的专门知识型 算子 •便于处理复杂的决策约束条件
5.2 选择算子
5.2.1 概率选择算子
5.2.2 适应值变换选择算子
•pm: 变异概率,一般取0.0001—0.1
4.1 问题描述 4.2 问题转换和参数设定 4.3 第0代情况 4.4 第0代交配情况 4.5 第1代情况 4.6 第1代交配情况 4.7 第1代变异情况 4.8 第2代情况 4.9 第2代交配情况
4. 基本遗传算法举例
4.1 问题描述

遗传算法基本概念

遗传算法基本概念

遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。

遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。

二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。

其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。

1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。

常用的编码方式有二进制编码、实数编码和排列编码等。

2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。

适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。

3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。

常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。

4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。

常用的交叉方法有单点交叉、多点交叉和均匀交叉等。

5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。

常用的变异方法有随机变异、非一致性变异和自适应变异等。

三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。

具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。

2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。

3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。

4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。

5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。

遗传算法 算法原理

遗传算法 算法原理

遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。

其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。

遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。

二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。

选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。

交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。

变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。

2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。

适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。

在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。

3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。

(2)评估适应度:计算种群中每个个体的适应度值。

(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。

(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。

(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。

(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。

(7)重复步骤 2-6,直至满足停止条件。

三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。

人工智能中的遗传算法

人工智能中的遗传算法

人工智能中的遗传算法遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法。

它适用于复杂问题的求解,并且在人工智能领域中得到了广泛的应用。

本文将介绍人工智能中遗传算法的原理、应用以及优势。

一、遗传算法原理遗传算法模拟了生物进化过程中的遗传与进化机制,通过对每个个体的基因组进行编码,然后通过选择、交叉和变异等操作,迭代地生成新一代的解,并逐步优化。

1.1 基因编码遗传算法中每个个体的解被编码为一个染色体,染色体由若干基因组成。

基因可以是二进制串、整数或浮点数等形式,根据问题的特点进行选择。

1.2 适应度评价适应度函数用于评价每个个体的优劣程度。

适应度值越高表示个体解越优秀。

在问题的求解过程中,根据适应度函数对个体进行评估和排序。

1.3 选择操作选择操作根据适应度函数对个体进行选择,使优秀的个体有更高的概率被选中。

常见的选择算法有轮盘赌和竞争选择等。

1.4 交叉操作交叉操作模拟了生物进化中的基因重组,通过交换父代个体的染色体片段产生新个体。

交叉操作可以增加种群的多样性,并且有助于在解空间中进行全局搜索。

1.5 变异操作变异操作是对个体染色体中的基因进行突变,引入一定的随机性。

变异操作可以避免种群陷入局部最优解,从而增加算法的全局搜索能力。

1.6 算法迭代遗传算法通过不断迭代地进行选择、交叉和变异操作,逐渐优化种群中的个体。

迭代次数和种群大小是影响算法性能的重要参数。

二、遗传算法的应用2.1 函数优化遗传算法可以用于求解复杂的函数优化问题,例如求解多峰函数的全局最优解。

通过适当选择适应度函数和调整参数,可以提高算法的收敛性和搜索能力。

2.2 组合优化遗传算法在组合优化问题中有广泛的应用。

例如在图的最短路径问题中,通过遗传算法可以求解出图中节点间的最短路径。

2.3 机器学习遗传算法可以用于机器学习领域中的特征选择和参数优化等问题。

通过遗传算法搜索最优的特征子集或参数组合,可以提高机器学习模型的性能和泛化能力。

遗传算法-1

遗传算法-1

1 遗传算法简介
1.1 生物进化理论和遗传学的基本知识
遗传学基本概念与术语 ➢ 基因型(genotype):遗传因子组合的模型,染
色体的内部表现; ➢ 表现型(phenotype):由染色体决定性状的外
部表现,基因型形成的个体;
1111111
1.1 生物进化理论和遗传学的基本知识
交换部分基因产生一组新解的过程 编码的某一分量发生变化
例1 用遗传算法求解优化问题
max f (x) x2 ,0 x 31
其中 x 为整数。
产生群体:
p(
xi
)
fitness( xi )
fitness( x j
)
j
x1 (00000 ) x2 (11001)
x3 (01111) x4 (01000 )
1 遗传算法简介
1.1 生物进化理论和遗传学的基本知识
遗传学基本概念与术语 ➢ 变异(mutation):在细胞进行复制时可能以很
小的概率产生某些复制差错,从而使DNA发生 某种变异,产生出新的染色体,这些新的染色体 表现出新的性状; ➢ 编码(coding):表现型到基因型的映射; ➢ 解码(decoding):从基因型到表现型的映射。
司同时完成
生物遗传学基础
群体
变异
子群
竞争
淘汰的 群体
婚配 种群
群体
淘汰
遗传基因重组过程
变异
选择
淘汰的 个体
新种群
交配
种群
父代染色体1
父代染色体2
生物进化过程
子代染色体1
子代染色体2
1 遗传算法简介
1.1 生物进化理论和遗传学的基本知识 遗传学基本概念与术语 ➢ 染色体(chromosome):遗传物质的载体; ➢ 脱氧核糖核酸(DNA):大分子有机聚合物,

遗传算法

遗传算法

遗传算法直接以目标函数作为搜索信息。 (3)遗传算法直接以目标函数作为搜索信息。传统的优化算法不仅 需要利用目标函数值, 需要利用目标函数值,而且需要目标函数的导数值等辅助信息才 能确定搜索方向。 能确定搜索方向。而遗传算法仅使用由目标函数值变换来的适应 度函数值,就可以确定进一步的搜索方向和搜索范围, 度函数值,就可以确定进一步的搜索方向和搜索范围,无需目标 函数的导数值等其他一些辅助信息。 遗传算法可应用于目标函 函数的导数值等其他一些辅助信息。 数无法求导数或导数不存在的函数的优化问题, 数无法求导数或导数不存在的函数的优化问题,以及组合优化问 题等。 题等。 遗传算法使用概率搜索技术。遗传算法的选择、交叉、 (4)遗传算法使用概率搜索技术。遗传算法的选择、交叉、变异等 运算都是以一种概率的方式来进行的, 运算都是以一种概率的方式来进行的,因而遗传算法的搜索过程 具有很好的灵活性。随着进化过程的进行, 具有很好的灵活性。随着进化过程的进行,遗传算法新的群体会 更多地产生出许多新的优良的个体。 更多地产生出许多新的优良的个体。
• 1.2 遗传算法的概述
• 遗传算法的基本思想: 遗传算法的基本思想: 在问题的求解过程中,把搜索空间视为遗传空间,把问题的 在问题的求解过程中,把搜索空间视为遗传空间, 每一个可能解看做一个染色体,染色体里面有基因,所有染色体 每一个可能解看做一个染色体,染色体里面有基因, 组成一个群体。首先随机选择部分染色体组成初始种群,依据某 组成一个群体。首先随机选择部分染色体组成初始种群, 种评价标准,也就是寻优准则(这里叫适应度函数),对种群每 种评价标准,也就是寻优准则(这里叫适应度函数),对种群每 ), 一个染色体进行评价,计算其适应度,淘汰适应度值小的,保留 一个染色体进行评价,计算其适应度,淘汰适应度值小的, 适应度值大的,并借助于自然遗传学的遗传算子进行选择、交叉 适应度值大的,并借助于自然遗传学的遗传算子进行选择、 和变异,产生出代表新的解集的种群。 和变异,产生出代表新的解集的种群。

《遗传算法》课件

《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。

人工智能入门课件第5章遗传算法

人工智能入门课件第5章遗传算法

5.4.2 交叉操作(crossover)
交叉的具体步骤为:
1. 从交配池中随机取出要交配的一对个体;
2. 根据位串长度L,对要交配的一对个体,随 机选取[1,L-1]中一个或多个的整数k作为 交叉点;
3. 根据交叉概率pc(0<pc≤1)实施交叉操作,配 对个体在交叉点处,相互交换各自的部分内 容,从而形成新的一对个体。
N
pi 1
i 1
2.基于排名的选择
(1)线性排名选择
首先假设群体成员按适应值大小从好到坏依次排列
为x1,x2,…,xN,然后根据一个线性函数分配选 择概率pi。
设线性函数pi=(a-b·i/(N +1))/N,i=1,
2,…,N,其中a,b为常数。由于
N
pi
1
,易得,
b=2(a-1)。又要求对任意i=1,2,…i1,N,有pi>0,
5.2.3 实数编码
为了克服二进制编码的缺点,对于问题的变量 是实向量的情形,直接可以采用十进制进行编码, 这样可以直接在解的表现形式上进行遗传操作,从 而便于引入与问题领域相关的启发式信息以增加系 统的搜索能力
例3 作业调度问题(JSP)的种群个体编码常用 m×n的矩阵Y=[yij],i=1,2,…,m,j=1, 2,…,n(n为从加工开始的天数,m为工件的 优先顺序)。 yij表示工件i在第j日的加工时间。 下表是一个随机生成的个体所示。
一种方法是为参与交换的数增加一个映射如下:
将此映射应用于未交换的等位基因得到:
T~1 234 | 751| 68 T~2 136 | 275 | 84 则为合法的。
5.2.2 Gray编码
Gray编码即是将二进制码通过如下变换进行转

常见的遗传算法

常见的遗传算法

常见的遗传算法
常见的遗传算法有:
1. 标准遗传算法(SGA):是最早也是最基本的遗传算法,包括选择、交叉、变异和复制等基本操作。

2. 遗传编程(GP):将遗传算法应用于生成计算机程序的领域,通过遗传操作对程序进行优化和演化。

3. 约束处理遗传算法(CGA):在传统遗传算法的基础上,加入对问题约束条件的处理和优化,以确保产生的解满足特定的约束条件。

4. 多目标遗传算法(MOGA):解决多个目标决策问题的遗传算法,同时考虑多个目标函数的优化,并通过适应度分配方法来选择适应度较好的个体。

5. 免疫算法(IA):通过模拟免疫系统的工作原理,利用选择、变异等机制进行优化和搜索。

6. 遗传模拟退火算法(GASA):将模拟退火算法与遗传算法相结合,通过遗传操作和模拟退火操作进行全局搜索和局部优化。

7. 遗传神经网络(GNN):将遗传算法和神经网络相结合,通过遗传操作对神经网络结构和参数进行优化和演化。

8. 差分进化算法(DE):基于群体的随机搜索算法,通过选择、交叉和变异等操作对个体进行优化。

以上是一些常见的遗传算法,根据问题和需求的不同,可以选择适合的遗传算法进行优化和搜索。

遗传算法

遗传算法
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:
遗传算法
式中x为决策变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
编辑本段一般算法
遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:
创建一个随机的初始状态
初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

第7章 遗传算法

第7章 遗传算法

遗传算法问题举例:求 Max f (x) x2 , x [0,31]
(1)编码: x 00000 ~ 11111
此时取均长为5,每个染色体 {0,1}5
(2)初始群体生成:群体大小视情况而定,此处设
置为4,随机产生四个个体:
编码: 01101,11000,01000,10011
解码: 13
24 8
w1 w2 …… wn 由于是回路,记wn+1= w1。 要注意w1,w2 ,……,wn是互不相同的。
15
遗传算法的基本机理——适应度函数
2. 适应度函数
通过适应度函数来决定染色体的优劣程度,它体现了自然 进化中的优胜劣汰原则. 对于优化问题,适应度函数就是目标函数,要能够有效地反 映每一个染色体与问题最优解染色体之间的差距. 例如:TSP的目标是路径总长度为最短,路径总长度的倒数 就可以为TSP的适应度函数:
2) 优化目标不受目标函数解析表示的限制,不要求目标 函数连续可微,甚至不要求优化目标具有函数形式, 仅用适应度函数来评价个体。
3) SGA的处理过程具有内在的并行性。 4) SGA不采用确定性规则,而是采用概率变迁规则来指
f 1170
10011 361 0.31 10011
淘汰
24
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆 周,而每个个体位串按其适值在总和中所占的比例占据轮子 的一个扇区。上题中可绘制如图所示的转轮。 复制时,只要简单地转动这个按权重划分的转轮4次,从而
产生4个下一代的种群。 例如对于表中的位串1, 其适值为169,为总适值的14.4%。 因此,每旋转一次转轮指向该位串 的概率为0.144。每当需要下一个后 代时,就旋转一下这个按权重划分 的转轮,产生一个复制的候选者。 这样位串的适值越高,在其下代中 产生的后代就越多。

遗传算法(GeneticAlgorithms)

遗传算法(GeneticAlgorithms)

遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。

1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。

它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。

2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。

对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。

确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。

案例实操我⽅有⼀个基地,经度和纬度为(70,40)。

假设我⽅飞机的速度为1000km/h。

我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。

在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。

已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。

编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。

遗传算法

遗传算法

遗传算法一、遗传算法的简介及来源1、遗传算法简介遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《自然系统和人工系统的自适应》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法模仿了生物的遗传、进化原理, 并引用了随机统计理论。

在求解过程中, 遗传算法从一个初始变量群体开始, 一代一代地寻找问题的最优解, 直至满足收敛判据或预先设定的迭代次数为止。

它是一种迭代式算法。

2、遗传算法的基本原理遗传算法是一种基于自然选择和群体遗传机理的搜索算法, 它模拟了自然选择和自然遗传过程中发生的繁殖、杂交和突变现象。

在利用遗传算法求解问题时, 问题的每个可能的解都被编码成一个“染色体”,即个体, 若干个个体构成了群体( 所有可能解) 。

在遗传算法开始时, 总是随机地产生一些个体( 即初始解) , 根据预定的目标函数对每个个体进行评价, 给出了一个适应度值。

基于此适应度值, 选择个体用来繁殖下一代。

选择操作体现了“适者生存”原理, “好”的个体被选择用来繁殖, 而“坏”的个体则被淘汰。

然后选择出来的个体经过交叉和变异算子进行再组合生成新的一代。

这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代, 这样逐步朝着更优解的方向进化。

因此, 遗传算法可以看作是一个由可行解组成的群体逐代进化的过程。

3、遗传算法的一般算法(1)创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。

(2)评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。

第3章遗传算法

第3章遗传算法
x 10, f (x) 0 ,最大值 x 30, f (x) 0 ,最小值
26
三.计算举例(3)
2. 步骤: ① 产生初始种群NG=10,t=0 ② 判断停止准则 ③ 计算适值 ④ 用旋轮法正比选择
27
三.计算举例(4)
3. 计算生成的列表:
表1
j 编 码 x j f (x j ) Pj PPj
4
一.导言(4)
② 随机算法:在解空间随机产生多个解,选择 最好的
③ 网格法:根据最好解的几何分布,来不断的 缩小搜索范围。
5
一.导言(5)
3. 遗传算法的基本思想 ① 根据问题的目标函数构造适值函数(Fitness
Function); ② 产生一个初始种群(100-1000); ③ 根据适值函数的好坏,不断选择繁殖; ④ 若干代后得到适值函数最好的个体即最优解。
选择 计算适值,评估
适值
解 码 解空间
12
二.Holland的基本GA(5)
3. 各个步骤的实现 ① 初始种群的产生 ② 编码方法 ③ 适值函数 ④ 遗传运算 ⑤ 选择策略 ⑥ 停止准则
13
二.Holland的基本GA(6)
① 初始种群的产生 随机产生(依赖于编码方法);种群的大小(依 赖于计算机的计算能力和计算复杂度)。
像 P10 ; P7 而很可能失去繁殖的机会。
23
二.Holland的基本GA(16)
⑥ 停止准则 A. 指定最大代数(NG—Number of Max
Generation) B. F Fmax 1 很少用 ,麻烦
24
三.计算举例(1)
ab
例1:max f (x) x3 60x2 900x 100 ,x 0,30,

第七讲遗传算法

第七讲遗传算法

四、遗传算法应用举例 1
于是,得第三代种群S3: s1=11100(28), s2=01001(9) s3=11000(24), s4=10011(19)
四、遗传算法应用举例 1
第三代种群S3中各染色体的情况
染色体
适应度 选择概率 估计的 选中次数
四、遗传算法应用举例 1
首先计算种群S1中各个体
s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011)
的适应度f (si) 。 容易求得
f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
群体的染色体都将逐渐适应环境,不断进化,最后收敛到 一族最适应环境的类似个体,即得到问题最优解。
一、遗传算法概述
与传统的优化算法相比,遗传算法主要有以下几 个不同之处
遗传算法不是直接作用在参变量集上而是利用参变量集 的某种编码 遗传算法不是从单个点,而是从一个点的群体开始搜索; 遗传算法利用适应值信息,无须导数或其它辅助信息; 遗传算法利用概率转移规则,而非确定性规则。

结束程序
计算每个个体的适应值
以概率选择遗传算子
选择一个个体 选择两个个体进行 选择一个个体进行 复制到新群体 交叉插入到新群体 变异插入到新群体
得到新群体
四、遗传算法应用举例 1
例1 利用遗传算法求解区间[0,31]上的二次函数 y=x2的最大值。
Y
y=x2
31 X
四、遗传算法应用举例 1
分析
s1’’=11001(25), s2’’=01100(12) s3’’=11011(27), s4’’=10000(16)

遗传算法总结

遗传算法总结

遗传算法总结简介遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化过程中的遗传机制和自然选择原理的优化方法。

它模拟了自然界的进化过程,通过对问题空间中的个体进行选择、交叉和变异等操作,逐步搜索并优化解的过程。

遗传算法被广泛应用于解决各种优化、搜索和机器学习问题。

基本原理遗传算法的基本原理是通过模拟自然选择和遗传机制,寻找问题空间中的最优解。

其主要步骤包括初始化种群、选择操作、交叉操作、变异操作和确定终止条件等。

1.初始化种群:遗传算法的第一步是生成一个初始种群,其中每个个体代表一个可能的解。

个体的编码可以使用二进制、整数或实数等形式,具体根据问题的特点而定。

2.选择操作:选择操作通过根据适应度函数对种群中的个体进行评估和排序,选择较优的个体作为下一代种群的父代。

通常采用轮盘赌选择、竞争选择等方法来进行选择。

3.交叉操作:交叉操作模拟了生物遗传中的交配过程。

从父代个体中选择一对个体,通过交叉染色体的某个位置,生成下一代个体。

交叉操作可以通过单点交叉、多点交叉或均匀交叉等方式进行。

4.变异操作:变异操作引入了种群中的一定程度的随机性,通过改变个体的染色体或基因,以增加种群的多样性。

变异操作可以是位变异、部分反转、插入删除等方式进行。

5.确定终止条件:遗传算法会循环执行选择、交叉和变异操作,直到满足一定的终止条件。

常见的终止条件有达到最大迭代次数、找到最优解或达到计算时间限制等。

优点和局限性优点•遗传算法可以在大规模问题空间中进行全局搜索,不受问题的线性性和连续性限制。

它适用于解决多目标和多约束问题。

•遗传算法具有自适应性和学习能力,通过不断的进化和优胜劣汰过程,可以逐步收敛到最优解。

•遗传算法易于实现和理解,可以直观地表示问题和解决方案。

局限性•遗传算法需要选择合适的编码方式和适应度函数,以及调整交叉和变异的概率等参数。

这些参数的选择对算法的性能和结果有较大影响,需要经验和调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学数学科学学院
李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程)
1.1.3 遗传与进化的系统观
虽然人们还未完全揭开遗传与进化的奥秘,即没有完全掌握其机制、 虽然人们还未完全揭开遗传与进化的奥秘,即没有完全掌握其机制、也不完全 清楚染色体编码和译码过程的细节,更不完全了解其控制方式, 清楚染色体编码和译码过程的细节,更不完全了解其控制方式,但遗传与进化的 以下几个特点却为人们所共识: 以下几个特点却为人们所共识: (1) 生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状; 生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状; (2) 染色体是由基因及其有规律的排列所构成的,遗传和进化过程发生在染色体上; 染色体是由基因及其有规律的排列所构成的,遗传和进化过程发生在染色体上; (3) 生物的繁殖过程是由其基因的复制过程来完成的; 生物的繁殖过程是由其基因的复制过程来完成的; (4) 通过同源染色体之间的交叉或染色体的变异会产生新的物种,使生物呈现新的 通过同源染色体之间的交叉或染色体的变异会产生新的物种, 性状。 性状。 (5) 对环境适应性好的基因或染色体经常比适应性差的基因或染色体有更多的机会 遗传到下一代。 遗传到下一代。
酸通过磷酸二酯键相结合形成一个长长的链状结构, 酸通过磷酸二酯键相结合形成一个长长的链状结构,两个链状结构再通过碱基间的氢键有 规律地扭合在一起,相互卷曲起来形成一种双螺旋结构。基因就是DNA长链结构中占有一 规律地扭合在一起,相互卷曲起来形成一种双螺旋结构。基因就是 长链结构中占有一 定位置的基本遗传单位。 定位置的基本遗传单位。
电子科技大学数学科学学院 李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课)
电子科技大学数学科学学院 李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程)
• 构成生物的基本结构和功能的单位是细胞(Ce11)。 构成生物的基本结构和功能的单位是细胞 细胞 。 • 细胞中含有的一种微小的丝状化合物称为染色体(Chromosome),生物的所有遗 细胞中含有的一种微小的丝状化合物称为染色体 染色体 ,生物的所有遗 传信息都包含在这个复杂而又微小的染色体中。 传信息都包含在这个复杂而又微小的染色体中。 都包含在这个复杂而又微小的染色体中 • 基因 经过生物学家的研究,控制并决定生物遗传性状的染色体主要是由一种叫做脱 经过生物学家的研究,控制并决定生物遗传性状的染色体主要是由一种叫做脱 染色体 氧核糖核酸(deoxyribonucleic acid 简称 简称DNA)的物质所构成。 DNA在染色体中有 的物质所构成。 氧核糖核酸 的物质所构成 在染色体中有 规则地排列着,它是个大分子的有机聚合物,其基本结构单位是核苷酸,许多核苷 规则地排列着,它是个大分子的有机聚合物,其基本结构单位是核苷酸,
电子科技大学数学科学学院
李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程) 1.1.2 进化
地球上的生物,都是经过长期进化而形成的。根据达尔文的自然选择学说, 地球上的生物,都是经过长期进化而形成的。根据达尔文的自然选择学说,地 球上的生物具有很强的繁殖能力。在繁殖过程中,大多数生物通过遗传, 球上的生物具有很强的繁殖能力。在繁殖过程中,大多数生物通过遗传,使物种 保持相似的后代;部分生物由于变异,后代具有明显差别,甚至形成新物种。 保持相似的后代;部分生物由于变异,后代具有明显差别,甚至形成新物种。正 是由于生物的不断繁殖后代,生物数目大量增加, 是由于生物的不断繁殖后代,生物数目大量增加,而自然界中生物赖以生存的资 源却是有限的。因此,为了生存,生物就需要竞争。生物在生存竞争中, 源却是有限的。因此,为了生存,生物就需要竞争。生物在生存竞争中,根据对 环境的适应能力,适者生存,不适者消亡。自然界中的生物, 环境的适应能力,适者生存,不适者消亡。自然界中的生物,就是根据这种优胜 劣汰的原则,不断地进行进化。 劣汰的原则,不断地进行进化。 • 生物的进化是以集团的形式共同进行的,这样的一个团体称为群体 生物的进化是以集团的形式共同进行的,这样的一个团体称为群体 群体(Population), , 或称为种群。 或称为种群。 • 组成群体的单个生物称为个体 组成群体的单个生物称为个体 个体(Individual), , • 每一个个体对其生存环境都有不同的适应能力,这种适应能力称为个体的适应度 每一个个体对其生存环境都有不同的适应能力 这种适应能力称为个体的适应度 适应能力, (Fitness)。 。
• 遗传信息是由基因 遗传信息是由基因(Gene)组成的,生物的各种性状由其相应的基因所控制。 组成的, 是由基因 组成的 生物的各种性状由其相应的基因所控制。 • 基因是遗传的基本单位。细胞通过分裂具有自我复制的能力,在细胞分裂的过 基因是遗传的基本单位。细胞通过分裂具有自我复制的能力, 程中, 遗传基因也同时被复制到下一代 从而其性状也被下一代所继承。 也同时被复制到下一代, 程中,其遗传基因也同时被复制到下一代,从而其性状也被下一代所继承。
1.1.1 遗传与变异 遗传(Heredity) 遗传(Heredity)—— 世间的生物从其父代继承特性或性状,这种生命现象就称为 世间的生物从其父代继承特性或性状,
遗传(Heredity),由于遗传的作用,使得人们可以种瓜得瓜、 ,由于遗传的作用,使得人们可以种瓜得瓜、 遗传 种豆得豆,也使得鸟仍然是在天空中飞翔, 种豆得豆,也使得鸟仍然是在天空中飞翔,鱼仍然是在水中邀 游。
其中: 其中: X=[x1,x2,…,xn]T为决策变量, 为决策变量, = f(X)为目标函数, 为目标函数, 为目标函数 式(1-2)、(1-3)为约束 条件, 、 为约束 条件, U是基本空间, 是基本空间, 是基本空间 R是U的一个子集。 的一个子集。 是 的一个子集 满足约束条件的解X称为可行解; 满足约束条件的解 称为可行解; 称为可行解 集合R表示由所有满足约束条件的解所组成的一个集合 叫做可行解集合。 表示由所有满足约束条件的解所组成的一个集合, 集合 表示由所有满足约束条件的解所组成的一个集合,叫做可行解集合。 它们之间的关系如图所示。 它们之间的关系如图所示。
电子科技大学数学科学学院
李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程) 生物的遗传方式: 生物的遗传方式:
1. 复制 生物的主耍遗传方式是复制。遗传过程中,父代的遗传物质DNA被复制到子 生物的主耍遗传方式是复制。遗传过程中,父代的遗传物质 被复制到子 即细胞在分裂时,遗传物质DNA通过复制 通过复制(Reproduction)而转移到新生的细 代。即细胞在分裂时,遗传物质 通过复制 而转移到新生的细 胞中,新细胞就继承了旧细胞的基因。 胞中,新细胞就继承了旧细胞的基因。 2. 交叉 有性生殖生物在繁殖下一代时,两个同源染色体之间通过交叉(Crossover)而重 有性生殖生物在繁殖下一代时,两个同源染色体之间通过交叉 而重 亦即在两个染色体的某一相同位置处DNA被切断,其前后两串分别交义组合 被切断, 组,亦即在两个染色体的某一相同位置处 被切断 而形成两个新的染色体。 而形成两个新的染色体。 3. 变异 在进行细胞复制时,虽然概率很小,仅仅有可能产生某些复制差错, 在进行细胞复制时,虽然概率很小,仅仅有可能产生某些复制差错,从而使 DNA发生某种变异 发生某种变异(Mutation),产生出新的染色体。这些新的染色体表现出新的 发生某种变异 ,产生出新的染色体。 性状。 性状。 如此这般,遗传基因或染色体在遗传的过程中由于各种各样的原因而发生变化。 如此这般,遗传基因或染色体在遗传的过程中由于各种各样的原因而发生变化。
电子科技大学数学科学学院
李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程) 1.2.1 遗传算法概要
对于一个求函数最大值的优化问题(求最小值也类同),一般可描述为下述数 对于一个求函数最大值的优化问题(求最小值也类同),一般可描述为下述数 ), 学规划模型: 学规划模型: max f(X) s.t. X∈R ∈ R⊆U ⊆ (1-1) (1-2) (1-3)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程)
第一部分 绪论
1.1 遗传算法的生物学基础
生物在自然界中的生存繁衍,显示出了其对自然环境的自适应能力。受其启发, 生物在自然界中的生存繁衍,显示出了其对自然环境的自适应能力。受其启发, 人们致力于对生物各种生存特性的机理研究和行为模拟, 人们致力于对生物各种生存特性的机理研究和行为模拟,为人工自适应系统的设计 和开发提供了广阔的前景。遗传算法 和开发提供了广阔的前景。遗传算法(Genetic Algorithms,简称 ,简称GAs)就是这种生物 就是这种生物 行为的计算机模拟中令人瞩目的重要成果。 行为的计算机模拟中令人瞩目的重要成果。基于对生物遗传和进化过程的计算机模 拟,遗传算法使得各种人工系统具有优良的自适应能力和优化能力。 遗传算法使得各种人工系统具有优良的自适应能力和优化能力。 遗传算法所借鉴的生物学基础就是生物的遗传和进化。 遗传算法所借鉴的生物学基础就是生物的遗传和进化。
电子科技大学数学科学学院
李良 (plum.liliang@)
电子科技大学 --- 西南科技大学 (双学位课程) 双学位课程)
• 遗传基因在染色体中所占据的位置称为基因座(Locus); 遗传基因在染色体中所占据的位置称为基因座 基因座 ; • 同一基因座可能有的全部基因称为等位基因 同一基因座可能有的全部基因称为等位基因(Allele); ; 等位基因 • 某种生物所特有的基因及其构成形式称为该生物的基因型 某种生物所特有的基因及其构成形式称为该生物的基因型 基因型(Genotype); ; 表现型(Phenotype); • 而该生物在环境中呈现出的相应的性状称为该生物的表现型 而该生物在环境中呈现出的相应的性状称为该生物的表现型 ; • 一个细胞核中所有染色体所携带的遗传信息的全体称为一个基因组 一个细胞核中所有染色体所携带的遗传信息的全体称为一个基因组 基因组(Genome)。 。
相关文档
最新文档