2015届宁夏银川一中,高三上学期第四次,数学
宁夏银川一中2015届高三第四次月考理综生物试卷
宁夏银川一中2015届高三第四次月考理综生物试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
其中第Ⅱ卷第33~40题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
第Ⅰ卷(共126分)可能用到的相对原子质量(原子量):H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5Fe-56 Cu-64 Co-59 Ba-137一、选择题:本题包括13小题。
每小题6分,共78分,每小题只有一个选项符合题意。
1.下列关于细胞结构和生物体内化合物的叙述正确的是A.抗体、激素、tRNA发挥一次作用后都将失去生物活性B.ATP脱去两个磷酸基团后成为RNA的基本组成单位之一C.蓝藻和绿藻都能进行光合作用,故二者含有的光合色素相同D.细菌代谢速率极快,细胞膜和细胞器膜为其提供了结构基础2.下列与核酸相关的叙述正确的是A.参与细胞分裂的核酸只有mRNA和tRNAB.细胞分化的原因是核DNA遗传信息改变C.细胞凋亡的根本原因是DNA的水解D.细胞癌变后mRNA的种类和数量改变3.恶性血液病中一种罕见的因20号染色体长臂部分缺失引发的疾病,引起医学家的关注。
下列与这种病产生原因相似的是A. 线粒体DNA突变会导致生物性状变异B. 三倍体西瓜植株的高度不育C. 猫叫综合征D. 白化病4. 探究生物的遗传物质和遗传规律的漫长岁月中,众多学者做出卓越贡献,正确的是A.萨顿运用假说-演绎法提出基因在染色体上B.克里克最先预见了遗传信息传递的一般规律,并将其命名为中心法则C.格里菲思的肺炎双球菌转化实验最早证实DNA是遗传物质D.赫尔希等人用T2噬菌体侵染大肠杆菌的实验,使人们确信 DNA 是主要的遗传物质5.埃博拉出血热(EBHF)是由埃博拉病毒(EBV)(一种丝状单链RNA病毒)引起的当今世界上最致命的病毒性出血热,目前该病毒已经造成超过5160人死亡。
EBV与宿主细胞结合后,将核酸-蛋白复合体释放至细胞质,通过下图途径进行增殖。
宁夏银川一中2015届高三上学期第四次月考语文试题
宁夏银川一中2015届高三上学期第四次月考语文试题高三2010-12-27 10:54银川一中2015届高三年级第四次月考语文试卷2010.11注意事项:本试卷分第I卷(阅读题)和第Ⅱ卷(表达题)两部分,其中第Ⅱ卷第三、四题为选考题,其它题为必考题。
第Ⅰ卷阅读题(共70分)甲必考题(45分)一、现代文阅读(9分,每小题3分)汉字的魅力优于拼音文字说到汉字,不能不提及世界文明史。
世界的古代文明,可以说就是尼罗河流域的埃及圈,幼发拉底河、底格里斯河流域的美索不达米亚圈,印度河、恒河流域的印度圈,黄河、长江流域的中国圈等四大文明。
这四大文明之中,前三者互相交往而发展,成为近代文明的源流,只有中国几乎未与其它文化产生关联而独自发展出汉字文化圈。
国人对此是充满自豪感的,无论是对汉字的发展历史,还是对汉字所承载的中国独具的文字文明和文化底蕴。
但是,由于汉字自身的特点所带来的缺陷,如撰文用字多、字型复杂、难记、难读,在过去几十年中,汉字的未来与发展前景便广受汉字文化圈中一些国家的关注和议论。
但肯定的一点是,要想准确把握汉字的功过是非,必须仔细回顾和耐心审视汉字所走过的历程。
写于1988年的《图说汉字的历史》引进出版,该书作者阿辻哲次以“事典”的形式,图文并茂地对汉字发展史上的基本事项进行了简洁却明晰的梳理和叙述,从新石器时代开始到现代的汉字发展史,从前印刷时代的汉字书写工具材料史到汉字印刷的发展史……意在为学习汉字、使用汉字的人提供更多的相关知识,让那些对汉字有成见的人明白:现在就想把拥有四千余年悠久历史、担负着人类文明发展一翼的汉字塞进博物馆里,还为时尚早。
汉字的表记法从古代到现代是连续发展的,从甲骨文、青铜器文字、篆体字,到隶、行、楷,没有文化断层。
汉字不是拼音文字,而是图形文字,以物的图形为基础而形成文字,例如“山”、“川”、“日”、“月”等。
而与汉字、汉学有关的律令制度,如国家概念、产业、生活、文化等,也都跨越广阔的版图,从中国中原,传播到东方的朝鲜、日本,南方的越南,用文字连结了中国与周边世界的文化。
宁夏银川一中2015届高三第二次月考数学(文科)试卷及答案
银川一中2015届高三年级第二次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|10},{|A x x B x y =-<==,则A∩B 等于( )A .{|1}x x >B .{|01}x x <<C . {|1}x x <D .{|01}x x <≤2.已知复数 z 满足(1)1z i =+,则||z =( )A B .21C D . 23.在△ABC 中,“sin A >”是“3πA >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.O 是ABC ∆所在平面内的一点,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状一定为( )A .正三角形B .直角三角形C .等腰三角形D .斜三角形5.设向量,+=10-=6,则=⋅( )A .5B .3C .2D .16.函数2sin 2xy x =-的图象大致是( )7.若角α的终边在直线y =2x 上,则ααααcos 2sin cos sin 2+-的值为( )A .0 B. 34 C .1 D. 548.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =,则c = ( )A .B .2CD .19.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是( ) A.[-1,+∞) B.(-1,+∞) C.(-∞,-1] D.(-∞,-1) 10.函数()()xx x f 21ln -+=的零点所在的大致区间是( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)11.)0)(sin(3)(>+=ωϕωx x f 部分图象如图,若2||AB BC AB =⋅,ω等于( ) A .12π B .4πC .3π D .6π 12.函数()x f 是R 上的偶函数,在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sinπππf c f b f a ,则( )A .c b a <<B .a b c <<C .a c b <<D .c a b <<第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分.13.设1232,2()log (1),2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为 . 14.若sin cos θθ+=tan 3πθ⎛⎫+ ⎪⎝⎭的值是 ___________.15.设奇函数()x f 的定义域为R ,且周期为5,若()1f <—1,(),log 42a f =则实数a 的取值范围是 .16.以下命题:①若||||||a b a b ⋅=⋅,则a ∥b ; ②a =(-1,1)在b =(3,4)方向上的投影为15; ③若△ABC 中,a=5,b =8,c =7,则BC ·CA =20;a b |||b b +=,则|2||2|b a b >+. 所有真命题的标号是______________.三、解答题: 解答应写出文字说明,证明过程或演算步骤. 17、(本小题12分)已知向量⎪⎭⎫ ⎝⎛=23,sin x ,()02cos 3,cos 3>⎪⎭⎫⎝⎛=A x A x A ,函数()f x m n =⋅的最大值为6.(1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在⎥⎦⎤⎢⎣⎡40π,上的值域.18.(本小题12分)设函数)0(19)(23<--+=a x ax x x f ,且曲线)(x f y =斜率最小的切线与直线612=+y x 平行.求:(1)a 的值;(2)函数)(x f 的单调区间.19.(本小题12分)a ax e x f x,1)(2+=为正实数(1)当34=a ,求)(x f 极值点; (2)若)(x f 为R 上的单调函数,求a 的范围. 20.(本题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --=。
宁夏银川市宁大附中2015届高三数学上学期期末考试试题 理 新人教A版
正视图 侧视图 俯视图 宁夏银川市宁大附中2015届高三上学期期末考试数学〔理〕试题一、选择题:(本大题共12小题,每一小题5分,共60分,在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.)1、设集合{}062≤-+=x x x A ,集合B 为函数11-=x y 的定义域,如此=B A 〔 〕A.B.C.D.2、将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,如此所得的图象的解析式为〔 〕 A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈ 3、在各项都为正数的等比数列{}n a 中,首项为3,前3项和为21,如此3a 等于 〔〕 A .15 B .12 C .9 D .64、某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,如此不同的赠送方法共有〔〕A .4种B .10种C .18种D .20种5、向量(1,2),(4,)a x b y =-=,假设a b ⊥,如此93x y +的最小值为〔 〕 A .23 B .12 C .6 D .326、某个几何体的三视图如下,根据图中标出的尺寸〔单位:cm 〕,可得这个几何体的体积是( )A .331cm B .332cm C .334cm D .338cm7、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A .2B .3C .312+ D .512+ 8、在ABC ∆中,角A ,B ,C 所对边分别为c b a ,,,且4524==B c ,,面积2=S ,如此b 等于( )A.2113B.5C.41D.25 9、命题p :函数2()21(0)f x ax x a =--≠在〔0,1〕内恰有一个零点;命题q :函数2a y x -=在(0,)+∞上是减函数,假设p 且q ⌝为真命题,如此实数a 的取值范围是〔 〕 A .1a >B .a≤2 C. 1<a≤2 D.a≤l 或a>210、)23(log )4(log 2121-+<++y x y x ,假设λ<-y x 恒成立,如此λ的取值范围是〔 〕A .]10,(-∞B .)10,(-∞C . ),10[+∞D .),10(+∞11、椭圆1522=+x y 与抛物线ay x =2有一样的焦点F ,O 为原点,点P 是抛物线准线上一动点,点A在抛物线上,且4=AF ,如此PO PA +的最小值为〔 〕 A .132 B .24 C .133 D .64 12、函数()f x 定义在R 上的奇函数,当0x <时,()(1)x f x e x =+,给出如下命题:①当0x >时,()(1);x f x e x =-②函数()f x 有2个零点③()0f x >的解集为(1,0)(1,)-+∞④12,x x R ∀∈,都有12|()()|2f x f x -< 其中正确命题个数是( )A .1B .2C .3D .4 二、填空题:(本大题共4小题,每一小题5分.共20分)13、假设2sin ,0,(2)log (),0.x x f x x x ≥⎧+=⎨-<⎩,如此14、幂函数)(x f y =的图像过点()2,4,令)()1(n f n f a n ++=,+∈N n ,记数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n S ,如此n S =10时,n 的值是( )A.110B.120C.130D.14015、直线l 过椭圆2212x y +=的左焦点F ,且与椭圆相交于P 、Q 两点,M 为PQ 的中点,O 为原点.假设△FMO是以OF 为底边的等腰三角形,如此直线l 的方程为.16、在三棱锥BCD A -中,底面BCD 为边长为2的正三角形,顶点A 在底面BCD 上的射 影为BCD ∆的中心,假设E 为BC 的中点,且直线AE 与底面BCD 所成角的正切值为22,如此三棱锥BCD A -外接球的外表积为__________.三、解答题:〔共70分,解答应写出文字说明.证明过程或演算步骤〕17、〔此题总分为 10分〕某高校在今年的自主招生考试成绩中随机抽取 100 名考生的笔试成绩,分为 5组制出频率分布直方图如下列图.〔1〕求a , b , c , d ; 〔2〕该校决定在成绩较好的 3 , 4 , 5组用分层抽样抽取 6 名学生进展面试,如此每组应各抽多少名学生? 18、〔本小题总分为12分〕在ABC ∆中,内角,,A B C 所对边分别为,,a b c ,且sin 3cos A Ba b=. 〔1〕求角B 的大小;〔2〕如果2b =,求ABC ∆面积的最大值.19、〔本小题总分为12分〕各项均不相等的等差数列}{n a 的前四项和414S =,且731a a a ,,成等比数列. 〔1〕求数列}{n a 的通项公式; 〔2〕设n T 为数列}{11+n n a a 的前n 项和,假设λ≥n T 对*∈∀N n 恒成立,求实数λ的最大值. 20、〔本小题总分为12分〕如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点. 〔Ⅰ〕求证:AC ⊥平面BDEF ; 〔Ⅱ〕求二面角H BD C --的大小.21、〔本小题总分为12分〕椭圆C :22221(0)x y a b a b +=>>的离心率为22,左右焦点分别为F 1,F 2,抛物线242y x =的焦点F 恰好是该椭圆的一个顶点. (I)求椭圆C 的方程;(II)圆M :2223x y +=的切线l 与椭圆相交于A 、B 两点,那么以AB 为直径的圆是否经过坐标原点,如果是,请写出求解过程。
宁夏银川一中2015届高三第四次月考文综地理试卷
宁夏银川一中2015届高三第四次月考文综试卷第Ⅰ卷(选择题,140分)本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
图1中,甲和乙表示某地区不同季节的风向变化。
读图,回答1~2题。
1.该地区的气候类型是A.地中海气候 B.温带海洋性气候C.亚热带湿润气候 D.温带季风气候2.图甲所示季节里A.黄河宁夏段凌汛多发B.非洲热带草原的野生动物向南迁徙图1C.美国东南部多飓风活动D.三江平原正在播种小麦在GIS中,不同类型的地理空间信息储存在不同的图层上,叠加不同的图层可以分析不同要素间的相互关系。
据此回答3~4题。
3.将某区域的水系、土地利用、地形、土壤图层叠加,可以进行A.商业分布和规划B.评价交通网的合理性C.耕地分类和规划D.估算工农业生产总值4.如果需要规划当地的工矿企业,则还需要添加的图层是①交通线②矿产地③居民点④学校A.①②③B.②③④C.①②④D.①③④图2为东南亚某半岛气温(虚线,单位:℃)、降水(实线,单位:毫米)分布图,读图回答5-6题。
图2 5.据图判断甲、乙两地 A .1月气温差异大 B .甲地降水量季节变化较大 C .7月气温差异大D .乙地降水量年际变化较大6.与同纬度半岛东西两岸相比,丙地气温特点及其影响的主导因素分别是: A .气温低,海陆因素 B .气温低,地形因素 C .气温高,海陆因素D .气温高,地形因素图3中阴影区域为铁观音茶产地,读图回答7-8题。
图3 7.铁观音产地适宜种植茶树的自然条件是A .海拔较低,热量充足B 雨水充沛,云雾较多 C. 昼夜温差小 D .日照时间长8.某校研究性学习小组发现,E 地比F 地更适于铁观音的种植,主要原因是E 地比F 地 A.坡度陡 B.纬度高C .劳动力多 D.更加适合商业化生产 读2000年土地城市化质量的差异图表(图4)。
完成9-10题。
234注:城市用地人口密度等于城市人口除以城市用地面积;城市用地经济密度等于城市产生的GDP除以城市用地面积。
宁夏银川一中2015届高三上学期第三次月考试题 数学(理) Word版含答案
银川一中2015届高三年级第三次月考数 学 试 卷(理)命题人:曹建军第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合}0)1(|{},42|{>-=≤=x x x N x M x ,则N C M = A.(,0)[1,]-∞⋃+∞ B.(,0)[1,2]-∞⋃ C.(,0][1,2]-∞⋃D.(,0][1,]-∞⋃+∞2.已知复数2320151...z i i i i =+++++,则化简得z =A .0B .1-C .1D .1i +3. n S 为等差数列{}n a 的前n 项和,682=+a a ,则=9SA .227B .27C .54D .1084. 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是A. 63B. 233C. 236D. 4335.在ABC ∆中,90C =,且3CA CB ==,点M 满足2,BM MA CM CB =⋅ 则等于A .3B .2C .4D .66. 下列说法正确..的是 A .命题“x ∀∈R ,0x e >”的否定是“x ∃∈R ,0xe >”B .命题 “已知,x y ∈R ,若3x y +≠,则2x ≠或1y ≠”是真命题C .“22x x ax +≥在[]1,2x ∈上恒成立”⇔“max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立”D .命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题为真命题7.能够把圆O :1622=+y x 的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数不是..圆O 的“和谐函数”的是 A .3()4f x x x =+ B .5()15x f x nx -=+ C .()tan 2x f x = D .()x xf x e e -=+8. 已知2sin 23α=,则2cos ()4πα+= A. 12 B.13 C. 16 D.239.已知数列{}{},n n a b 错误!未找到引用源。
宁夏回族自治区银川一中2015届高三第四次模拟考试理科综合试卷.pdf
度v0垂直盘面瞄准P点抛出的同时,圆盘以经过盘心O点的水平轴在竖直平面内匀速转动。忽略空气阻力,重力加速度为
g,若飞镖恰好击中P点,则
A.飞镖击中P点所需的时间为
B.圆盘的半径可能为
C.圆盘转动角速度的最小值为
D.P点随圆盘转动的线速度可能为
20.如图所示,电流表A1(0-3A)和A2(0—0.6A)是由两个相同的电流计改装而成,现将这两个电流表并联后接人电
(C)电流表A2(量程3.0A,内阻r2约为0.2Ω)
(D)滑动变阻器R1(0~10Ω)
(E)滑动变阻器R2(0~1kΩ)
(F)定值电阻R3=10Ω
(G)定值电阻R4=100Ω
(H)电源(电动势E约为9V,内阻很小)
(I)单刀单掷开关两只S1、S2,导线若干。
要求实验时,改变滑动变阻器的阻值,在尽可能大的范围内测得多组A1表 和A2表的读数I1、I2,然后利用给出的
由此得出相应的斜率k。)
(1)若不计棉球在空中运动时的空气阻力,根据以上测得的物理量可得,棉球从B端飞出的速度v0=________。
(2)假设实验者吹气能保持玻璃管内气体压强始终为恒定值,不计棉球与管壁的摩擦,重力加速度g,大气压强
p0均为已知,利用图(b)中所画直线的斜率k可得,管内气体压强p=________。
C.若乘客未接触座椅靠背,则应受到向前(水平向左)的摩擦力作用
D.乘客处于超重状态
16.如图所示,一质量为的铁块套在倾斜放置的杆上,铁块与杆之间的动摩擦因数,且最大静摩擦力和滑动摩擦力
大小相等.杆与水平方向成角,一轻绳一端连接在铁块上,一端连在一质量的小球上,一水平力作用在小球上,连接铁
绝密★启用前 2015年普通高等学校招生全国统一考试 理科综合能力测试 (银川一中第四次模拟考试) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第33~40题为选考题,其它题为必考题。考生作 答时,将答案答在答题卡上,在本试卷上答题无效。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条 形码粘贴在答题卡的指定位置上。 2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米 的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。 3.请按照题号在各题的答题区域(黑色线框)内作答超出答题区域书写的答案无效。 4.保持卡面清洁,不折叠,不破损。 5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题目涂黑。 可能用到的相对原子质量:H-1 C-12 N-14 O-16 第Ⅰ卷 一1.下列有关对组成生物体有机物的叙述中,正确的是脱氧核糖核酸只分布于细胞核内抗体一旦在核糖体上合成 便具有生物活性组成淀粉、糖原、纤维素的基本单位都是葡萄糖质量相同的葡萄糖、脂肪彻底氧化分解所释放的能量相 同2.右图是一个数学模型(此图仅表示变化趋势),以下对此数学模型应用不科学的是 A.若y表示激素含量,x表示进食后血糖浓度,则a为胰岛素,b为胰高血糖素 B.若y表示C02释放量,x表示外界02浓度,则a为有氧呼吸强度,b为无氧呼吸强度 C.若y表示耗氧量,x表示外界温度,则a为变温动物,b为恒温动物 D.若y表示生理作用,x表示生长素浓度,则a可表示对根生长的促进作用,b可表示对茎生长的促进作用。 .下列关于遗传信息传递与表达的叙述正确的是遗传信息全部以密码子的方式体现出来DNA复制、转录都是以DNA的 一条链为模板,翻译是以mRNA为模板人生长激素基因和血红蛋白基因转录的mRNA上相同的密码子翻译成相同的氨基酸若 含有遗传信息的模板链的碱基组成为CGA,则遗传密码的碱基组成为GCT4.初夏在密闭透明薄膜大棚内,一天中的光照 强度与棚内植物制造有机物量分别如下图中曲线Ⅰ、曲线Ⅱ所示。在采取某项措施后,棚内植物制造有机物量如图中曲 线Ⅲ所示。采取的这项措施最可能是 A.降低温度 B.增加CO2浓度C.提高温度 D.增加O2浓度 5下列有关实验方法或检测试剂的叙述,正确的是 A用微电流计测量膜的静息电位时,要将微电流计的两极分别置于膜外、膜内 B在用淀粉酶、淀粉为原料来探究酶的最适pH的实验中,可用双缩脲试剂来检测实验结果 C观察DNA和RNA在细胞中的分布时可选用洋葱鳞片叶的外表皮细胞 D在证明遗传物质是DNA的实验中,同时用32P和35S标记T2噬菌体的DNA和蛋白质外壳 6稳态是人体进行正常生命活动的必要条件,下列有关叙述正确的是 A肌细胞无氧呼吸能产生二氧化碳,并释放到血浆中,血浆的pH无明显变化 B人体大量失水时,血浆渗透压升高,抗利尿激素分泌量增加,排尿量减少 C人遇寒冷环境时,机体的甲状腺激素分泌量增加,肾上腺素的分泌量降低 D人体被病毒感染时,体内产生的抗体,能通过裂解靶细胞将病原体清除掉 7.化学与人类生产、生活密切相关。下列叙述正确的是 A.氢氧化铝、碳酸钠都是常见的胃酸中和剂 B.红葡萄酒密封储存时间越长质量越好原因之一是生成了有香味的酯 C.碘酒中的碘因有还原性而起到杀菌消毒作用 D.食盐、食醋、味精是常用的食品添加剂,其主要成分均属于钠盐 8.下列说法正确的是 A.乙烯使溴水或酸性高锰酸钾溶液褪色均属于加成反应 B.常温常压下环癸五烯是一种易溶于水的无色气体 C.用酸性重铬酸钾溶液检验酒驾,发生的反应属于乙醇的氧化反应 D.等质量的乙烯和乙醇完全燃烧,消耗O2的物质的量相同 9.下列说法正确的是
宁夏银川一中2015届高三年级第四次月考语文试卷
宁夏银川一中2015届高三年级第四次月考语文试卷高三2010-12-03 14:21银川一中2015届高三年级第四次月考语文试卷第Ⅰ卷阅读题(共70分)甲必考题(45分)一、现代文阅读(9分,每小题3分)汉字的魅力优于拼音文字说到汉字,不能不提及世界文明史。
世界的古代文明,可以说就是尼罗河流域的埃及圈,幼发拉底河、底格里斯河流域的美索不达米亚圈,印度河、恒河流域的印度圈,黄河、长江流域的中国圈等四大文明。
这四大文明之中,前三者互相交往而发展,成为近代文明的源流,只有中国几乎未与其它文化产生关联而独自发展出汉字文化圈。
国人对此是充满自豪感的,无论是对汉字的发展历史,还是对汉字所承载的中国独具的文字文明和文化底蕴。
但是,由于汉字自身的特点所带来的缺陷,如撰文用字多、字型复杂、难记、难读,在过去几十年中,汉字的未来与发展前景便广受汉字文化圈中一些国家的关注和议论。
但肯定的一点是,要想准确把握汉字的功过是非,必须仔细回顾和耐心审视汉字所走过的历程。
写于1988年的《图说汉字的历史》引进出版,该书作者阿辻哲次以“事典”的形式,图文并茂地对汉字发展史上的基本事项进行了简洁却明晰的梳理和叙述,从新石器时代开始到现代的汉字发展史,从前印刷时代的汉字书写工具材料史到汉字印刷的发展史……意在为学习汉字、使用汉字的人提供更多的相关知识,让那些对汉字有成见的人明白:现在就想把拥有四千余年悠久历史、担负着人类文明发展一翼的汉字塞进博物馆里,还为时尚早。
汉字的表记法从古代到现代是连续发展的,从甲骨文、青铜器文字、篆体字,到隶、行、楷,没有文化断层。
汉字不是拼音文字,而是图形文字,以物的图形为基础而形成文字,例如“山”、“川”、“日”、“月”等。
而与汉字、汉学有关的律令制度,如国家概念、产业、生活、文化等,也都跨越广阔的版图,从中国中原,传播到东方的朝鲜、日本,南方的越南,用文字连结了中国与周边世界的文化。
虽然多数国家后来又在汉字的基础上创造了自己的文字,但依然有着汉字的影响和痕迹存在。
宁夏回族自治区银川一中2015届高三数学第二次月考试题 理(含解析)
银川一中2015届高三年级第二次月考数 学 试 卷(理)【试卷综评】突出考查数学主干知识 ,侧重于中学数学学科的基础知识和基本技能的考查;侧重于知识交汇点的考查。
全面考查了考试说明中要求的内容,明确了中学数学的教学方向和考生的学习方向,适度综合考查,提高试题的区分度.通过考查知识的交汇点,对考生的数学能力提出了较高的要求. 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.已知集合{}02|2≥--=x x x A ,{}22|<≤-=x x B ,则=B A ( ) A .[]2,1- B .[]1,2-- C. []1,1- D .[]2,1 【知识点】交集及其运算.A1【答案解析】B 解析:由A 中不等式变形得:(x+1)(x ﹣2)≥0,解得:x≤﹣1或x≥2,即A=(﹣∞,﹣1]∪[2,+∞),∵B=[﹣2,2), ∴A∩B=[﹣2,﹣1].故选:B .【思路点拨】求出A 中不等式的解集确定出A ,再由B ,求出A 与B 的交集即可. 【题文】2.已知复数z 满足25)43(=+z i ,则=z ( )A. i 43-B. i 43+C. i 43--D. i 43+- 【知识点】复数相等的充要条件.L4【答案解析】 A 解析:∵复数z满足(3+4i )z=25,则z====3﹣4i ,故选:A .【思路点拨】根据题意利用两个复数代数形式的乘除法,虚数单位i 的幂运算性质,计算求得z 的值.【题文】3.下列命题中的假命题是( )A .021>∈∀-xR x , B .212),0x x x>∞+∈∀ , ( C .4001.1,x x x R x x <>∈∃时,恒有 当D .R ∈∃α,使函数 αx y =的图像关于y 轴对称【知识点】命题的真假判断与应用. A2【答案解析】C 解析:由指数函数的定义域和值域可知,∀x ∈R ,21﹣x >0,选项A 为真命题;当0<x <1时,2x >1,,有.当x=1时,.当x >1时,.∴∀x ∈(0,+∞),2x >,命题B 为真命题;∵y=1.1x 为底数大于1的指数函数,y=x4为幂函数,∴∃x0∈R ,当x >x0时,恒有1.1x >x4,选项C 为假命题;当α为偶数时,函数y=x α是偶函数,其图象关于y 轴对称,选项D 为真命题. 故选:C .【思路点拨】由指数函数的定义域和值域判断A ;对x 分类讨论判断B ;由指数函数爆炸性判断C ;举例说明D 正确.【题文】4.已知向量)12()41()3(,,,===k ,且⊥-)32(,则实数k =( ) A.29-B. 0C. 3D. 215【知识点】平面向量数量积的运算.菁优F3 【答案解析】C 解析:=(2k ﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=2(2k ﹣3)﹣6=0,解得k=3.故选:C . 【思路点拨】(2﹣3)⊥,可得(2﹣3)•=0,解出即可.【题文】5.在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为( ) A.)41,0( B. )21,41( C. )43,21( D. )1,43( 【知识点】函数零点的判定定理.菁优B9【答案解析】B 解析:∵f (0)=e0﹣3=﹣2<0 f (1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A 选项 又∵∴根所在的区间x0∈(0,),排除D 选项 最后计算出,,得出选项B 符合;故选B .【思路点拨】分别计算出f (0)、f (1)、f ()、f ()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【题文】6.若⎥⎦⎤⎢⎣⎡∈24ππθ,,8732sin =θ,则θsin =( )A. 53B. 54C. 47D. 43【知识点】二倍角的正弦;同角三角函数间的基本关系.C2 C6 【答案解析】D 解析:因为,,所以cos2θ=﹣=﹣,所以1﹣2sin2θ=﹣,所以sin2θ=,,所以sin θ=.故选D .【思路点拨】结合角的范围,通过平方关系求出二倍角的余弦函数值,通过二倍角公式求解即可.【题文】7.设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当[]02,-∈x 时,1)21()(-=x x f ,若在区间]62(,- 内关于x 的方程)1(0)2(l o g )(>=+-a x x f a 恰有3个不同的实数根,则a 的取值范围是( )A. (1,2)B. (2,+∞)C. (1, 34)D. (34,2)【知识点】函数的零点与方程根的关系. 权所有B9【答案解析】D 解析:∵f(x )是定义在R 上的偶函数, ∴f(x )的图象关于y 轴对称,∵对x∈R,都有f (x ﹣2)=f (x+2), ∴f(x )是周期函数,且周期为4; ∵当x∈[﹣2,0]时,f (x )=()x ﹣1, ∴其在区间(﹣2,6]内的图象如右图,∴在区间(﹣2,6]内关于x 的方程f (x )﹣loga (x+2)=0(a >1)恰有3个不同的实根可转化为,函数f (x )的图象与y=loga (x+2)的图象有且只有三个不同的交点, 则loga (2+2)<3,且loga (6+2)>3 解得,a∈(,2).故选D .【思路点拨】作出在区间(﹣2,6]内函数f (x )的图象,将方程的根的个数化为函数图象交点的个数.【题文】8.已知单位向量1e 与2e 的夹角为α,且31cos =α,向量2123e e -=与213e e b -=的夹角为β,则βcos =( )A .31B .322C .13013011 D .91【知识点】平面向量数量积的运算.F3 【答案解析】B 解析:向量,,∵===3.===.=+﹣9=9+2﹣9×=8.∴cos β===.故选:B .【思路点拨】利用数量积的运算性质即可得出.【题文】9.函数)220)(sin(2)(πϕπωϕω<<->+=,x x f 的部分图象如图所示,则ϕω,的值分别是( )A.32π-, B. 62π-, C. 321π-, D. 621π,【知识点】y=Asin (ωx+φ)中参数的物理意义.C4【答案解析】A 解析:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T 满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f (x )=2sin (2x+φ)又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2k π(k∈Z)∵,∴取k=0,得φ=﹣,故选:A【思路点拨】根据函数在同一周期内的最大值、最小值对应的x 值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+k π(k∈Z),取k=0得到φ=﹣.由此即可得到本题的答案.【题文】10.函数⎪⎩⎪⎨⎧>++≤-=.0,1,0,)()(2x a x x x a x x f ,若)0(f 是)(x f 的最小值,则a 的取值范围为( ).A .[]2,1-B .[]0,1- C. []2,1 D .[]2,0 【知识点】分段函数的应用.B1【答案解析】D 解析:当a <0时,显然f (0)不是f (x )的最小值,当a≥0时,f (0)=a2,由题意得:a2≤x++a ,解不等式:a2﹣a ﹣2≤0,得﹣1≤a≤2, ∴0≤a≤2,故选:D .【思路点拨】当a <0时,显然f (0)不是f (x )的最小值,当a≥0时,解不等式:a2﹣a ﹣2≤0,得﹣1≤a≤2,问题解决.【题文】11.若202παβπ<<<<-,1cos()43πα+=,cos()42πβ-=,则c o s ()2βα+=( )A .33B .33-C .935D .96-【知识点】两角和与差的余弦函数.C5 【答案解析】C解析:∵若﹣<β<0<α<,cos (+α)=,cos (﹣)=,∴sin(+α)=,sin (﹣)=, ∴cos (α+)=cos[(+α)﹣(﹣)]=cos (+α)cos(﹣)+sin (+α)sin (﹣)=)=;故选C .【思路点拨】观察已知角与所求角之间的关系得到α+=(+α)﹣(﹣),只要再求出另一个三角函数值,利用两角差的余弦公式解答.C【题文】12.已知函数)0(21)(2<-+=x e x x f x 与)ln()(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是( )A. )1(e e ,-B. )1(e e ,-C. )(e ,-∞D.)1(e ,-∞ 【知识点】函数的图象.B9 【答案解析】C 解析:由题意可得:存在x0∈(﹣∞,0),满足x02+ex0﹣=(﹣x0)2+ln (﹣x0+a ), 即ex0﹣﹣ln (﹣x0+a )=0有负根,∵当x 趋近于负无穷大时,ex0﹣﹣ln (﹣x0+a )也趋近于负无穷大, 且函数h (x )=ex ﹣﹣ln (﹣x+a )为增函数,∴h(0)=﹣lna >0, ∴lna<ln,∴0<a <,∴a 的取值范围是(0,),故选:B【思路点拨】由题意可得:存在x0∈(﹣∞,0),满足x02+ex0﹣=(﹣x0)2+ln (﹣x0+a ),结合函数h (x )=ex ﹣﹣ln (﹣x+a )图象和性质,可得h (0)=﹣lna >0,进而得到答案.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.【题文】13.dx x )21x 1(1++⎰ =_______________________.【知识点】定积分.B13 【答案解析】2ln 1+ 解析:(+2x )dx=[ln (x+1)+x2]=1+ln2;故答案为:1+ln2.【思路点拨】找出被积函数的原函数,然后代入上下限计算.【题文】14. 已知点)11(--,P 在曲线a x xy +=上,_____________.【知识点】利用导数研究曲线上某点切线方程.菁优B12【答案解析】12+=x y 解析:由于点P (﹣1,﹣1)在曲线y=上,则﹣1=,得a=2,即有y=,导数y′==,则曲线在点P 处的切线斜率为k==2.即有曲线在点P 处的切线方程为:y+1=2(x+1),即y=2x+1.故答案为:y=2x+1.【思路点拨】将点P 代入曲线方程,求出a ,再求函数的导数,求出切线的斜率,由点斜式方程即可得到切线方程.【题文】15. 如图在平行四边形ABCD 中,已知58==AD AB ,,23=⋅=,则⋅的值是 ___.【知识点】向量在几何中的应用;平面向量数量积的运算.F3【答案解析】22 解析:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【思路点拨】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【题文】16. 已知函数x x x f sin cos )(⋅=,给出下列五个说法:①41)121921(=πf . ②若)()(21x f x f -=,则21x x -=.③)(x f 在区间⎥⎦⎤⎢⎣⎡-36ππ,上单调递增. ④将函数)(x f 的图象向右平移43π个单位可得到xy 2cos 21=的图象.⑤)(x f 的图象关于点)04(,π-成中心对称.其中正确说法的序号是 .【知识点】命题的真假判断与应用;正弦函数的对称性;函数y=Asin (ωx+φ)的图象变换.【答案解析】①④ 解析:f (x )=cosx•sinx=,为奇函数.①f()=f ()=,正确;②由f (x1)=﹣f (x2)=f (﹣x2),知x1=﹣x2+2k π或x1=π﹣x2+2k π,k∈Z;所以②错误. ③令,得,由复合函数性质知f (x )在每一个闭区间上单调递增,但[﹣,]⊄,故函数f (x )在[﹣,]上不是单调函数;所以③错误.④将函数f (x)的图象向右平移个单位可得到,所以④错误;⑤函数的对称中心的横坐标满足2x0=k π,解得,即对称中心坐标为,则点(﹣,0)不是其对称中心.所以⑤错误.故答案为①.【思路点拨】利用三角公式和三角函数的图象和性质分别进行判断即可.三、解答题: 解答应写出文字说明,证明过程或演算步骤. 【题文】17. (本题满分12分)如图,在ABC △中,83==∠AB B ,π,点D 在BC 且2=CD ,71cos =∠ADC .(1)求BAD ∠sin ; (2)求AC BD ,的长. 【知识点】余弦定理的应用.C8【答案解析】(1)14(2)3,7解析:(1)解:(1)在△ABC 中,因为当734cos =∠ADC ,所以1433)sin(sin =∠-∠=∠B ADC BAD ……….5分 (2)在△ABD 中,由正弦定理得:3sin sin =∠∠⋅=ADB BADAB BD在△ABC 中,由余弦定理得:49cos 2222=⋅⋅-+=B BC AB BC AB AC 所以7=AC ……….12分 【思路点拨】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论. 【题文】18. (本题满分12分)已知函数x m x m x x f )6()3(2131)(23+++-=,x∈R.(其中m 为常数)(1)当m=4时,求函数的极值点和极值;(2)若函数)(x f y =在区间(0,+∞)上有两个极值点,求实数m 的取值范围. 【知识点】利用导数研究函数的极值;利用导数研究函数的单调性.B12【答案解析】(1)函数的极大值点是2=x ,极大值是326;函数的极小值点是5=x ,极小值是625.(2) m >3.解析:函数的定义域为R(1)当m =4时,f (x )= x3-x2+10x ,)('x f =x2-7x +10,令0)('>x f , 解得5>x 或2<x .令0)('<x f , 解得52<<x , 列表所以函数的极大值点是2=x ,极大值是326;函数的极小值点是5=x ,极小值是625.……….6分 (2))('x f =x2-(m +3)x +m +6,要使函数)(x f y =在(0,+∞)有两个极值点,则⎪⎩⎪⎨⎧>+>+>+-+=∆06030)6(4)3(2m m m m ,解得m >3. ……….12分【思路点拨】(1)根据到导数和函数的极值的关系即可求出.(2)y=f (x )在区间(0,+∞)上有两个极值点,等价于f′(x )=0在(0,+∞)有两个正根,问题得以解决. 【题文】19.(本题满分12分)已知函数)4sin()4sin(2)32cos()(πππ+-+-=x x x x f (1)求函数)(x f 的最小正周期和图象的对称轴方程;(2)求函数)(x f 在区间]212[ππ,-上的值域.【知识点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的对称性.C3【答案解析】(1)π=T ;对称轴为:)(3Z k k x ∈+=ππ(2)⎥⎦⎤⎢⎣⎡-123, 解析:(1))62sin(2cos 2sin 232cos 21cos sin 2sin 232cos 21)cos )(sin cos (sin 2sin 232cos 21)4sin()4sin(2)32cos()(22ππππ-=-+=-++=+-++=+-+-=x x x x x x x x x x x x x x x x x x f 所以,周期π=T函数图像的对称轴为:)(3Z k k x ∈+=ππ ……….6分(2)由⎥⎦⎤⎢⎣⎡-∈212ππ,x ,得⎥⎦⎤⎢⎣⎡-∈-65362πππ,x . 因为函数)(x f 在区间⎥⎦⎤⎢⎣⎡-312ππ,上单调递增,在区间⎥⎦⎤⎢⎣⎡23ππ,上单调递减, 所以,当3π=x 时,取最大值1.又21)2(23)12(=<-=-ππf f ,即当12π-=x 时)(x f 所取最小值23-. 所以函数)(x f 的值域为⎥⎦⎤⎢⎣⎡-123, ……….12分 【思路点拨】(1)先根据两角和与差的正弦和余弦公式将函数f (x )展开再整理,可将函数化简为y=Asin (wx+ρ)的形式,根据T=可求出最小正周期,令,求出x 的值即可得到对称轴方程.(2)先根据x 的范围求出2x ﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f (x )在区间上的值域.【题文】20. (本题满分12分)设ABC ∆的内角C B A ,,所对的边分别为,,,c b a 且1cos 2a C c b-=.(1)求角A 的大小;(2)若1a =,求ABC ∆的周长的取值范围. 【知识点】正弦定理的应用.【答案解析】(1)23A p =(2)1]+解析:(1)由1cos 2a C c b -=得1sin cos sin sin 2A C C B-=又sin sin()sin cos cos sin B A C A C A C =+=+11sin cos sin ,sin 0,cos 22C A C C A ∴=-≠∴=-又0A π<<23A π∴=……….4分(2)由正弦定理得:B A B a b sin 32sin sin ==,C c sin 32=)())1sin sin 1sin sin l a b c B C B A B =++=++=+++11(sin)1)23B B Bπ=+=++22,(0,),(,)33333A B Bπππππ=∴∈∴+∈,sin()3Bπ∴+∈故ABC∆的周长的取值范围为1]……….12分【思路点拨】(1)根据正弦定理化简题中等式,得sinAcosC﹣sinC=sinB.由三角形的内角和定理与诱导公式,可得sinB=sin(A+C )=sinAcosC+cosAsinC,代入前面的等式解出cosA=﹣,结合A∈(0,π)可得角A的大小;(2)根据A=且a=1利用正弦定理,算出b=sinB且c=sinC,结合C=﹣B代入△ABC的周长表达式,利用三角恒等变换化简得到△ABC的周长关于角B的三角函数表达式,再根据正弦函数的图象与性质加以计算,可得△ABC的周长的取值范围.【题文】21.(本题满分12分)已知函数.)(,)2(),2](,2[)33()(2ntfmfttexxxf x==-->-⋅+-=设定义域为(1)试确定t的取值范围,使得函数],2[)(txf-在上为单调函数;(2)求证:mn>;(3)求证:对于任意的2)1(32)(),,2(,2-='-∈->texftxtx满足总存在,并确定这样的0x的个数.【知识点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.B12【答案解析】(1)20t-<(2)见解析(3)见解析解析:(1)因为xxx exxexexxxf⋅-=⋅-+⋅+-=')1()32()33()(2……1分()010;()001,f x x x f x x''>⇒><<⇒<<由或由()(,0),(1,),(0,1)3f x-∞+∞所以在上递增在上递减分()[2,],204f x t t--<≤欲在上为单调函数则分(2)证:因为1)(,)1,0(,),1(),0,()(=+∞-∞xxfxf在所以上递减在上递增在处取得极小值e213(2),()[2,](2)f e f x f e -=<-+∞-又所以在上的最小值为从而当时2->t ,)()2(t f f <-,即n m <------------------------5分(3)证:因为2020200200)1(32,)1(32)(,)(00-=--='-='t x x t e x f x x e x f x x 即为所以,222222()(1),()(1)033g x x x t g x x x t =---=---=令从而问题转化为证明方程 在),2-t (上有解,并讨论解的个数。
宁夏银川一中高三上学期第四次月考理科数学试题及答案
银川一中2015届高三年级第四次月考数 学 试 卷(理)命题人:蔡伟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数iiz +=1(其中i 为虚数单位)的虚部是A .21- B .i 21 C .21 D .i 21- 2. 已知:1: 1.:||12p q x a x ≥-<-若p 是q 的充分不必要条件,则实数a 的取值范围是A .(2,3]B .[2,3]C .(2,3)D .(,3]-∞3.设n S 为等比数列}{n a 的前n 项和,已知342332,32S a S a =-=-,则公比q = A .3 B .4 C .5 D .6 4. 某四棱锥的底面为正方形,其三视图如图所示, 则该四棱锥的体积等于 A .1 B .2 C .3D .45.在ABC ∆中,,,A B C 的对边分别是,,a b c ,其中25,3,sin a b B ===,则角A 的取值一定属于范围A .)2,4(ππB .)43,2(ππ C .),43()4,0(πππ⋃ D .)43,2()2,4(ππππ⋃ 6.为得到函数)32sin(π+=x y 的导函数...图象,只需把函数sin 2y x =的图象上所有点的A .纵坐标伸长到原来的2倍,横坐标向左平移6πB .纵坐标缩短到原来的12倍,横坐标向左平移3πC .纵坐标伸长到原来的2倍,横坐标向左平移125πD .纵坐标缩短到原来的12倍,横坐标向左平移65π7.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是 A .BC ∥平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面 ABC8.已知函数2()2f x x x =-,()()20g x ax a =+>,若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得()()21x g x f =,则实数a 的取值范围是A .1(0,]2B .1[,3]2C .(0,3]D .[3,)+∞9.在ABC ∆中,若6·-=AC AB ,则ABC ∆面积的最大值为A .24B .16C .12 D.10.正四面体ABCD 的棱长为1,G 是△ABC 的中心,M 在线段DG 上,且∠AMB =90°,则GM 的长为A .12B .22C .33D .6611.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数()0,0>>+=b a by ax z 的值是最大值为12,则23ab+的最小值为A .625 B .38 C . 311 D . 412.已知函数()x f x e ax b =--,若()0f x ≥恒成立,则ab 的最大值为A eB .2eC .eD .2e 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是___________. 14.已知10(2)x a e x dx =+⎰(e 为自然对数的底数),函数ln ,0()2,0x x x f x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________. 15.如图,在空间直角坐标系中有棱长为a 的正方体 ABCD -A 1B 1C 1D 1,点M 是线段DC 1上的动点, 则点M 到直线AD 1距离的最小值是________. 16.定义方程()()f x f x '=的实数根o x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x xϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题:本大题共5小题,共计70分。
高三数学月考试题及答案-宁夏银川市普通高中2015届高三四月教学质量检测(文)
2015年宁夏银川市高考模拟(文科)(4月份)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=()A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}【考点】补集及其运算.【专题】计算题.【分析】根据题意,先用列举法表示集合A,进而由补集的性质,可得B=∁A(∁A B),计算可得答案.【解析】解:根据题意,集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},若C A B={1,3,5},则B=∁A(∁A B)={0,2,4},故选B.【点评】本题考查补集的定义与运算,关键是理解补集的定义.2.(5分)若复数z满足(1﹣i)z=4i,则复数z对应的点在复平面的()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【专题】计算题.【分析】根据所给的关系式整理出z的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,点的代数形式的最简形式,写出对应的点的坐标,判断出位置.【解析】解:∵复数z满足(1﹣i)z=4i,∴z===﹣2+2i∴复数对应的点的坐标是(﹣2,2)∴复数对应的点在第二象限,故选:B.【点评】本题考查复数的代数形式的表示及其几何意义,本题解题的关键是求出复数的代数形式的表示形式,写出点的坐标.3.(5分)已知α为第二象限角,sinα=,则sin的值等于()A.B.C.D.【考点】两角和与差的正弦函数.【专题】三角函数的求值.【分析】利用两角和差的正弦公式进行求解即可.【解析】解:∵α为第二象限角,sinα=,∴cosα=,则sin=sinαcos﹣cosαsin=×﹣×=,故选:C【点评】本题主要考查三角函数值的计算,根据两角和差的正弦公式是解决本题的关键.4.(5分)从集合A={﹣1,1,2}中随机选取一个数记为k,从集合B={﹣2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件(k,b)的取值所有可能的结果可以列举出,满足条件的事件直线不经过第三象限,符合条件的(k,b)有2种结果,根据古典概型概率公式得到结果.【解析】解:由题意知本题是一个古典概型,试验发生包含的事件k∈A={﹣1,1,2},b∈B={﹣2,1,2}得到(k,b)的取值所有可能的结果有:(﹣1,﹣2);(﹣1,1);(﹣1,2);(1,﹣2);(1,1);(1,2);(2,﹣2);(2,1);(2,2)共9种结果.而当时,直线不经过第三象限,符合条件的(k,b)有2种结果,∴直线不过第四象限的概率P=.故选A.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、体积的比值得到.5.(5分)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是()A.π B.C.D.【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图可知:该几何体是两个同底的半圆锥,其中底的半径为1,高为=,据此可计算出体积.【解析】解:由三视图可知:该几何体是两个同底的半圆锥,其中底的半径为1,高为=,因此体积=2×=.故选D.【点评】本题考查由三视图计算原几何体的体积,正确恢复原几何体是计算的前提.6.(5分)已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A.B.C.2或D.或【考点】双曲线的简单性质.【专题】计算题;分类讨论.【分析】利用双曲线的焦点所在坐标轴,根据双曲线的渐近线求得a和b的关系,进而根据求得c和b的关系,代入离心率公式,解答即可.【解析】解:①当双曲线的焦点在x轴上时,由渐近线方程,可令a=k,b=k (k>0),则c=2k,e=2;②当双曲线的焦点在y轴上时,由渐近线方程,可令a=k,b=k (k>0),则c=2k,e=;离心率为:2或.故选C.【点评】本题考查双曲线的离心率的性质和应用,解题时要注意公式的合理运用和分类讨论.7.(5分)若x,y满足约束条件,则z=3x﹣y的最小值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】解:由约束条件作出可行域如图,化z=3x﹣y为y=3x﹣z,由图可知,当直线y=3x﹣z过A(0,4)时,直线在y轴上的截距最大,z有最小值.∴z max=3×0﹣4=﹣4.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)某程序框图如图所示,运行该程序时,输出的S值是()A.44 B.70 C.102 D.140【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,K的值,当S=102时,满足条件S>100,退出循环,输出S的值为102.【解析】解:模拟执行程序框图,可得K=1,S=0S=2,K=4不满足条件S>100,S=10,K=7不满足条件S>100,S=24,K=10不满足条件S>100,S=44,K=13不满足条件S>100,S=70,K=16不满足条件S>100,S=102,K=19满足条件S>100,退出循环,输出S的值为102.故选:C.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的S,K的值是解题的关键,属于基本知识的考查.9.(5分)在△ABC中,若向量,的夹角为60°,=2,且AD=2.∠ADC=120°,则=()A.2B.2C.2D.6【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据已知条件容易得到D为边BC的中点,△ABD为等边三角形,从而可得到AB=2,BC=4,从而要求先来求,从而得出答案.【解析】解:如图,由知,D是BC边的中点;∠ADC=120°;∴∠ADB=60°;又∠ABD=60°;∴△ABD是等边三角形,AD=2;∴AB=2,BC=4;∴;∴.故选:C.【点评】考查向量数乘的几何意义,等边三角形的概念,求向量长度的方法:先去求向量的平方,以及数量积的计算公式.10.(5分)已知定义在R上的奇函数f(x)的图象关于直线x=2对称,且x∈[0,2]时,f (x)=log2(x+1),则f(7)=()A.﹣1 B.1 C.﹣3 D. 3【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】函数f(x)的图象关于直线x=2对称且为奇函数,所以f(x)=f(﹣4﹣x)=﹣f (4+x),从而f(8+x)=f(x),即函数f(x)的周期为8,代入验证即可.【解析】解:函数f(x)的图象关于直线x=2对称且为奇函数.∴f(x)=f(﹣4﹣x)=﹣f(4+x)∴f(8+x)=f(x)即函数f(x)的周期为8∴f(7)=f(﹣1)=﹣f(1)=﹣1,故选A【点评】本题考查的是函数的奇偶性及周期性的综合运用,另外利用数形结合也可得到答案.11.(5分)设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是()A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】根据面面平行的几何特征及线面垂直的性质,可判断A;根据线面平行的判定定理,可判断B;根据面面垂直的几何特征,可判断C;根据线面垂直的判定定理及面面垂直的判定定理,可判断D.【解析】解:A的逆命题为c⊥α,若α∥β,则c⊥β,根据面面平行的几何特征及线面垂直的性质,可得其逆命题成立;B的逆命题为b⊂α,c⊄α,若b∥c,则c∥α,根据线面平行的判定定理,可得其逆命题成立;C的逆命题为b⊂β,若β⊥α,则b⊥α,根据面面垂直的几何特征,当b与两平面的交线不垂直时,结论不成立,故C的逆命题不成立;D的逆命题为a,b⊂α,a∩b=P,c⊥a,c⊥b,即c⊥α,若c⊂β,则α⊥β,由面面垂直的判定定理,可得其逆命题成立;故选C【点评】本题以逆命题的判定为载体考查了空间直线与平面,平面与平面位置关系的判定,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.12.(5分)一个大风车的半径为8m,12min旋转一周,它的最低点Po离地面2m,风车翼片的一个端点P从P o开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是()A.B.C.D.【考点】在实际问题中建立三角函数模型.【专题】三角函数的图像与性质.【分析】由题意可设h(t)=Acosωt+B,根据周期性=12,与最大值与最小值分别为18,2.即可得出.【解析】解:设h(t)=Acosωt+B,∵12min旋转一周,∴=12,∴ω=.由于最大值与最小值分别为18,2.∴,解得A=﹣8,B=10.∴h(t)=﹣8cos t+10.故选:B.【点评】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)如图,根据图中的数构成的规律,a所表示的数是144.【考点】归纳推理.【专题】计算题;推理和证明.【分析】根据杨辉三角中的已知数据,易发现:每一行的第一个数和最后一个数与行数相同,之间的数总是上一行对应的两个数的积,即可得出结论.【解析】解:由题意a=12×12=144.故答案为:144.【点评】此题主要归纳推理,其规律:每一行的第一个数和最后一个数与行数相同,之间的数总是上一行对应的两个数的积.通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.14.(5分)若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=4.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出抛物线的焦点坐标,由直线倾斜角求出斜率,写出直线方程,和抛物线方程联立求得M的坐标,再由抛物线焦半径公式得答案.【解析】解:如图,由抛物线y2=4x,得F(1,0),∵直线FM的倾斜角为60°,∴,则直线FM的方程为y=,联立,即3x2﹣10x+3=0,解得(舍)或x2=3.∴|FM|=3+1=4.故答案为:4.【点评】本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是中档题.15.(5分)已知△ABC的内角A,B,C对边分别为a,b,c,若cosC=,且sinC=sinB,则△ABC的内角A=.【考点】正弦定理.【专题】解三角形.【分析】利用余弦定理表示出cosC,代入已知第一个等式整理得到关系式,第二个关系式利用正弦定理化简,代入上式得出的关系式整理表示出a,再利用余弦定理表示出cosA,把表示出的a与c代入求出cosA的值,即可确定出A的度数.【解析】解:由已知等式及余弦定理得:cosC==,即a2+b2﹣c2=2a2①,将sinC=sinB,利用正弦定理化简得:c=b②,②代入①得:a2=b2﹣b2=b2,即a=b,∴cosA===,则A=.故答案为:.【点评】此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.16.(5分)已知,则使f(x)﹣e x﹣m≤0恒成立的m的范围是[2,+∞).【考点】分段函数的应用;函数恒成立问题.【专题】函数的性质及应用;不等式的解法及应用.【分析】运用参数分离的方法,分别讨论当x≤1时,当x>1时,函数f(x)﹣e x的单调性和最大值的求法,注意运用导数,最后求交集即可.【解析】解:当x≤1时,f(x)﹣e x﹣m≤0即为m≥x+3﹣e x,可令g(x)=x+3﹣e x,则g′(x)=1﹣e x,当0<x<1时,g′(x)<0,g(x)递减;当x<0时,g′(x)>0,g(x)递增.g(x)在x=0处取得极大值,也为最大值,且为2,则有m≥2 ①当x>1时,f(x)﹣e x﹣m≤0即为m≥﹣x2+2x+3﹣e x,可令h(x)=﹣x2+2x+3﹣e x,h′(x)=﹣2x+2﹣e x,由x>1,则h′(x)<0,即有h(x)在(1,+∞)递减,则有h(x)<h(1)=4﹣e,则有m≥4﹣e ②由①②可得,m≥2成立.故答案为:[2,+∞).【点评】本题考查不等式恒成立问题注意转化为求函数的最值问题,同时考查运用导数判断单调性,求最值的方法,属于中档题和易错题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知各项都不相等的等差数列{a n}的前7项和为70,且a3为a1和a7的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n+1﹣b n=a n,n∈N*且b1=2,求数列的前n项和T n.【考点】数列的求和;等差数列的性质.【专题】等差数列与等比数列;点列、递归数列与数学归纳法.【分析】(I)设等差数列{a n}的公差为d(d≠0),通过前7项和为70、且a3为a1和a7的等比中项,可得首项和公差,计算即可;(II)通过递推可得b n=n(n+1),从而=,利用并项法即得结论.【解析】解:(I)设等差数列{a n}的公差为d(d≠0),则,解得,∴a n=2n+2;(II)∵b n+1﹣b n=a n,∴b n﹣b n﹣1=a n﹣1=2n (n≥2,n∈N*),b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=a n﹣1+a n﹣2+…+a1+b1=n(n+1),∴==,∴T n===.【点评】本题考查数列的通项公式、前n项和,考查递推公式,利用并项法是解决本题的关键,注意解题方法的积累,属于中档题.18.(12分)已知四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,,O为AB的中点.(Ⅰ)求证:EO⊥平面ABCD;(Ⅱ)求点D到面AEC的距离.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】综合题;空间位置关系与距离.【分析】(I)连接CO,利用△AEB为等腰直角三角形,证明EO⊥AB,利用勾股定理,证明EO⊥CO,利用线面垂直的判定,可得EO⊥平面ABCD;(II)利用等体积,即V D﹣AEC=V E﹣ADC,从而可求点D到面AEC的距离.【解析】(I)证明:连接CO∵∴△AEB为等腰直角三角形∵O为AB的中点,∴EO⊥AB,EO=1…(2分)又∵AB=BC,∠ABC=60°,∴△ACB是等边三角形∴,…(4分)又EC=2,∴EC2=EO2+CO2,∴EO⊥CO,∵AB∩CO=O∴EO⊥平面ABCD…(6分)(II)解:设点D到面AEC的距离为h∵∴…(8分)∵,E到面ACB的距离EO=1,V D﹣AEC=V E﹣ADC∴S△AEC•h=S△ADC•EO…(10分)∴∴点D到面AEC的距离为…(12分)【点评】本题考查线面垂直,考查点到面距离的计算,解题的关键是掌握线面垂直的判定方法,考查等体积的运用,属于中档题.19.(12分)为了比较两种复合材料制造的轴承(分别称为类型I轴承和类型II轴承)的使用寿命,检验了两种类型轴承各30个,它们的使用寿命(单位:百万圈)如下表:类型I(Ⅰ)根据两组数据完成下面茎叶图;(Ⅱ)分别估计两种类型轴承使用寿命的中位数;(Ⅲ)根据茎叶图对两种类型轴承的使用寿命进行评价.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】应用题;概率与统计.【分析】(Ⅰ)根据两组数据,即可得到茎叶图;(Ⅱ)注意到两组数字是有序排列的,中位数为第15,16两个数,即可得出结论;(Ⅲ)由中位数及标准差分析即可.【解析】解:(Ⅰ)茎叶图:(Ⅱ)由茎叶图知,类型I轴承的使用寿命按由小到大排序,排在15,16位是11.8,12.2,故中位数为12;类型II轴承的使用寿命按由小到大排序,排在15,16位是10.4,10.6,故中位数为10.5;(Ⅲ)由所给茎叶图知,类型I轴承的使用寿命的中位数高于对类型II轴承的使用寿命的中位数,表明类型I轴承的使用寿命较长;茎叶图可以大致看出类型I轴承的使用寿命的标准差大于类型II轴承的使用寿命的标准差,表明类型I轴承稳定型较好.【点评】本题考查了样本的数字特征,属于中档题.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.【考点】椭圆的标准方程;圆的标准方程;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,)到两焦点的距离求得a,进而根据b=求得b,得到椭圆的方程.(Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A(x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程.【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.21.(12分)已知函数f(x)=a(x﹣1)﹣21nx(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1)上无零点,求a的取值范围.【考点】利用导数研究函数的单调性;函数零点的判定定理.【专题】导数的综合应用.【分析】(Ⅰ)将a=1代入,求出函数的导数,从而得到函数的单调区间;(Ⅱ)通过讨论a的范围,结合函数的单调性,求出函数的极值,从而得到a的范围.【解析】解:(Ⅰ)a=1时,函数f(x)=x﹣1﹣2lnx,定义域是(0,+∞),f′(x)=1﹣=,由f′(x)>0解得:x>2,由f′(x)<0,解得0<x<2,∴f(x)在(0,2)递减,在(2,+∞)递增;(Ⅱ)(1)当a≤0时,由x∈(0,1),得x﹣1<0,﹣2lnx>0,∴f(x)>0恒成立,即a≤0符合题意;(2)当a>0时,f′(x)=a﹣=(x﹣),①当a≤2时,即≥1时,由f′(x)<0得0<x<,即f(x)在区间(0,1)单调递减,故f(x)>f(1)=0,满足对∀x∈(0,1),f(x)>0恒成立,故此时f(x)在区间(0,1)上无零点,符合题意;②当a>2时,即0<<1时,由f′(x)>0得x>,由f′(x)<0得0<x<,即f(x)在(0,)递减,在(,1)递增,此时f()<f(1)=0,令g(a)=e a﹣a,当a>2时,g′(a)=e a﹣1>e2﹣1>0恒成立,故函数g(a)=e a﹣a在区间(2,+∞)递增,∴g(a)>g(2)=e2﹣2>0;即e a>a>2,∴0<<<<1,而f()=a(﹣1)﹣2ln=+a>0,故当a>2时,f()•f()<0,即∃x0∈(,),使得f(x0)=0成立,∴a>2时,f(x)在区间(0,1)上有零点,不合题意,综上,a的范围是{a|a≤2}.【点评】本题考查了函数的单调性,考查了导数的应用,考查分类讨论思想,本题有一定的难度.选做题请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-1:几何证明选讲22.(10分)选修4﹣1:几何证明选讲如图,已知四边形ABCD内接于ΘO,且AB是的ΘO直径,过点D的ΘO的切线与BA的延长线交于点M.(1)若MD=6,MB=12,求AB的长;(2)若AM=AD,求∠DCB的大小.【考点】与圆有关的比例线段;圆的切线的性质定理的证明.【专题】计算题.【分析】(1)利用MD为⊙O的切线,由切割线定理以及已知条件,求出AB即可.(2)推出∠AMD=∠ADM,连接DB,由弦切角定理知,∠ADM=∠ABD,通过AB是⊙O 的直径,四边形ABCD是圆内接四边形,对角和180°,求出∠DCB即可.【解析】选修4﹣1:几何证明选讲解:(1)因为MD为⊙O的切线,由切割线定理知,MD2=MA•MB,又MD=6,MB=12,MB=MA+AB,…(2分),所以MA=3,AB=12﹣3=9.…(5分)(2)因为AM=AD,所以∠AMD=∠ADM,连接DB,又MD为⊙O的切线,由弦切角定理知,∠ADM=∠ABD,(7分)又因为AB是⊙O的直径,所以∠ADB为直角,即∠BAD=90°﹣∠ABD.又∠BAD=∠AMD+∠ADM=2∠ABD,于是90°﹣∠ABD=2∠ABD,所以∠ABD=30°,所以∠BAD=60°.…(8分)又四边形ABCD是圆内接四边形,所以∠BAD+∠DCB=180°,所以∠DCB=120°…(10分)【点评】本题考查圆的内接多边形,切割线定理的应用,基本知识的考查.选修4-4:坐标系与参数方程23.已知曲线C1的参数方程为(t为参数),当t=1时,曲线C1上的点为A,当t=﹣1时,曲线C1上的点为B.以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求A、B的极坐标;(2)设M是曲线C2上的动点,求|MA|2+|MB|2的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)当t=1时,代入参数方程可得即A,利用,即可得出点A的极坐标,同理可得及其点B的极坐标.(2)由ρ=,化为4ρ2+5(ρsinθ)2=36,利用即可化为直角坐标方程,设曲线C2上的动点M(3cosα,2sinα),可得|MA|2+|MB|2=10cos2α+16,再利用余弦函数的单调性即可得出.【解析】解:(1)当t=1时,代入参数方程可得即A,∴=2,,∴,∴点A的极坐标为.当t=﹣1时,同理可得,点B的极坐标为.(2)由ρ=,化为ρ2(4+5sin2θ)=36,∴4ρ2+5(ρsinθ)2=36,化为4(x2+y2)+5y2=36,化为,设曲线C2上的动点M(3cosα,2sinα),则|MA|2+|MB|2=+=18cos2α+8sin2α+8=10cos2α+16≤26,当cosα=±1时,取得最大值26.∴|MA|2+|MB|2的最大值是26.【点评】本题考查了把极坐标方程化为直角坐标方程、椭圆的标准方程及其参数方程、三角函数基本关系式、余弦函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.选修4-5:不等式选讲24.已知a,b,c∈R,a2+b2+c2=1.(Ⅰ)求证:|a+b+c|≤;(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.【考点】绝对值不等式的解法;不等式的证明.【专题】计算题;证明题;不等式的解法及应用.【分析】(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即可得证;(Ⅱ)不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,运用绝对值的定义,即可解出不等式.【解析】(Ⅰ)证明:由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即有(a+b+c)2≤3,即有|a+b+c|≤;(Ⅱ)解:不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,由x≥1得,2x≥3,解得,x≥;由x≤﹣1,﹣2x≥3解得,x≤﹣,由﹣1<x<1得,2≥3,不成立.综上,可得x≥或x≤﹣.则实数x的取值范围是(﹣]∪[).【点评】本题考查柯西不等式的运用,考查不等式恒成立问题,考查绝对值不等式的解法,属于中档题.。
宁夏银川市银川一中届高三第四次模拟考试数学试题及答案 (理)
绝密★启用前2014年普通高等学校招生全国统一考试理 科 数 学(银川一中第四次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}}222,1,2xM y y x N x y ⎧⎪===+=⎨⎪⎩则M N ⋂=( )A .{(1,1),(1,1)}-B .{1}C .D . [0,1]2.i 为虚数单位,则201411i i +⎛⎫= ⎪-⎝⎭( )A. iB. 1-C. i -D.13.已知D 是ABC ∆的边BC 上(不包括B 、C 点)的一动点,且满足AD AB AC αβ=+,则11αβ+的最小值为( )A. 3 B . 5 C. 6 D. 44.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n + B .2533n n + C .2324n n + D .2n n +5. 41(1)(1)x x++的展开式中含3x 的项的系数为( )A .4 B. 5 C. 6 D .7 6.下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b+; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有b a c >>; ③从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑若记,则回归直线y =bx a +必过点(,x y );④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>=. 其中正确判断的个数有:A .3个B .0个C .2 个D .1个 7.在ABC ∆中,设命题BcA b C a p sin sin sin :==,命题ABC q ∆:是等边三角形,那么命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是( )A .(1,2] B. [2,)+∞C.D. )+∞ 9.已知锐角βα,满足:51cos sin =-ββ, 3tan tan 3tan tan =⋅++βαβα,则cos α=( )A.410 B .410 C.310+ D.31010.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线px y 22=p (>)0,弦AB 过焦点,△ABQ 为其阿基米德三角形,则△ABQ 的面积的最小值为( )A .22p B .2p C .22p D .24p11.假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为( ) A .425 B .825 C .2425 D .162512.若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞上是有界函数.下列函数: ①1()1f x x =-; ②2()1x f x x =+; ③ln ()xf x x=; ④()sin f x x x =. 其中“在(1,)+∞上是有界函数”的序号为( )A. ②③B. ①②③C. ②③④D. ③④第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.等差数列}{n a 中12014a =,前n 项和为n S ,10121210S S -2-=, 则2014S 的值为____.14. 一个几何体的三视图如右图所示,则该几何体的表面积为 .15. 已知0a >,,x y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =_______16.下表是某数学老师及他的爷爷、父亲和儿子的身高数据:因为儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高0.070.020.040.06服务时间/小为 .参考公式: 回归直线的方程是:∧∧+=a x b yˆ, 其中 x b y a x xy y x xb ni ini i i∧∧==∧-=---=∑∑,)()(211;其中i y 是与i x 对应的回归估计值. 参考数据: 18)(312=-∑=i i x x ,18(31=--∑=i i i y y x x .三、解答题:解答应写出文字说明.证明过程或演算步骤 17. (本小题满分12分)在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,且满足sin 2A A=. (1)求A 的大小;(2)现给出三个条件:①2a =; ②45B =︒;③c =.试从中选出两个可以确定ABC ∆的条件,写出你的选择并以此为依据求ABC ∆的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分) . 18.(本小题满分12分)某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加 社区服务时间不少于90小时的学生人 数,并估计从全市高中学生中任意选取 一人,其参加社区服务时间不少于90 小时的概率;(2)从全市高中学生(人数很多)............. 中任意选取3位学生,记ξ为3位学生 中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ和方差D ξ. 19. (本小题满分12分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(1)求证:A 1E⊥平面BEP ;(2)求直线A 1E 与平面A 1BP 所成角的大小;(3)求二面角B -A 1P -F 的余弦值.20.(本小题满分12分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (1)求椭圆C 的标准方程;(2)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.21.(本小题满分12分)已知函数21()e 1x f x ax +=-+,a ∈R .(1)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值; (2)求函数()f x 的单调区间;(3)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4—1: 几何证明选讲.如图,D ,E 分别为△ABC 的边AB ,AC 上的点, 且不与△ABC 的顶点重合,已知AE 的长为m ,AC 的 长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0 的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径. 23.(本小题满分10分)选修4—4;坐标系与参数方程在平面直角坐标系xOy 中,已知曲线221:1C x y +=,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线:(2sin )6l cos ρθθ-=.(1)将曲线1C上的所有点的横坐标、2倍后得到曲线2C .理科数学试卷 第5页(共6页)试写出直线l 的直角坐标方程和曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最大,并求出此最大值. 24.(本小题满分10分)选修4—5,不等式选讲 已知函数()|1|||f x x x a =-+- (1)若a=1,解不等式()2f x ≥;(2)若1,,()|1|2a x R f x x >∀∈+-≥,求实数a 的取值范围。
宁夏银川市高三数学第四次月考试题 理 新人教A版
数 学 试 卷(理)2012.11第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 300cos 的值是( ) A .21B .21-C .23 D .23-2.已知集合}121|{},72|{-<<+=≤≤-=m x m x B x x A 且≠B φ,若A B A =⋃则( ) A .43≤≤-m B .43<<-mC .42<<mD .42≤<m3.已知3(,),sin ,25παπα∈=则tan()4πα+等于( )A .17 B. 7 C. 17- D. 7- 4. 已知等差数列{}241071510S n a a a ==中,,,则前项和=( )A.420B.380C.210D.1405. 已知a>0,b>0,则ab ba 211++的最小值为( ) A .2 B. 22 C. 4 D.25 6. 已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=,)31(x 那么)21(f 的值是( )A .33B .-33 C .3 D .-37. 设0,0>>b a ,则以下不等式中不恒成立的是( ) A .4)11)((≥++ba b aB .b a b a 22222+≥++C .3223b ab b a a +≥+ D .b a b a -≥-8.凸多边形各内角依次成等差数列,其中最小角为120°,公差为5°,则边数n 等于( ) A .16B .9C .16或9D .129.已知函数a x x x f ++=2sin 3cos 2)(2(a 为常数)的定义域为⎥⎦⎤⎢⎣⎡2,0π,)(x f 的最大值为6,则a 等于( )A .3B .4C .5D .610. 已知向量)4,(),2,1(x b a ==,若向量a∥b,则x=( )A. 21-B.21D. -2 D. 211. 不等式a a x x 3|1||3|2-≤--+对任意实数x 恒成立,则实数a 的取值范围为( )A .),4[]1,(+∞⋃--∞B .),5[]2,(+∞⋃--∞C .]2,1[D .),2[]1,(+∞⋃-∞12. 已知0,1||,1||=⋅==OB OA OB OA ,点C 在AOC ∠30o=的边AC 上,设),(+∈+=R n m OB n OA m OC ,则mn等于( ) A.13 B. 3 3 3 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.已知00>>b a ,,且满足3=+b a ,则ba 41+的最小值为 . 14 2=a 2=b ,a 与b 的夹角为 45,要使λ-b a 与a 垂直,则λ= 15. 已知函数()()22log 1,02,0x x f x x x x ⎧+>=⎨--≤⎩,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是 。
2015届宁夏银川一中高三第四次月考数学(文科)试卷
A银川一中2015届高三年级第四次月考数 学 试 卷(文)命题人:赵冬奎第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{x N x U *∈=<}6,集合{}{}5,3,3,1==B A ,则()B A C U ⋃等于 A.{}4,1B.{}5,1C.{}02,4,D.{}4,22.已知i 是虚数单位,且复数2121,21,3z z i z bi z 若-=-=是实数,则实数b 的值为 A .6B .6-C .0D .613.下列各式正确的是 A .a b =a b ⋅B .()222a b=a b ⋅⋅C .若()a b-c ,⊥则a b=a c ⋅⋅ D . 若a b=a c ⋅⋅则b=c4.已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是 A .12B .12-C .14-D .12±5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 A .-10 B .-8 C .-6 D .-4 6.下列命题错误的是 A .命题“21,11x x <<<若则-”的逆否命题是若1x ≥或1x ≤-,则12≥x B .“22am bm <”是”a b <”的充分不必要条件 C .命题p :存在R x ∈0,使得01020<++x x ,则p ⌝: 任意R x ∈,都有012≥++x xD .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题 7.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图 如图所示,则其侧视图的面积为 AB C .2D 8.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩,A B (如图),要测算,A B 两点的距离,测量人员在岸边定出基线BC ,测得50BC m =,105,45ABC BCA ∠=∠=,就可以计算出,A B 两点的距离为A.m B.m C.mD.2m 9.已知函数()y xf x '=-的图象如图(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象可能是10.已知直线,l m ,平面,αβ,且,l m αβ⊥⊂,给出四个命题:①若α∥β,则l m ⊥; ②若l m ⊥,则α∥β; ③若αβ⊥,则l ∥m ; ④若l ∥m ,则αβ⊥. 其中真命题的个数是A .4B .3C .2D .111.已知函数⎪⎩⎪⎨⎧<-≥-=2,1)21(2,)2()(x x x a x f x 满足对任意的实数21x x ≠都有0)()(2121<--x x x f x f成立,则实数a 的取值范围为 A .)2,(-∞B .]813,(-∞ C .]2,(-∞ D .)2,813[12.已知[1,1]x ∈-,则方程2cos 2πxx -=所有实数根的个数为A .2B .3C .4D .5第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分.13.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为 .14. 已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是 . 15.已知三棱柱111A B C A B C -的侧棱垂直底面,所有顶点都在球面上,21==AAAB AC=1,oBAC 60=∠,则球的表面积为_________. 16.下面四个命题:①已知函数(),0,,0,x f x x =<≥ 且()()44f a f +=,那么4a =-;②要得到函数sin 23y x π⎛⎫=+⎪⎝⎭的图象,只要将sin 2y x =的图象向左平移3π单位; ③若定义在()∞+∞,- 上的函数)(-1()(x f x f x f =+)满足,则)(x f 是周期函数; ④已知奇函数()f x 在(0,)+∞为增函数,且(1)0f -=,则不等式()0f x <的解集{}1x x <-. 其中正确的是__________________.三、解答题:本大题共5小题,共计70分。
宁夏回族自治区银川一中2015届高三四模考试数学(理)试卷
绝密★启用前2015年普通高等学校招生全国统一考试理 科 数 学(银川一中第四次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}4,3,2,1=U ,集合{}{}3,2,2,1==B A ,则()=⋃B A C U A . {}4,3,1 B. {}4,3 C. {}3 D. {}4 2.已知1ii z+=,则在复平面内,复数z 所对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知向量()1,2a x =,()4,b x =-,则“x =”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知122,,,8a a --成等差数列,1232,,,,8b b b --成等比数列,则212a ab -等于 A.14 B. 12- C. 12 C. 12或12- 5.已知{}2,0,1,3,4a ∈-,{}1,2b ∈,则函数2()(2)f x a x b =-+为增函数的概率是A.25 B. 35C.12D.3106.已知一个几何体的正视图和俯视图如右图所示,正视图是边长为 2a 的正三角形,俯视图是边长为a 的正六边形,则该几何体的侧视图的面积为A .223a B .223a C .23a D .23a7.执行如下图的程序框图,则输出的值P = A .12 B .10 C .8 D .68.过抛物线x y 42=的焦点F 的直线交该抛物线于 A ,B 两点,O 为坐标原点. 若|AF |=3,则∆AOB 的面积为 A .22 B .2 C .223 D . 22 9.设x ,y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,若目标函数z ax by =+(0a >,0b >)的最小值为2,则ab 的最大值是 A .1 B .12 C .16 D .1410.若函数xax x x f 1)(2++=在),21(+∞是增函数,则a 的取值范围是A .[]-1,0 B.[]-∞1, C.[]0,3 D.[]3∞,+ 11.已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银川一中2015届高三年级第四次月考数 学 试 卷(理)命题人:蔡伟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数iiz +=1(其中i 为虚数单位)的虚部是 A .21-B .i 21C .21 D .i 21-2. 已知:1:1.:||12p q x a x ≥-<-若p 是q 的充分不必要条件,则实数a 的取值范围是 A .(2,3] B .[2,3] C .(2,3) D .(,3]-∞3.设n S 为等比数列}{n a 的前n 项和,已知342332,32S a S a =-=-,则公比q = A .3 B .4 C .5 D .64. 某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的体积等于 A .1 B .2 C .3D .45.在ABC ∆中,,,A B C 的对边分别是,,a b c ,其中a b B ===,则角A 的取值一定 属于范围A .)2,4(ππB .)43,2(ππC .),43()4,0(πππ⋃D .)43,2()2,4(ππππ⋃6.为得到函数)32sin(π+=x y 的导函数...图象,只需把函数sin 2y x =的图象上所有点的 A .纵坐标伸长到原来的2倍,横坐标向左平移6πB .纵坐标缩短到原来的12倍,横坐标向左平移3πC .纵坐标伸长到原来的2倍,横坐标向左平移125πD .纵坐标缩短到原来的12倍,横坐标向左平移65π 7.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是 A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面 ABC8.已知函数2()2f x x x =-,()()20g x ax a =+>,若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得()()21x g x f =,则实数a 的取值范围是A .1(0,]2 B .1[,3]2C .(0,3]D .[3,)+∞9.在ABC ∆中,若6·-=AC AB ,则ABC ∆面积的最大值为 A .24 B .16 C .12 D.10.正四面体ABCD 的棱长为1,G 是△ABC 的中心,M 在线段DG 上,且∠AMB =90°,则GM 的长为A .12B .22C .33D .6611.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数()0,0>>+=b a by ax z 的值是最大值为12,则23a b+的最小值为 A .625 B .38 C . 311 D . 412.已知函数()xf x e ax b =--,若()0f x ≥恒成立,则ab 的最大值为AB .2eC .eD .2e第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是___________. 14.已知1(2)x a e x dx =+⎰(e 为自然对数的底数),函数ln ,0()2,0x x x f x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________.15.如图,在空间直角坐标系中有棱长为a 的正方体ABCD -A 1B 1C 1D 1,点M 是线段DC 1上的动点, 则点M 到直线AD 1距离的最小值是________.16.定义方程()()f x f x '=的实数根o x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 . 三、解答题:本大题共5小题,共计70分。
解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)已知函数())cos()sin 244f x x x x a ππ=++++的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间[0,]2π上的最大值和最小值.18. (本小题满分12分)如图所示,PA ⊥平面ABC ,点C 在以AB 为直径的⊙O 上,∠CBA =30°, PA =AB =2,点E 为线段PB 的中点,点M 在AB 上,且OM ∥AC . (1)求证:平面MOE ∥平面PAC ; (2)求证:平面PAC ⊥平面PCB ;(3)设二面角M -BP -C 的大小为θ,求cos θ的值. 19.(本小题满分12分)已知数列{}n a 中,13a =,前项和1(1)(1)12n n S n a =++-. (1) 求数列{}n a 的通项公式; (2) 设数列⎭⎬⎫⎩⎨⎧⋅+11n n a a 的前项和为n T ,是否存在实数M ,使得n T M ≤对一切正整数都成立?若存在,求出M 的最小值;若不存在,请说明理由.20.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长. 21.(本小题满分12分)已知函数()ln f x x x =(e 为无理数, 2.718e ≈) (1)求函数()f x 在点(),()e f e 处的切线方程; (2)设实数12a e>,求函数()f x 在[],2a a 上的最小值; (3)若k 为正整数,且()()1f x k x k >--对任意1x >恒成立,求k 的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写题号.22.(本小题满分10分)【选修4—1:几何证明选讲】 如图,在正△ABC 中,点D,E 分别在边AC, AB 上, 且AD=13AC , AE= 23AB ,BD ,CE 相交于点F 。
(1)求证:A ,E ,F ,D 四点共圆;(2)若正△ABC 的边长为2,求,A ,E ,F ,D 所在圆的半径. 23. (本小题满分10分)【选修4—1:几何证明选讲】在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线θθρcos 2sin :2a C =)0(>a ,已知过点)4,2(--P 的直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222 (t为参数),直线l 与曲线C 分别交于N M ,两点。
(1)写出曲线C 和直线l 的普通方程;(2)若|||,||,|PN MN PM 成等比数列,求a 的值. 24.(本小题满分10分)选修4-5:不等式选讲对于任意的实数a (0≠a )和b ,不等式||||||a M b a b a ⋅≥-++恒成立,记实数M 的最大值是m . (1)求m 的值; (2)解不等式m x x ≤-+-|2||1|.宁夏银川一中2015届高三第四次月考数学(理科)试卷参考答案13. 22+ 14. 7 15. 33a 16. γ>α>β 三、解答题:17.(1)()a x x a x x x f ++=++⎪⎭⎫⎝⎛+=2sin 2cos 32sin 22sin 3π132sin 2≤+⎪⎭⎫ ⎝⎛+=a x π12=+∴a ,1-=∴a(2)由πππππk x k 223222+≤+≤+-,解得ππππk x k +≤≤+-12125,所以函数的单调递增区间Z k k k ∈⎥⎦⎤⎢⎣⎡++-,12,125ππππ (3) 将()x f 的图象向左平移6π个单位,得到函数()x g 的图象,()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=∴322sin 2362sin 26ππππx x x f x g⎥⎦⎤⎢⎣⎡∈+∴⎥⎦⎤⎢⎣⎡∈35,32322,2,0ππππx x∴当32322ππ=+x 时,23322sin =⎪⎭⎫ ⎝⎛+πx ,()x g 取最大值13- 当23322ππ=+x 时,1322sin -=⎪⎭⎫ ⎝⎛+πx ,()x g 取最小值-3.18. [解析] (1)因为点E 为线段PB 的中点,点O 为线段AB 的中点, 所以OE ∥PA .因为PA ⊂平面PAC ,OE ⊄平面PAC , 所以OE ∥平面PAC . 因为OM ∥AC ,又AC ⊂平面PAC ,OM ⊄平面PAC , 所以OM ∥平面PAC .因为OE ⊂平面MOE ,OM ⊂平面MOE ,OE ∩OM =O , 所以平面MOE ∥平面PAC .(2)因为点C 在以AB 为直径的⊙O 上, 所以∠ACB =90°,即BC ⊥AC .因为PA ⊥平面ABC ,BC ⊂平面ABC , 所以PA ⊥BC .因为AC ⊂平面PAC ,PA ⊂平面PAC ,PA ∩AC =A , 所以BC ⊥平面PAC .因为BC ⊂平面PBC ,所以平面PAC ⊥平面PBC .(3)如图,以C 为原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,建立空间直角坐标系C -xyz .因为∠CBA =30°,PA =AB =2, 所以CB =2cos30°=3,AC =1. 延长MO 交CB 于点D . 因为OM ∥AC ,所以MD ⊥CB ,MD =1+12=32,CD =12CB =32.所以P (1,0,2),C (0,0,0),B (0,3,0),M (32,32,0).所以CP →=(1,0,2),CB →=(0,3,0). 设平面PCB 的法向量m =(x ,y ,z ).因为⎩⎪⎨⎪⎧m ·CP →=0,m ·CB →=0.所以⎩⎨⎧ x ,y ,z ,0,=0,x ,y ,z ,3,=0.即⎩⎨⎧x +2z =0,3y =0.令z =1,则x =-2,y =0. 所以m =(-2,0,1).同理可求平面PMB 的一个法向量n =(1,3,1).所以cos 〈m ,n 〉=m ·n |m |·|n |=-15.所以cos θ=15.19. 解:(1)(解法一)∵1(1)(1)12n n S n a =++- ∴111(2)(1)12n n S n a ++=++- ∴11n n n a S S ++=-11[(2)(1)(1)(1)]2n n n a n a +=++-++整理得1(1)1n n na n a +=+-∴1)2()1(12-+=+++n n a n a n两式相减得211(1)(2)(1)n n n n n a na n a n a ++++-=+-+ 即 21(1)2(1)(1)0n n n n a n a n a +++-+++= ∴2120n n n a a a ++-+=,即211n n n n a a a a +++-=-∴ 数列{}n a 是等差数列且13a =,得25a =,则公差2d =∴ 21n a n =+(解法二) ∵1(1)(1)12n n S n a =++- ∴111(2)(1)12n n S n a ++=++-∴11n n n a S S ++=-11[(2)(1)(1)(1)]2n n n a n a +=++-++整理得1(1)1n n na n a +=+-等式两边同时除以(1)n n +得 111(1)n n a a n n n n +=-++,即11111(1)1n n a a n n n n n n+-=-=-+++ 累加得112211112211n n n n n a a a a a a a a n n n n n ---=-+-++-+--- 111111113112232n n n n n n =-+-+-++-+-----12n=+得21n a n =+(2) 由(1)知21n a n =+∴111(21)(23)n n a a n n +=++111()22123n n =-++ ∴ 111111111()2355721212123n T n n n n =-+-++-+--+++111()2323n =-+ 16<则要使得n T M ≤对一切正整数都成立,只要max ()n T M ≤,所以只要16M ≥ ∴ 存在实数M ,使得n T M ≤对一切正整数都成立,且M 的最小值为1620. [解析] 如图所示 ,建立空间直角坐标系,点B 为坐标原点.依题意得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),于是cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →|·|A 1B 1→|=43×22=23. 所以异面直线AC 与A 1B 1所成角的余弦值为23. (2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5). 设平面AA 1C 1的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m 、AA 1→=0.即⎩⎨⎧-2x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2).同样的,设平面A 1B 1C 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0.即⎩⎨⎧-2x -2y +5z =0,-22x =0.不妨令y =5,可得n =(0,5,2).于是cos 〈m ,n 〉=m ·n |m |·|n |=27·7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N⎝⎛⎭⎫22,322,52.设M (a ,b,0),则MN →=⎝⎛⎭⎫22-a ,322-b ,52, 由MN ⊥平面A 1B 1C 1,得⎩⎪⎨⎪⎧MN →·A 1B 1→=0,MN →·A 1C 1→=0.即⎩⎪⎨⎪⎧⎝⎛⎭⎫22-a -22=0,⎝⎛⎭⎫22-a -2+⎝⎛⎭⎫322-b -2+52·5=0.解得⎩⎨⎧a =22,b =24.故M⎝⎛⎭⎫22,24,0,因此BM →=⎝⎛⎭⎫22,24,0,所以线段BM 的长|BM →|=104.21.⑴∵()(0,)()ln 1,()()2f x f x x f e e f e ''+∞=+==定义域为又():2(),2y f x e y x e e y x e ∴==-+=-函数在点(,f(e))处的切线方程为即------3分(2)∵()ln 1f x x '=+()0f x '=令1x e =得10,x e ⎛⎫∈ ⎪⎝⎭当时,()0F x '<,()f x 单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0F x '>,()f x 单调递增.当min 1,()[,2],[()]()ln ,a f x a a f x f a a a e ≥==时在单调递增min 111112,[()]2a a a f x f e e e e e ⎛⎫<<<<==- ⎪⎝⎭当时,得 (3) ()(1)f x k x k >--对任意1x >恒成立,即ln x x x +(1)k x >-对任意1x >恒成立, 即ln 1x x xk x +>-对任意1x >恒成立令2ln ln 2()(1)'()(1)1(1)x x x x x g x x g x x x x +--=>⇒=>-- 令1()ln 2(1)'()0()x h x x x x h x h x x-=-->⇒=>⇒在(1,)+∞上单调递增。