第二讲巧算乘除法
小学三年级数学乘法除法 速算与巧算
第二讲速算与巧算(二) 一、乘法中的巧算 1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000例1计算①123×4×25 ② 125×2×8×25×5×4 解:①式=123×(4×25) =123×100=12300 ②式=(125×8)×(25×4)×(5×2) =1000×100×10=1000000 2.分解因数,凑整先乘。
例 2计算① 24×25 ② 56×125 ③ 125×5×32×5 解:①式=6×(4×25) =6×100=600 ②式=7×8×125=7×(8×125) =7×1000=7000 ③式=125×5×4×8×5=(125×8)×(5×5×4) =1000×100=100000 3.应用乘法分配律。
例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700 (原式中最后一项67可看成 67×1) 例4 计算① 123×101 ② 123×99 解:①式=123×(100+1)=123×100+123 =12300+123=12423 ②式=123×(100-1) =12300-123=12177 4.几种特殊因数的巧算。
小学四年级奥数002乘除法巧算
或
如:
或:
例3.计算下面各题。
(1)
(2)
分析:这两题可以运用乘除混合运算带着符号“搬家”的性质。
(1) (2)
在运算中经常出现乘除混合运算及括号等,怎么办,仍有一些性质:
1.一个数除以两个数的积,等于这个数依次除以积的两个因数。
一般公式: 如:
例4.简便计算下面各题。
(1)
(2)
分析:利用以上公式计算,发现(1)被除数÷两个数的积,可以用下面公式计算:
分析:三位数与11相乘的速算方法同样可以概括为“两边拉,中间加”。注意中间是相邻位相加。
练一练:
例7.巧算两位数与101相乘。
竖式:
观察发现“4343、8989”,两位数与101相乘,积是把这个两位数连续写两遍。
练一练:
例8.巧算三位数与1001相乘。
竖式:
发现:三位数与1001相乘,积是把这个三位数连续写两遍。
由此得到:几与999相乘,就用几千减去几?
练习一下:
例5巧算两位数与11相乘。
分析:
观察上面一组数,发现两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位,个位数字与十位数字相加做积的十位,如果满十,就向百位进1。
如:
方法是:两边一拉,中间相加,满十进1。
例6.巧算三位数与11相乘。
56 11 93 101
237 11 562 1001
630 56 8 280 63 9
学习管理师
家长或学生阅读签字
教师课后赏识评 价
老师最欣赏的地方
老师的建议
老师想知道的事情
(1) (2)
2.一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数。
(完整)三年级乘除法速算巧算
一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
乘除巧算
例一:
234×50×2 12×25×4
125×8×9
32×125×8Βιβλιοθήκη 例二: 48×25125×5×32×5
1247×99
678×101
3,乘法的分配律:两个数的和与一个数相乘, 以把这两个数分别与这个相乘,再把所得9的积 加,即(a+b) ×c=a×c+b×c 例: (4+8)×5=8×5+4×5
• 例 :11 ÷3+4÷3 399÷5-99÷5
• (1000+100)÷25
• 9898×9999÷101÷1111
• 123×456÷789÷456×789÷123
• 3,两个数的积除以第三个数,等于用其中的一个 数除以第三个数,再与另一个数相乘。即 • a×b÷c=a÷c×b • 例:3972×69÷1986 9000×34÷45
• 4,两个数的和或差除以一个数,等于这两个数分 别除以这个数,商再相加(相减)。 (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c
速算与巧算(二)乘除法
一,运用乘法运算定律巧算
1,乘法的交换律:两个数相乘交换因数的位置,积不变。即: a×b=b×a 相乘 例:2×5=5×2
2,乘法结合律:三个数,可以把前两个数相乘再乘第三个数, 也可以把后两个数相乘再与第一个数相乘,积不变。即: a×b×c=a×(b×c) 例: 9×5×4=9×(5×4)
例三: 184×17+184×63
496×837-496×637
234×12+234×88
9999×2222+3333×3
• 二,运用四则运算规则巧算: • 1,某数连续除以两个数,等于某数除以这两个数 的积,也等于某数除以第三个数的商,再除以第 二个数。即a÷b÷c=a÷(b×c)=a÷c÷b。 • 反过来也成立
小学奥数讲义 第二讲-乘除法巧算之提取公因式与组合思想强化篇
乘除法巧算之提取公因数与组合思想计算中的提取公因数法是近几年来数学解题能力展示、希望杯和小升初中经常考的题目,但是通过分析我们发现在考试中不仅仅是只考提取公因数这样简单的题。
这类题目往往是同和、差、积和商不变的性质进行解题。
常用的提取公因式的方法有三种:⑴直接提取公因数例如:35⨯8-35+3⨯35⑵逐步提取公因数例如:计算:2000⨯1999-1999⨯1998+1998⨯1997-1997⨯1996+1996⨯1995-1995⨯1994⑶利用和、差、积和商不变性质和不变性质:如果一个加数增加(减少)一个数,另一个加数减少(增加)相同的数,它们的和不变;差不变性质:如果被减数增加(减少)一个数,减数也增加(减少)相同的数,则它们的差不变;积不变性质:如果一个因数扩大几倍,另一个因数缩小相同的倍数,它们的积不变;(零除外) 商不变性质:如果除数和被除数同时扩大或缩小相同的倍数,它们的商不变。
(零除外)例如:81⨯15+57⨯5【例1】计算:(2⨯5-9)+(2⨯6-8)+…+(2⨯9-5)【拓展】计算:7816⨯145+314⨯2184+169⨯7816=_________。
【例2】计算:⑴(873⨯477-198)÷(476⨯874+199)⑵512⨯81+11⨯925+537⨯19【拓展】计算:314⨯36+64⨯439【例3】计算:⑴(迎春杯初赛)53⨯57-47⨯43⑵19945⨯79+12⨯158+2449【拓展】计算:197⨯63+4792+409⨯21+9521⨯479 【例4】计算:2008⨯20072006-2006⨯20072008【拓展】计算:2008⨯20072006-2006⨯20072008【例5】计算:333⨯332332333-332⨯333333332=____________。
【拓展】计算:1991⨯199219921992-1992⨯199119911991〖答案〗【例1】 35【拓展】3140000【例2】⑴ 1,⑵ 61850【拓展】 39400【例3】⑴ 1000,⑵ 1580000 【拓展】 4811000【例4】 40140000【拓展】 40140000【例5】 665【拓展】 0。
四年级奥数教程第2讲:巧算乘除法
四年级奥数教程第2讲:巧算乘除法1,乘法交换律:a×b = b×a2,乘法结合律:a×b×c = a×(b×c)3,乘法分配率:(a+b)×c=a×c+b×c由此可推出:a×c+b×c=(a+b)×c(a-b)×c=a×c-b×c4,除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算:(1)25×5×64×125 (2)56×165÷7÷11 解(1)25×5×64×125=25×5×2×4×8×125=(25×4)×(5×2)×(8×125)=100×10×1000=1000000;(2)56×165÷7÷11=(56÷7)×(165÷11)=8×15=120例2:计算:(1)4000÷125÷8(2)9999×2222+3333×3334解(1)4000÷125÷:8=4000÷(125×8)=4000:1000=4;(2)999×2222+333X3334=33×3×2222+333×3334=33×(666+3334)=3333×10000=3330000随堂练习2:计算:(1)60 000÷125÷2÷5÷8(2)99 999×7+11 111×37(1)原式=60000÷(125×2×5×8)=60000÷(125×8X2×5)=60000÷(1000×10)=60000÷10000=6.原式=1111×9×7+11111×37=11111×(63+37)=11111×100=1111100例3:计算:218×730+7820×73=2180X73+7820×73=(2180+7820)×73=10000×73=730000;解法二218×730+7820×73=218×730+782×730=(218+782)×730=1000×730=730000随堂练习3:计算:(1)375×480-2750×48原式=375×480-275×480=(375-275)×480=100×480=48000例4:不用计算结果,请你指出下面哪道题得数大:452×458 453×457解452×458=452×(457+1)=452×457+452453×457=(452+1)×457=452×457+457显然,452×458<453×457随堂练习4:不用计算结果,请你指出下面哪道题得数大A=54 321×12 345 B=54 322×12 344 A=54321X(12344+1)=54321×12344+54321;B=(54321+1)×12344=54321X12344+12344.8显然,A>B例5:求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)分析观察发现,算式中每个括号里的除数都是下一个括号里的到1被除数,根据运算性质a÷:(b÷c)=a÷b×c,计算时可以消去3,4,5解原式=1÷2×3÷3×4÷:=4×5÷5×6=1÷2×6=3.提高练习一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232;一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001=125125下列计算题中,不能运用这两条规律进行巧算的是( )(A)573×101(B)252×1001(C)101×78(D)872×7×11×13简算下列各题:5445÷55原式=(5500-55)÷55=15500÷55-55÷55=100-1=99.25×77+55×14+15×77=(25+15)×77+55×14=40×77+55×14=40×7×11+14×5×11=(40×7+14×5)×11=(280+70)×11=350×11=3850981+5×9810+49×981=981+50×981+49×981=(1+50+49)×981=100×981=98100.10333×2222÷6666=3333×2×1111÷6666=(3333×2÷:6666)×1111=11111440×976÷488=1440×(976÷488)=1440×2=2880.2014×2016-2013×2017=(2013+1)×2016-2013×(2016+1)=2013×2016+2016一2013×2016-2013=2016-2013=3例4 计算。
四年级奥数教程(二)巧算乘除法
课题巧算乘除法四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的。
实际进行乘、除法以及乘除法混合运算式可利用到以下性质进行巧算:①乘法交换律:a×b = b×a②乘法结合律: a×b×c = a×(b×c)③乘法分配律: (a + b)×c = a×c + b×c由此可推出:a×b + a×c = a×(b + c)(a - b) ×c = a×c - b×ca×b - a×c = a×(b - c)④除法的性质: a÷b÷c = a÷b÷c = a÷(b×c)a÷(b÷c)= a÷b×c利用乘法、除法的这些性质,先凑整得10、100、1000……使计算更简便.教学目标1、熟练掌握乘除法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。
教学重难点重点:乘法运算律,特殊的由原有规律推出的定律难点:把乘除运算律延用到乘除法混合运算中,尤其在含有括号或多项的题目中。
教学过程一、复习引入1、利用乘法运算律,填空:15×10 = 16×______25×7×4 = ______×______×7(60×25)×______ = 60×(______×8)125×(8×______) = (125×______)×143×4×8×5 = (3×4)×(______×______)2、下面哪些运算运用了乘法分配律?117×3 + 117×7 = 117×(3 + 7)24×(5 + 12) = 24×174×a + a×5 = (4 + 5)×a36×(4×6) = 36×6×43、用乘法分配律计算下面各题103×12 20×55 24×205= = == = == = =有了上面的复习,我们把四年级课本上有关乘法的运算律都进行了一个回顾与掌握,今天我们将就如何在巧算中用上这些规律进行讲解。
四年级下册数学课件(数学思维)-第2讲 乘除巧算|全国通用 (共19张PPT)
分析:仔细观察可发现:算式中是100以内相 邻的两数乘积的加减混合计算.对于长长算式链,一 般都是根据数据特点和符号规律,重新分组进行重 组,再提取各组公因数,此题就迎刃而解了.
技巧归纳
题型三:逐位分析
100×99-99×98+98×97-97×96+96×95+…+4×3-3×2+2×1= .
注意:这里的2×1单独为一组.
巩固练习
2.7128÷72+5148÷52
【规范解析】原式=(7200-72)÷72+(5200-52)÷52 =(100-1)+(100-1) =200-2 =198
巩固练习
3.(12345+51234+45123+34512+23451)÷3
【规范解析】原式=(1+2+3+4+5)×11111÷3 =15÷3×11111 =55555
【规范解析】原式=(1+2+3+4+5)×11111÷3 叠数AAA…A都可以拆分成A×111…1的形式,99999=3×33333,这样就凑出了一个公因数33333,同时3×22222=66666与33334又可凑整,
这样就算好了。
巧算用好分配率,重码分解有规律,
【规范解析】原式=33333×3×22222+33333×33334 =777777÷11 =3333300000
【规范解析】原式=2016×(2014-2013)2015×(2014-2013) =2016-2015 =1
本节总结
数列求和
同学们,我们一起来复习一下化繁为简的规律.
01
叠数好玩AAA,分拆提取公因数,
第2讲 乘除法巧算+讲义
第2讲乘除法巧算【知识点汇总】一、乘除法中添、去括号的原则如果括号前面是乘号,去掉括号不变号;如果括号前面是除号,去掉括号变符号。
二、相关运算律1.乘法交换律:a×b=b×a2.乘法结合律:(a×b)×c=a×(b×c)3.乘法分配律:(a±b)×c=a×c±b×c4.除数“交换律”:a÷b÷c=a÷c÷b5.除数“分配律”:(a±b)÷c=a÷c±b÷c6.除法的性质:a÷b÷c=a÷(b×c)7.商不变的性质:被除数和除数乘以(或除以)同一个非零数,其商不变。
即:a÷b=(a×m)÷(b×m)=(a÷n)÷(b÷n)m≠0,n≠0三、牢记一些“好朋友”2×5=10;4×25=100;8×125=1000;16×625=10000四、“头同尾合十”的运算技巧许多两位数乘法中的乘数,十位相同,个位相加得10,例如:47和43、72和78、65和65等,我们把这样的情况称为“头同尾合十”。
对于“头同尾合十”的两个乘数可以这样进行计算:把“尾×尾”的结果作为得数的末两位,“头×(头+1)”的结果作为得数的头。
例如:47×43=2021,先计算4×(4+1)=20,再计算7×3=21,将20和21分别作为结果的前两位和后两位。
五、四则混合计算规则1.先乘除,后加减2.同级运算,从左到右3.有括号先算括号里计算:51÷17×17÷51【练习1】计算:21×19÷7÷19【例2】计算:72×125【练习2】计算:25×16×125计算:300÷25【练习3】8000÷125【例4】(1)计算:(126÷9)×(9÷3)÷(6÷3)(2)计算:512÷(512÷16×8)(1)计算:(10÷7)×(7÷6)×(6÷5)【例5】计算:23×70×22÷11÷7【练习5】计算:3000×28÷125÷8÷14【例6】(1)计算:(20+3)×25(2)计算:8×(125-7)(3)计算:(48+66)÷6(4)计算:48×102【练习6】(1)计算:42×98(2)28×32-28×17+28×84【例7】“头同尾合十”(1)计算:45×45(2)计算:41×49【练习9】计算:88×82【作业】1.计算:125×119×82.计算:2560÷(10÷4)3.计算:48×36+48×63+484.计算:11×5+11×7+22×45.计算:57×536.计算:457×997.计算:(36÷12)×(12÷5)÷(6÷5)8.计算:42×54÷6÷9÷7。
乘除法巧算
4.方茴说:"可能人总有点什么事,是想忘也忘不了的。
"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向 2. 乘除法巧算教学目标:掌握巧算中经常要用到的一些运算定律,如乘法交换律、结合律、分配律以及除法分配律等变式定律与性质。
1. 乘法中常用的几个重要式子2×5=10;4×25=100;8×125=1000;4×75=300;4×125=500; 2. 乘法的几个重要法则⑴去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。
例题. ① a ×(b ÷c) =a ×b ÷c ②a ÷(b ÷c) =a ÷b ×c ⑵带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。
小四奥数(第二讲:巧算乘除法)全体
精锐教育学科教师辅导讲义年 级:小四 辅导科目:奥数 课时数:3 课 题巧算乘除法 教学目的 实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:①乘法交换律: ②乘法结合律: ③乘法分配律: ④除法的性质:教学内容四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,到达计算正确而快捷的目的.实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:①乘法交换律:a b b a ⨯=⨯②乘法结合律:()a b c a b c ⨯⨯=⨯⨯③乘法分配律:)a b c a c b c +⨯=⨯+⨯(由此可推出:()a b a c a b c ⨯+⨯=⨯+()a b c a c b c -⨯=⨯-⨯④除法的性质:()a b c a c b a b c ÷÷=÷÷=÷⨯……会使计算更简便.计算:(1) 25×5×64×125(2) 56 ×165÷7÷11.(1)在计算乘、除法时,我们通常可以运用2×5、4×25、8×125来进行巧妙的计算.(2)运用除法的性质,带着符号“搬家”,解(1) 25×5×64×125=25×5×2×4×8×125= (25×4)×(5×2)×(8×125)=100×10×1000=1000000(2) 56×165÷7÷11= (56÷7)×(165÷ll)=8×15=120稳固练习计算:(1) 25×96×125;(2) 77 777×99 999÷11111÷11111.你做对了吗?答案(1)300000. (2)63计算:(1) 4000÷125÷8(2) 9999×2222+ 3333×3334.(1)题运用性质()a b c a b c ÷÷=÷⨯,可简化计算;(2)题将9999分解成3333× 3就与3333×3334出现了相同的因数,可逆用乘法分配律简化运算.解(1) 4000÷125÷8=4000÷(125×8)=4000÷1000=4(2) 9999×2222+3333×3334= 3333×3×2222 +3333×3334=3333×(6666+3334)=3333×10 000=33 330 000.(2)题是创造条件运用乘法运算性质,这需要我们具有一双数学的慧眼,稳固练习计算:(1) 60 000÷125÷2÷5÷8:(2) 99 999×7 +11+111×37.〔2000年吉林省小学数学夏令营试题〕你做对了吗?答案(1)6 (2)1111100计算:218×730+7820×73.此题可以运用“积不变的规律”,即“一个因数扩大几倍,另一个因数缩小相同的倍数,积不变”的规律求解.解法一218×730+7820×73=2180×73+7820×73= (2180+7820)×73=10 000×73=730 000;解法二218×730+7820×73=218×730+782×730= (218+782)×730=1000×730=730 000此题运用乘法中积不变的规律,就可以为运用乘法分配律进行巧算创造条件,这种解题方法叫做扩缩法,稳固练习计算:(1) 375×480-2750×48.(2) 2008×2006+2007×2005-2007×2006-2008×2005〔第五届小学“希望杯”全国数学邀请赛四年级第1试试题〕你做对了吗?答案(1)48000 (2)1不用计算结果,请你指出下面哪道题得数大.452×458 453×457注意到453=452+l.458+457 +1.可运用乘法分配律加以判别,解452×458-452×(457+1)=452×457+452,=453×457-(452+1)×457=452×457 +457;×458<453×457.求1+(2+3)+(3+4)+(4+5)+(5+6)的值.〔第二届“华罗庚金杯”数学邀请赛试题〕÷÷=÷⨯.计观察发现,算式中每个括号里的除数都是下一个括号里的被除数,根据运算性质a b c a b c算时可以消去3,4,5.解原式=1÷2×3÷3×4÷4×5÷5×6=1÷2×6=3.稳固练习不用计算结果,比较下面两个积的大小.A=54 321×12 345 B=54 322×12 344你做对了吗?答案A > B当代世界著名数学录陈省身陈省身,美籍华人,世界著名数学家,中国科学院首批外籍院士.1930年,陈省身毕业于南开大学.1931年考入清华研究院,成为中国国内最早的数学研究生之一.1934年,他毕业于清华研究院,同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学.在布拉希克研究室他完成了博士论文,1936年获得博士学位陈省身对数学有重大奉献,尤其是存几何学方面,他的成就对现代数学的许多分支都产生了深刻的影响.1982年,他回到南开大学,在数学系捐款设立数学奖学金.1984年,他辞去美国国家数学研究所所长的职务,正式应聘到南开大学担任南开数学研究所所长,还担任了中美科技交流协会主席以及北京大学、南开大学和暨南大学等校的名誉教授.多年来,他为祖国数学界举办了三项大活动:一是在中国召开每年一次的国际微分几何、微分方程会议;二是开办暑期数学研究生教学中心;三是每年派20名中国数学研究生赴美国参加“陈省身项目”的研究,陈省身1984年获得了“沃尔夫”数学奖.填空题1.4500÷(25×90) =_______.2.18 000÷125÷18=_______.3 42×35+61×35-3×35=_______.4.(125×99+125)×16=_______.选择题5以下各式中没有反映出简便运算的是( )(A) 19+199 +1999 +19 999= 20+ 200+ 2000+20 000-4(B) 4500÷54×6= 4500÷(54÷6)(C)8×240 ×125÷48= 1920×125÷48(D)10000÷2÷4÷5÷25=10000÷(2×4×5×25)6.一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232; 一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001= 125 125.以下计算题中,不能运用这两条规律进行巧算的是( ).(A) 573×101 (B) 252×1001(C) 101×78 (D) 872×7×11×13简算以下各题7.75×16.8.981+5×9810+49×981.9.1000÷(25÷4).×2222÷6666.11 8÷7+9÷7+ll÷7.÷55.13 1440×976÷488.÷〔7÷11)÷〔11÷16)÷(16÷35).15.2009×2011-2008×2012.课后作业填空题〔每题6分,共60分〕1.8+98+998+9 998+99 998 = .2.99 +17×19 +17×80= .3.6 237÷63 = .4.125×5×32×5= ..5.(11×9 +11)×(111×999 +111)×(7×11×13-1001) = .6.90000÷125÷2÷5÷8= .7.287÷13-101÷13-82÷13 = .8.99 999×7+11111×37 = .9.156×28-156×15+87×156 = .10.找规律计算:73-37=(7-3)×9=4×9=36,64-46= (6-4)×9=2×9=18.92-29=(9-2)×9=7×9=63.87-78=(□-□)×9=□×9=□,74-□=(□-□)×9=□×9=□,解答题〔每题12分,共60分〕11.计算:1+2+3+…+99+100+99+…+3+2+1.12.已知: 12+22+32+... +92+102= 385.求:1×2+2×3+3×4+4×5+...+10×11.。
乘除法中的巧算二
乘除法中的巧算知识要点:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b = b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b)×c = a×(b×c),乘法的交换律、结合律往往结合起来一起使用。
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c=a×c + b×c4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。
a÷b ÷c =a÷(b ×c)5、乘除法混合运算中,去掉(添上)括号的规律是:如果括号前是除号,那么去掉括号后,括号内的除号变乘号,乘号变除号;如果括号前是乘号,去括号后则不需要改变括号内的乘号或除号。
放过来添括号的规律也是这样。
例题精讲:(1) 8×39×125 (2)25×(4+10)=8×125×39 =25×4+25×10 = == =(3)195×81+19×195 (4)268×101-268=195×(81+19) =268×101-268×1= =268×(101-1)= =(5)450÷(9×25)(6)480÷(24÷4)=450÷9÷25 =480÷24×4(二)两位数与11相乘的规律:(1)32×11=352 (2)87×11=957分析:用32的3做百位,2做个位,分析:87的8做百位,7做个位,中间的十位上是3+2=5。
中间的十位是8+7=15, 满十进一所以十位是5,百位是8+1=9(三)两个因数的十位是相同的,个位上两数和为十:(1)33×37=1221 (4)21×29=609分析:这种题的积的前两位数是十位上的数乘本身加1的结果,后两位数是两个个位上数的积,如果两个个位上数的积不满十,要添0。
小学奥数四年级巧算
欢迎阅读小学目录算时,要敏于观察,善于思考,选用合理、灵活的计算方法,使计算简便易行,即巧算。
【例1】计算(1)2014+92-14=2014-14+92=2000+92=2092(2)823-92+177=823+177-92=1000-92=908说明(1)运用了性质:a+b-c=a-c+b; (2)运用了性质:a-b+c=a+c-b;【例2】计算(1)999+999×999(2)9+99+999+9999分析(1)题可逆用乘法对加法的分配律;(2)题可采用“添1凑整”的方法。
解(1)999+999×999=999×1+999×999=999×(1+999)=999×1000=999000(2)9+99+999+9999=11106说明(1随堂练习(1)(2)【例3】(1)(2)分析解(1)=4(2)说明(1【例4】(1)(4256+125+875)-256(2)847-578+398-222解(1)(4256+125+875)-256=(4256-256)+(125+875)=4000+1000=5000;(2)847-578+398-222=847-578+398-222=847+400-2-(578+222)=1245-800=445说明这两道题综合性很强,运用了加、减法的交换律和结合律,还用整十、整百、整千……来代替很接近的数,从而给计算带来方便。
随堂练习2计算下列各题:(1)354+(646-198);(2)3842-1567-433-842.【例5】计算(1)701+697+703+704+696(2)72+66+75+63+69分析(1)这几个数都接近700,选择700作为基数,计算的时候,找出每个数与700的差,大于69解(2说明【例6分析解)说明(1)(2)100-99+98-97+96-95+…+4-3+2-1练习题1、69+18+31+822、516-56-44-163、713-(513-229)4、2356-(356+199)5、19+299+3999+499996、200-198+196-194+…+8-6+4-27、560-557+554-551 +…+500-4978、2000+1999-1998-1997+1996+1995-1994-1993+…+8+7-6-5+4+3-2-1第二讲、巧算乘除法四则运算中巧算的方法很多,我们可以根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的.实际进行乘法、除法以及混合运算时可利用以下性质进行巧算:①乘法交换律:a×b=b×a②乘法结合律:a×b×c=a×(b×c)③乘法分配律:(a+b)×c= a×c+b×c由此可推出:a×b+a×c=a×(b+c),(a-b)×c=a×c-b×c④除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000,…会使计算更简便、更快捷、更准确。
乘除法巧算
4.方茴说:"可能人总有点什么事,是想忘也忘不了的。
"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向 2. 乘除法巧算教学目标:掌握巧算中经常要用到的一些运算定律,如乘法交换律、结合律、分配律以及除法分配律等变式定律与性质。
1. 乘法中常用的几个重要式子2×5=10;4×25=100;8×125=1000;4×75=300;4×125=500; 2. 乘法的几个重要法则⑴去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。
例题. ① a ×(b ÷c) =a ×b ÷c ②a ÷(b ÷c) =a ÷b ×c ⑵带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。
四年级·乘法巧算
20与4的差,再将两数的差16写成4×4的形式,最后利用乘法结合律简算。
(20-4)×25 (20-4)×25=20×25-4×25 =16×25=500-100 或 =4×(4×25)=400 =4×100=400例2、用简便方法计算下面各题。
(1)6666×2222+4444×6667(2)81×35+21×35-2×35【思路导航】观察上面的两道算式,算式(1)可以根据积不变的规律先变形,再反用乘法分配律,使计算简便。
6666×2222+4444×6667=3333×4444+4444×6667=4444×(3333+6667)=4444×10000=44440000算式(2)可以反用乘法分配律,使计算简便。
81×35+21×35-2×35=35×(81+21-2)=35×100=3500例3、用简便方法计算下面各题。
(1)3100÷25÷4 (2)325÷25(3)(360-108)÷36 (4)920×8÷40【思路导航】在用一个数连续除以几个数时,可以用这个数去除以另外几个数的乘积,结果不变。
算式(1)是用3100连续除以25和4这两个数,而25与4的乘积正好是100,因此,用3100除以25和4的乘积100,可以使计算简便。
随堂笔记:__________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ __________________ 3100÷25÷4成2400+36,而2400与36都是12的倍数,可以用简便方法计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲巧算乘除法辅导时间姓名
四则运算中巧算的方法很多,利用乘除法的性质时,先凑整得10,100,1000,···会使计算更快捷、更准确
一、复习计算
947+(372—447)—572+1928—(267—72)—33
二、巧算乘除法
例1、计算:
(1)25×5×64×125 (2)56×165÷7÷11
课堂练习1:计算
(1)25×96×125 (2)7777×9999÷1111÷1111
例2、计算
(1)4000÷125÷8 (2)999×222+333×334
课堂练习2:计算
(1)60000÷125÷2÷5÷8 (2)9999×7+1111×37
例3、计算
218×730+7820×73
课堂练习3计算
(1)375×480-2750×48
(2)102×100+101×99—101×100—102×99
例4、不用计算结果,请你指出下面哪道题得数大。
452×458 453×457
例5、求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)的值
课堂练习4不用计算结果,比较下面两个积的大小
A=54321×12345 B=54322×12344
训练题
一、填空题
(1)4500÷(25×90)=
(2)18000÷125÷18=
(3)42×35+61×35—3×35=
(4)(125×99+125)×16=
二、选择题
(5)下列各式中没有反映出简便运算的是()
(A)19+199+1999+19999=20+200+2000+20000—4;
(B)4500÷54×6=4500÷(54÷6);
(C)8×240×125÷48=1920×125÷48;
(D)10000÷2÷4÷5÷25=10000÷(2×4×5×25)
(6)一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数。
一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数。
下列计算题中,不能运用这两条规律进行计算的是()
(A)573×101 ;(B)252×1001
(C)101×78;(D) 872×7×11×13
三、简算下列各题
(7)75×16
(8)981+5×9810+49×981
(9)25×77+55×14+15×77
(10)3333×2222÷6666
(11)8÷7+9÷7+11÷7
(12)5445÷55
(13)1440×976÷488
(14)5÷(7÷11)÷(11÷16)÷(16÷35)
(15)2014×2016—2013×2017。