Target Gene-Specific Modulation of Myocardin Activity by GATA Transcription Factors
肿瘤多组学
肿瘤多组学肿瘤多组学(OMICS)方法是一种研究“肿瘤细胞群落”的综合方法。
它包括肿瘤细胞的DNA、RNA、蛋白质组、代谢组和脏器组等,以及它们之间直接或间接形成的复杂物质相互作用。
它可以用于描述和理解肿瘤细胞群形成及发展的分子机制,从而实现个体化抗肿瘤就医。
OMICS技术允许研究者快速获取大量的细胞内及细胞外的分子信息,同时也是基因组相关疾病研究的重要手段。
这些技术通常分为“宏病毒”:超研究者生物信息学分析工具,用于分析大量的基因表达谱、蛋白质、代谢产物和构建细胞信号通路。
OMICS在发展中随着技术的不断更新,更加强大,可用于进一步了解肿瘤细胞群落的调节机制,开展临床生物标志物研究,预测疾病起源、发展、诊断和治疗。
从而实现深入了解肿瘤表型,以便更精准、更有效地实施抗肿瘤研究。
OMICS对肿瘤研究表现出了许多优势。
例如,可大规模定性分析肿瘤细胞群内的基因表达谱,了解肿瘤细胞群落之间的差异性,并深入了解特定肿瘤发生与发展之间的复杂联系。
同时,OMICS还有助于发现参与细胞一般性功能调节的新化合物,发现致病基因及突变,揭示肿瘤发生、发展和转移的分子机制,以及开发新的抗肿瘤药物。
OMICS研究的可靠性和重复性已得到明显改善。
OMICS技术的有效结合,也可能更好地帮助我们理解肿瘤的病理机制,今后可望发挥更大的作用。
总的说来,OMICS在肿瘤研究中发挥了非常重要的作用。
OMICS技术能够了解肿瘤细胞群落的结构和功能,不仅为临床抗肿瘤药物研发提供更多可利用的信息,而且可以帮助我们更好地理解肿瘤病理机制。
研究工作仍在不断进行,希望能进一步探索肿瘤的诊断、预防和治疗方法,以实现临床抗肿瘤药物的精准用药。
抗人绒毛膜促性腺激素β亚基的单克隆抗体及其制备方法[发明专利]
专利名称:抗人绒毛膜促性腺激素β亚基的单克隆抗体及其制备方法
专利类型:发明专利
发明人:熊思东,于宁,徐薇
申请号:CN200710048067.2
申请日:20071109
公开号:CN101429249A
公开日:
20090513
专利内容由知识产权出版社提供
摘要:本发明公开了一种抗人绒毛膜促性腺激素β亚基的单克隆抗体、以及该单克隆抗体的制备方法,本发明通过以编码hCGβ的真核表达质粒经肌肉免疫BALB/c小鼠,将分泌高效价抗hCGβ抗体的小鼠脾细胞与小鼠B细胞淋巴瘤融合、经筛选、反复克隆化,获得能稳定分泌抗hCGβ单克隆抗体的杂交瘤细胞株,通过该抗hCGβ单克隆抗体的杂交瘤细胞株分泌抗hCGβ的单克隆抗体。
本发明公开的抗hCGβ单克隆抗体可特异性结合hCGβ蛋白以及肿瘤细胞表达的膜型hCGβ,可在体外和体内有效抑制肿瘤生长,可以直接诱导肿瘤细胞凋亡。
申请人:复旦大学
地址:200433 上海市邯郸路220号
国籍:CN
代理机构:上海世贸专利代理有限责任公司
代理人:严新德
更多信息请下载全文后查看。
面部埋线提升术联合填充注射技术在下庭的肌肉调节
面部埋线提升术联合填充注射技术在下庭的肌肉调节林立荃,许庭嘉(广州安美医疗门诊部, 广东 广州,510630)【摘 要】 目的 以肌肉动力学指导面部埋线提升术联合填充注射技术在下庭的肌肉调节。
方法 以面部下庭的肌肉群为基础分析肌肉动力学;以可注射透明质酸和可吸收缝线为主要材料为就诊者实施面部肌肉调节。
结果 肌肉动力学分为长度紧张关联,肌肉滑轮和杠杆系统,肌肉拮抗作用。
透明质酸于皮下注射可增加肌肉长度;提肌下深层脂肪注射可改变杠杆滑轮系统支点;降肌上或浅层脂肪注射可增加肌肉阻力,实现调节肌肉作用。
可吸收缝线可固定肌肉长度;聚拢深层组织,固定肌肉拉力或末端组织,实现调节肌肉作用。
本案患者经SMAS 层高位线性提拉、在颧大肌低位,蜗轴外上方的浅脂肪的深层施打透明质酸,获得满意效果。
结论 面部埋线提升术和可填充注射技术均具有调节面部下庭肌肉作用。
【关键词】肌肉老化动力学;透明质酸;神经毒素;线性拉提DOI:10.19593/j.issn.2095-0721.2020.10.003Myomodulation of lower face by using threads and filler injectionLIN Li-Chuan, HSU Tin-Chia (AnMei Aesthetic Clinic, Guangdong Province, 510630, China )[ABSTRACT] Objective Based on myodynamics theory to perform lower face lifting by using threads and filler injection. Method Clearly analyse the myodynamics based on lower facial mimetic muscles and use hyaluronic acids and absorbable threads to perform myomodulation on lower face. Results The myodynamics theory of facial mimetic muscles includes: 1. length-tension relationship, 2. muscle pulley and lever systems, 3. functional muscle groups. Proper filler injection in the subcutis can increase muscle length; muscle pulley and lever systems would be changed when filler injected below the levator muscles; muscle obstacle force would be increased when filler injected on depressor muscles or the overlying superficial fat pad. Absorbable bi-directional cogged threads lifting techniques can fix the muscle length, concentrate the surrounding soft tissue and anchor the terminal fibrous tissue of the muscles (target point). We can achieve myomodulation by the methods mentioned above. We performed high SMAS thread lifting techniques and hyaluronic acid injection over the lower lateral edge of zygomaticus major muscle (the superficial fat pad on the upper-lateral area of modiolus) to achieve myomodulation and satisfying results.[KEY WORDS] Myomodulation; Muscle aging; Injectable fillers; Threads; Neurotoxins参考已有文献,面部肌肉的研究主要运用在神经毒素的注射上,最明显的是拮抗肌群的观念,其最经典的例子是提眉与降眉的肌肉表现与应用[7],但是纵观整个面部肌肉运动表现,整个面部都有拮抗肌群的作用。
CDCA8在肿瘤发生发展及耐药中的研究进展
㊃综述㊃D O I:10.3969/j.i s s n.1672-9455.2024.03.028C D C A8在肿瘤发生发展及耐药中的研究进展*顾汇权,张涵强,王芳玉,姚龙宇,周小天综述,刘嫱ә审校海南医学院药理教研室,海南海口571199摘要:细胞分裂周期相关基因(C D C A)8是C D C A家族中的一个成员,早期在胚胎干细胞中被发现,用于调控有丝分裂期间着丝粒的定位及纺锤体的稳定性㊂近年越来越多的研究发现C D C A8在肺癌㊁肝癌㊁黑色素瘤和胰腺癌等多种肿瘤组织中呈高表达,并与肿瘤的分级㊁不良预后密切相关㊂干扰C D C A8的表达会显著抑制肿瘤的生长以及转移,诱导细胞周期的阻滞及细胞凋亡,同时提高肿瘤细胞对顺铂和他莫昔芬的灵敏度,而对正常细胞影响较小㊂故认为C D C A8是治疗恶性肿瘤的一个潜在干预靶点㊂本文从预后情况㊁作用机制以及耐药关系出发,对C D C A8在肿瘤中的功能和作用的机制通路进行讨论,旨在为临床上肿瘤生物标志物的筛选及靶向药物研发提供新思路㊂关键词:细胞分裂周期相关基因8;肿瘤;治疗靶点;耐药中图法分类号:R730.2文献标志码:A文章编号:1672-9455(2024)03-0405-05R e s e a r c h p r o g r e s s o f C D C A8i n t u m o r d e v e l o p m e n t a n d d r u g r e s i s t a n c e*G U H u i q u a n,Z HA N G H a n q i a n g,WA N G F a n g y u,Y A O L o n g y u,Z H O U X i a o t i a n,L I U Q i a n gәD e p a r t m e n t o f P h a r m a c o l o g y,H a i n a n M e d i c a l U n i v e r s i t y,H a i k o u,H a i n a n571199,C h i n aA b s t r a c t:C e l l d i v i s i o n c y c l e-a s s o c i a t e d g e n e(C D C A)8i s a m e m b e r o f t h e C D C A f a m i l y,w h i c h i s d i s-c o v e r e d e a r l y i n e m b r y o n i c s t e m c e l l s a n d u s e d t o r e g u l a t e t h e l o c a l i z a t i o n o f t h e m i t o t i c g r a n u l e a n d t h e s t a-b i l i t y o f t h e s p i n d l e d u r i n g m i t o s i s.I n r e c e n t y e a r s,m o r e a n d m o r e s t u d i e s h a v e f o u n d t h a t C D C A8i s h i g h l y e x p r e s s e d i n a v a r i e t y o f t u m o r t i s s u e s,i n c l u d i n g l u n g c a n c e r,h e p a t o c e l l u l a r c a r c i n o m a,m e l a n o m a a n d p a n c r e-a t i c c a n c e r,a n d i t i s c l o s e l y a s s o c i a t e d w i t h t u m o r g r a d e a n d p o o r p r o g n o s i s.I n t e r f e r i n g w i t h C D C A8e x p r e s-s i o n c a n s i g n i f i c a n t l y i n h i b i t t u m o r g r o w t h a n d m e t a s t a s i s,i n d u c e c e l l c y c l e a r r e s t a n d a p o p t o s i s,a n d i n c r e a s e t h e s e n s i t i v i t y o f t u m o r c e l l s t o c i s p l a t i n a n d t a m o x i f e n,w i t h l i t t l e e f f e c t o n n o r m a l c e l l s.T h e r e f o r e,i t i s c o n-s i d e r e d t h a t C D C A8i s a p o t e n t i a l i n t e r v e n t i o n t a r g e t f o r t h e t r e a t m e n t o f m a l i g n a n t t u m o r s.I n t h i s p a p e r,t h e f u n c t i o n o f C D C A8i n t u m o r s a n d t h e m e c h a n i s t i c p a t h w a y o f i t s a c t i o n a r e d i s c u s s e d i n t e r m s o f p r o g n o s i s, m e c h a n i s m o f a c t i o n,a n d d r u g r e s i s t a n c e r e l a t i o n s h i p,a i m i n g t o p r o v i d e n e w i d e a s f o r t h e s c r e e n i n g o f t u m o r b i o m a r k e r s i n t h e c l i n i c a s w e l l a s t h e d e v e l o p m e n t o f t a r g e t e d d r u g s.K e y w o r d s:c e l l d i v i s i o n c y c l e a s s o c i a t e d8;t u m o r;t r e a t m e n t t a r g e t s;d r u g r e s i s t a n c e细胞周期相关蛋白的异常引起的细胞增殖不受控制,使肿瘤细胞具有更强的侵袭㊁转移及耐药能力,因此,细胞周期进程失调被认为是癌症的一个共同特征[1-2]㊂近年来,越来越多的细胞周期相关蛋白成为恶性肿瘤早期诊断的生物标志物和治疗的潜在靶点㊂细胞分裂周期相关基因(C D C A)和蛋白家族共有8名成员组成,即C D C A1~8㊂C D C A家族成员的异常表达与多种肿瘤的发生和发展密切相关,例如C D C A2作为一种核蛋白,负责调控蛋白磷酸酶1在染色质中的靶向定位,过表达可通过加速细胞周期进程,促进肿瘤细胞增殖[3];C D C A7是一种D N A结合蛋白,异常表达时可激活转录相关因子,促进肿瘤的迁移及血管的生成[4]㊂C D C A8也称为B o r e a l i n/D a s r a B,位于人染色体1p34.2,含11个外显子和10个内显子,c D-N A总长2139b p,编码280个氨基酸[5]㊂既往研究发现C D C A8在胚胎干细胞和多种癌细胞中的转录活性显著增加,且相较于C D C A其他成员,C D C A8在肿瘤和正常组织中的表达差异更显著[6-7]㊂上调的C D-C A8是促进癌症恶性进展的关键,在癌症发生及恶性病变中发挥着重要作用㊂本文对C D C A8在肿瘤中的功能及可能的作用机制进行综述,以期为靶向C D-C A8的治疗提供新思路㊂1 C D C A8的结构和功能C D C A8与有丝分裂激酶B(A u r o r a B)㊁内部着丝㊃504㊃检验医学与临床2024年2月第21卷第3期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.3*基金项目:国家自然科学基金资助项目(82060851);海南医学院创新实验项目(H Y Y S2021A35)㊂ә通信作者,E-m a i l:470048098@ q q.c o m㊂网络首发h t t p s://l i n k.c n k i.n e t/u r l i d/50.1167.R.20240105.0830.002(2024-01-05)粒蛋白(I N C E N P)㊁生存素(S u r v i v i n)共同组成染色体载客复合体(C P C)的重要部分[8]㊂在结构上,B o r e-a l i n直接与S u r v i v i n和I N C E N P结合,在体外展现出类似三重螺旋结构[9]㊂B o r e a l i n可通过N末端141个残基与S u r v i v i n的相互作用定位到中央纺锤体和中间体㊂B o r e a l i n虽然不与A u r o r a B直接连接,但可以通过前58个氨基酸与I N C E N P结合,并通过I N-C E N P的C端区域与A u r o r a B连接使其激活,用于着丝粒的靶向定位[10]㊂根据其结构特征,B o r e a l i n在动物和真菌中处于保守状态[9]㊂并且有研究发现B o r e a l i n可受多个位点的磷酸化调控,例如,单极纺锤体蛋白激酶1 (M P S1)在T h r230上的磷酸化,提高了A u r o r a B酶的活性[11]㊂细胞周期蛋白依赖性激酶1(C D K1)的磷酸化,促进C P C靶向着丝粒定位[12]㊂在有丝分裂间期,B o r e a l i n见于异染色质上;而前中期转移进入着丝粒内高度聚集;在中后期,B o r e a l i n离开着丝粒内,转移到中心纺锤体微管,随后定位于细胞皮层;最终,在末期和细胞质分裂期,B o r e a l i n定位于皮层中部[13]㊂B o r e a l i n缺失将减慢有丝分裂进程,导致着丝粒-纺锤体失连和异位纺锤极形成,还导致细胞增殖缺陷㊁p53积累和小鼠早期胚胎死亡[14-15]㊂一般来说,在人类有丝分裂细胞中,B o r e a l i n纠正着丝粒-纺锤体失连,稳定双极纺锤体,同时其二聚体结构域调控着丝粒的动态交换,以实现最佳的C P C功能[16]㊂除此之外,B o-r e a l i n还在有丝分裂过程中参与了染色体排列的调节㊁纺锤体信号传导和胞质分裂及细胞动态定位等功能[16-17]㊂2 C D C A8与肿瘤发生和发展之间的关系C D C A8是有丝分裂中的关键调控基因,作为一种细胞周期调节剂,C D C A8的表达受致癌相关转录因子的调控㊂D A I等[18]发现,核因子Y A(N F-Y A)可在肝癌细胞中激活C D C A8依赖的启动子区,促进C D C A8的转录及核内聚集㊂同源物N F-Y B会介导N F-Y C核靶向作用,形成二聚体[19],进一步增加N F-Y亚基与C D C A8启动子区结合的活性,促进肝癌的恶性进展㊂X I A N G等[20]和C H E N等[21]研究表明,在肺腺癌细胞中,C D C A8可以通过正反馈的形式作用于p53,p53的缺失会进一步诱导有丝分裂缺陷,诱导肿瘤恶性进展㊂除此之外,信号通路的激活也是C D C A8的调控模式之一㊂有研究证实,在黑色素瘤中,C D C A8的过表达可激活R O C K通路,降低c a s p a s e-3水平,诱导肌球蛋白M L C磷酸化,促进肿瘤的淋巴结转移及转移灶的形成[22-24]㊂综上所述, C D C A8可通过调控转录因子㊁凋亡蛋白及激活信号通路等方式促进肿瘤细胞的发展及转移㊂2.1 C D C A8与肺癌基于癌症基因组图谱(T C-G A)和基因表达综合数据库(G E O)筛选发现,在肺癌患者中包括C D C A8在内的9个关键基因表达水平明显上调,并且其表达水平与肿瘤大小㊁病理分级㊁T NM分期呈正相关,C D C A8水平越高,肺癌患者生存率越低[25]㊂H A Y AMA等[26]利用小R N A敲低L C319和S B C-5细胞中C D C A8的表达,发现可以显著抑制细胞的增殖和集落形成,并诱导细胞周期G1期的滞留,提示C D C A8可通过调控细胞周期,影响肺癌的发展和转化㊂更多的研究结果也证明了这个观点,肺癌细胞中C D C A8水平的降低会上调p53的水平,抑制周期检查点蛋白C D C2和C y c l i n B1的水平,干扰拓扑异构酶Ⅱ的水平,阻止细胞进入有丝分裂阶段并加强细胞周期的停滞,从而引起肺癌细胞的凋亡[27-29]㊂除此之外,HU等[30]通过分析肺腺癌患者的m i R N A表达谱,发现m i R N A-133b对C D C A8存在靶向负相关作用,m i R N A-133b可以与C D C A8的3'-U T R端结合,靶向诱导C D C A8的m R N A序列降解,进而调控m i R-133b水平,逆转因C D C A8缺失而引起的细胞活力下降㊂综上所述,C D C A8可能通过细胞周期㊁转录调控等不同机制在肺癌的发生与发展中发挥重要作用㊂2.2 C D C A8与肝癌 S HU A I等[31]发现在人类肝细胞癌中C D C A8呈高表达,且表达水平与患者的T NM分类,临床分期,组织学分级相关㊂因此C D-C A8也可以作为鉴别肝癌的潜在生物标志物㊂敲低肝癌细胞中的C D C A8不仅可以上调抑癌基因C D K N2B的水平,抑制细胞周期蛋白依赖激酶的活性,还可下调C y c l i n A2㊁C y c l i n D1㊁C y c l i n B1㊁C D K4㊁C D K6㊁p-C D C2等细胞周期蛋白水平,干扰细胞检查点的进行,从而引起细胞周期停滞[32]㊂此外,下调C D C A8还可增加凋亡蛋白c a s p a s e-7以及肿瘤抑制性因子A T F3和G A D D34蛋白水平,引起致癌信号通路A K T/β-c a t e n i n失活,促进肝癌的凋亡[33]㊂另外有研究发现,在动物体内利用杂交技术靶向敲除小鼠肝细胞中的C D C A8后,这些小鼠在生长过程中并没有出现明显的不良反应;后续通过插入致癌基因ΔN90-β-C a t e n i n和c-M e t诱发肝癌后,可以观察到肝癌的恶性进展被显著抑制[32]㊂因此,筛选靶向C D C A8的小分子化合物不仅能很好地抑制肝癌的进展,且对于研究对象本身的损伤也更小㊂2.3 C D C A8与黑色素瘤 G U O等[34]发现C D C A8的转录水平在黑色素瘤患者中明显上调,低水平的患者预后更差,表明C D C A8可作为黑色素瘤预后的独立预测因子㊂另外,通过免疫细胞浸润分析发现C D-C A8的表达与B细胞㊁中性粒细胞㊁树突状细胞浸润呈正相关㊂因此,在黑色素瘤中C D C A8不仅能作为生物标志物用于早期诊断,还能用于术后的预后评估[35]㊂另一项研究表明,转运蛋白T M E D3水平的降低可以引起内源性C D C A8的水平耗竭,并引起下游p-㊃604㊃检验医学与临床2024年2月第21卷第3期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.3A K T㊁C D K1/6和P I K3C A水平的降低,这和靶向敲除C D C A8的结果一致,而C D C A8的激活可以逆转这一现象,促进A k t和P I3K的磷酸化水平[36]㊂说明C D C A8可通过P I3K/A K T信号通路介导肿瘤细胞的凋亡,针对T M E D3/C D C A8轴的抑制剂可能是治疗黑色素瘤的新靶点㊂2.4 C D C A8与胰腺癌 G U等[37]发现在胰腺癌临床样本中C D C A8表达水平与患者的肿瘤分级以及糖尿病史呈正相关,且低表达的胰腺癌患者具有更长的生存期,但与年龄㊁性别并无显著性差异㊂敲减C D C A8会抑制胰腺癌细胞的增殖和迁移能力,此抑制作用是通过C D C A8/C D44轴产生的㊂C D44作为非激酶跨膜受体,可以与透明质酸结合激活肿瘤相关信号通路和并调整细胞骨架,使其利于侵袭和耐药㊂而C D C A8可与S N A I2形成复合物作用于C D44的启动子从而上调C D44水平,促进胰腺癌的恶性进展[37]㊂除此之外,有研究发现若敲低胰腺癌细胞中的驱动蛋白家族成员如K I F23和K I F18B水平,也会引起C D C A8的同步降低和细胞活力的抑制,从而抑制胰腺癌细胞的增殖及转移能力[38-39]㊂3 C D C A8与肿瘤耐药性之间的关系3.1 C D C A8与铂类药物顺铂在体内与D N A结合,阻止细胞分裂的正常进行,引起肿瘤细胞的氧化应激㊁调节钙信号㊁诱导凋亡蛋白等方式促进癌细胞的死亡[40-41]㊂在临床上广泛用于治疗肺癌㊁宫颈癌㊁卵巢癌等恶性肿瘤[42-44]㊂W E N等[45]利用G E O数据集对21例晚期宫颈鳞癌患者的样本进行分析,发现对比顺铂敏感的患者,顺铂耐药患者的C D C A8水平显著升高,说明C D C A8在宫颈癌耐药过程中存在潜在作用㊂Q I等[46]的结果同样证明了这一点,通过对比卵巢癌顺铂耐药患者中的差异发现T O P2A和C D-C A8是变化最显著的2个基因,且与T O P2A相比,在体外耐药细胞中C D C A8水平提高了约1.5倍,说明C D C A8在顺铂耐药过程中发挥了重要作用,通过慢病毒敲减了A2780和S K O V3细胞中的C D C A8后发现提高了顺铂对肿瘤细胞的损伤,且与顺铂水平成正相关㊂而C D C A8诱导细胞对顺铂的敏感性可能是通过p53介导,沉默C D C A8可引起p53的积累,过度积累的p53可以在顺铂的作用下激活死亡域蛋白(F A D D)中的白细胞介素1β转换酶(I C E),抑制蛋白泛素化,从而增加顺铂对肿瘤细胞的杀伤力[47-48]㊂因此,C D C A8可成为肿瘤细胞提高顺铂敏感性的目标基因㊂3.2 C D C A8与他莫昔芬他莫昔芬作为雌二醇的竞争性拮抗剂,可与雌激素受体竞争结合,抑制雌激素受体的转录活性,阻断乳腺癌细胞的G1期,抑制肿瘤增殖㊂有研究发现E R信号通路和细胞周期调节之间存在串扰作用,C D K7抑制剂的联合使用可使雌激素受体(E R)S e r118磷酸化,提高耐药细胞对他莫昔芬的敏感性[49]㊂N A B I E V A等[50]的研究也发现,使用C D K4/6的抑制剂可以显著改善激素受体阳性㊁人表皮生长因子受体-2(H E R2)阴性乳腺癌Ⅱ㊁Ⅲ和Ⅳ期患者中的疗效㊂因此,细胞周期调控蛋白可作为乳腺癌内分泌抵抗发展的研究方向㊂S U N等[51]发现C D C A8在他莫昔芬耐药细胞中高表达,而过表达敏感细胞C D C A8水平可降低他莫昔芬作用下细胞的凋亡率,促进细胞S期的富集,加速周期进程,C D C A8作为E2F相关通路的激活剂,有研究表明不仅可以通过E2F1介导染色体D N A复制和调节细胞周期的G1/S期,还能作用于转录抑制因子E2F3b影响C y c-l i n D1的水平,从而加快乳腺癌细胞对他莫昔芬耐药[52]㊂C y c l i n D1作为检查点蛋白可促进G1/S期的进展,乳腺癌细胞中C y c l i n D1的激活促进了癌细胞的耐药水平[53]㊂而在敲降C D C A8后,C y c l i n D1水平显著降低,G1期滞留细胞量增加,细胞恢复对他莫昔芬的敏感性[54]㊂因此,靶向C D C A8抑制剂的联用能提高耐药细胞对他西莫芬的敏感性㊂4小结C D C A8作为细胞周期调节因子,在胚胎干细胞中作用于有丝分裂阶段稳定双极纺锤体,调控纺锤体信号传导维持细胞周期的顺利进行㊂在正常的组织中C D C A8表达水平较低,而在细胞周期异常的恶性肿瘤中C D C A8呈高表达,在一定程度上可以促进肺癌和胰腺癌的发生,促进黑色素瘤的转移及肝癌的恶性进展㊂C D C A8可调节胞内转录水平,促进细胞的增殖和耐药㊂在肺癌中,通过反馈调节p53促进细胞四倍体形成诱导肿瘤的发生㊂在肝癌中,受到转录因子N F-Y簇的调控,诱导细胞周期C D K-C y c l i n轴的异常转化,促进肝癌的进展㊂在黑色素瘤中,C D C A8与R O C K协同作用,激活下游靶点磷酸化促进黑色素瘤的转移㊂在胰腺癌中,C D C A8通过增加C D44转录活性促进胰腺癌的进展㊂在化疗耐药细胞中,C D-C A8通过周期相关蛋白C y c l i n D1及p53调控细胞周期进展,以及蛋白泛素化提高细胞耐药性㊂因此,笔者认为C D C A8可通过肿瘤微环境㊁转录因子㊁周期调控以及致癌通路的激活等多方面发挥促癌及耐药的作用㊂综上所述,C D C A8表达水平在肺癌㊁肝癌㊁胰腺癌等肿瘤中相较于正常组织有着数倍的升高,并且其表达水平与肿瘤分级㊁预后情况及耐药情况呈正相关㊂因此,C D C A8有望成为新型生物标志物,为临床上的肿瘤诊断㊁术后评估以及敏感药物筛选提供参考依据㊂除此之外,根据C D C A8在肿瘤细胞中过表达的特点,通过研发靶向抑制剂作为化疗药物的联合用药之一,可提高化疗药物的杀伤力以及耐药细胞的敏感性㊂同时基于动物实验结果的推测,C D C A8的靶向抑制剂在肿瘤治疗的同时,可以给患者带来更少的不良反应,在临床应用上有着巨大的潜力㊂总之,目㊃704㊃检验医学与临床2024年2月第21卷第3期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.3前虽然对于C D C A8的研究取得了一定的进展,但大部分还是处于理论研究阶段,对于未来的应用效果还需要对其作用机制进行更深一步的研究㊂参考文献[1]L I U K,Z H E N G M,L U R,e t a l.T h e r o l e o f C D C25C i nc e l l c y c l e r e g u l a t i o n a nd c l i n i c a l c a n ce r t h e r a p y:a s y s t e m-a t i c r e v i e w[J].C a n c e r C e l l I n t,2020,20:213.[2]Y A D A V P,S U B B A R A Y A L U P,M E D I N A D,e t a l.M6AR N A m e t h y l a t i o n r e g u l a t e s h i s t o n e u b i q u i t i n a t i o n t o s u p-p o r t c a n c e r g r o w t h a n d p r o g r e s s i o n[J].C a n c e r R e s,2022, 82(10):1872-1889.[3]L I K,F A N T,S H I Z,e t a l.C D C A2p r o m o t e s H C C c e l l sd e v e l o p m e n t v i a A K T-m T O R p a t h w a y[J].A n a l C e l l P a t h o l(A m s t),2022,2022:9912254.[4]C A I C,P E N G X,Z HA N G Y.D o w n r e g u l a t i o n o f c e l l d i v i-s i o n c y c l e-a s s o c i a t e d p r o t e i n7(C D C A7)s u p p r e s s e s c e l l p r o l i f e r a t i o n,a r r e s t s c e l l c y c l e o f o v a r i a n c a n c e r,a n d r e-s t r a i n s a n g i o g e n e s i s b y m o d u l a t i n g e n h a n c e r o f z e s t e h o m o l o g2(E Z H2)e x p r e s s i o n[J].B i o e n g i n e e r e d,2021, 12(1):7007-7019.[5]G A S S MA N N R,C A R V A L HO A,H E N Z I N G A J,e t a l.B o r e a l i n:a n o v e l c h r o m o s o m a l p a s s e n g e r r e q u i r e d f o r s t a-b i l i t y o f t h e b i p o l a r m i t o t i c s p i n d l e[J].JC e l l B i o l,2004, 166(2):179-191.[6]WU Y,Z E N G S,M I A O C,e t a l.A1-k b h u m a n C D C A8 p r o m o t e r d i r e c t s t h e s p e r m a t o g o n i a-s p e c i f i c l u c i f e r a s e e x-p r e s s i o n i n a d u l t t e s t i s[J].G e n e,2023,866:147350.[7]C H E N C,C H E N S,L U O M,e t a l.T h e r o l e o f t h e C D C Ag e n e f a m i l y i n o v a r i a n c a n c e r[J].A n n T r a n s l M e d,2020, 8(5):190.[8]C H E N C,C H E N S,P A N G L,e t a l.A n a l y s i s o f t h e e x-p r e s s i o n o f c e l l d i v i s i o n c y c l e-a s s o c i a t e d g e n e s a n d i t s p r o g n o s t i c s i g n i f i c a n c e i n h u m a n l u n g c a r c i n o m a:a r e v i e w o f t h e l i t e r a t u r e d a t a b a s e s[J].B i o m e d R e s I n t,2020, 2020:6412593.[9]B O N N E R M K,HA A S E J,S A U N D E R S H,e t a l.T h eb o r e a l i n d i m e r i z a t i o n d o m a i n i n t e r ac t s w i t h S g o1t od r i v eA u r o r a B-m e d i a t e d s p i n d l e a s s e m b l y[J].M o lB i o lC e l l,2020,31(20):2207-2218.[10]K OMA K I S,T R OM E R E C,D E J A E G E R G,e t a l.M o-l e c u l a r c o n v e r g e n c e b y d i f f e r e n t i a l d o m a i n a c q u i s i t i o n i s ah a l l m a r k o f c h r o m o s o m a l p a s s e n g e r c o m p l e x e v o l u t i o n[J].P r o c N a t l A c a d S c i U S A,2022,119(42):e220 0108119.[11]HA YWA R D D,R O B E R T S E,G R U N E B E R G U.M P S1l o c a l i z e s t o e n d-o n m i c r o t u b u l e-a t t a c h e d k i n e t o c h o r e s t o p r o m o t e m i c r o t u b u l e r e l e a s e[J].C u r r B i o l,2022,32(23): 5200-5208.[12]HA D D E R S M A,L E N S S M A.C h a n g i n g p l a c e s:c h r o-m o s o m a l p a s s e n g e r c o m p l e x r e l o c a t i o n i n e a r l y a n a p h a s e [J].T r e n d s C e l l B i o l,2022,32(2):165-176. [13]WA N G L I,D E F O S S E T,J A N G J K,e t a l.B o r e a l i n d i-r e c t s r e c r u i t m e n t o f t h e C P C t o o o c y t e c h r o m o s o m e s a n d m o v e m e n t t o t h e m i c r o t u b u l e s[J].J C e l l B i o l,2021,220(6):e202006018.[14]D A T E D A,J A C O B C J,B E K I E R M E,e t a l.B o r e a l i n i s r e p r e s s e d i n r e s p o n s e t o p53/R b s i g n a l i n g[J].C e l l B i o lI n t,2007,31(12):1470-1481.[15]Y AMA N A K A Y,H E I K E T,K UMA D A T,e t a l.L o s s o fB o r e a l i n/D a s r a B l e a d s t o d e f e c t i v e c e l l p r o l i f e r a t i o n,p53 a c c u m u l a t i o n a n d e a r l y e m b r y o n i c l e t h a l i t y[J].M e c hD e v,2008,125(5/6):441-450.[16]T R I V E D I P,S T U K E N B E R G P T.A c o n d e n s e d v i e w o f t h e c h r o m o s o m e p a s s e n g e r c o m p l e x[J].T r e n d s C e l l B i o l, 2020,30(9):676-687.[17]T R I V E D I P,Z A Y T S E V A V,G O D Z I M,e t a l.T h e b i n d-i n g o f B o r e a l i n t o m i c r o t u b u l e s u n d e r l i e s a t e n s i o n i n d e-p e n d e n t k i n e t o c h o r e-m i c r o t u b u l e e r r o r c o r r e c t i o n p a t h-w a y[J].N a t C o mm u n,2019,10(1):682. [18]D A I C,M I A O C X,X U X M,e t a l.T r a n s c r i p t i o n a l a c t i-v a t i o n o f h u m a n C D C A8g e n e r e g u l a t e d b y t r a n s c r i p t i o n f a c t o r N F-Y i n e m b r y o n i c s t e m c e l l s a n d c a n c e r c e l l s[J]. J B i o l C h e m,2015,290(37):22423-22434. [19]B E Z Z E C C H I E,R O N Z I O M,M A N T O V A N I R,e t a l.N F-Y o v e r e x p r e s s i o n i n l i v e r h e p a t o c e l l u l a r c a r c i n o m a(H C C) [J].I n t J M o l S c i,2020,21(23):9157.[20]X I A N G C,S U N W H,K E Y,e t a l.C D C A8c o n t r i b u t e s t o t h e d e v e l o p m e n t a n d p r o g r e s s i o n o f t h y r o i d c a n c e r t h r o u g h r e g u l a t i n g C D K1[J].J C a n c e r,2022,13(7): 2322-2335.[21]C H E N E,H E Y,J I A N G J,e t a l.C D C A8i n d u c e d b y N F-Y A p r o m o t e s h e p a t o c e l l u l a r c a r c i n o m a p r o g r e s s i o n b y r e g u l a t i n g t h e M E K/E R K p a t h w a y[J].E x p H e m a t o l O n-c o l,2023,12(1):9.[22]D O S S A N T O S A A,LÍP E Z-G R A N E R O C,F A R I N A M,e t a l.O x i d a t i v e s t r e s s,c a s p a s e-3a c t i v a t i o n a n d c l e a v a g eo f R O C K-1p l a y a n e s s e n t i a l r o l e i n M e H g-i n d u c e d c e l ld e a t h i n p r i m a r y a s t r o g l i a l c e l l s[J].F o o d C h e m T o x i c o l, 2018,113:328-336.[23]M C C A R T H Y C G,W E N C E S L A U C F,O G B I S,e t a l.T o l l-l i k e r e c e p t o r9-d e p e n d e n t AM P Kαa c t i v a t i o n o c c u r s v i a T A K1a n d c o n t r i b u t e s t o R h o A/R O C K s i g n a l i n g a n da c t i n p o l y m e r i z a t i o n i n v a s c u l a r s m o o t h m u s c l e c e l l s[J].J P h a r m a c o l E x p T h e r,2018,365(1):60-71. [24]C I C,T A N G B,L Y U D,e t a l.O v e r e x p r e s s i o n o f C D C A8p r o m o t e s t h e m a l i g n a n t p r o g r e s s i o n o f c u t a n e o u s m e l a n o-m a a n d l e a d s t o p o o r p r o g n o s i s[J].I n t J M o l M e d,2019, 43(1):404-412.[25]HO U S,X U H,L I U S,e t a l.I n t e g r a t e d b i o i n f o r m a t i c s a-n a l y s i s i d e n t i f i e s a n e w s t e m n e s s i n d e x-r e l a t e d s u r v i v a l m o d e l f o r p r o g n o s t i c p r e d i c t i o n i n l u n g a d e n o c a r c i n o m a [J].F r o n t G e n e t,2022,13:860268.[26]HA Y AMA S,D A I G O Y,Y AMA B U K I T,e t a l.P h o s p h o-r y l a t i o n a n d a c t i v a t i o n o f c e l l d i v i s i o n c y c l e a s s o c i a t e d8b y a u r o r a k i n a s e B p l a y s a s i g n i f ic a n t r o l e i n h u m a n l u n gc a r c i n o g e n e s i s[J].C a n c e r R e s,2007,67(9):4113-4122.㊃804㊃检验医学与临床2024年2月第21卷第3期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.3[27]Y A O W,Y A N G Y,C H E N X,e t a l.A c t i v a t i o n o f e s t e r a s eD b y F P D5i n h i b i t s g r o w t h o f A549l u n g c a n c e r c e l l s v i a J A B1/p53p a t h w a y[J].G e n e s(B a s e l),2022,13(5):786.[28]M E E K D W.R e g u l a t i o n o f t h e p53r e s p o n s e a n d i t s r e l a-t i o n s h i p t o c a n c e r[J].B i o c h e m J,2015,469(3):325-346.[29]T A Y L O R W R,S T A R K G R.R e g u l a t i o n o f t h e G2/Mt r a n s i t i o n b y p53[J].O n c o g e n e,2001,20(15):1803-1815.[30]HU C,WU J,WA N G L,e t a l.m i R-133b i n h i b i t s c e l l p r o-l i f e r a t i o n,m i g r a t i o n,a n d i n v a s i o n o f l u n g a d e n o c a r c i n o m ab y t a r g e t i n g C D C A8[J].P a t h o l R e s P r ac t,2021,223: 153459.[31]S HU A I Y,F A N E,Z HO N G Q,e t a l.C D C A8a s a n i n d e-p e n d e n t p r e d i c t o r f o r a p o o r p r o g n o s i s i n l i v e r c a n c e r[J].C a n c e r C e l l I n t,2021,21(1):159.[32]L I L,L I D,T I A N F,e t a l.H e p a t i c l o s s o f b o r e a l i n i m-p a i r s p o s t n a t a l l i v e r d e v e l o p m e n t,r e g e n e r a t i o n,a n d h e p a-t o c a r c i n o g e n e s i s[J].J B i o l C h e m,2016,291(40):21137-21147.[33]J E O N T,K O M J,S E O Y R,e t a l.S i l e n c i n g C D C A8s u p-p r e s s e s h e p a t o c e l l u l a r c a r c i n o m a g r o w t h a n d s t e m n e s s v i a r e s t o r a t i o n o f A T F3t u m o r s u p p r e s s o r a n d i n a c t i v a t i o n o fA K T/β-c a t e n i n s i g n a l i n g[J].C a n c e r s(B a s e l),2021,13(5):1055.[34]G U O R,Y I N G J,J I A L,e t a l.R e g u l a t o r s C D C A8a s p o-t e n t i a l t a r g e t s a n d b i o m a r k e r s f o r t h e p r o g n o s i s o f h u m a n s k i n c u t a n e o u s m e l a n o m a[J].J C o s m e t D e r m a t o l,2022, 21(11):6034-6048.[35]L E E S,S UH H B,C HO I S J,e t a l.I d e n t i f i c a t i o n o f p r o g-n o s t i c m R N A s i n m e t a s t a t i c c u t a n e o u s m e l a n o m a[J].M e l a n o m a R e s,2020,30(6):543-547.[36]G U O X,Y I N X,X U Y,e t a l.TM E D3p r o m o t e s t h e d e-v e l o p m e n t o f m a l i g n a n t m e l a n o m a b y t a r g e t i n g C D C A8 a n d r e g u l a t i n g P I3K/A k t p a t h w a y[J].C e l l B i o s c i,2023, 13(1):65.[37]G U J,G U O Y,D U J,e t a l.C D C A8/S N A I2c o m p l e x a c t i-v a t e s C D44t o p r o m o t e p r o l i f e r a t i o n a n d i n v a s i o n o f p a n-c r e a t i c d u c t a l a d e n o c a r c i n o m a[J].C a n c e r s(B a s e l),2022, 14(21):5434.[38]L I B,L I U B,Z HA N G X,e t a l.K I F18B p r o m o t e s t h e p r o-l i f e r a t i o n o f p a n c r e a t i c d u c t a l a d e n o c a r c i n o m a v i a a c t i v a-t i n g t h e e x p r e s s i o n o f C D C A8[J].J C e l l P h y s i o l,2020, 235(5):4227-4238.[39]G A O C T,R E N J,Y U J,e t a l.K I F23e n h a n c e s c e l l p r o-l i f e r a t i o n i n p a n c r e a t i c d u c t a l a d e n o c a r c i n o m a a n d i s a p o-t e n t t h e r a p e u t i c t a r g e t[J].A n n T r a n s l M e d,2020,8(21): 1394.[40]HU X,H E C,Z HA N G L,e t a l.M e s e n c h y m a l s t e m c e l l-d e r i v e d e x o s o m e s a t t e n u a t e D N A d a m a g e r e s p o n s e i n-d u ce d b y c i s p l a t i n a n d b l e o m y c i n[J].M u t a t R e s G e n e tT o x i c o l E n v i r o n M u t a g e n,2023,889:503651.[41]K O U B A S,HA G U E F,A H I D O U C H A,e t a l.C r o s s t a l kb e t w e e n C a2+s i g n a l i n g a n dc a n c e r s t e m n e s s:t h e l i n k t oc i s p l a t i n r e s i s t a n c e[J].I n t J M o l S c i,2022,23(18):10687.[42]N O U N S I A,S E I T L I N G E R J,P O N TÉC,e t a l.P a t i e n t-d e r i v e d t u m o r o i d f o r t h e p r e d i c t i o n o f r a d i o t h e r a p y a n dc h e m o t h e r a p y r e s p o n s e s i n n o n-s m a l l-c e l l l u n g c a n c e r[J].B i o m e d i c i n e s,2023,11(7):1824.[43]L I N Y,L I U Y Q,Z HU K A,e t a l.T a s q u i n i m o d e n h a n c e s t h e s e n s i t i v i t y o f o v a r i a n c a n c e r c e l l s t o c i s p l a t i n b y r e g u-l a t i n g t h e N u r77-B c l-2a p o p t o t i c p a t h w a y[J].A d v C l i nE x p M e d,2023:166044.[44]G O N Z A L E Z-O C HO A E,M I L O S E V I C M,C O R R B,e ta l.A p h a s eⅠs t u d y o f t h e w e e1k i n a s e i n h ib i t o r a d a-v o s e r t i b(A Z D1775)i n c o m b i n a t i o n w i t h c h e m o r a d i a t i o ni n c e r v i c a l,u p p e r v a g i n a l,a n d u t e r i n e c a n c e r s[J].I n t JG y n e c o l C a n c e r,2023,33(8):1208-1214.[45]W E N X,L I U S,C U I M.E f f e c t o f B R C A1o n t h e c o n c u r-r e n t c h e m o r a d i o t h e r a p y r e s i s t a n c e o f c e r v i c a l s q u a m o u s c e l l c a r c i n o m a b a s e d o n t r a n s c r i p t o m e s e q u e n c i n g a n a l y s i s[J].B i o m e d R e s I n t,2020,2020:3598417.[46]Q I G,Z HA N G C,MA H,e t a l.C D C A8,t a r g e t e d b y MY-B L2,p r o m o t e s m a l i g n a n t p r o g r e s s i o n a n d o l a p a r i b i n s e n-s i t i v i t y i n o v a r i a n c a n c e r[J].A m JC a n c e r R e s,2021,11(2):389-415.[47]A B E D I N I M R,MU L L E R E J,B R U N J,e t a l.C i s p l a t i ni n d u c e s p53-d e p e n d e n t F L I C E-l i k e i n h i b i t o r y p r o t e i nu b i q u i t i n a t i o n i n o v a r i a n c a n c e r c e l l s[J].C a n c e r R e s, 2008,68(12):4511-4517.[48]C H E N G H Y,H S I E H C H,L I N P H,e t a l.S n a i l-r e g u l a-t e d e x o s o m a l m i c r o R N A-21s u p p r e s s e s N L R P3i n f l a m-m a s o m e a c t i v i t y t o e n h a n c e c i s p l a t i n r e s i s t a n c e[J].J I m-m u n o t h e r C a n c e r,2022,10(8):e004832.[49]A T T I A Y M,S HO UMA N S A,S A L AMA S A,e t a l.B l o c k a d e o fCD K7r e v e r s e s e n d o c r i n e t h e r a p y r e s i s t a n c ei n b r e a s t c a n c e r[J].I n t J M o l S c i,2020,21(8):2974.[50]N A B I E V A N,F A S C H I N G P A.C D K4/6i n h i b i t o r s-o v e r-c o m i n g e nd o c r i ne r e s i s t a n c e i s t h e s t a n d a r d i n p a t i e n t sw i t h h o r m o n e r e c e p t o r-p o s i t i v e b r e a s t c a n c e r[J].C a n c e r s(B a s e l),2023,15(6):1763.[51]S U N X,D I N G S,L U S,e t a l.I d e n t i f i c a t i o n o f t e n m i t o s i sg e n e s a s s o c i a t e d w i t h t a m o x i f e n r e s i s t a n c e i n b r e a s t c a n c-e r[J].O n c o T a r g e t s T h e r,2021,14:3611-3624.[52]C U I X H,P E N G Q J,L I R Z,e t a l.C e l l d i v i s i o n c y c l e a s-s o c i a t e d8:a n o v e l d i a g n o s t i c a n d p r o g n o s t i c b i o m a r k e rf o r h e p a t o c e l l u l a r c a r c i n o m a[J].J C e l l M o l M e d,2021,25(24):11097-11112.[53]C H E N G R,L I U Y J,C U I J W,e t a l.A s p i r i n r e g u l a t i o n o fc-m y c a n d c y c l i n D1p r o t e i n s t o o v e r c o m e t a m o x i f e n r e-s i s t a n c e i n e s t r o g e n r e c e p t o r-p o s i t i v e b r e a s t c a n c e r c e l l s [J].O n c o t a r g e t,2017,8(18):30252-30264.[54]Y U D,S H I L,B U Y,e t a l.C e l l d i v i s i o n c y c l e a s s o c i a t e d8i s a k e y r e g u l a t o r o f t a m o x i f e n r e s i s t a n c e i n b r e a s t c a n c e r[J].J B r e a s t C a n c e r,2019,22(2):237-247.(收稿日期:2023-06-12修回日期:2023-10-12)㊃904㊃检验医学与临床2024年2月第21卷第3期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.3。
范文《转基因大豆对幼鼠出生时体重和存活率的影响》(对照试验性研究..
Influence of Genetically modified Soya大豆on the Birth-Weight and Survival of RatPups仔Abstract1 Investigation of the influence of GM soya on the birthrate and survival of the offspring 后代of Wistar rats2 were performed. A group of female rats were fed GM soya flour before mating 交配and pregnancy. The control group of females were fed traditional soya and the third group of females, the positive control group, received feed without any soya. The weight and the mortality死亡rate of the newborn pups were analyzed. The study showed that there was a very high rate of pup mortality (55.6%) in the GM soya group in comparison with the control group and the positive control group (9% and 6.8% respectively. Moreover, death in the first group continued during lactation哺乳, and the weights of the survivors are lower those from the other two groups. It was revealed in these experiments, that GM soya could have a negative influence on the offspring of Wistar rats.Introduction2 The term genetically modified organism (GMO3s) refers to plants, microbes and animals with genes transferred from other species in order to produce certain novel characteristics (for example resistance to pests, or herbicides) and are produced by recombinant DNA technology. Four main sources of the hazards危险of GMO are discussed by scientists worldwide: 1) those due to the new genes, and gene products introduced; 2) unintended effects inherent内在的to the technology; 3) interactions between foreign genes and host genes; and 4) those arising from the spread of the introduced genes by ordinary cross-pollination异花授粉as well as by horizontal gene transfer (World Scientists’Statement 2000).3 GM crops contain material, which is not present in them under natural conditions,and they form a part of our daily diet. To understand what effect they can have on us and on our animals it is vitally important to study the influence of these GM plants in different organisms for several generations. At the present, these studies are lacking from the scientific literature. Also, several detrimental effects of GM crops had been showed on the metabolism of animals. The hazard of genetically modified organisms (GMO) was shown for animals and the environment in many investigations (Traavik 1995; Ho and Tappeser 1997; Pusztai 1999 and 2001; Kuznetcov et al. 2004 and others).Earlier it was shown that consumption of GM food by animals led to the negative changes in their organisms. Experiments, conducted by A. Pusztai showed that potatoes modified by the insertion of the gene of the snowdrop lectin4 (an insecticidal proteins), stunted the growth of rats, significantly affected some of their vital organs, including the kidneys, thymus, gastrocnemius muscle and others (1998) and damaged their intestines and their immune system (Ewen and Pusztai 1999). Similar effect of GM potatoes on rats was obtained at Institute of Nutrition in Russia (Ermakova 2005).4 It is put forward in the risk assessment documents that the GM components of transformed plants are completely destroyed in the digestive tract of humans and animals, together with the other genetic material found in them. However, foreign DNA plasmids5 are steadier against the digestion than it was originally believed. Plasmid DNA and GM DNA were found in microorganisms of the intestine and in saliva (Mercer et al. 1998; Coghlan 2002). Experimental researches in mice showed that ingested foreign DNA can persist in fragmented form in the gastrointestinal tract, penetrate the intestinal wall, and reach the nuclei of leukocytes, spleen and liver cells (Schubbert et al. 1994). In another research of Schubbert et al. (1998) the plasmid containing the gene for the green fluorescent protein6 (pEGFP-C1) or bacteriophage M13 DNA were fed to pregnant mice. Foreign DNA, orally ingested by pregnant mice, was discovered in blood (leukocytes), spleen, liver, heart, brain, testes and other organs of foetuses and newborn animals. The authors considered that maternally ingested foreign DNA could be potential mutagens for the developing fetus. At the same time Brake and Evenson (2004) analyzing the testis in mice as a sensitive biomonitor of potential toxic, didn’t find negative effects of transgenic soybean diet on fetal, postnatal, puber talor adult testicular development.5 There is a lack of investigations on the influence of GM crops on mammals,especially on their reproductive function. Therefore, it was decided that we undertake a study to see the effect of the most commonly used GM crop on the birth rate, mortality and weight gain of rat pups, whose mother were fed diets supplemented with the Roundup- Ready soya, a kind of GM food.MethodsAnimals6 Wistar rats were used in the experiment. The animals were brought up to sexual maturity on laboratory rat feed. When their weight reached about 180-200g, the female rats were divided into 3 groups, and housed in groups (3 rat/cage), and kept under normal laboratory conditions.7 The feeding scheme was as follows. Females in every cage daily received dry pellets from a special container placed on the top of their cage. Those rats receiving soya flour supplement, were given the soya flour in a small container placed inside their cage (20g x 40 ml water) for three rats and, so 5-7g flour for each rat every day.Experiment8 One group of female rats of 180-200g weight was allocated to the experimental group, and received 5-7 soy a flour/rat/day prepared from Roundup-Ready soya, added to the rat feed for two weeks. Another group females (3) were allocated to the control group, but their diet was supplemented with the same amount of soya flour, prepared from the traditional soya in which only traces (0.08+ 0.04%) of the GM construct was present, most likely resulting from cross-contamination. We also introduced a positive control group (in two cages: 3x3), which had not been exposed to soya flour. Therefore females have only got the standard laboratory feed without any supplementation, although it is acknowledged that the energy and protein content of this diet was less than in the other two groups.9 After two weeks on the diets all groups of 3 females were mated with two healthy males of the same age, who have never been exposed to soya flour supplements. First the one, then the other male was put into the cage for 3 days. In order to avoid infection of females, the sperm count and quality has not been determined. We carried on with3feeding the respective diets to all females during mating and pregnancy. Upon delivery, all females were transferred to individual cages, and the amount of soya supplement was increased by an additional g for every pup born. Lab feed and water was available for all animals during the experimental period. When rat pups opened their eyes and could feed themselves (from 13-14 days of age), the daily dose of soya supplement was increased till 2-3g for every pup, although all rats had free approach to the soya. All rats ate their soya portions well. Organs of some pups were taken out and weighed.Statistical analysis10 The level of mortality was analyzed by the one-way ANOVA7, using of Newman-Keuls test8 for share distribution. The pup’s weight and its distribution were checked by Mann-Whitney test9 and Chi-square10 in StatSoft Statistica v6.0 Multilingua (Russia).Results11 By the end of the experiment, from the 15 females included in the experiment, 11 gave birth and produced a total of 132 rat pups. The 4 rats who became pregnant from 6 females on the positive control diet gave birth to 44 pups (an average of 11 pups/female), while the four females, from the six on GM soya flour supplemented groups gave birth to 45 (11.3 pups/female), and 3 from traditional soya group—33 pups (11 pups/mother).12 Supplementation of the diet of the females with GM soya led to the death of 25 pups, out of the 45 born by the end of the third week of lactation, while during the same period on the traditional soya supplemented diets only 3 pups died from 33. The mortality in the positive control group was also 3, but from the larger number of pups born, as it seen in Table 1. High pup mortality was generally characteristic for females fed the GM soya flour (Table2).13 Among the pups from the females fed the positive control diet, 2 pups died during the first week, and 1 during the second week after delivery. All pups from females fed traditional soya flour died during the first week after birth. However, pups from females fed the GM soya flour supplemented diet kept dying during lactation period as it is evidentfrom Table3.14 In two weeks after their birth the weight of pups (with SE) from the GM soya supplemented group was less (23.95g ±1.5g) than that of the pups of the positive control group (30.03g±1.1g; p<0.005), or from the traditional soya flour supplemented group (27.1g±0.9g; p< 0.1). Since the number of surviving pups were so different, the weigh distribution of the pups were compared in Table 4. From the data it is evident, that 36% of the pups from the GM soya group weighed less than 20 g, in comparison with the 6% in the positive control group, and with the 6.7% found in the traditional soya supplemented diet group (Table 4). Study of pup’s organs mass showed that the organs of small pups from GM group were tiny in comparison with the same of other groups except the brain mass (Table 5). This fact indicated that the pups from the GM group were the same age as others, but changes were occurred with the development of internal organs. Slight negative effect was found in the group which received the traditional soya, but this effect was not significant. No mortality of females and survived young pups eating the GM soya flour supplemented diet was observed.Discussion15 The reproductive behaviour of female rats fed on standard laboratory feed supplemented with soya flour prepared from either genetically modified soya or traditional soya was studied to see the effect of the diet on pregnancy, lactation and the growth of the rat pups. Since it is well established that raw soybean contains a number of anti-nutrients, such as the lectins, trypsin inhibitors, etc. (Pusztai et al. 1998), and also female hormone-like substances, it was thought to be necessary to compare these data also with those from a positive control group when animals were not exposed to any soya flour supplementation.16 In order to understand the mechanism how this widely consumed GM crop exerts its influence on the reproductive performance of mammals and their offspring, it would be necessary to perform complex researches, including histological, genetic and embryo-toxicological investigations. However, we had to restrict our experiments only for a short time-span, and starting to feed the female rats two weeks before mating. However,5unlike the experiments of Brake and Evenson (2004), who started to feed pregnant mice, in our experiments the diets supplemented with GM or traditional soya flours were already given to the female rats 2 weeks before mating already, and we continued to treat them with their respective diet until the pups were weaned.17 Upon delivery, very unexpectedly a very high rate of pup mortality (55.6%) was observed in the the group of females whose diet was supplemented with the GM soya flour in comparison with the pups of both the positive control (6.8%) and the traditional soya flour supplemented (9%) groups. Also, in this group the pups continued to die over the period of lactation, which occurred only in the GM soya fed group. At the same time, the weights of the surviving rat pups were also lower. It is the more surprising, since the pups were smaller, about half, therefore more milk should have been available for the individual pups. They should have a better chance to grow optimally, unless the amount, and/or the quality of the milk were not affected by consuming the GM soya flour.18 Our data allow us to speculate and presume that the negative effect of GM soya on the newborn pups could be mediated by two possible factors. Firstly, it can be the result of transformation, and insertion of the foreign genes, which could enter into the sexual/stem cells, or/and into cells of the fetus, as it was observed by Schubbert et al. (1998). Secondly, negative effect of GM soya could be mediated by the accumulation of Roundup residues in GM soya residues. However, no mortality was observed with female rats, nor with the young pups survived, although they also began to eat the GM soya, it is supposed that the effect could be mediated by the two first factors. (2,086 words)ReferencesBrake DG and Evenson DP (2004). A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chemistry and Toxicology, 42: 29-36.Coghlan A (2002). GM crop DNA found in human gut bugs. New Scientist. 2002. Ermakova IV (2005). Conclusion to the report about feeding of rats by geneticallymodified potatoes Russet Burbank Agrarian Russia 2005. 62-64.Ewen SW, Pusztai A (1999). Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet 354 (9187).Ho MW and Tappeser B (1997). Potential contributions of horizontal gene transfer to the transboundary movement of living modified organisms resulting from modern biotechnology. In Transboundary Movement of Living Modified Organisms Resulting from Modern Biotechnology: Issues and Opportunities for Policy-Makers (K. J. Mulongoy, Ed.) International Academy of the Environment, Switzerland:171-193.Kuznetcov W, Kulikov AM, Mitrohin IA and Cidendambaev VD (2004). Genetically modified organisms and biological safety. Ecos 2004: 3-64. Ultrastructural, morphometrical and immunocytochemical analysis of hepatocyte nuclei from mice fed on genetically modified soybean. Cell Struct. Funct. 27: 173-180.Mercer DK, Scott KP, Bruce-Johnson WA, Glover LA and Flint HJ (1999). Fate of free DNA and transformation of oral bacterium Streptococcus gordonii DL1 plasmid DNA in human saliva. Applied and Environmental Microbiology, 65: 6-10.Pusztai A (1998). Report of Project Coordinator on data produced at the Rowett Research Institute. SOAEFD flexible Fund Project RO 818. 22 October 1998.Pusztai A (2001). Genetically Modified Foods: Are They a Risk to Human/Animal Health. Biotechnology: genetically modified organisms. 2001.Schubbert R, Lettmann C and Doerfler W (1994). Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the blood stream of mice. Molecules. Genes and Genetics 242: 495-504.Schubbert R, Hohiweg U, Renz D and Doerfier W (1998). On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission in the fetus. Molecules. Genes and Genetics 259: 569-576.7Traavik T (1999). Too Early May Be Too Late. Ecological Risks Associated with the Use of Naked DNA as a Biological Tool for Research, Production and Therapy (Norwegian).Report for the Directorate for Nature Research Tungasletta 2, 7005 Trondheim. English Translation, 1999.World Scientists Statement. Supplementary Information of the Hazards of Genetic Engineering Biotechnology. Third World Network. 2000.911。
药物靶向孟德尔随机化 共定位-概述说明以及解释
药物靶向孟德尔随机化共定位-概述说明以及解释1.引言1.1 概述在药物研发领域,药物靶向治疗是一种基于人体分子信号通路的治疗策略。
该策略通过选择性地靶向特定的分子靶点来干预异常信号通路,以达到治疗疾病的目的。
这种治疗方法相对于传统的广谱药物具有更高的精准度和更低的副作用。
然而,由于人体的复杂性和疾病的多样性,以往的靶向治疗研究往往难以获得一致的疗效结果。
为了解决这一问题,研究人员提出了孟德尔随机化的概念。
孟德尔随机化是基于杂交种植学家格雷格·孟德尔的遗传学原理而命名的。
它的核心思想是将患者随机分配到不同的治疗组和对照组,以确保两组人群在各种潜在干扰因素上的均衡。
通过这种随机化的设计,研究人员可以更好地评估药物靶向治疗的疗效,避免结果的偏倚。
药物靶向孟德尔随机化共定位是将药物靶向治疗和孟德尔随机化相结合的研究方法。
它旨在通过定位特定的靶点和使用随机化设计来评估药物的治疗效果。
这种方法能够较为准确地评估靶向治疗的效果,为临床治疗提供更有效的指导意见。
本文将对药物靶向孟德尔随机化共定位的原理和应用进行介绍和探讨,以期为药物研发领域的学者和临床医生提供有益的参考和启示。
接下来,我们将详细讨论文章的结构和各个章节的内容。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在向读者介绍整篇文章的结构和内容安排。
通过清晰地呈现文章的布局,读者能够更好地理解文章的主题和思路,提高阅读的效率。
本文共分为引言、正文和结论三个主要部分。
在引言部分,我们首先对药物靶向孟德尔随机化这一主题进行了概述。
介绍了药物靶向治疗和孟德尔随机化的背景信息,并强调了这两个领域的重要性和研究的现状。
接着,我们详细说明了本文的目的,即通过探讨药物靶向孟德尔随机化的共定位,来解决某些疾病治疗中存在的问题。
在正文部分,我们将分为两个小节进行阐述。
首先,我们将介绍药物靶向治疗的基本原理和方法,并探讨其在疾病治疗中的应用前景。
核酸适体(aptamer)一种具有潜力的肿瘤药物靶向配基
2012年10月第9卷第30期·专家论坛·CHINA MEDICAL HERALD 中国医药导报肿瘤的靶向疗法是利用特异性“靶向配基”的介导,将药物或其他杀伤肿瘤的物质选择性地运送到肿瘤部位、选择性地杀伤肿瘤细胞以提高治疗效果的一种治疗方法。
近年来国内外核酸适体(aptamer )介导的主动靶向给药研究成为热点。
核酸适体(aptamer )是经过一种新的体外筛选技术(systematic evolution of ligands by exponential enrichment ,SELEX ),从随机单链寡聚核苷酸文库中得到的能特异结合蛋白或其他小分子物质的单链寡聚核苷酸,可以是RNA ,也可以是DNA ,长度一般为25~60个核苷酸[1]。
SELEX 技术自Tuerk 等[2]1990年发明以来,在临床诊断、靶向药物研制方面得以广泛应用。
首个核酸适配体药物“Macugen ”[3]由美国FDA 在2005年批准上市,成为核酸适配体领域的一个里程碑。
美国Achemix 、SomaLogic ,德国Noxxon AG 等多个公司正在开发核酸适配体药物和诊断试剂。
肿瘤细胞靶向给药是提高肿瘤治疗效果减少毒副作用的有效途径。
将药物偶联于肿瘤细胞特异性配体上是靶向给药的主要方法。
核酸能特异性结合细胞并且随之内化,是理想的靶向细胞输送剂。
核酸适体“靶向配基”介导或修饰的药物及药物纳米制剂,为主动靶向肿瘤细胞给药系统构建开拓了新方向。
本文简要综述适体作为肿瘤药物“靶向配基”的应用研究。
1核酸适体作为肿瘤药物“靶向配基”的优势具有高特异性与亲和性“靶向配基”的筛选,是制约主动靶向给药系统研究的瓶颈[4-5]。
以往修饰肿瘤药物的“靶向配基”是抗体、多肽和叶酸等分子,但这些配基修饰的靶向药物在实际应用中均存在着难以克服的缺陷。
单克隆抗体潜在的免疫原性和制备的困难大大限制了其临床的应用和产业化的进程[4];叶酸等小分子虽然有诸多优点,但要求病变组织细胞过多表达叶酸受体,靶向作用才得以实现[4-5],而核酸适体却具有以下优点:1.1高亲合力、强特异性随着体外高通量筛选技术SELEX 的发展,筛选出的适体与配体间的亲合力很高。
阿斯利康公司瑞舒伐他汀新增适应证
2010 V ol.31 No.3 2010年第31卷第3期159研究论文3 讨论纳洛酮为阿片受体特异性阻断剂,给予小鼠常规试验剂量(0.4~4 mg/kg )能够拮抗阿片类药物的镇痛作用。
本研究使用的纳洛酮剂量为1~100 ng/kg ,研究结果表明,低剂量纳洛酮能够增强曲马多的镇痛效应。
低剂量纳洛酮与曲马多配伍可能通过以下几方面的机制达到协同镇痛作用: ①低剂量阿片受体拮抗剂可以促进阿片肽释放或把阿片肽从与镇痛无关的位点置换出来。
阿片肽的释放是通过突触前自身负反馈抑制通路调控的,低剂量纳洛酮可能作用于突触前阿片受体,从而阻断阿片肽的负反馈环路,促进阿片肽的释放而产生镇痛作用[2];②Crain 等[5]认为,阿片受体具有双向作用模式,兴奋性模式产生抗镇痛作用,抑制性模式则产生镇痛作用。
低剂量纳洛酮可阻断兴奋性阿片受体的抗镇痛作用,而不影响抑制性阿片受体的镇痛作用;③低剂量纳洛酮可阻止中枢神经细胞释放兴奋性递质——谷氨酸[6];④疼痛过敏和阿片类药物的耐受作用密切相关,并且都基于共同的神经机制及细胞内机制,低剂量纳洛酮可能使阿片μ受体部位磷酸化,进而影响机体对阿片类药物的耐受性[7];⑤低剂量纳洛酮增强曲马多的镇痛效应还可能与其使阿片受体密度上调、活度增加有关[8];⑥有研究[9]提出,低剂量纳洛酮增强阿片类药物镇痛效应的作用可能是通过增加钙离子通道的转导并进而影响细胞内钙离子水平实现的。
本研究结果提示,若在麻醉前给予适量低剂量纳洛酮可望增强曲马多的镇痛作用。
纳洛酮与曲马多配伍用于镇痛或复合麻醉可能是合理的,值得临床试用。
但是纳洛酮配伍曲马多的安全性、最佳配比、不良反应及其机制尚未明确,有待进一步研究以确定。
4 结论低剂量纳洛酮(10~100 ng/mg )能够增强曲马多对小鼠的镇痛效应。
参考文献:[1] 戴体俊. 麻醉药理学[M ]. 第2 版. 北京: 人民卫生出版社, 2005: 48-49.[2] 姚 鹏, 孟凌新, 崔健君. 阿片受体激动药伍用小剂量拮抗药用于镇痛的研究进展[J ]. 国外医学: 麻醉学与复苏分册,2004, 25(2): 80-83.[3] 刘志强, 杨立群, 俞卫锋. 曲马多对小鼠镇痛作用的药物代谢动力学研究[J ]. 中国药物与临床, 2003, 3(3): 237-239.[4] 徐叔云, 陈 修, 卞如濂, 等. 药理实验方法学[M ]. 北京:人民卫生出版社, 1982: 882-886.[5] Crain SM, Shen KF. Antagonists of excitatory opioid receptorfunctions enhance morphine ′s analgesic potency and attenuate opioid tolerance /dependence liability [J ]. Pain, 2000, 84 (2-3): 121-131.[6] 范德义, 方思羽. 纳络酮对脂多糖诱导原代培养星形胶质细胞释放谷氨酸的抑制效应[J ]. 中风与神经疾病杂志, 2004, 21(6): 515-517.[7] 崔凤侠, 王利江, 王宏伟, 等. μ阿片受体的研究进展[J ]. 承德医学院学报, 2005, 22 (4): 346 - 348.[8] 李照庆,周升民,赵念峰. 小剂量纳洛酮在术后芬太尼静脉自控镇痛中的应用[J ]. 食品与药品, 2006, 8 (7): 44-46.[9] Nakae Y , Fujita S, Namiki A. Modulation of myo fi lament Ca 2+sensitivity by delta - and kappa - opioid agonists in intactguinea pig hearts [J ]. Anesth Analg, 2003, 96 (3): 733-739.(责任编辑:华雪蔚)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 阿斯利康公司瑞舒伐他汀新增适应证阿斯利康公司的瑞舒伐他汀钙(Crestor )获FDA 批准,用于降低患者脑卒中、心房纤颤(房颤)和动脉血管再生的风险。
癌症的分子靶向治疗
癌症的分子靶向治疗
陈兆聪;梁勋厂
【期刊名称】《医药导报》
【年(卷),期】2006(25)7
【摘要】理想的癌症治疗应该是选择性地杀伤或抑制癌细胞而不伤害正常的组织,即癌症的靶向治疗.基因组学和蛋白质组学研究的巨大成就正在使这个理想逐步走向现实.目前在小分子化合物及单克隆抗体的研究上已经取得某些突破性的成果.基因治疗及免疫治疗也正在全力开展之中.癌症干细胞的观点是癌症生物学及治疗学研究的新动向.
【总页数】3页(P604-606)
【作者】陈兆聪;梁勋厂
【作者单位】华中科技大学同济医院生化及分子生物学教研室,武汉,430030;华中科技大学同济医院神经生物学教研室,武汉,430030
【正文语种】中文
【中图分类】R73
【相关文献】
1.癌症分子靶向治疗的研究现状 [J], 董兵;朱毅敏
2.癌症与分子靶向治疗 [J], 罗克枢;黄晓赤
3.癌症靶向治疗后心血管毒副作用的分子机制研究进展 [J], 齐洪涛;彭宗玉
4.实体肿瘤分子靶向治疗与免疫靶向治疗疗效评价指标的研究进展 [J], 张百红;岳
红云
5.癌症靶向治疗中的个体化分子医学 [J], 胡胜;于丁;臧爱华
因版权原因,仅展示原文概要,查看原文内容请购买。
干细胞移植英文单词及缩略语
2,3-DPG:2,3-diphosphatidylglyceric acid,2,3-二磷酸甘油酸2-CdA:2-chlorodeoxyadenosin,cladribine,2-氯去氧腺苷3H-TdR:tritiated thymide,氚标记胸腺嘧啶核苷5-Aza:5-azacytidine,5-氮(杂)胞苷a2-PI:a2-antiplasmin, a2-纤溶酶原抑制物AA:aplastic anemia,再生障碍性贫血AAV:adeno-associated virus,腺病毒相关病毒Ab:antibody,抗体ABC:avidin-biiotin complex method,亲和素生物素复合物法ABMT:autologous bone marrow transplant,自体骨髓移植Ac:accessory cell,辅佐细胞ACD:acid citrate dextrose,酸性枸橼酸盐葡萄糖ACP:acid phosphatase,酸性磷酸梅ACTD:actinomycin D,放线菌素DAcute:急性的ACV:cyclovir,阿昔洛韦Ad:adenovirus,腺病毒AD:antigen determinant,抗原决定簇ADA:adenosine deaminase,腺苷脱氨酶ADCC:antibody-dependent cell-mediated cytotoxicity)抗体依赖细胞介导性细胞毒性Adjuvant therapy:辅助治疗AEL:acute erythrocytic leukemia,急性红白血病AEoL:acute eosinophilic leukemia,急性嗜酸粒细胞白血病AFP:alpha fetoprotein,甲胎蛋白Ag:antigen,抗原aGVHD:acute graft versus host disease,急性移植物抗宿主病Aid:anti-idiotype antibody,抗独特型抗体AidS:acquired immune deficiency syndrome,获得性免疫缺陷综合征AIF:apoptosis-inducing factor,凋亡诱导因子AIHA:autoimmune hemolytic anemia,自身免疫性溶血性贫血AL:acute leukemia, 急性白血病ALCL:anaplastic large cell lymphoma,退行性大细胞淋巴瘤ALG:antilymphocyte globulin, 抗淋巴细胞球蛋白ALIP:abnormal localization of immature precursor,未成熟前体细胞异常定位ALL:acute lymphocytic leukemia,急性淋巴细胞白血病Allo-BMT:allogeneic bone marrow transplantation,异基因骨髓移植Allo-PBSCT:allogeneic peripheral blood stem cell transplantation,异基因外周血干细胞移植Allogeneic:异基因的Allograft:异体移植物Alopecia:脱发ALP(AKP):Alkaline phosphatase,碱性磷酸酶AM:adhesion molecule,粘附分子AMKL:acute megakaryoblastic leukemia,急性巨核细胞白血病AML:acute myeloid leukemia,急性髓性白血病AMM:agnogenic myeloid metaplasia,特发性髓外化生ANA:antinuclear antibody,抗核抗体Ana-LL:anaplastic large cell lymphoma,大细胞淋巴瘤Anaphylaxis:过敏症ANC:absolute neutrophil count,中性粒细胞绝对值Anemia:贫血ANLL:acute non-lymphocytic leukemia,急性非淋巴细胞性白血病Antibiotic:抗生素;抗生的Antiemetic:止吐剂,止吐药antineoplastic drugs:抗肿瘤药物Antisense:反义引物APBSCT:autologous peripheral blood stem cell transplantation,自体外周血干细胞移植APC:antigen processing cell,抗原呈递细胞Apheresis:血浆分离置换法,血液成分部分清除APL:acute promyelocytic leukemia,急性早幼粒细胞白血病Aplasia:发育不良,成形不完全Apoptosis:凋亡Ara-C:arabinosyl cytosine,aracytidine阿糖胞苷ARDS:acute respiratory distress syndrome,急性呼吸窘迫综合症;AidS-related diseases艾滋病相关疾病Ascites:腹水ASCT:autologous stem cell transplantation,自体干细胞移植Aspergillus:曲霉属ASS:anterior superior spine,髂前上棘AT1257:nitrocaphane,消瘤芥ATG:antithymocyte globulin,抗胸腺细胞球蛋白ATL:adult T cell leukemia/lymphoma,成人T细胞白血病/淋巴瘤ATLS:acute tumor lysis syndrome,急性肿瘤溶解综合征ATRA:all-transretinoic acid,全反式维甲酸AUL:acute undifferentiated cell leukemia,急性未分化细胞白血病AuSCT:autologous stem cell transplantation,自体造血干细胞移植Autologous:自体的Autograft:自体移植物Auto-BMT: autologous bone marrow transplantation,自体骨髓移植β2-MG:β2-microglobulin,β2-微球蛋白Back-up:备份BCNU:Carmustine,卡氮芥,卡莫司汀BCR:breakpoint cluster region,断裂点丛集区BFU-E: burst-forming unit-erythroid,早期红系集落生成细胞Biopsy:活检Blast cell:原始血细胞,母细胞Blast-CFC:blast colony forming cell,原始细胞集落形成细胞Blast crisis:原始细胞危象Bm:memory B lymphocyte,记忆B淋巴细胞BMG:benign monoclonal gammopathies,良性单克隆丙球蛋白病BMT:bone marrow transplantation,骨髓移植Bone marrow biopsy:骨髓活检Bone marrow puncture:骨髓穿刺Bone marrow smear:骨髓穿刺涂片BRM:biological response modifier,生物应答调节剂Bu:busulfan,白消安,马利兰Buffer:缓冲,缓冲剂,缓冲液CALLA:common acute lymphocytic leukemia antigen,普通急性淋巴细胞白血病抗原CAM:cell adhesion molecule,细胞粘附分子Candida:念珠菌属,假丝酵母属Catheter:导管CB:cord blood,脐带血CB1348:chlorambucil:苯丁酸氮芥CBC:complete blood count,全血细胞计数CBCL:cutaneous B-cell lymphoma,皮肤B细胞淋巴瘤CBSCT:cord blood stem cell transplantation,脐血干细胞移植CCI:corrected count increment,校正增值计数CCNSA:cell cycle non-specific agents,细胞周期非特异性药物CCNU:lomustine,洛莫司汀,环己亚硝脲CCR:continuous complete remission,持续完全缓解CCSA:cell cycle specific agents,细胞周期特异性药物CD:Castleman's disease,Castleman病CD:cluster of differentiation,分化群CD3AK:CD3 activated killer,CD3激活的杀伤细胞CDK:cyclin dependent protein kinase,周期素依赖蛋白激酶CEA:carcinoembryonic antigen,癌胚抗原CEL:chronic eosinophil leukemia,慢性嗜酸性粒细胞白血病Central line:中心静脉导管,见central venous catheter.Central venous catheter: 中心静脉导管,又叫做central line,Hickman catheter Centrifugation:离心CFC:colony-forming cell,克隆形成细胞CFU:colony-forming unit,集落形成单位CFU-Blast:colony-forming unit-Blast,原始集落生成细胞CFU-E:colony-forming unit-erythroid,红系集落生成细胞CFU-G:colony-forming unit-granulocyte,粒系集落生成细胞CFU-GM:colony-forming unit-granulocyte/macrophage,粒单系集落生成细胞CFU-L:colony-forming unit-leukemia,白血病细胞集落生成单位CFU-MEG:colony-forming unit-megakaryocyte巨核系集落生成细胞CGD:chronic granulomatous disease,慢性肉芽肿病CGP:circulating granulocyte pool,循环粒细胞池cGVHD:chronic graft versus host disease,慢性移植物抗宿主病Chemo-responsive:化疗敏感的Chemotherapy:化学疗法Chronic慢性的C.I.:continuous infusion,持续静脉点滴CIK:cytokine-induced killer cells 细胞因子诱导的杀伤细胞CliniMACS:clinical magnetic activated cell sorting,临床级磁性活化细胞分选系统CLL:chronic lymphocytic leukemia,慢性淋巴细胞白血病CML:chronic myelogenous leukemia,慢性粒细胞白血病CML-AP:CML-accelerated phase,慢性粒细胞白血病加速期CML-BP:CML-blastic phase,慢性粒细胞白血病急变期CML-CP:CML-chronic phase,慢性粒细胞白血病慢性期CMML:chronic myelo-monocytic leukemia,慢性粒-单细胞白血病CMPD:chronic myeloproliferative disease,慢性骨髓增生性疾病CMV:cytomegalovirus,巨细胞病毒CNR:cytokine negative response cell,细胞因子不反应细胞CNS:central nervous system,中枢神经系统CNSL:central nervous system leukemia,中枢神经系统白血病Collection: 采集Colony stimulating factor:集落刺激因子c-onc:cellular oncogene,细胞癌基因Conditioning:预处理Conjunctivitis:结膜炎Convalescence:恢复,恢复期CP:cancer procoagulant,癌性促凝物质CPD:citrate phosphate dextrose,枸橼酸盐-磷酸盐-葡萄糖CPDA:citrate phosphate dextrose adenine,枸橼酸盐-磷酸盐-葡萄糖-腺嘌呤Cpmax:peak concentration,峰浓度CPT:camptothecine,喜树碱CR:complete remission,完全缓解CRABP:cytoplasmic retinoic acid binding protein,胞浆维甲酸结合蛋白CRP:C reaction protein,丙反应蛋白CRR:complete remission rate,完全缓解率Cryopreservation:冷冻保存,深低温保藏CSF:colony stimulating factor,集落刺激因子CSF:cerebrospinal fluid,脑脊液CTCL:cutaneous T cell lymphoma,皮肤T细胞淋巴瘤CTCL:central T cell lymphoma,中枢T细胞淋巴瘤CTL:cytotoxicity T lymphocyte,细胞毒性T淋巴细胞Cyclin:周期素Cytomegalovirus:巨细胞病毒DC:dendric cell,树突细胞D-D:D dimer,D-二聚体Del:deletion,缺失Dermatitis:皮炎De nova AML:非继发性急性髓性白血病DFS:disease free survival,无病生存期DI:DNA index,DNA 指数DIC:disseminated intravascular coagulation,播散性血管内凝血Dilution:稀释DL:discordant lymphoma,混杂型淋巴瘤Donor:供者Dysplasia:发育不良,发育异常EBV:Epstein-Barr virus,EB病毒ECM:extracellular matrix,细胞外基质-ectomy:(后缀)(外科)切除,除去,去掉Edema:水肿EGF:epithelial growth factor,表皮生长因子-emia:(后缀)血液疾病Encephalopathy:脑病Encode: 编码Engraftment:移植物植入Enrich:富集Enzyme:酶Eosinophil:嗜酸性粒细胞EPO:erythropoietin,促红素,红细胞生成素ETT:essential thrombocythemia,原发性血小板增多症Ex vivo:体外FACS:fluorescence activated cell sorting,荧光活化细胞分选系统FCM:flow cytometry,流式细胞分析技术FDC:follicular dendritic cells,滤泡树突状细胞FDGF:fibroblast derived growth factor,成纤维细胞源生长因子Febrile:发热的FFP:fresh frozen plasma,新鲜冰冻血浆FGF:fibroblast growth factor,成纤维细胞生长因子FHH:familial hemophagocytic histiocytosis,家族性嗜血组织细胞增生症FISH:fluorescence in situ hybridization,荧光原位杂交FMF:familial Mediteranean fever,家族性地中海热Foley catheter:弗利氏导尿管,气囊导尿管FrTBI:fractional total body irradiation,分次全身照射FSRC:胎羊体内增殖的人造血干细胞Fungus:真菌Fungi:Fungus复数形式G6PD:glucise-6-phosphate dehydrogenase,6-磷酸葡萄糖脱氢酶Gastritis:胃炎Gastrointestinal:胃肠道的G-CFC:granulocyte colony forming cells,粒细胞集落形成细胞G-CSF:granulocyte colony stimulating factor,粒细胞集落刺激因子GCV:cytomegalovirus,巨细胞病毒GCV:ganciclovir,更昔洛韦GI:gastrointestinal,胃肠道的GM-CSF:granulocyte-macrophage colony stimulating factor,粒-巨噬细胞集落刺激因子GM-CFC:granulocyte-macrophage colony forming cells,粒-巨噬细胞集落形成细胞Graft rejection:移植排斥(反应)Graft-versus-host disease:移植物抗宿主病Granulocyte:粒细胞Growth factor:生长因子GTR:granulocyte turnover rate,粒细胞转换率GVHD:graft-versus-host disease,移植物抗宿主病GVHR: graft-versus-host reaction,移植物抗宿主反应GVL:graft-versus-leukemia,移植物抗白血病GVT:graft-versus-tumor,移植物抗肿瘤Haploidentical: 半相和的Harvest: 收集,采集HC:hemorrhagic cystitis,出血性膀胱炎HCL:hairy cell leukemia,毛细胞白血病HD:Hodgkin's disease,霍奇金病HD:high dose,大剂量Hematocrit:红细胞压积Hematology:血液学Hematopoiesis:造血作用,生血作用Hematopoietic system:造血系统Hemoglobin:血色素,血红蛋白Hemorrhage:出血Hemorrhagic cystitis:出血性膀胱炎Hepat- :(前缀)肝的Hepatitis:肝炎HES:hypereosinophilic syndrome,高嗜酸粒细胞综合征HGF:hematopoietic growth factor,造血生长因子HHV:human herpus virus,人疱疹病毒Hickman catheter:Hichman导管,中心静脉插管HIV:human immune deficiency virus,人免疫缺陷病毒HLA:human leukocyte antigen,人类白细胞抗原HLH:hemophagocytic lymphohistiocytosis,嗜血细胞性淋巴组织细胞增生症HMR:histiocytic medullary reticulosis,组织细胞性髓性网状细胞增生症Homogenic transplantation:同基因移植Homozygote:纯合子HPC:hematopoietic progenitor cell,造血祖细胞HPP-CFU:high proliferative potential colony-forming unit,高增殖潜能集落形成单位HR-ALL:high risk ALL,高危型急性淋巴细胞白血病HSC:Hand-Schuller-Christian disease,韩-薛-柯病HSC:hematopoietic stem cell,造血干细胞HSR:homogenously staining region,均染色区HSV:herpes simplex virus,单纯疱疹病毒HTC:typing cell,纯合子分型细胞HTLV:human T cell leukemia virus,人类T细胞白血病病毒HVOD:hepatic venous occlusive disease,肝静脉闭塞病Hyper- :(前缀)高,超,(过)多Hyperalimentation:高营养支持,静脉高营养Hyperpigmentation:色素沉着过度Hypertension:高血压Hypo- :(前缀)(过)低,少于Hypotension:低血压IAHS: infectous-associated hemophagocytic syndrome,感染相关嗜血细胞综合征id:medium dose,中剂量id:initial dose,初始剂量IF:involved field,累及野IFN:interferon,干扰素Ig:immunoglobulin,免疫球蛋白IGFs: insulin-like growth factor,胰岛素样生长因子IgH:immunoglobulin heavy chain,免疫球蛋白重链IL:interleukin,白细胞介素Iliac crest:髂嵴I.M.:intramuscular,肌肉注射Immune system:免疫系统Immunocompromised:免疫受损的Immunoglobulin:免疫球蛋白Immunological tolerance:免疫耐受Immunosuppression:免疫抑制Incubation:孵育informed-consent:知情同意Intravenous:静脉内的inv: inversion,倒位in vitro: 体外,离体in vivo: 体内IP:interstitial pneumonia,间质性肺炎Isolation: 分离I.T.:intrathecal injection,鞘内注射-itis:(后缀)炎症ITP:idiopathic thrombocytopenia purpura,特发性血小板减少性紫癜Jaundice:黄疸KPS:Karnofsky score, Karnofsky评分LAK:lymphokine-activated killer(cells),淋巴因子激活杀伤(细胞)Laminar air flow unit:层流间LCH:Langerhans cell histiocytosis,郎格罕细胞(组织细胞)增生症LD:lymphocyte depletion,淋巴细胞消减型LD:low dose,小剂量LDH:lactate dehydrogenase,乳酸脱氢酶Leukapheresis: 白细胞采集物Leukemia:白血病Leukocyte:白细胞Leukopenia:白细胞减少症LFA:lymphocyte function associated antigen,淋巴细胞功能相关抗原LFS:leukemia free survival,无白血病存活期LGL:low grade lymphoma,低度恶性淋巴瘤LHR:lymphocytic homing function receptor, 淋巴细胞归家功能受体LI:labeling index,标记指数LIF:leukemia inhibition factor,白血病抑制因子Lineage:系LOH:loss of heterozygosity,杂合性丢失LP:lymphocyte predominance,淋巴细胞为主型LRP:lung resistance related protein,肺抗性相关蛋白LTB:life-threatening bleeding,致命性出血LTC-IC:long-term culture-initiating cell,长期培养起始细胞LTR:long terminal repeat:长末端重复序列LVL:large volume leukapheresis,大容量白细胞单采Lymphocyte: 淋巴细胞Macrophage:巨噬细胞MACS:magnetic activated cell sorting,磁性活化细胞分选MAK: monocytokine-activated killer(cells),单核细胞因子激活杀伤(细胞)Malabsorption:吸收障碍MALT:mucosa-associated lymphoid tissue,粘膜相关淋巴样组织÷ Matching:配型MBDI:marrow blast decline index骨髓原始细胞减少指数MC:mixed cellularity,混合细胞型McAb:monoclonal antibody,单克隆抗体mCR: median complete remission,中位完全缓解MDR:multiple drug resistance,多药耐药MDS:myelodysplastic syndrome,骨髓增生异常综合征Megakaryocyte:巨核细胞Metabolite:代谢物Metastatic:转移的MF:myelofibrosis,骨髓纤维化MF:mycosis fungoides,蕈样霉菌病MGDS:megakaryocyte growth and differentiation factor,巨核细胞增殖分化因子MGP:marginal granulocyte pool,边缘粒细胞池MGUS: monoclonal gammopathy of undetermined significance,未定性的单克隆γ球蛋白血症MH:malignant histocytosis,恶性组织细胞增生症MHAS:minor histocompatibility antigen systems,次要组织相容性抗原系统MHC:major histocompatibility complex,主要组织相容性抗原复合体MLC:mixed lymphocyte culture,混合淋巴细胞培养MLL:mixed lineage leukemia,混合系白血病MM:multiple myeloma,多发性骨髓瘤MNC:mononuclear cells,单个核细胞Mobilization:动员Monoclonal antibody:单克隆抗体Monocyte:单核细胞Monozygotic:单合子的Morbidity:发病率MPD:myeloproliferative disease, 骨髓增殖性疾病MPO:myeloperoxidase,髓过氧化物酶MRD:minimal residual disease,微小残留病变MRP:multidrug resistance-associated protein,多药耐药相关蛋白Mucositis:粘膜炎MUD:matched unrelated donor,非血缘关系配型相合供体NAP:neutrophil alkaline phosphatase,中性粒细胞碱性磷酸酶NB:neuroblastoma,神经母细胞瘤NBM:normal bone marrow,正常骨髓Negative selection:阴性选择Neuro- :(前缀)神经的Neutropenia:中性粒细胞减少症Neutrophil:中性粒细胞NG:neutrophil granulocyte,中性粒细胞NGF:nerve growth factor, 神经生长因子NHL:non-Hodgkin's lymphoma,非霍奇金淋巴瘤NK: nature killer cell,自然杀伤细胞Nonmyeloablative transplantation: 非清髓性移植NPO:不能进食NS:nodular sclerosis,结节硬化型Oncology:肿瘤学Oto- :(前缀)耳的PA:plasminogen activator,纤溶酶原激活物Packed red blood cells: 压积红细胞PAE:post antibiotic effects,抗生素后续作用PAI:plasminogen activator inhibitor,纤溶酶原激活物抑制剂Palliative:减轻的,缓解的palliative care unit (PCU):终末期病房,临终关怀病房Pancytopenia:全血细胞减少症-pathy:(后缀)病PB:peripheral blood, 外周血PBL:peripheral blood lymphocyte,外周血淋巴细胞PBPC:peripheral blood progenitor cell,外周血祖细胞PBSCT:peripheral blood stem cell transplantation,外周血干细胞移植PCA:procoagulant activity,促凝活性物质PCD:programmed cell death,细胞程序化死亡PCL:plasma cell leukemia,浆细胞白血病PCLI:plasma cell label index,浆细胞标记指数PCR:polymerase chain reaction, 多聚酶链反应PCR-RFLP: PCR-restriction fragment length polymorphisms,限制性片段长度多态性分析PCR-SSOPH: PCR-sequence specific oligonucleotideprobe hybridization,序列特异性寡核苷酸探针杂交PDD:percentage depth dosage,百分深度剂量PDGF:platelet derived growth factor,血小板衍生生长因子PDR:primary drug resistance,原药耐药PE:plasma exchange,血浆置换-penia:(后缀)缺乏,不足Peripheral neuropathy:周围神经病变Petechiae:瘀点,瘀斑Pfu: plaque forming unit,空斑形成单位PHA:phytahematoagglutinin,植物血凝素Phlebitis:静脉炎PHSC:pluripotential hematopoietic stem cell,多能造血干细胞-plasia:(后缀)发展,形成Plasma:血浆Plasma cell: 浆细胞Platelet:血小板PLG:plasminogen,纤溶酶原PLL:prolymphocytic leukemia,幼淋巴细胞白血病PLT:platelet,血小板PLT:primed lymphocyte test,预致敏淋巴细胞试验PMN:polymorphonuclear leukocyte,多形核白细胞PNH:paroxysmal nocturnal hemoglobinuria,阵发性睡眠性血红蛋白尿÷ PNRE:p53 negative response element,p53阴性反应元件POD:PML oncogenic domain,PML癌基因结构域Polycythemia:红细胞增多症Positive selection:阳性选择PPSC: pluripotent hemotopoietic stem cell,全能造血干细胞Preparative regimen:预处理方案Progenitor:前体,祖先Prognosis:预后Prophylactic:adj.预防的;n. 预防性,预防药Prophylaxis:预防法,预防Protocol:草案,协议,治疗方案Proto-onc: proto-oncogene,原癌基因PSS:posterior superior spine,髂后上棘PT:prothrombin time,凝血酶原时间PTCL:peripheral T celll lymphoma,外周T细胞型淋巴瘤PTH:post-transfusion hepatitis, 输血后肝炎Pulmonary:肺的Purging:净化Purity:纯度PV:polycythemia vera,真性红细胞增多症Quality of Life (QOL):生活质量RA:refractory anemia,难治性贫血RAEB:refractory anemia with excessive blasts,难治性贫血伴原始细胞增多型RAEB-T:refractory anemia with excessive blasts,transformation,难治性贫血伴原始细胞增多转化型RAR:retinoic acid receptor,维甲酸受体RAS:refractory anemia with sideroblasts,难治性贫血伴环状铁粒幼细胞增多RAS:retinoic acid syndrome,维甲酸综合征RB:retinoblastoma,视网膜母细胞瘤RBC: red blood cell,红细胞Reagent:试剂Recipient:受者Rejection:排斥Relapse:复发Remission:缓解Renal:肾脏的,肾的RFS:replase free survival,无复发生存RPC:radiation protective competence, 辐射保护能力Regimen-related toxicity (RRT):预处理相关毒性RT-PCR:reverse transcription polymerase chain reaction, 逆转录多聚酶链反应SBB:sudan black B,苏丹黑BSCE:sister chromatial exchange,姐妹染色单体交换SCF:stem cell factor,干细胞因子SCid:severe combined immunodeficiency disease,重症联合免疫缺陷SCL:stem cell leukemia,干细胞白血病SE:specific estarase,特异性酯酶Selectin:选择素Sense primer:同义引物Separation:(细胞)分选Sepsis:脓血病,败血病Sequencing测序SF:serum ferritin,血清铁蛋白SHML:sinus histocytosis with massive lymphadenopathy,窦性组织细胞增生症伴块状淋巴结肿大SIA:stroma-support immunocytometric assay,基质支持免疫细胞流式细胞仪技术法SLE:systemic lupus erythematosus,系统性红斑狼疮SLL:small lymphocytic lymphoma,小淋巴细胞淋巴瘤Solid tumor:实体瘤SR-ALL:standard risk acute lymphocytic leukemia,标危型急性淋巴细胞白血病SRC:SCid/NOD小鼠体内增殖的人造血干细胞,SCid造血重建细胞SS:Sezary syndrome,Sezary综合征Stem cell:干细胞STNI:subtotal nodal irradiation,次全淋巴结照射Stomatitis:口炎Subclavian catheter:锁骨下导管Supernatant:上清Syn-BMT:Syngeneic bone marrow transplant:同基因骨髓移植Syngeneic:同基因的TAM:tumor associated macrophage,肿瘤相关巨噬细胞t-AML:treatment associated AML,治疗相关的急性髓性白血病TA-GVHD:transfusion associated graft-versus-host disease,输血相关的移植物抗宿主病TAA:tumor associated antigen,肿瘤相关抗原TBGP:total blood granulocyte pool,总血液粒细胞池TBI:total body irradiation,全身照射Tc:time of cell cycle, 细胞周期时间TCD:T cell depletion, T细胞去除TCL:T cell leukemia/lymphoma,T细胞白血病/淋巴瘤TCR:T cell receptor,T细胞受体TCS:tumor cell survival,肿瘤细胞成活TEN:total enteral nutrition,完全胃肠内营养TF:tissue factor,组织因子TF:thymic factor,胸腺因子TFPI:tissue factor pathway inhibitor,组织因子途径抑制物TGF:therapeutic gain factor,治疗获得系数TGF-β:transforming growth factor-β,转化生长因子βThrombocyte:血小板Thrombocytopenia:血小板减少症TIL:tumor infiltrate lymphocyte,肿瘤浸润淋巴细胞TL:testis leukemia睾丸白血病TLI:total Lymphoid irradiation,全淋巴照射Thrombotic microangiopathy (TMA):血栓性微血管病TNF:tumor necrosis factor,肿瘤坏死因子TNI:total nodal irradiation,全淋巴结照射TOPO II:topoisomerase II,拓扑易构酶IIToxin:毒素Tpdt:potential doubling time,倍增时间T-PLL:T-prolymphocytic leukemia,T幼淋细胞白血病TPN:total parenteral nutrition,全肠道外营养,静脉高营养TPO:thrombopoietin,促血小板生成素TPS:treatment planning system,治疗计划系统Translocation:易位Trauma:创伤TRM:transplantation related mortality,移植相关死亡率TSC:timed-sequential chemotherapy,时相序贯化疗TSPA:triophosphoramide,噻替派TTP:thrombotic thrombocytopenic purpura,血栓性血小板减少性紫癜Tumor:肿瘤Tumor burden:肿瘤负荷UCB:umbilical cord blood,脐带血Ultrasound:超声Umbilical cord:脐带VAHS:viral associated hemophagocytic syndrome,病毒相关嗜血细胞综合征VGPR:very good partial remission,非常良好的部分缓解Viability:活性Virus:病毒VOD:veno-occlusive disease,静脉阻塞性疾病v-onc: virus oncogene,病毒癌基因VPF: vascular permeability factor,血管渗透因子VZV:varicella zoster virus,水痘带状疱疹病毒WBC:white blood cell,白细胞Whole blood:全血WT:Wilms tumor,肾母细胞瘤Xerostomia:口腔干燥症。
巨噬细胞自噬在慢性阻塞性肺疾病中的作用
tJRe
sp
i
r,
Augus
t2020,
Vo
l.
40,
No.
16
促进细胞存活。过度 的 自 噬 也 会 导 致 细 胞 死 亡。 自 噬 分 为
使 ERK 通 路 激 活 所 致;ERK 抑 制 剂 和 BRF1 同 时 作 用 于
3 种类型:大 自 噬、 小 自 噬 和 分 子 伴 侣 介 导 的 自 噬。 自 噬
t
o
ryandCr
i
c
i
ca
lCar
e Medi
c
i
net
heSe
c
ond Ho
spi
t
a
lof He
b
e
iMedi
ca
l
1
Un
i
v
e
r
s
i
t
i
i
azhuang050000 Ch
i
na 2Depar
tmen
tof Br
ea
s
tSurge
ry t
heFi
r
s
t Ho
spi
t
a
lof
y Sh
j
Qi
nhuangdao Qi
lmona
r
i
s
e
a
s
e COPD
pa
yd
Au
t
ophagya
sa me
chan
i
sm t
o
ma
i
n
t
a
i
nc
e
l
lhome
o
s
JAK2突变与骨髓增殖性肿瘤研究进展
JAK2突变与骨髓增殖性肿瘤研究进展摘要:骨髓增殖性肿瘤(myeloproliferative neoplasms,MPNs)是一系或多系分化相对成熟的骨髓细胞不断克隆增殖所致的一组肿瘤性疾病的统称,病变多发生在多能干细胞水平。
自从2005年ASH会议报告JAK2突变与MPNs的关系以来,JAK2突变的研究一直是近几年ASH会议的热点,本文就JAK2突变的研究进展作一综述。
骨髓增殖性疾病(myeloproliferative disorders,MPD)是一组以相对成熟的粒系、红系、巨核系细胞肿瘤性增殖为特征的疾病,1951年由William Dameshek最先提出,包括慢性粒细胞白血病(chronic myelogenous leukemia [具有费城染色体,BCR/ABL融合基因阳性])、慢性中性粒细胞白血病(chronic neutrophilic leukemia)、慢性嗜酸性粒细胞白血病/嗜酸性粒细胞增多综合症(chronic eosinophilic leukemia and the hypereosinophilic syndrome;CEL/HES)、真性红细胞增多症(polycythemia vera)、慢性原发性骨髓纤维化伴髓外造血(chronic idiopathic myelofibrosis [with extramedullary hematopoiesis])、原发性血小板增多症(essential thrombocythemia)、慢性骨髓增殖性疾病,未分类(chronic myeloproliferative disease, unclassifiable)[1]。
2008年新修订的WHO分类中已将MPD改为骨髓增殖性肿瘤(myeloproliferative neoplasms,MPN),包括慢性粒细胞白血病(chronic myelogenous leukemia [具有费城染色体,BCR/ABL融合基因阳性]),慢性中性粒细胞白血病(chronic neutrophilic leukemia),真性红细胞增多症(polycythemia vera),原发性骨髓纤维化(primary myelofibrosis),原发性血小板增多症(essential thrombocythemia),慢性嗜酸性粒细胞白血病,非特指(chronic eosinophilic leukemia, not otherwise specified CEL-NOS),肥大细胞增多症(mastocytosis),骨髓增殖性肿瘤,未分类(myeloproliferative neoplasms, unclassifiable)[2]。
胚胎学相关英语词汇(1)
胚胎学相关英语词汇(1)胚胎学相关英语词汇(1)胚胎学相关英语词汇(1)胚胎学embryology人体胚胎学human embryology医用胚胎学medical embryology描述胚胎学descriptive embryology比较胚胎学comparative embryology实验胚胎学experimental embryology化学胚胎学chemical embryology分子胚胎学molecular embryology发育生物学developmental biology胚胎发生embryogenesis 从受精卵的形成至足月胎儿的发育过程。
个体发生ontogenesis,ontogeny 从胚胎发生经出生后的生长发育直至衰老死亡的全过程。
种系发生phylogenesis,phylogeny重演律recapitulation law后成论postformation theory, epigenesis theory 又称“渐成论”。
先成论preformation theory 又称“预成论”。
套装论encasement theory种质germ plasm,idioplasm 又称“生殖质”、“胚质”。
指繁衍后代的生殖细胞或世代交替的遗传基因。
体质somatoplasm 体细胞或构成机体种质以外的原生质的总称。
性周期sexual cycle 周期性排卵的动物两次排卵之间的时间,如人的性周期约为28 天。
生殖周期reproductive cycle 完成一次生殖过程所需要的时间,如人的生殖周期约为266天。
生殖reproduction有性生殖sexual reproduction无性生殖asexual reproduction孤雌生殖parthenogenesis形态发生morphogenesis器官发生organogenesis器官形成区organ forming area组织发生histogenesis分化differentiation去分化dedifferentiation再分化redifferentiation非依赖性分化independent differentiation,self-differentiation 又称“自主分化”。
靶向T细胞免疫治疗急性髓性白血病的策略
doi:10.3971/j.issn.1000-8578.2024.24.0016李扬秋 研究员,二级教授,博士生导师,暨南大学血液学研究所所长,广东省医学领军人才。
中国病理生理学会实验血液学委员会副主委,Blood Science 副主编、J Immuno Ther Cancer (Clinical/Translational Cancer Immunotherapy 专题副主编)、J Hematol Oncol 、Exp Hematol Oncol 、Exp Hematol 、《中华血液学杂志》《中国免疫学杂志》《肿瘤防治研究》等杂志编委。
主要从事血液肿瘤分子发病机制和肿瘤T 细胞免疫及靶向治疗研究。
在Nat Med, Mol Cancer, J Hematol Oncol 和Adv Sci 等国内外期刊发表论文200多篇。
靶向T细胞免疫治疗急性髓性白血病的策略李扬秋Strategy of Targeted T Cell Immunotherapy for Acute Myeloid Leukemia LI Yangqiu Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, ChinaAbstract: T cell dysfunction is a common feature in patients with acute myeloid leukemia (AML). The up-regulation of immune checkpoint (IC) proteins resulting in T cell exhaustion is a key reason for T cell dysfunction. Immunotherapy with IC inhibitors exerts a remarkable effect on AML. However, due to the heterogeneity of T cell exhaustion and other factors that impair T cell function in patients with AML, the optimization of targeted T cell immunotherapy strategy for AML might be based on the multidimensional investigation of immune deficiency with different T cell subtypes.Key words: Acute myeloid leukemia; T cell; Exhaustion; Immune checkpoint protein; Immunotherapy Funding: Natural Science Foundation of China (No. 82293630, 82293632, 82070152)Competing interests: The author declares that she has no competing interests.摘 要:急性髓性白血病(AML )常伴有T 细胞免疫功能不全,由于免疫检查点(IC )分子表达上调引起T 细胞耗竭是其重要原因之一。
circMYO9A_006通过翻译蛋白MYO9A-208aa发挥抑制心肌细胞肥大的作用
白溶液配好的鬼笔环肽工作液(iFluor™ 647标记的鬼笔环肽)避光孵育90 min。
回收工作液,用预先配好的PBST漂洗细胞3次,每次10 min。
加入3~5滴DAPI染色剂染色15 min后,用PBS漂洗5 min后即可用于共聚焦显微镜拍照。
使用ImageJ软件进行细胞表面积的测量。
3.5 双萤光素酶报告基因实验 通过DNA合成出circMYO9A_006的2个可能的IRES序列,并定向克隆到pGL3-Promoter萤光素酶载体中。
将1 µg海肾萤光素酶质粒(作为内部对照)与构建好的萤光素酶质粒共转染293T细胞。
转染后24 h后,用购自Pro‐mega的双萤光素酶报告基因测定试剂盒中的裂解缓冲液裂解细胞,按照试剂盒指示测量萤火虫萤光素酶和海肾萤光素酶活性。
相对萤光素酶活性即为被海肾萤光素酶标准化的萤火虫萤光素酶的值。
4 统计学处理所有数据的统计均用GraphPad Prism 9.5进行分析,表示为三个独立实验的均数±标准差(mean±SD)。
多组间均数比较用采用单因素方差分析,进一步两两比较采用Bonferroni校正的t检验。
以P<0.05为差异有统计学意义。
结果1 过表达circMYO9A_006可抑制NMVCs中心肌肥大相关蛋白表达circMYO9A_006来源于其宿主基因MYO9A的第2~4个外显子反向剪接环化形成,由1 226个碱基组成(图1A)。
通过分子克隆技术构建rAd-circ‐MYO9A_006重组腺病毒,其载体本身带有GFP标签,用其感染NMVCs 24 h后,观察到GFP荧光充分表达;RT-qPCR结果显示腺病毒可介导circMYO9A_ 006在NMVCs中有效表达(图1B)。
DNA测序结果证实,在NMVCs中过表达的circMYO9A_006包含正确的接头序列,见图1C。
Western blot结果显示,与感染空载体重组腺病毒组相比,过表达circMYO9A_ 006可有效抑制NMVCs中肥大相关蛋白β-MHC、ACTA1和ANP的表达(P<0.01),见图1D。
应用生物信息学筛选大肠癌转移相关小分子化合物
应用生物信息学筛选大肠癌转移相关小分子化合物齐鲁;丁彦青【摘要】目的筛选并分析与大肠癌转移相关的小分子化合物.方法首先通过大肠癌早期转移组织表达谱数据与正常大肠组织数据进行统计学比较,筛选出差异表达基因,再通过差异表达基因与小分子的对应模式筛选出与大肠癌早期转移相关的小分子化合物,最后通过分析小分子化合物的靶蛋白在大肠癌疾病类中的富集情况,筛选靶蛋白中与大肠癌相关的部分靶蛋白,结合大肠癌表达谱的表达情况以及小分子化合物与靶蛋白的结合情况筛选最相关的靶蛋白并进行网络调控情况分析.结果通过小分子化合物的富集分析,tanespimycin得分最高,并且其靶蛋白在大肠癌疾病类中富集程度最高,说明tanespimycin与大肠癌关系密切;综合表达情况以及分子结合强度,明确与大肠癌相关的靶蛋白CHEK1、AURKA、GSTP1、NQO1可能为tanespimycin对大肠癌转移治疗作用中的关键蛋白,并且这4个靶蛋白构成的网络参与了与药物代谢相关的生物进程,进一步说明其与tanespimycin的关系.结论tanespimycin可能是能够抑制大肠癌早期转移的小分子化合物,其主要通过与其相互作用的靶蛋白CHEK1、AURKA、GSTP1、NQO1调控大肠癌转移相关的信号网络.【期刊名称】《西安交通大学学报(医学版)》【年(卷),期】2013(034)006【总页数】6页(P797-802)【关键词】差异表达;大肠癌;转移;tanespimycin;生物信息学;基因;靶蛋白【作者】齐鲁;丁彦青【作者单位】南方医科大学,基础医学院病理学系,广东广州,510515;南方医科大学,基础医学院病理学系,广东广州,510515;南方医科大学,南方医院病理科,广东广州,510515【正文语种】中文【中图分类】R735.3+5大肠癌是常见的恶性肿瘤之一,其发病率仅次于胃癌和食管癌。
大肠癌现阶段的主要治疗方法为手术治疗,因此早期诊断以及早期手术切除是大肠癌唯一根治的有效方法。
胚胎学相关英语词汇(1)
胚胎学相关英语词汇(1)胚胎学 embryology人体胚胎学 human embryology医用胚胎学 medical embryology描述胚胎学 descriptive embryology比较胚胎学 comparative embryology实验胚胎学 experimental embryology化学胚胎学 chemical embryology分子胚胎学 molecular embryology发育生物学 developmental biology胚胎发生embryogenesis 从受精卵的形成至足月胎儿的发育过程。
个体发生ontogenesis,ontogeny 从胚胎发生经出生后的生长发育直至衰老死亡的全过程。
种系发生 phylogenesis,phylogeny重演律 recapitulation law后成论postformation theory, epigenesis theory 又称“渐成论”。
先成论 preformation theory 又称“预成论”。
套装论 encasement theory种质germ plasm,idioplasm 又称“生殖质”、“胚质”。
指繁衍后代的生殖细胞或世代交替的遗传基因。
体质somatoplasm 体细胞或构成机体种质以外的原生质的总称。
性周期 sexual cycle 周期性排卵的动物两次排卵之间的时间,如人的性周期约为 28 天。
生殖周期 reproductive cycle 完成一次生殖过程所需要的时间,如人的生殖周期约为266天。
生殖 reproduction有性生殖 sexual reproduction无性生殖 asexual reproduction孤雌生殖 parthenogenesis形态发生 morphogenesis器官发生 organogenesis器官形成区 organ forming area组织发生 histogenesis分化 differentiation去分化 dedifferentiation再分化 redifferentiation非依赖性分化 independent differentiation,self-differentiation 又称“自主分化”。
人类免疫缺陷病毒单克隆抗体在小麦胚乳中的表达
蛋 白 VP 1 , 这是 首次 在植 物 中表达 了对病 毒性 疾 病 场前 景 。本研 究 的 目的是利 用基 因枪 介导 法将抗 体 g G转 入 小 麦 , 获 得 转基 因植 株 , 并 在 分 子 水 具 有免 疫作 用 的抗原 。在 植物 中成 功表 达 的疫苗 还 基 因 I 有 S ARS - C o V S蛋 白[ 2 ] 、 口蹄疫 病 毒 多聚 蛋 白[ 3 ] 和 平上证 实 目的基 因的整合 、 转 录 和表达 。 狂犬 病 病毒 核蛋 白[ 4 3 , 这 些 蛋 白都 具 有 抗 原 结 合 活
1 . 华 中农业 大学生命科 学技术 学院, 武汉 4 3 0 0 7 0 ; 2 . 华 中农 业大学麦类作 物分子生物技 术 实验 室, 武汉 4 3 0 0 7 0 ; 3 . 华中农 业大学植 物科学技 术学院 , 武汉 4 3 0 0 7 0 ;4 . 香港大学李嘉诚 医学院微 生物 系艾 滋病研 究所 , 香港
S 3 3 6 文献标识码 A 文章编号 1 0 0 0 — 2 4 2 1 ( 2 0 1 3 ) 0 1 — 0 0 0 9 — 0 5 中 图分 类 号
人 类 免疫 缺 陷 病 毒 ( HI V) 会 造 成 机 体 终 身 感 胃肠蛋 白酶 的降解 l 7 ] 。人类 I g G 具有 HI V 广 谱抗 而 且可 以阻止 HI V 的传 播 E 8 3 , 因此 在 植 物 中表 染, 使 免疫 系统失去抵 抗 力, 最 终 导 致 艾 滋 病 性 ,
性及 免 疫原性 。
1 材 料 与 方 法
料
Wi l d e 等[ 5 ] 在马 铃 薯 中表 达 了全 抗 体 I g Gs和 1 . 1 材
F a b片段 。研究 表 明 , 马 铃 薯 块茎 储 存 6个 月 时其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M OLECULAR AND C ELLULAR B IOLOGY,Oct.2004,p.8519–8528Vol.24,No.19 0270-7306/04/$08.00ϩ0DOI:10.1128/MCB.24.19.8519–8528.2004Copyright©2004,American Society for Microbiology.All Rights Reserved.Target Gene-Specific Modulation of Myocardin Activity by GATATranscription FactorsJiyeon Oh,1†Zhigao Wang,1†Da-Zhi Wang,1,2†Ching-Ling Lien,1Weibing Xing,2and Eric N.Olson1*Department of Molecular Biology,University of Texas Southwestern Medical Center,Dallas,Texas,1and Carolina Cardiovascular Biology Center,Department of Cell and DevelopmentalBiology,University of North Carolina,Chapel Hill,North Carolina2Received15July2003/Returned for modification26August2003/Accepted16June2004Myocardin is a transcriptional coactivator that regulates cardiac and smooth muscle gene expression byassociating with serum response factor.We show that GATA transcription factors can either stimulate orsuppress the transcriptional activity of myocardin,depending on the target gene.Modulation of myocardinactivity by GATA4is mediated by the physical interaction of myocardin with the DNA binding domain ofGATA4but does not require binding of GATA4to DNA.Paradoxically,the transcription activation domain ofGATA4is dispensable for the stimulatory effect of GATA4on myocardin activity but is required for repressionof myocardin activity.The ability of GATA transcription factors to modulate myocardin activity provides apotential mechanism forfine tuning the expression of serum response factor target genes in a gene-specificmanner.Serum response factor(SRF)is a widely expressed transcrip-tion factor belonging to the MADS(MCM1,Agamous,Defi-ciens,SRF)box family of proteins(28,34).SRF binds as a homodimer to a DNA consensus sequence known as a CArG box(CC[A/T]6GG),which is found in the control regions of numerous growth factor-regulated and muscle-specific genes (30).The spectrum of SRF target genes expressed by a cell is dependent on association of SRF with a wide variety of posi-tive and negative cofactors,many of which are signal respon-sive and tissue restricted(35).Myocardin is a powerful SRF coactivator expressed specifi-cally in cardiac and smooth muscle cells(37,38).Myocardin belongs to the SAP(scaffold-attachment factor A/B,Acinus, PIAS)domain family of nuclear proteins,which bind A/T-rich genomic regions known as scaffold or matrix attachment re-gions and have been implicated in chromatin remodeling(1). Although myocardin lacks sequence-specific DNA binding ac-tivity,it forms a stable DNA-protein complex with SRF,re-sulting in activation of SRF target genes in muscle cells(37). Myocardin is necessary(19)and sufficient(8,39,40)to activate smooth muscle gene expression in nonmuscle cells and uses SRF as an obligate partner in this process(38,39).Expression of a dominant negative myocardin mutant in Xenopus embryos is also sufficient to extinguish cardiac gene expression(37), suggesting an essential role for myocardin or other members of the myocardin family in cardiogenesis.Two myocardin-related transcription factors(MRTFs),referred to as MRTF-A(21, 22,32,38)and MRTF-B(38),also interact with SRF and stimulate transcription through the CArG box,but these fac-tors are not muscle restricted and are likely to modulate SRF activity in response to growth factor signaling(24).SRF has also been shown to stimulate expression of smooth and cardiac muscle genes in association with a variety of ho-meodomain proteins(6,9),LIM domain proteins(4),and GATA transcription factors(2,26,33).The six GATA factors share homology in two zincfinger domains that mediate DNA binding and cofactor interactions(5,23).GATA4,-5,and6are expressed predominantly in cardiac and smooth muscle cell lineages,where they play diverse roles in differentiation,mor-phogenesis,and growth(15).GATA4is required for proper embryonic folding and heart tube formation(13,25).GATA4 and5have also been implicated in cardiac gene expression(14, 31),and GATA6is essential for mesoderm formation during gastrulation(12,27).Because myocardin and GATA factors both interact with SRF and participate in cardiac and smooth muscle gene ex-pression,we investigated whether they might modulate each other’s activities.Here,we show that GATA4augments the activity of myocardin on some genes,such as the cardiac ho-meobox gene Nkx2.5,whereas it interferes with the activity of myocardin on other genes,such as the atrial natriuretic factor (ANF)gene.Modulation of myocardin activity by GATA4is mediated by the direct physical interaction between the factors and is dependent on SRF DNA binding sites(CArG boxes)but not on GATA4DNA binding.Modulation of myocardin ac-tivity by GATA4provides a mechanism forfine tuning the expression of SRF target genes in a promoter-specific manner.MATERIALS AND METHODSCell culture and transfection assays.COS cell transfections and luciferase assays were performed as described(37).Unless otherwise indicated,100ng of reporter plasmid and100ng of each activator plasmid were used.The total amount of DNA per well was kept constant by adding the corresponding amount of expression vector without a cDNA insert.The myocardin and SRF expression vectors have been described(6,37,38).*Corresponding author.Mailing address:Department of Molecular Biology,University of Texas Southwestern Medical Center,6000 Harry Hines Blvd.,Dallas,TX75390-9148.Phone:(214)648-1187. Fax:(214)648-1187.E-mail:eolson@.†J.O.,Z.W.,and D.-Z.W.contributed equally.8519 at Hunan Normal University on June 7, 2009 Downloaded fromMyocardin and GATA4deletion mutants were generated through PCR-based mutagenesis with the QuikChange kit from Stratagene.GATA4point mutants in the DNA binding domain were generously provided by Bruce Markham and have been described (7).All mutations were con firmed by DNA sequencing.The SM22-luciferase reporter contained the 1,343-bp promoter (17).The 4ϫSM22-CArG-luciferase reporter has been described (3).pCMV-lacZ was included as an internal control for variations in transfection ef ficiency.The NK-tk-luciferase reporter was constructed by linking 5Јupstream se-quences from Ϫ9432to Ϫ8923of the mouse Nkx2.5gene (20)to a luciferase reporter with a thymidine kinase promoter.The NK-CArG-mutant-luciferase reporter has mutations in the CArG box from CCTTTTAAGG to AAGCTTA AGG.All the other reporters have been described previously (37).GST protein binding assays.The plasmid encoding a glutathione S -transferase (GST)fusion protein was transformed into Escherichia coli BL21-Codon Plus cells (Stratagene).The cells were grown at 37°C in 2XYT medium to an optical density of 1.0.Isopropylthiogalactopyranoside (IPTG)(50M)was then added to the culture to induce protein expression.After shaking at room temperature for 4to 6h,the cells were harvested and the GST protein was puri fied with glutathione beads according to Amersham ’s procedure.Proteins translated in vitro were labeled with [35S]methionine with a TNT T7reticulocyte lysate system (Promega).Glutathione beads conjugated with 1g of protein were incubated with 10l of TNT product at 4°C for 2h in 500l GST binding buffer (20mM Tris,pH 7.3,150mM NaCl,0.5%NP-40,protease inhibitor cocktail from Roche,and 1mM phenylmethylsulfonyl fluoride).The beads were washed three times with GST binding buffer.Fifty microliters of sodium dodecyl sulfate (SDS)loading buffer was then added to the beads.After boiling,20l was loaded onto an SDS-polyacrylamide gel electrophoresis (PAGE)gel.Reverse transcription-PCR.Total RNA was isolated with Trizol reagent (In-vitrogen).After treatment with DNase I,1g of RNA was used as a template for reverse transcription with random hexamer primers that spanned introns in thegenes.Sequences of primers are available upon request.Reverse transcription-PCRs were performed under conditions of linearity with respect to input RNA.Gel mobility shift assays.SRF and myocardin were translated in vitro with a TNT T7-coupled reticulocyte lysate system (Promega),and gel mobility shift assays were performed with double-stranded probes as described (3).The se-quence of the top strand of the Nkx2.5CArG box probe was GCCCCCCCAA GTTTAAATGCT CCTTTAAGGG CTTGAGTGTCTGCAGC (CArG box is in italics).RESULTSSynergistic activation of the Nkx2.5enhancer by myocardin and GATA4.A dominant negative myocardin mutant sup-presses Nkx2.5expression in Xenopus embryos and in the P19embryonal carcinoma cell line (36,37).To test whether myo-cardin was able to stimulate the expression of Nkx2.5in cardiac myocytes,we infected primary rat neonatal cardiac myocytes with an adenovirus encoding myocardin (Ad-myocardin).In-deed,the myocardin-expressing virus up-regulated Nkx2.5ex-pression by fivefold compared to a control virus expressing lacZ (Ad-lacZ)(Fig.1A).Based on the above findings,we examined the early cardiac enhancer of the mouse Nkx2.5gene for CArG boxes that might confer responsiveness to myocardin.The enhancer,which is located between bp Ϫ9432and Ϫ8923upstream of the Nkx2.5gene,contains a single CArG box (20).In gel mobilityshiftFIG.1.Myocardin and GATA4synergistically activate the Nkx2.5enhancer.(A)Primary neonatal cardiomyocytes were infected with adeno-viruses encoding myocardin or lacZ (as a negative control).Four days later,expression of Nkx2.5transcripts was measured by semiquantitative reverse transcription-PCR.Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)transcripts were detected as a loading control.(B)Gel mobility shift assays were performed with a radiolabeled oligonucleotide corresponding to the CArG box in the Nkx2.5enhancer and in vitro-translated SRF and myocardin proteins,as indicated.Myocardin formed a stable ternary complex with SRF on this sequence (lane 3).Anti-SRF antibody supershifted the SRF complex (lane 2),and anti-Flag antibody supershifted the ternary complex formed by SRF and Flag-myocardin (lane 4).(C)COS cells were transiently transfected with the luciferase reporter plasmids shown above each panel and the indicated amounts (in nanograms)of myocardin expression vector.Luciferase activity was assayed and is expressed as fold activation above the level of expression of the reporter gene alone.(D)COS cells were transiently transfected with the luciferase reporter plasmids shown above each panel and the indicated amounts (in nanograms)of myocardin expression vector with and without a GATA4expression vector (100ng),and luciferase activity was determined as in panel C.8520OH ET AL.M OL .C ELL .B IOL .at Hunan Normal University on June 7, 2009 Downloaded fromassays,SRF bound avidly to this sequence and gave rise to a ternary complex in the presence of myocardin (Fig.1B).Transfection of COS cells with a myocardin expression vec-tor and a luciferase reporter linked to the Nkx2.5enhancer and the viral E1b promoter (NK-E1b-luc)showed that myocardin was able to transactivate the enhancer (Fig.1C).Similar results were obtained when the enhancer was combined with the thy-midine kinase (tk)basal promoter (NK-tk-luc),whereas an enhancer with a mutation in the CArG box (NK-CArGmut-tk-luc)was refractory to the activity of myocardin (Fig.1C).Myocardin also activated the Nkx2.5enhancer in transfected HeLa and 10T1/2cells (data not shown).Myocardin is a relatively weak activator through single CArG boxes (37).We therefore tested whether its transcrip-tional potency might be enhanced in the presence of GATA4,which binds two essential GATA sites in the Nkx2.5enhancer (20).As shown in Fig.1D,GATA4alone was a very weak activator of the Nkx2.5enhancer,but it synergized with myo-cardin to activate the enhancer.The synergy between GATA4and myocardin was abolished by mutation of the CArG box (NK-CArG mut-tk-luc;Fig.1D).Surprisingly,however,the synergy was not affected when the two GATA sites were mu-tated (NK-GATA-mut-tk-luc;Fig.1D).We conclude that myocardin transactivates the Nkx2.5enhancer by associating with SRF on the CArG box in this enhancer and that GATA4can potentiate the effect of myocardin on the enhancer through a mechanism independent of GATA4DNA binding.Repression of myocardin activity by GATA4.We next tested whether myocardin and GATA4could cooperate to activate the ANF promoter,which contains a pair of binding sites for both factors (10,16,26).Myocardin activates this promoter much more effectively than the Nkx2.5enhancer,at least in part because it contains two CArG boxes (Fig.2A)(37).Un-expectedly,GATA4potently repressed myocardin-dependent activation of the ANF promoter,such that as little as 10ng of GATA4expression plasmid resulted in a near-complete inhi-bition of ANF-luciferase expression (Fig.2A).To determine whether the GATA sites in the promoter were required for repression,we examined the effects of myocardin and GATA4on a mutant ANF promoter in which the two GATA sites were mutated.The mutant promoter (GATA-less ANF-luc)was activated by myocardin and repressed by GATA4as effectively as the wild-type promoter (Fig.2A).These results suggested that the repressive effect of GATA4did not require direct binding of GATA4to DNA.To further investigate the potential modulation of myocar-din activity by GATA4,we tested the effect of GATA4on the SM22promoter,which is extremely sensitive to myocardin and contains two essential CArG boxes but no GATA sites (8,11).GATA4potently suppressed the ability of myocardin to acti-vate the SM22promoter (Fig.2B),supporting the notion that DNA binding by GATA4was not involved in the repressive mechanism.GATA4enhances myocardin activity on a multimerized CArG box.To determine whether the CArG box was suf ficient to confer responsiveness of myocardin to GATA4,we tested a reporter gene containing the tk promoter linked to four tan-dem copies of the promoter-proximal SM22CArG box (4xSM22CArG-luc).As shown in Fig.2C,this reporter was activated by myocardin but,in contrast to the behavior of the ANF and SM22promoters,activation by myocardin was dra-matically augmented by GATA4.In the absence of myocardin,GATA4had no effect on the reporter,demonstrating that the stimulation of transcription by GATA4required myocardin.Myocardin did not affect the expression of a reporter contain-ing six tandem copies of the GATA binding site without a CArG box (data not shown),further suggesting that the posi-tive and negative in fluences of GATA4on myocardin were dependent on the presence of SRF binding sites and were independent of GATA4DNA binding.Together,the above results demonstrated that GATA4was able to discriminate between myocardin target genes and modulate myocardin ac-tivity,either positively or negatively,in a promoter context-dependent manner.Mapping the GATA4-responsive region of myocardin.To determine whether stimulation and suppression of myocardin activity by GATA4were dependent on the same domain of the myocardin protein,we examined the effects of GATA4on a series of myocardin deletion mutants (Fig.3A to C).The transcriptional activity of a myocardin deletion mutantlackingFIG.2.Differential effects of GATA4on myocardin-dependent transcription.COS cells were transiently transfected with luciferase reporter plasmids controlled by (A)the ANF promoter or a mutant promoter lacking the two GATA4binding sites,(B)the SM22promoter,or (C)four copies of the SM22CArG box and the indicated amounts (in nanograms)of myocardin and GATA4expression vectors.Luciferase activity was assayed and is expressed as fold activation above the level of expression of the reporter gene alone.V OL .24,2004MODULATION OF MYOCARDIN ACTIVITY BY GATA FACTORS 8521at Hunan Normal University on June 7, 2009 Downloaded fromFIG.3.Mapping the region of myocardin that responds to GATA.(A)Schematic diagrams of myocardin mutants.The potential of each protein to be stimulated by GATA4on the4xSM22-CArG promoter or repressed by GATA4on the SM22promoter is indicated.(B and C)COS cells were transiently transfected with the luciferase reporter plasmids shown above each panel and expression vectors encoding GATA4(100ng) and myocardin or myocardin mutants(100ng)shown in panel A,as indicated.Luciferase activity was assayed and is expressed as fold activation above the level of expression of the reporter gene alone.(D)Schematic diagrams of GAL4-myocardin fusion proteins.The potential of each protein to be stimulated by GATA4is indicated.(E)COS cells were transiently transfected with an upstream activation sequence-luciferase reporter plasmid and expression vectors encoding GAL4-myocardin fusion proteins(100ng)shown in panel D with and without a GATA4 expression vector(100ng),as indicated.Luciferase activity was assayed and is expressed as fold activation above the level of expression of the reporter gene alone.8522 at Hunan Normal University on June 7, 2009 Downloaded fromthe conserved N-terminal domain(⌬NTD)was stimulated by about an order of magnitude in the presence of GATA4when assayed with the reporter controlled by the multimerized SM22 CArG box(4xSM22-CArG-luc;Fig.3B).Deletion mutants in which residues from amino acid513to the C terminus,includ-ing the transcription activation domain(TAD),were deleted and replaced with VP16(mutants129-513-VP16and129-713-VP16)were also stimulated by GATA4(Fig.3A and B and data not shown).Deletion mutants that were stimulated by GATA4on the multimerized SM22CArG box reporter re-tained the ability to be repressed by GATA4on the SM22and ANF promoters(Fig.3A to C and data not shown).These results suggested that the positive and negative effects of GATA4were dependent on the same region of myocardin. To determine whether the effects of GATA4were mediated by myocardin or SRF(or another protein),we tested whether GATA4affected the transcriptional activity of myocardin fused to the GAL4DNA binding domain(Fig.3D and E). GATA4stimulated activity of a GAL4-myocardin fusion pro-tein extending from amino acid129to the C terminus(GAL4-129-935).The TAD of myocardin,located between amino acid 713and the C terminus,shows a greater than10-fold increase in activity when it is isolated from the remainder of the protein (37).The TAD fused to the GAL4DNA binding domain (GAL4-670-935)showed only a marginal response to GATA4. In contrast,residues129to713,which are inactive alone (GAL4-129-713),showed about a sevenfold increase in tran-scriptional activity in the presence of GATA4.Thefinding that GATA4was able to stimulate transcription via a portion of myocardin lacking its own transcription activation domain sug-gested that myocardin acted as a bridge between GATA4and the transcriptional machinery(see below).Mapping the GATA4binding region of myocardin.To de-termine whether the modulation of myocardin activity by GATA4required direct physical interaction between the pro-teins,we performed GST pulldown assays with GST-GATA4 fusion protein and myocardin deletion mutants translated in vitro.As shown in Fig.4,GATA4interacted efficiently with myocardin.Amino-terminal deletion mutants up to residue 348retained the ability to interact strongly with GATA4.A deletion mutant lacking residues1to438(mutant439-935)was also able to interact with GATA4,albeit less strongly than mutants containing additional N-terminal sequences.The TAD of myocardin,contained within residues713to935,did not interact with GATA4.Deletions from the C terminus showed that residues129to 513retained strong GATA4binding activity.A smaller dele-tion mutant lacking additional C-terminal sequences(mutant 129-438)also bound GATA4,but its binding activity was re-duced.Further deletions from the C-terminal end to residue 348or298(mutants129-348and129-298,respectively)abol-ished binding.The above deletions suggested that myocardin contained two GATA4-binding regions,one between residues129and 438(region1)and another between residues439and713 (region2)(Fig.4B).Since the former region encompasses the SRF-binding domain and SAP domains,which are critical to the functions of myocardin,we created a series of smaller deletions within this region in order to further pinpoint this GATA4-binding domain.As shown in Fig.4C and D,deletion of the SAP domain(amino acids380to414)severely impaired but did not eliminate GATA4-binding activity(mutant129-513⌬SAP).Similarly,deletion of residues326to377reduced GATA4activity,and a deletion combining both regions(mu-tant⌬326to438)abolished GATA4binding.We conclude that the GATA4-binding region1of myocardin maps to an ex-tended sequence from348to438that encompasses the SAP domain.This GATA4-binding region of myocardin defined by GST pulldown assays correlated with the region of myocardin required for stimulation and suppression of myocardin activity by GATA4.Mapping the myocardin-interacting region of GATA4.The region of GATA4that interacted with myocardin was mapped by coimmunoprecipitation and GST pulldown assays with a GST-myocardin fusion protein containing residues129to510 and a series of GATA4deletion mutants translated in vitro (Fig.5A and B,and data not shown).Deletion of residues from amino acid332to the C terminus(mutant1-332)did not affect binding of GATA4to myocardin.Residues1to177of GATA4,which encompass the two TADs,did not interact with myocardin,whereas a strong interaction was observed with residues177to332and190to332,which encompass the two zincfingers and the nuclear localization sequence(NLS).De-letion of the N-terminal zincfinger(Nf)did not affect binding to myocardin(mutant239to332),whereas deletion of the C-terminal zincfinger(Cf)or the NLS abolished myocardin binding(mutants1-332⌬Cf and190-302,respectively). GATA5and GATA6,which share extensive homology with GATA4,also interacted with myocardin(Fig.5B).The ability of GATA4deletion mutants to interact with myocardin correlated precisely with the ability to synergize with myocardin to activate the Nkx2.5enhancer or the mul-timerized SM22CArG box(Fig.5A and C).Thus,only the Cf and NLS of GATA4appeared to be required for myocardin binding and stimulation of myocardin activity.In contrast, binding to myocardin and repression of myocardin activity on the SM22-luciferase reporter could be uncoupled in certain deletion mutants.For example,repression required the amino-terminal TADs of GATA4and the myocardin-binding region; deletion mutants containing only one domain or the other were unable to repress myocardin activity(e.g.,mutants1-177and 177-332).In fact,the only GATA4deletion mutant able to repress myocardin activity was mutant1-332,which lacks the extreme C-terminal residues.GATA5and GATA6also acti-vated and repressed myocardin activity as effectively as GATA4.To further pinpoint the residues in the Cf of GATA4that are critical for myocardin binding,we tested a series of point mutants for their abilities to bind the GST-myocardin fusion protein.Mutations that disrupted myocardin binding were also defective in stimulation of the multimerized SM22CArG box and repression of the SM22promoter with myocardin(Fig.5D to F).The two mutants(WRR and C1)that were defective in myocardin binding also failed to interact with SRF(data not shown).Thus,we cannot distinguish whether GATA4modu-lates myocardin activity on SRF-dependent promoters by as-sociating with myocardin directly or with SRF or both.How-ever,the ability of GATA4to enhance the activity of a GAL4-myocardin fusion protein,which is SRF independent,suggests that GATA4can act through a direct effect on myocardin.V OL.24,2004MODULATION OF MYOCARDIN ACTIVITY BY GATA FACTORS8523at Hunan Normal University on June 7, 2009 Downloaded fromat Hunan Normal University on June 7, 2009 Downloaded fromDISCUSSIONThe major finding of this study is that GATA4can stimulate or suppress myocardin activity in a target gene-speci fic man-ner.Modulation of myocardin activity by GATA4is mediated,at least in part,by the direct interaction of GATA4with myo-cardin and does not require binding of GATA4to DNA.Par-adoxically,stimulation of myocardin activity by GATA4re-quires only the DNA binding domain,but not the TAD of GATA4,whereas repression of myocardin activity by GATA4requires the DNA binding domain and the TAD (shown in Fig.6).These findings reveal an unusual complexity to the mech-anism(s)involved in myocardin-and GATA-dependent gene regulation with the potential to provide gene-speci fic transcrip-tional control and fine tuning of the expression of SRF target genes.Interaction of GATA4with myocardin.Our results demon-strate that GATA4can interact with two regions of myocardin.GATA4-binding region 1of myocardin maps to residues 326to 438.This region encompasses the SAP domain (residues 380to 414),but deletions to either side of this domain impair GATA4binding,indicating that binding requires an extended sequence of myocardin such that deletions throughout this region per-turb this protein-protein interaction.GATA4can also interact with residues 439to 713independently of binding region 1.We have not further de fined this region,which includes the TAD,since replacing it with VP16does not diminish the responsive-ness of myocardin to GATA4.What mechanism(s)might account for the opposite effects of GATA factors on myocardin activity?Because GATA4can stimulate myocardin activity on some regulatory regions (e.g.,the Nkx2.5enhancer)and inhibit activity on others (e.g.,the ANF promoter),it is likely that the differential effects of GATA4are dependent on other factors that bind myocardin target genes.Stimulation of myocardin activity by GATA4was observed with an arti ficial reporter containing multimers of the SRF binding site,which suggests to us that this type of stimu-latory activity may re flect a simpler mechanism and that re-pression may involve more complex interactions between GATA4and other nuclear factors.The ANF and SM22pro-moters were both repressed by GATA4in the presence of myocardin,suggesting that they are regulated by the same mechanism.The ANF promoter contains two GATA binding sites,neither of which is required for repression by GATA4,and the SM22promoter contains no GATA sites.Inspection of these promoters has not revealed any obvious binding sites for common factors that might mediate the repressive in fluence of GATA4.Understanding the mechanisms involved in GATA-depen-dent modulation of myocardin activity is complicated by the fact that both myocardin and GATA4interact with SRF (2,26,37).This raises the possibility that some of the observed effects of GATA4may re flect competition between myocardin and GATA4for interaction with SRF or recruitment of both fac-tors by SRF,independent of their interaction with each other.The finding that GATA4can stimulate the activity of a GAL4-myocardin fusion protein that activates transcription indepen-dently of SRF suggests that the stimulatory effects of GATA4do not require its direct association with SRF and are likely to be mediated by direct physical association with myocardin.This conclusion is supported by the precise correlation be-tween the ability of GATA4mutants to interact with myocar-din and to stimulate myocardin activity.Although GATA4interacts with myocardin and enhances myocardin activity,myocardin cannot stimulate transcription through GATA binding sites.The inability of myocardin to activate transcription by tethering to GATA factors on DNA may be explained by the fact that myocardin interacts with the same residues in the C-terminal zinc finger of GATA4that mediate GATA4DNA binding,which could preclude the for-mation of a stable GATA-myocardin ternary complex on DNA.In contrast,GATA4interacts with domains of myocar-din that are not required for association with SRF.Therefore,GATA4can interact with myocardin without perturbing myo-cardin ’s ability to interact with SRF.It is intriguing that stimulation of myocardin activity requires only the Cf and NLS of GATA4,whereas suppression of myo-cardin activity requires these domains in addition to the N-terminal transcription activation domain.The ability to sepa-rate the stimulatory and suppressive effects of GATA4by deletion of the TAD suggests that these occur through distinct mechanisms.We can envision at least three mechanisms that might account for the ability of GATA4to stimulate myocar-din activity.GATA4could induce a conformational change in myocardin that augments its transcriptional activity,possibly by unmasking the TAD or stabilizing its interaction with the transcriptional machinery.GATA4could recruit a coactivator to the myocardin-SRF complex,or it could displace an inhib-itory protein from the complex.With respect to the mechanism for GATA4-mediated sup-pression of myocardin activity,the requirement for the TAD in this process suggests that the presence of GATA4may cause “squelching ”(29)such that this domain competes with an activation domain of another factor,which could be myocardin itself,SRF,or another factor required for activation of the set of genes that are suppressed by GATA4.Another mechanism may involve competition between myocardin and GATA4for SRF interaction.It is not obvious,however,how the TAD of GATA4would contribute to such a repressive mechanism.Our finding that GATA4can suppress the activity of myo-cardin on SRF target genes is somewhat surprising in light of numerous previous studies demonstrating that GATA4can stimulate SRF-dependent transcription (2,26,33).The stim-FIG.4.Mapping the region of myocardin that interacts with GATA4.(A)A GST-GATA4fusion protein encompassing amino acids 177to 332was incubated with [35S]methionine-labeled myocardin proteins translated in vitro.Myocardin proteins associated with GST-GATA4are shown at the top,and 10%of the input proteins are shown at the bottom.(B)Summary of the GST-GATA4pulldown and coimmunoprecipitation assays (data not shown).(C)GST pulldown assays were performed with the indicated myocardin mutants and GST-GATA4as described for panel A.(D)Summary of the GST-GATA4pulldown assays in panel C.V OL .24,2004MODULATION OF MYOCARDIN ACTIVITY BY GATA FACTORS 8525at Hunan Normal University on June 7, 2009 Downloaded from。